JP2006158494A - Artificial heart valve, base material for regenerative medicine, and its method - Google Patents

Artificial heart valve, base material for regenerative medicine, and its method Download PDF

Info

Publication number
JP2006158494A
JP2006158494A JP2004351128A JP2004351128A JP2006158494A JP 2006158494 A JP2006158494 A JP 2006158494A JP 2004351128 A JP2004351128 A JP 2004351128A JP 2004351128 A JP2004351128 A JP 2004351128A JP 2006158494 A JP2006158494 A JP 2006158494A
Authority
JP
Japan
Prior art keywords
heart valve
leaflet
artificial heart
base material
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004351128A
Other languages
Japanese (ja)
Other versions
JP4729293B2 (en
Inventor
Hidekazu Kitazono
英一 北薗
Hiroaki Kaneko
博章 兼子
Akira Saito
亮 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2004351128A priority Critical patent/JP4729293B2/en
Publication of JP2006158494A publication Critical patent/JP2006158494A/en
Application granted granted Critical
Publication of JP4729293B2 publication Critical patent/JP4729293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an artificial heart valve free from leakage of blood and a base material for regenerative medicine which shows excellent grafting performance of cells and has a shape of a heart valve. <P>SOLUTION: The artificial heart valve or the base material for regenerative medicine, which comprises a fiber structure with an average fiber diameter of 0.05-10 μm and is equipped with a sinus of Valsalva on a cylindrical base body and a leaflet of valve inside the base body, is manufactured by a process of obtaining the fiber structure of a shape of the leaflet of valve on a collector by fiber spinning through electrostatic fiber spinning, of combining the leaflet of valve and the cylindrical base body by implementing fiber spinning through electrostatic fiber spinning over the obtained fiber structure, and of laminating the cylindrical base body by performing heat processing on a cylinder of the same diameter superposed on an artificial heart valve. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

筒状の基体にバルサルバ洞、かつ基体内部に弁尖を備えた人工心臓弁または再生医療用基材、及びその製造方法に関する。   The present invention relates to a prosthetic heart valve or a regenerative medical base material provided with a Valsalva sinus on a cylindrical base body and a valve leaflet inside the base body, and a manufacturing method thereof.

弁狭窄症、弁閉鎖不全症等の心臓弁膜症により、弁の機能障害が生じ、弁を通じての正常な血流が損なわれる。例えば弁狭窄症の場合、心臓弁開口部の面積が小さくなり、弁を通過する血流量が減少する。また弁閉鎖不全症の場合、弁が正常に閉じないため、すきまから血液が逆流して十分な量の血液が流れなくなり、いずれのケースも重度の場合健康を維持できなくなる。こういった場合、弁を交換する必要があり、現在手術に用いられる弁には、1)機械弁、2)生体弁(異種、同種)の2種類がある。機械弁は、耐久性に優れ生涯使用できるものの、患者は抗凝固剤療法が必要であり、妊娠希望の患者や出血性の消化性潰瘍、潰瘍性大腸炎の患者には使用が制限されている。また、生体弁においては抗凝固剤療法は必要ないが、耐久性に問題があり5〜10年で取替えが必要となる場合がある。   Valve valvular diseases such as valve stenosis and valve insufficiency cause valve dysfunction and normal blood flow through the valve is impaired. For example, in the case of valve stenosis, the area of the heart valve opening is reduced and the blood flow through the valve is reduced. In the case of valve regurgitation, since the valve does not close normally, blood flows backward from the gap and a sufficient amount of blood does not flow. In such a case, it is necessary to replace the valve, and there are two types of valves that are currently used for surgery: 1) mechanical valves, and 2) biological valves (heterogeneous, same type). Although mechanical valves are durable and can be used for life, patients require anticoagulant therapy and are restricted for patients who want to become pregnant, those with hemorrhagic peptic ulcers, and ulcerative colitis . In addition, anticoagulant therapy is not required for biological valves, but there are problems with durability, and replacement may be required in 5 to 10 years.

これに対し、近年大きく損傷しさらに失われた生体組織と臓器の治療法として、細胞の分化、増殖能を利用し元の生体組織および臓器に再構築する再生医療の研究が活発になってきている。例えば、皮膚(例えば非特許文献1)、角膜(例えば非特許文献2)、骨(例えば非特許文献3)、軟骨(例えば非特許文献4)、末梢神経(例えば非特許文献5)、血管(例えば非特許文献6)などが挙げられる。   On the other hand, as a treatment method for living tissues and organs that have been damaged and lost in recent years, research on regenerative medicine that reconstructs the original living tissues and organs using cell differentiation and proliferation ability has become active. Yes. For example, skin (for example, non-patent document 1), cornea (for example, non-patent document 2), bone (for example, non-patent document 3), cartilage (for example, non-patent document 4), peripheral nerve (for example, non-patent document 5), blood vessel ( For example, Non-Patent Document 6) can be mentioned.

また心臓弁に関しても、再生医療技術による試みが行われている。(例えば特許文献1)しかし、現在検討が行われている人工心臓弁は筒状の基体と弁尖の複合化は具体的には縫合で行われているため、そこから血液が漏洩したり等の問題がある。また同文献において基体と弁尖の複合化を接着により行うことも提案されているが、強度が保持できない等の問題がある。   For heart valves, attempts have been made using regenerative medical technology. (For example, Patent Document 1) However, since the artificial heart valve currently being studied is a combination of a tubular base and a valve leaflet, specifically, it is performed by suturing, and blood leaks from it. There is a problem. In the same document, it has also been proposed to combine the base and the leaflet by bonding, but there is a problem that the strength cannot be maintained.

特開2001-120582号公報JP 2001-120582 JP I.V.Yannas,J.F.Burke,J.Biomed.Mater.Res,14,65(1980)I.V.Yannas, J.F.Burke, J.Biomed.Mater.Res, 14, 65 (1980) G.Pellegrini,C.E.Traverso,A.T.Franzi,M.Zingirian,R.Cancedda,M.deLuca,Lancet,349,990(1997)G.Pellegrini, C.E.Traverso, A.T.Franzi, M.Zingirian, R.Cancedda, M.deLuca, Lancet, 349,990 (1997) T.Yoshikawa,H.Ohgushi,T.Uemura,H.Nakajima,K.Ichijima,S.Tamai,T.Tamai,T.Tateishi,Biomed.Mater.Eng,8,311(1998)T. Yoshikawa, H. Ohgushi, T. Uemura, H. Nakajima, K. Ichijima, S. Tamai, T. Tamai, T. Tateishi, Biomed. Mater. Eng, 8, 311 (1998) L.Peterson,T.Minas,M.Brittberg,A.Nilsson,E.Sjogren-Jansson,A.Lindahl,Clinic.Orthop,374,212(2000)L. Peterson, T. Minas, M. Brittberg, A. Nilsson, E. Sjogren-Jansson, A. Lindahl, Clinic. Orthop, 374, 212 (2000) (a)F.J.Rodoriguez,N.Gomez,G.Perego,X.Navarro,Biomareials,20,1489(1999);(b)T.Kiyotani,T.Nakamura,Y,Shimizu,K.Endo,ASAIOJ,41,M657(1995)(a) FJRodoriguez, N. Gomez, G. Perego, X. Navarro, Biomareials, 20, 1489 (1999); (b) T. Kiyotani, T. Nakamura, Y, Shimizu, K. Endo, ASAIOJ, 41, M657 (1995) T.Shinoka,C.K.Breuer,R.E.Tanel,G.Zund,T.Miura,P.X.Ma,R.Langer,J.P.Vacanti,J.E.Mayer,Ann.Thorac.Surg,60,S5135(1995)T. Shinoka, C. K. Breuer, R. E. Tanel, G. Zund, T. Miura, P. X. Ma, R. Langer, J. P. Vacanti, J. E. Mayer, Ann. Thorac. Surg, 60, S5135 (1995)

本発明の課題は、平均繊維径が0.05〜10μmの繊維構造体からなり、筒状の基体にバルサルバ洞、かつ基体内部に弁尖を備えた人工心臓弁、および静電紡糸法により該人工心臓弁を製造する方法を提供することにある。また本発明のもう一つの課題は、平均繊維径が0.05〜10μmの繊維構造体からなり、筒状の基体にバルサルバ洞、かつ基体内部に弁尖を備えた心臓弁形状を有する再生医療用基材、および該再生医療用基材と生体細胞とからなる人工心臓弁を提供することにある。   An object of the present invention is an artificial heart valve comprising a fiber structure having an average fiber diameter of 0.05 to 10 μm, a cylindrical base having a Valsalva sinus and a leaflet inside the base, and the artificial heart by an electrostatic spinning method. It is to provide a method of manufacturing a valve. Another subject of the present invention is a regenerative medical substrate comprising a fibrous structure having an average fiber diameter of 0.05 to 10 μm and having a heart valve shape having a cylindrical base with a Valsalva sinus and a leaflet inside the base. An object of the present invention is to provide a prosthetic heart valve comprising a material and the regenerative medical base material and living cells.

本発明は、以下の通りである。
1.平均繊維径が0.05〜10μmの繊維構造体からなり、筒状の基体にバルサルバ洞、かつ基体内部に弁尖を備えた人工心臓弁。
2.基体と弁尖との間に継ぎ目がないことを特徴とする1に記載の人工心臓弁。
3.前記繊維構造体が生分解性ポリマーよりなることを特徴とする1〜2のいずれかに記載の人工心臓弁。
4.前記生分解性ポリマーが、脂肪族ポリエステルよりなることを特徴とする3記載の人工心臓弁。
5.前記脂肪族ポリエステルが、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、またはそれらの共重合体よりなることを特徴とする4記載の人工心臓弁。
6.平均繊維径が0.05〜10μmの繊維構造体からなり、筒状の基体にバルサルバ洞、かつ基体内部に弁尖を備えた心臓弁形状を有する再生医療用基材。
7.基体と弁尖との間に継ぎ目がないことを特徴とする6に記載の再生医療用基材。
8.前記繊維構造体が生分解性ポリマーよりなることを特徴とする6〜7のいずれかに記載の再生医療用基材。
9.前記生分解性ポリマーが、脂肪族ポリエステルよりなることを特徴とする8記載の再生医療用基材。
10.前記脂肪族ポリエステルが、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、またはそれらの共重合体よりなることを特徴とする9記載の再生医療用基材。
11.6〜10のいずれかに記載の再生医療用基材と生体細胞とからなる人工心臓弁。
12.ポリマーを揮発性溶媒に溶解した溶液を製造する工程と、前記溶液を静電紡糸法にて紡糸を行い、コレクタ上に弁尖形状の繊維構造体を得る工程、さらに得られた繊維構造体の上から静電紡糸法にて紡糸を行い弁尖と筒状の基体の複合化を行う工程、さらには同径の筒を重ね合わせ熱処理することで筒状の基体を積層化させる工程による上記に記載の人工心臓弁の製造方法。
13.ポリマーを揮発性溶媒に溶解した溶液を製造する工程と、前記溶液を静電紡糸法にて紡糸を行い、コレクタ上に弁尖形状の繊維構造体を得る工程、さらに得られた繊維構造体の上から静電紡糸法にて紡糸を行い弁尖と筒状の基体の複合化を行う工程、さらには同径の筒を重ね合わせ熱処理することで筒状の基体を積層化させる工程による上記に記載の再生医療用基材の製造方法。
The present invention is as follows.
1. An artificial heart valve comprising a fibrous structure having an average fiber diameter of 0.05 to 10 μm, comprising a Valsalva sinus on a cylindrical base and a leaflet inside the base.
2. 2. The artificial heart valve according to 1, wherein there is no seam between the base and the leaflet.
3. The artificial heart valve according to any one of claims 1 and 2, wherein the fibrous structure is made of a biodegradable polymer.
4). 4. The artificial heart valve according to 3, wherein the biodegradable polymer is an aliphatic polyester.
5. 5. The artificial heart valve according to 4, wherein the aliphatic polyester is made of polylactic acid, polyglycolic acid, polycaprolactone, or a copolymer thereof.
6). A regenerative medical base material comprising a fibrous structure having an average fiber diameter of 0.05 to 10 μm and having a heart valve shape having a cylindrical base with Valsalva sinus and a valve leaflet inside the base.
7). 7. The regenerative medical substrate according to 6, wherein there is no seam between the base and the valve leaflet.
8). The regenerative medical substrate according to any one of 6 to 7, wherein the fiber structure is made of a biodegradable polymer.
9. 9. The regenerative medical substrate according to 8, wherein the biodegradable polymer is an aliphatic polyester.
10. 10. The regenerative medical base material according to 9, wherein the aliphatic polyester is made of polylactic acid, polyglycolic acid, polycaprolactone, or a copolymer thereof.
A prosthetic heart valve comprising a regenerative medical substrate according to any one of 11.6 to 10 and a living cell.
12 A step of producing a solution in which a polymer is dissolved in a volatile solvent; a step of spinning the solution by an electrostatic spinning method to obtain a leaflet-shaped fiber structure on a collector; and The above-mentioned process is carried out by spinning from the top by electrospinning and compositing the leaflets and the cylindrical substrate, and further by laminating the cylindrical substrates by laminating and heat-treating the cylinders of the same diameter. The manufacturing method of the artificial heart valve of description.
13. A step of producing a solution in which a polymer is dissolved in a volatile solvent; a step of spinning the solution by an electrostatic spinning method to obtain a leaflet-shaped fiber structure on a collector; and The above-mentioned process is carried out by spinning from the top by electrospinning and compositing the leaflets and the cylindrical substrate, and further by laminating the cylindrical substrates by laminating and heat-treating the cylinders of the same diameter. The manufacturing method of the base material for regenerative medicine as described.

本発明の人工心臓弁および再生医療用基材は、0.05〜10μmの繊維構造体からなることから、細胞の生着性に優れていることが期待される。また本発明によってカスタムメイドの人工心臓弁および再生医療用基材を提供することができ、縫合点や接合点による血液の漏洩を回避可能な人工心臓弁を提供することが可能となる。   Since the artificial heart valve and the substrate for regenerative medicine of the present invention are composed of a 0.05 to 10 μm fiber structure, it is expected to be excellent in cell engraftment. Further, according to the present invention, a custom-made artificial heart valve and a regenerative medical base material can be provided, and an artificial heart valve capable of avoiding blood leakage due to a suture point or a joint point can be provided.

以下、本発明について詳述する。なお、これらの実施例等および説明は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。   Hereinafter, the present invention will be described in detail. In addition, these Examples etc. and description illustrate this invention, and do not restrict | limit the scope of the present invention. It goes without saying that other embodiments may belong to the category of the present invention as long as they match the gist of the present invention.

本発明は平均繊維径が0.05〜10μmの繊維構造体からなり、筒状の基体にバルサルバ洞、かつ基体内部に弁尖を備えた人工心臓弁である。
また本発明は、平均繊維径が0.05〜10μmの繊維構造体からなり、筒状の基体にバルサルバ洞、かつ基体内部に弁尖を備えた心臓弁形状を有する再生医療用基材である。
また本発明は該再生医療用基材と生体細胞とからなる人工心臓弁、すなわち心臓弁形状を有する足場に組織の細胞を播種し培養して自己の組織を再生することによる人工心臓弁である。
The present invention is an artificial heart valve comprising a fiber structure having an average fiber diameter of 0.05 to 10 μm, and having a cylindrical base with a Valsalva sinus and a leaflet inside the base.
The present invention also relates to a regenerative medical base material comprising a fiber structure having an average fiber diameter of 0.05 to 10 μm, and having a heart valve shape having a cylindrical base with Valsalva sinus and a leaflet inside the base.
Further, the present invention is an artificial heart valve comprising the regenerative medical base material and biological cells, that is, an artificial heart valve by seeding and culturing tissue cells on a scaffold having a heart valve shape to regenerate its own tissue. .

本発明で使用される繊維構造体とは、単数または複数の繊維が積層され、集積されて形成された3次元の構造体である。繊維構造体の平均繊維径は0.05〜10μmである。
本発明の人工心臓弁および再生医療用基材はこのようなナノファイバーから繊維構造体とすることにより、1)細胞外マトリックスに近似したサイズの長さ、および/または径、2)繊維径の減少による比表面積の増大、すなわち通常の繊維(マイクロファイバー)と比較すると比表面積が100倍以上となる、また3)それに伴う細胞接着性の向上などの効果を有する。平均繊維径が、0.05μmよりも低いと該繊維構造体の強度が保てないため好ましくない。また平均繊維径が10μmよりも高いと繊維の比表面積が小さく生着する細胞数が少なくなるため好ましくない。さらに好ましくは平均繊維径が0.2〜5μmである。
The fiber structure used in the present invention is a three-dimensional structure formed by stacking and stacking one or a plurality of fibers. The average fiber diameter of the fiber structure is 0.05 to 10 μm.
The artificial heart valve and the regenerative medical base material of the present invention are made from such nanofibers as a fiber structure, so that 1) the length and / or diameter approximate to the extracellular matrix, and 2) the fiber diameter. Increase in specific surface area due to the decrease, that is, the specific surface area becomes 100 times or more compared with ordinary fibers (microfibers), and 3) the effect of improving cell adhesion accompanying it. An average fiber diameter of less than 0.05 μm is not preferable because the strength of the fiber structure cannot be maintained. Further, if the average fiber diameter is higher than 10 μm, the specific surface area of the fiber is small, and the number of engrafted cells is reduced. More preferably, the average fiber diameter is 0.2 to 5 μm.

本発明で使用される繊維構造体は静電紡糸法により得ることができる。静電紡糸法は成型加工が容易であり、ナノファイバーを集積させるコレクタの形状により、容易に基材の形状を変えることが可能である。そのため、心臓弁のような複雑な形状を有するものであっても成型が可能であり、かつ筒状の基体と弁尖を複合化する場合、静電紡糸法は一体成型が可能なため縫合による複合化は必要ない。これより本発明の人工心臓弁および再生医療用基材は基体と弁尖との間に継ぎ目がないという特徴を有する。これにより血液の漏洩が回避可能な人工心臓弁が提供できる。   The fiber structure used in the present invention can be obtained by an electrospinning method. The electrostatic spinning method is easy to mold, and the shape of the substrate can be easily changed depending on the shape of the collector on which the nanofibers are integrated. Therefore, even if it has a complicated shape such as a heart valve, it can be molded, and when a cylindrical base and a valve leaflet are combined, the electrospinning method can be molded integrally, so No compounding is necessary. Thus, the artificial heart valve and the regenerative medical base material of the present invention have a feature that there is no seam between the base and the leaflet. Thereby, an artificial heart valve capable of avoiding blood leakage can be provided.

本発明の繊維構造体を構成するポリマーは生体適合性のあるポリマーであり、非生分解性ポリマーおよび生分解性ポリマーが挙げられる。非生分解性ポリマーとしては、ポリエステル、ポリカーボネート、ナイロン、ポリウレタン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリビニルアルコール、ポリオキシエチレン、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミドなどが挙げられる。   The polymer constituting the fiber structure of the present invention is a biocompatible polymer, and examples thereof include non-biodegradable polymers and biodegradable polymers. Non-biodegradable polymers include polyester, polycarbonate, nylon, polyurethane, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinyl alcohol, polyoxyethylene, polytetrafluoroethylene, polysulfone, polyethersulfone, polyetheretherketone, poly And ether imide.

また生分解性ポリマーからの繊維構造体とすることにより、心臓弁形状を有する再生医療用基材として用いた場合に組織再生後には分解され、異物として体内に残存しない。
生分解性ポリマーとしては、好ましくは主として脂肪族ポリエステルからなる。脂肪族ポリエステルとしては、ポリグリコール酸、ポリ乳酸、ポリカプロラクトン、ポリジオキサノン、トリメチレンカーボネート、ポリブチレンサクシネート、ポリエチレンサクシネート及びこれらの共重合体などが挙げられる。これらのうち、脂肪族ポリエステルとしては、ポリグリコール酸、ポリ乳酸、ポリカプロラクトン及びこれらの共重合体からなる群から選ばれる少なくとも1種であることが好ましい。
In addition, by using a fiber structure made of a biodegradable polymer, when used as a regenerative medical base material having a heart valve shape, it is decomposed after tissue regeneration and does not remain in the body as a foreign substance.
The biodegradable polymer is preferably mainly composed of an aliphatic polyester. Examples of the aliphatic polyester include polyglycolic acid, polylactic acid, polycaprolactone, polydioxanone, trimethylene carbonate, polybutylene succinate, polyethylene succinate, and copolymers thereof. Of these, the aliphatic polyester is preferably at least one selected from the group consisting of polyglycolic acid, polylactic acid, polycaprolactone, and copolymers thereof.

本発明の繊維構造体には、生分解性ポリマー以外の第2成分をさらに含有しても良い。該成分としては、リン脂質類、糖質類、糖脂質類、ステロイド類、ポリアミノ酸類、タンパク質類、およびポリオキシアルキレン類からなる群から選ばれる少なくとも1種であることが好ましい。具体的な第2成分としては、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルグリセロールなどのリン脂質類および/またはポリガラクチュロン酸、ヘパリン、コンドロイチン硫酸、ヒアルロン酸、デルマタン硫酸、コンドロイチン、デキストラン硫酸、硫酸化セルロース、アルギン酸、デキストラン、カルボキシメチルキチン、ガラクトマンナン、アラビアガム、トラガントガム、ジェランガム、硫酸化ジェラン、カラヤガム、カラギーナン、寒天、キサンタンガム、カードラン、プルラン、セルロース、デンプン、カルボキシメチルセルロース、メチルセルロース、グルコマンナン、キチン、キトサン、キシログルカン、レンチナンなどの糖質類および/またはガラクトセレブロシド、グルコセレブロシド、グロボシド、ラクトシルセラミド、トリヘキソシルセラミド、パラグロボシド、ガラクトシルジアシルグリセロール、スルホキノボシルジアシルグリセロール、ホスファチジルイノシトール、グリコシルポリプレノールリン酸などの糖脂質類および/またはコレステロール、コール酸、サポゲニン、ジギトキシンなどのステロイド類および/またはポリアスパラギン酸、ポリグルタミン酸、ポリリジンなどのポリアミノ酸類および/またはコラーゲン、ゼラチン、フィブロネクチン、フィブリン、ラミニン、カゼイン、ケラチン、セリシン、トロンビンなどのタンパク質類および/またはポリオキシエチレンアルキルエーテル、ポリオキシエチレンプロピレンアルキルエーテル、ポリオキシエチレンソルビタンエーテルなどのポリオキシアルキレン類、FGF(繊維芽細胞増殖因子)、EGF(上皮増殖因子)、PDGF(血小板由来増殖因子)、TGF−β(β型形質転換増殖因子)、NGF(神経増殖因子)、HGF(肝細胞増殖因子)、BMP(骨形成因子)などの細胞増殖因子などが挙げられる。   The fiber structure of the present invention may further contain a second component other than the biodegradable polymer. The component is preferably at least one selected from the group consisting of phospholipids, carbohydrates, glycolipids, steroids, polyamino acids, proteins, and polyoxyalkylenes. Specific examples of the second component include phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol, and / or polygalacturonic acid, heparin, chondroitin sulfate, hyaluronic acid, dermatan sulfate, chondroitin, dextran sulfate, Sulfated cellulose, alginic acid, dextran, carboxymethylchitin, galactomannan, gum arabic, tragacanth gum, gellan gum, sulfated gellan, caraya gum, carrageenan, agar, xanthan gum, curdlan, pullulan, cellulose, starch, carboxymethylcellulose, methylcellulose, glucomannan , Carbohydrates such as chitin, chitosan, xyloglucan, lentinan and / or galactocerebroside, Glycolipids such as lucocelebroside, globoside, lactosylceramide, trihexosylceramide, paragloboside, galactosyl diacylglycerol, sulfoquinovosyl diacylglycerol, phosphatidylinositol, glycosyl polyprenol phosphate and / or cholesterol, cholic acid, sapogenin, Steroids such as digitoxin and / or polyamino acids such as polyaspartic acid, polyglutamic acid, polylysine and / or proteins such as collagen, gelatin, fibronectin, fibrin, laminin, casein, keratin, sericin, thrombin and / or polyoxy Such as ethylene alkyl ether, polyoxyethylene propylene alkyl ether, polyoxyethylene sorbitan ether Polyoxyalkylenes, FGF (fibroblast growth factor), EGF (epidermal growth factor), PDGF (platelet-derived growth factor), TGF-β (β-type transforming growth factor), NGF (nerve growth factor), HGF Cell growth factors such as (hepatocyte growth factor) and BMP (bone formation factor) can be mentioned.

また本発明はポリマーを揮発性溶媒に溶解した溶液を製造する工程と、前記溶液を静電紡糸法にて紡糸を行い、コレクタ上に弁尖形状の繊維構造体を得る工程、さらに得られた繊維構造体の上から静電紡糸法にて紡糸を行い弁尖と筒状の基体の複合化を行う工程、さらには同径の筒を重ね合わせ熱処理することで筒状の基体を積層化させる工程による、上記の人工心臓弁、または再生医療用基材の製造方法である。   The present invention also includes a step of producing a solution in which a polymer is dissolved in a volatile solvent, a step of spinning the solution by an electrostatic spinning method to obtain a leaflet-shaped fiber structure on a collector, and further obtained. Spinning from the fiber structure by electrospinning to combine the leaflets and the cylindrical substrate, and stacking the cylindrical substrates by superposing and heat treating the same diameter cylinder It is a manufacturing method of said artificial heart valve or the base material for regenerative medicine according to a process.

静電紡糸法にて紡糸することにより上記にも述べたとおり、ナノファイバーを集積させるコレクタの形状により、容易に基材の形状を変えることが可能である。そのため、心臓弁のような複雑な形状を有するものであっても成型が可能であり、かつ筒状の基体と弁尖を複合化する場合、静電紡糸法は一体成型が可能なため縫合による複合化は必要ない。これより本発明の人工心臓弁および再生医療用基材を縫合することなく製造できるという特徴を有する。またカスタムメイドの人工心臓弁および再生医療用基材の提供が可能である。   As described above by spinning by an electrostatic spinning method, the shape of the substrate can be easily changed by the shape of the collector on which the nanofibers are accumulated. Therefore, even if it has a complicated shape such as a heart valve, it can be molded, and when a cylindrical base and a valve leaflet are combined, the electrospinning method can be molded integrally, so No compounding is necessary. Thus, the artificial heart valve and the regenerative medical base material of the present invention can be manufactured without stitching. Custom-made artificial heart valves and regenerative medical base materials can be provided.

本発明で溶液を形成する揮発性溶媒とは、ポリマーを溶解し常圧で沸点が200℃以下であり、室温で液体である物質である。ポリマーが脂肪族ポリエステルであるときの具体的な揮発性溶媒としては、例えば塩化メチレン、クロロホルム、アセトン、メタノール、エタノール、プロパノール、イソプロパノール、トルエン、テトラヒドロフラン、1,1,3,3−ヘキサフルオロイソプロパノール、水、1,4−ジオキサン、四塩化炭素、シクロヘキサン、シクロヘキサノン、N,N−ジメチルホルムアミド、アセトニトリルなどが挙げられる。これらのうち、脂肪族ポリエステルの溶解性等から、塩化メチレン、クロロホルム、アセトンが特に好ましい。これらの溶媒は単独で用いても良く、複数の溶媒を組み合わせても良い。また本発明においては、本目的を損なわない範囲で他の溶媒を併用しても良い。   The volatile solvent that forms a solution in the present invention is a substance that dissolves a polymer, has a boiling point of 200 ° C. or less at normal pressure, and is liquid at room temperature. Specific volatile solvents when the polymer is an aliphatic polyester include, for example, methylene chloride, chloroform, acetone, methanol, ethanol, propanol, isopropanol, toluene, tetrahydrofuran, 1,1,3,3-hexafluoroisopropanol, Water, 1,4-dioxane, carbon tetrachloride, cyclohexane, cyclohexanone, N, N-dimethylformamide, acetonitrile and the like can be mentioned. Among these, methylene chloride, chloroform, and acetone are particularly preferable in view of the solubility of the aliphatic polyester. These solvents may be used alone, or a plurality of solvents may be combined. Moreover, in this invention, you may use another solvent together in the range which does not impair this objective.

本発明で使用する静電紡糸法とは、ポリマーまたはポリマーと第2成分を揮発性溶媒に溶解した溶液を電極間で形成された静電場中に吐出し、溶液を電極に向けて曵糸することにより、繊維状物質を製造する方法である。繊維状物質とは既に溶液の溶媒が留去され、繊維状物質となっている状態のみならず、いまだ溶液の溶媒を含んでいる状態も示している。   The electrostatic spinning method used in the present invention is a method in which a polymer or a solution in which a polymer and a second component are dissolved in a volatile solvent is discharged into an electrostatic field formed between electrodes, and the solution is spun toward the electrodes. This is a method for producing a fibrous substance. The fibrous substance indicates not only a state in which the solvent of the solution has already been distilled off to form a fibrous substance but also a state in which the solvent of the solution is still contained.

ここで用いられる電極は、金属、無機物、または有機物のいかなるものでも導電性を示すものであれば良い。また、絶縁物上に導電性を示す金属、無機物、または有機物の薄膜を持つものであっても良い。本発明における静電場は一対又は複数の電極間で形成されており、いずれの電極に高電圧を印加しても良い。これは例えば電圧値が異なる高電圧の電極が2つ(例えば15kVと10kV)と、アースに繋がった電極の合計3つの電極を用いる場合も含み、または3本を超える数の電極を使う場合も含むものとする。   The electrode used here may be any metal, inorganic, or organic material that exhibits electrical conductivity. Further, a metal, inorganic, or organic thin film exhibiting conductivity may be provided over the insulator. The electrostatic field in the present invention is formed between a pair or a plurality of electrodes, and a high voltage may be applied to any of the electrodes. This includes, for example, using two high-voltage electrodes with different voltage values (for example, 15 kV and 10 kV) and a total of three electrodes connected to ground, or when using more than three electrodes. Shall be included.

ポリマー溶液中のポリマーの濃度は、1〜30重量%であることが好ましい。ポリマーの濃度が1重量%より低いと、濃度が低すぎるため繊維状物質を形成することが困難となり好ましくない。また、30重量%より高いと得られる繊維状物質の繊維径が大きくなり好ましくない。より好ましいポリマーの濃度は2〜20重量%である。   The concentration of the polymer in the polymer solution is preferably 1 to 30% by weight. If the concentration of the polymer is lower than 1% by weight, it is not preferable because the concentration is too low and it becomes difficult to form a fibrous substance. On the other hand, when the content is higher than 30% by weight, the fiber diameter of the obtained fibrous substance becomes large, which is not preferable. A more preferred polymer concentration is 2 to 20% by weight.

該溶液を静電場中に吐出するには、任意の方法を用いることが出来る。例えば、一例として図1を用いて以下説明する。溶液2をノズルに供給することによって、溶液を静電場中の適切な位置に置き、そのノズルから溶液を電解によって曵糸して繊維化させる。このためには適宜な装置を用いることができ、例えば注射器の筒状の溶液保持槽3の先端部に適宜の手段、例えば高電圧発生器6にて電圧をかけた注射針状の溶液噴出ノズル1を設置して、溶液をその先端まで導く。接地した繊維状物質捕集電極5から適切な距離に該噴出ノズル1の先端を配置し、溶液2が該噴出ノズル1の先端を出るときにこの先端と繊維状物質捕集電極5の間にて繊維状物質を形成させる。   Any method can be used to discharge the solution into the electrostatic field. For example, this will be described below using FIG. 1 as an example. By supplying the solution 2 to the nozzle, the solution is placed at an appropriate position in the electrostatic field, and the solution is threaded by electrolysis from the nozzle to be fiberized. For this purpose, an appropriate device can be used. For example, an injection needle-like solution ejection nozzle in which voltage is applied to the distal end portion of the cylindrical solution holding tank 3 of the syringe by an appropriate means, for example, the high voltage generator 6 Place 1 and guide the solution to its tip. The tip of the ejection nozzle 1 is disposed at an appropriate distance from the grounded fibrous material collecting electrode 5, and when the solution 2 exits the tip of the ejection nozzle 1, the tip is placed between the tip and the fibrous material collecting electrode 5. To form a fibrous material.

また当業者には自明の方法で該溶液の微細滴を静電場中に導入することもできる。一例として図2を用いて以下に説明する。その際の唯一の要件は液滴を静電場中に置いて、繊維化が起こりうるような距離に繊維状物質捕集電極11から離して保持することである。例えば、ノズル7を有する溶液保持槽9中の溶液8に直接、直接繊維状物質捕集電極に対抗する電極10を挿入しても良い。   It is also possible for a person skilled in the art to introduce fine droplets of the solution into the electrostatic field in a manner obvious to those skilled in the art. An example will be described below with reference to FIG. The only requirement is to place the droplet in an electrostatic field and keep it away from the fibrous material collection electrode 11 at a distance where fibrosis can occur. For example, the electrode 10 that directly opposes the fibrous material collecting electrode may be inserted directly into the solution 8 in the solution holding tank 9 having the nozzle 7.

該溶液をノズルから静電場中に供給する場合、数個のノズルを用いて繊維状物質の生産速度を上げることもできる。電極間の距離は、帯電量、ノズル寸法、紡糸液流量、紡糸液濃度等に依存するが、10kV程度のときには5〜20cmの距離が適当であった。また、印加される静電気電位は一般に3〜100kV、好ましくは5〜50kV、一層好ましくは5〜30kVである。所望の電位は任意の適切な方法で作れば良い。   When supplying the solution from the nozzle into the electrostatic field, several nozzles can be used to increase the production rate of the fibrous material. The distance between the electrodes depends on the charge amount, the nozzle size, the spinning solution flow rate, the spinning solution concentration, and the like, but a distance of 5 to 20 cm was appropriate when it was about 10 kV. The applied electrostatic potential is generally 3 to 100 kV, preferably 5 to 50 kV, and more preferably 5 to 30 kV. The desired potential may be generated by any appropriate method.

上記説明は、電極がコレクタを兼ねる場合であるが、電極間にコレクタとなりうる物を設置することで、電極と別にコレクタを設けることが出来る。またコレクタの形状を選択することで、シート、チューブなどが得られる。さらに、例えばベルト状物質を電極間に設置してコレクタすることで、連続的な生産も可能となる。本発明においては、該溶液をコレクタに向けて曵糸する間に、条件に応じて溶媒が蒸発して繊維状物質が形成される。通常の室温であればコレクタ上に捕集されるまでの間に溶媒は完全に蒸発するが、もし溶媒蒸発が不十分な場合は減圧条件下で曵糸しても良い。また、曵糸する温度は溶媒の蒸発挙動や紡糸液の粘度に依存するが、通常は0〜50℃である。   The above description is for the case where the electrode also serves as a collector. However, the collector can be provided separately from the electrode by installing an object that can be a collector between the electrodes. Moreover, a sheet | seat, a tube, etc. are obtained by selecting the shape of a collector. Furthermore, for example, continuous production is also possible by installing a belt-like substance between the electrodes and collecting it. In the present invention, while spinning the solution toward the collector, the solvent evaporates depending on conditions to form a fibrous material. At normal room temperature, the solvent completely evaporates until it is collected on the collector, but if the solvent evaporation is insufficient, the solvent may be spun under reduced pressure. The spinning temperature depends on the evaporation behavior of the solvent and the viscosity of the spinning solution, but is usually 0 to 50 ° C.

本発明の弁尖の作製は、弁尖形状のコレクタ上で静電紡糸法により紡糸を行い作製する。または、円筒体を弁尖形状のコレクタに合わせて折り合わせて作製する。
本発明の弁尖と筒状の基体との複合化は、弁尖のコレクタをオス型とした場合それに対応するメス型のコレクタと弁尖とを接合させた後、静電紡糸法により紡糸を行い複合化させる。または、熱処理によって弁尖と基体の接合を行う。さらに人工心臓弁の壁厚を厚くするために、人工心臓弁と同径の円筒体を重ね合わせて熱処理を行うことで積層化を行う。積層化温度は、40〜90℃であることが好ましい。40℃より低いと、繊維構造体の積層が効率良く行えないことがあり、また90℃より高いとポリマーが一部融解してしまい繊維構造が破壊されることがある。
The leaflets of the present invention are produced by spinning on a leaflet-shaped collector by an electrostatic spinning method. Alternatively, the cylindrical body is produced by folding it along with a valve-shaped collector.
The compounding of the valve leaflet and the tubular substrate of the present invention is that when the collector of the valve leaflet is a male type, the corresponding female type collector and the valve leaflet are joined, and then spinning is performed by an electrostatic spinning method. And composite. Alternatively, the leaflets and the base are joined by heat treatment. In addition, in order to increase the wall thickness of the artificial heart valve, lamination is performed by superposing cylindrical bodies having the same diameter as the artificial heart valve and performing heat treatment. The lamination temperature is preferably 40 to 90 ° C. If the temperature is lower than 40 ° C, the fiber structure may not be laminated efficiently. If the temperature is higher than 90 ° C, the polymer may partially melt and the fiber structure may be destroyed.

以下の実施例により本発明の詳細をより具体的に説明する。しかし、本発明はこれら実施例に限定されるものではない。
本実施例に使用したポリカプロラクトン−ポリ乳酸共重合体(CL/L-LA(mol%):23/77)は多木化学(株)製、塩化メチレンおよびエタノールは和光純薬工業(株)製を使用した。
The details of the present invention will be described more specifically by the following examples. However, the present invention is not limited to these examples.
The polycaprolactone-polylactic acid copolymer (CL / L-LA (mol%): 23/77) used in this example was manufactured by Taki Chemical Co., Ltd., and methylene chloride and ethanol were manufactured by Wako Pure Chemical Industries, Ltd. Made using.

[実施例1]
ポリカプロラクトン−ポリ乳酸共重合体(CL/L-LA(mol%):23/77)1g、塩化メチレン/エタノール=8/1(重量部/重量部)9gを室温(25℃)で混合し濃度10%のドープ溶液を調整した。図2に示す装置を用いて、弁尖の形状をした繊維状物質捕集電極5に5分間吐出し、弁尖形状の繊維状物質を得た(外径:2cm)。噴出ノズル1の内径は0.8mm、電圧は14kV、噴出ノズル1から繊維状物質捕集電極までの距離は10cmであった。さらに、弁尖と筒状の基体との複合化を行うために、弁尖のコレクタをオス型とした場合それに対応するメス型のコレクタと弁尖とを接合し、繊維状物質捕集電極5に5分間吐出し、基体内部に弁尖を備えた人工心臓弁を得た。さらに膜厚を厚くするために、外径2cm、膜厚200μmの円筒体を4つ重ね合わせて80℃で10分間熱処理を行い、目的物を得た。得られた人工心臓弁に3L/分の流量の水を流したところ弁の開閉が確認され、さらに弁と基体の接合部からの水の漏洩は確認されなかった。
[Example 1]
1 g of polycaprolactone-polylactic acid copolymer (CL / L-LA (mol%): 23/77) and 9 g of methylene chloride / ethanol = 8/1 (parts by weight / parts) were mixed at room temperature (25 ° C.). A dope solution having a concentration of 10% was prepared. Using the apparatus shown in FIG. 2, the leaflet-shaped fibrous material collecting electrode 5 was discharged for 5 minutes to obtain a leaflet-shaped fibrous material (outer diameter: 2 cm). The inner diameter of the ejection nozzle 1 was 0.8 mm, the voltage was 14 kV, and the distance from the ejection nozzle 1 to the fibrous material collecting electrode was 10 cm. Further, in order to combine the leaflet and the cylindrical base, when the leaflet collector is a male type, the corresponding female-type collector and the leaflet are joined, and the fibrous material collecting electrode 5 The artificial heart valve having a leaflet inside the substrate was obtained. In order to further increase the film thickness, four cylinders having an outer diameter of 2 cm and a film thickness of 200 μm were stacked and heat-treated at 80 ° C. for 10 minutes to obtain the desired product. When water at a flow rate of 3 L / min was passed through the obtained artificial heart valve, the valve was confirmed to open and close, and no leakage of water from the joint between the valve and the substrate was confirmed.

[比較例1]
弁尖と筒状の基体との複合化を縫合で行った以外、実施例1と同様に目的物を得た。得られた人工心臓弁に3L/分の流量の水を流したところ弁と基体の接合部から水の漏洩が確認され、弁の開閉は確認できなかった。
[Comparative Example 1]
The target product was obtained in the same manner as in Example 1 except that the valve leaflet and the cylindrical substrate were combined by stitching. When water at a flow rate of 3 L / min was passed through the obtained artificial heart valve, water leakage was confirmed from the joint between the valve and the substrate, and the opening and closing of the valve could not be confirmed.

本発明の人工心臓弁は、縫合による血液の漏洩を回避可能である。   The prosthetic heart valve of the present invention can avoid blood leakage due to suturing.

本発明の製造方法のなかで、紡糸液を静電場中に吐出する静電紡糸法で用いる装置の一例である。It is an example of the apparatus used with the electrospinning method which discharges a spinning liquid in an electrostatic field in the manufacturing method of this invention. 本発明の製造方法のなかで、紡糸液の微細液を静電場中に導入する静電紡糸法で用いる装置の一例である。It is an example of the apparatus used with the electrostatic spinning method which introduce | transduces the fine liquid of a spinning liquid in an electrostatic field in the manufacturing method of this invention. 本発明の製造方法のなかで用いる心臓弁鋳型の一例である。It is an example of the heart valve mold used in the manufacturing method of the present invention.

符号の説明Explanation of symbols

1. 溶液噴出ノズル
2. 溶液
3. 溶液保持層
4. 電極
5. 繊維状物質捕集電極
6. 高電圧発生器
7. 溶液噴出ノズル
8. 溶液
9. 溶液保持層
10. 電極
11. 繊維状物質捕集電極
12. 高電圧発生器
13. 弁尖形状の繊維状物質補集電極(オス型)
14. 弁尖形状の繊維状物質補集電極(メス型)
1. 1. Solution jet nozzle Solution 3. 3. Solution holding layer Electrode 5. 5. Fibrous material collecting electrode 6. High voltage generator 7. Solution jet nozzle Solution 9 Solution holding layer 10. Electrode 11. 11. Fibrous material collecting electrode High voltage generator 13. Leaflet-shaped fibrous material collecting electrode (male type)
14 Leaflet-shaped fibrous material collecting electrode (female type)

Claims (13)

平均繊維径が0.05〜10μmの繊維構造体からなり、筒状の基体にバルサルバ洞、かつ基体内部に弁尖を備えた人工心臓弁。   An artificial heart valve comprising a fibrous structure having an average fiber diameter of 0.05 to 10 μm, comprising a Valsalva sinus on a cylindrical base and a leaflet inside the base. 基体と弁尖との間に継ぎ目がないことを特徴とする請求項1に記載の人工心臓弁。   The prosthetic heart valve according to claim 1, wherein there is no seam between the base and the leaflet. 前記繊維構造体が生分解性ポリマーよりなることを特徴とする請求項1〜2のいずれかに記載の人工心臓弁。   The artificial heart valve according to claim 1, wherein the fibrous structure is made of a biodegradable polymer. 前記生分解性ポリマーが、脂肪族ポリエステルよりなることを特徴とする請求項3記載の人工心臓弁。   The artificial heart valve according to claim 3, wherein the biodegradable polymer is made of an aliphatic polyester. 前記脂肪族ポリエステルが、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、またはそれらの共重合体よりなることを特徴とする請求項4記載の人工心臓弁。   The artificial heart valve according to claim 4, wherein the aliphatic polyester is made of polylactic acid, polyglycolic acid, polycaprolactone, or a copolymer thereof. 平均繊維径が0.05〜10μmの繊維構造体からなり、筒状の基体にバルサルバ洞、かつ基体内部に弁尖を備えた心臓弁形状を有する再生医療用基材。   A regenerative medical base material comprising a fibrous structure having an average fiber diameter of 0.05 to 10 μm and having a heart valve shape having a cylindrical base with Valsalva sinus and a valve leaflet inside the base. 基体と弁尖との間に継ぎ目がないことを特徴とする請求項6に記載の再生医療用基材。   The regenerative medical base material according to claim 6, wherein there is no seam between the base and the valve leaflet. 前記繊維構造体が生分解性ポリマーよりなることを特徴とする請求項6〜7のいずれかに記載の再生医療用基材。   The base material for regenerative medicine according to any one of claims 6 to 7, wherein the fiber structure is made of a biodegradable polymer. 前記生分解性ポリマーが、脂肪族ポリエステルよりなることを特徴とする請求項8記載の再生医療用基材。   The base material for regenerative medicine according to claim 8, wherein the biodegradable polymer is an aliphatic polyester. 前記脂肪族ポリエステルが、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、またはそれらの共重合体よりなることを特徴とする請求項9記載の再生医療用基材。   The base material for regenerative medicine according to claim 9, wherein the aliphatic polyester is made of polylactic acid, polyglycolic acid, polycaprolactone, or a copolymer thereof. 請求項6〜10のいずれかに記載の再生医療用基材と生体細胞とからなる人工心臓弁。   The artificial heart valve which consists of a base material for regenerative medicine in any one of Claims 6-10, and a biological cell. ポリマーを揮発性溶媒に溶解した溶液を製造する工程と、前記溶液を静電紡糸法にて紡糸を行い、コレクタ上に弁尖形状の繊維構造体を得る工程、さらに得られた繊維構造体の上から静電紡糸法にて紡糸を行い弁尖と筒状の基体の複合化を行う工程、さらには同径の筒を重ね合わせ熱処理することで筒状の基体を積層化させる工程による請求項1に記載の人工心臓弁の製造方法。   A step of producing a solution in which a polymer is dissolved in a volatile solvent; a step of spinning the solution by an electrostatic spinning method to obtain a leaflet-shaped fiber structure on a collector; and Claims by the step of performing spinning by electrospinning from above and compositing the valve leaflets and the cylindrical substrate, and further laminating the cylindrical substrates by superposing and heat-treating the same diameter cylinders 2. A method for producing an artificial heart valve according to 1. ポリマーを揮発性溶媒に溶解した溶液を製造する工程と、前記溶液を静電紡糸法にて紡糸を行い、コレクタ上に弁尖形状の繊維構造体を得る工程、さらに得られた繊維構造体の上から静電紡糸法にて紡糸を行い弁尖と筒状の基体の複合化を行う工程、さらには同径の筒を重ね合わせ熱処理することで筒状の基体を積層化させる工程による請求項6に記載の再生医療用基材の製造方法。   A step of producing a solution in which a polymer is dissolved in a volatile solvent; a step of spinning the solution by an electrostatic spinning method to obtain a leaflet-shaped fiber structure on a collector; and Claims by the step of performing spinning by electrospinning from above and compositing the valve leaflets and the cylindrical substrate, and further laminating the cylindrical substrates by superposing and heat-treating the same diameter cylinders 6. A method for producing a regenerative medical base material according to 6.
JP2004351128A 2004-12-03 2004-12-03 Artificial heart valve, base material for regenerative medicine and manufacturing method thereof Active JP4729293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351128A JP4729293B2 (en) 2004-12-03 2004-12-03 Artificial heart valve, base material for regenerative medicine and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351128A JP4729293B2 (en) 2004-12-03 2004-12-03 Artificial heart valve, base material for regenerative medicine and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006158494A true JP2006158494A (en) 2006-06-22
JP4729293B2 JP4729293B2 (en) 2011-07-20

Family

ID=36661132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351128A Active JP4729293B2 (en) 2004-12-03 2004-12-03 Artificial heart valve, base material for regenerative medicine and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4729293B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163520A (en) * 2006-12-28 2008-07-17 Univ Of Fukui Chitosan/sericin composite nanofiber and utilization of the same to artificial skin
JP2016531610A (en) * 2013-09-25 2016-10-13 ウニヴェルジテート チューリッヒ プロレクトラート エムエヌヴェーUniversitaet Zuerich Prorektorat Mnw Biological heart valve replacement and manufacturing method, especially for pediatric patients
JP2018506388A (en) * 2015-02-27 2018-03-08 ユニバーシティ オブ ピッツバーグ − オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション Dual component mandrel for electrospun stentless fabrication of multi-leaflet valves
CN112469368A (en) * 2018-07-23 2021-03-09 美敦力公司 Electrospun medical devices and methods of manufacturing electrospun medical devices
CN113813080A (en) * 2020-06-18 2021-12-21 脉通医疗科技(嘉兴)有限公司 Artificial valve and preparation method thereof
US11771555B2 (en) 2015-02-27 2023-10-03 University of Pittsburgh—of the Commonwealth System of Higher Education Retrievable self-expanding non-thrombogenic low-profile percutaneous atrioventricular valve prosthesis
WO2024041251A1 (en) * 2022-08-22 2024-02-29 杭州启明医疗器械股份有限公司 Valve material, method for preparing same and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527191A (en) * 1998-10-20 2002-08-27 ティーイーアイ バイオサイエンシス インク Cardiovascular component for transplantation and method of manufacturing the same
JP2003520645A (en) * 2000-01-25 2003-07-08 エドワーズ ライフサイエンシーズ コーポレイション Bioactive coating prevents tissue overgrowth on artificial heart valves

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527191A (en) * 1998-10-20 2002-08-27 ティーイーアイ バイオサイエンシス インク Cardiovascular component for transplantation and method of manufacturing the same
JP2003520645A (en) * 2000-01-25 2003-07-08 エドワーズ ライフサイエンシーズ コーポレイション Bioactive coating prevents tissue overgrowth on artificial heart valves

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163520A (en) * 2006-12-28 2008-07-17 Univ Of Fukui Chitosan/sericin composite nanofiber and utilization of the same to artificial skin
JP2016531610A (en) * 2013-09-25 2016-10-13 ウニヴェルジテート チューリッヒ プロレクトラート エムエヌヴェーUniversitaet Zuerich Prorektorat Mnw Biological heart valve replacement and manufacturing method, especially for pediatric patients
JP2018506388A (en) * 2015-02-27 2018-03-08 ユニバーシティ オブ ピッツバーグ − オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション Dual component mandrel for electrospun stentless fabrication of multi-leaflet valves
US11129711B2 (en) 2015-02-27 2021-09-28 University of Pittsburgh—of the Commonwealth System of Higher Education Double component mandrel for electrospun stentless, multi-leaflet valve fabrication
US11771555B2 (en) 2015-02-27 2023-10-03 University of Pittsburgh—of the Commonwealth System of Higher Education Retrievable self-expanding non-thrombogenic low-profile percutaneous atrioventricular valve prosthesis
JP7364646B2 (en) 2015-02-27 2023-10-18 ユニバーシティ オブ ピッツバーグ - オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション Dual component mandrel for electrospun stentless fabrication of multi-leaflet valves
CN112469368A (en) * 2018-07-23 2021-03-09 美敦力公司 Electrospun medical devices and methods of manufacturing electrospun medical devices
CN113813080A (en) * 2020-06-18 2021-12-21 脉通医疗科技(嘉兴)有限公司 Artificial valve and preparation method thereof
WO2024041251A1 (en) * 2022-08-22 2024-02-29 杭州启明医疗器械股份有限公司 Valve material, method for preparing same and use thereof

Also Published As

Publication number Publication date
JP4729293B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
Zhang et al. Electrospun silk biomaterial scaffolds for regenerative medicine
JP4496360B2 (en) Medical Polymer Nano / Microfiber
Pham et al. Electrospinning of polymeric nanofibers for tissue engineering applications: a review
Ma et al. Potential of nanofiber matrix as tissue-engineering scaffolds
JP4598671B2 (en) Manufacturing method of supporting substrate and composite
JP5046651B2 (en) Manufacturing method of cylindrical body
US20060085063A1 (en) Nano- and micro-scale engineering of polymeric scaffolds for vascular tissue engineering
CN105999419B (en) A kind of biomimetic type can absorb dural patch and the preparation method and application thereof
US20160175487A1 (en) Tissue repair scaffold and preparation method and purpose thereof
RU2496526C1 (en) Tissue-engineered small-diameter vascular graft and method for making it
JP5010854B2 (en) Revascularization material
CN104414773A (en) Anti-adhesion tissue repair membrane and preparation method thereof
CN109876186B (en) Biomedical degradable double-layer stent for nerve repair and preparation method thereof
Vashaghian et al. Biomimetic implants for pelvic floor repair
JP4729293B2 (en) Artificial heart valve, base material for regenerative medicine and manufacturing method thereof
JP4417909B2 (en) Elastin molded body and production method thereof
Sukmana PLAGIARISM_ELECTROSPUN-BASED FIBROUS SCAFFOLD FOR CARDIOVASCULAR ENGINEERING APPLICATIONS: A REVIEW
JP2007215803A (en) Cylindrical body
JP5363076B2 (en) Materials for tissue regeneration
KR100588228B1 (en) Hydrophilic synthetic and natural polyester nanofiber, wound dressing and manufacturing method using that
Bal et al. Green Nanofibers via Electrospinning for Tissue Regrowth
Yucel et al. Nanotechnology in biomaterials: nanofibers in tissue engineering
James Assessment of electrospinning as an in-house fabrication technique for blood vessel mimic cellular scaffolding
Tornello et al. Micro/nanofiber-based scaffolds for soft tissue engineering applications: Potential and current challenges
Singh et al. Nano-Biotechnology in Vascular Graft Implant and Heart Valve for Biotextile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4729293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3