JP2006158400A - Pna oligomeric derivative compound - Google Patents

Pna oligomeric derivative compound Download PDF

Info

Publication number
JP2006158400A
JP2006158400A JP2005371734A JP2005371734A JP2006158400A JP 2006158400 A JP2006158400 A JP 2006158400A JP 2005371734 A JP2005371734 A JP 2005371734A JP 2005371734 A JP2005371734 A JP 2005371734A JP 2006158400 A JP2006158400 A JP 2006158400A
Authority
JP
Japan
Prior art keywords
pna
derivative
mmol
fmoc
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005371734A
Other languages
Japanese (ja)
Inventor
Hisafumi Ikeda
壽文 池田
Madoka Sotozaki
円 外崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Credia Japan Kk
Original Assignee
Credia Japan Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Credia Japan Kk filed Critical Credia Japan Kk
Priority to JP2005371734A priority Critical patent/JP2006158400A/en
Publication of JP2006158400A publication Critical patent/JP2006158400A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PNA oligomeric derivative compound having various functions. <P>SOLUTION: Disclosed is a PNA monomer having adenine, guanine, cytosine or thymine, or PNA oligomeric derivative compounds directly linked or indirectly linked through a linker with at least either one of derivatives of PNA oligomer with light transmissive molecules, membrane-permeable functional molecules, organ-selective functional molecules, bactericidal functional molecules or molecule-recognizable functional molecules. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、機能性ペプチド核酸モノマーの新規な製造方法、該製造方法によって製造された機能性ペプチド核酸オリゴマーおよびその中間体に関する。より詳細には、前駆体的PNAモノマーユニットをPNAオリゴマーに導入した後に1種または2種以上の機能性分子をポスト合成的に導入することを特徴とする、前記製造方法に関する。   The present invention relates to a novel method for producing a functional peptide nucleic acid monomer, a functional peptide nucleic acid oligomer produced by the production method, and an intermediate thereof. More specifically, the present invention relates to the above production method, wherein a precursor PNA monomer unit is introduced into a PNA oligomer and then one or more functional molecules are introduced post-synthetically.

核酸は生物の遺伝情報を司るDNAおよびRNAである。これに対して、ペプチド核酸(PNA)とは、核酸の糖リン酸骨格をN−(2−アミノエチル)グリシン骨格に変換した修飾核酸である(図1)。DNA/RNAの糖リン酸骨格は中性条件で負電荷を帯びていて相補鎖間の静電的な反発があるが、PNAの背骨構造はもともと電荷を持たないので静電的な反発がない。そのためPNAは従来の核酸と比較して、高い二重鎖形成能をもち、高い塩基配列認識能を持つ。さらにPNAは生体内ヌクレアーゼ・プロテアーゼに対し非常に安定で分解されないので、アンチセンス分子として遺伝子治療に応用することが検討されている。   Nucleic acids are DNA and RNA that govern the genetic information of an organism. In contrast, peptide nucleic acid (PNA) is a modified nucleic acid obtained by converting the sugar phosphate skeleton of a nucleic acid into an N- (2-aminoethyl) glycine skeleton (FIG. 1). The sugar phosphate skeleton of DNA / RNA is negatively charged under neutral conditions and there is electrostatic repulsion between complementary strands, but the backbone structure of PNA originally has no charge, so there is no electrostatic repulsion . Therefore, PNA has a higher ability to form a double strand and a higher ability to recognize a base sequence than conventional nucleic acids. Furthermore, PNA is very stable against in vivo nuclease / protease and cannot be decomposed. Therefore, its application to gene therapy as an antisense molecule has been studied.

従来のDNAを媒体にしていた技術をPNA化することにより、これまで克服できなかったDNAの欠点を補うことが可能となった。例えば、遺伝情報の体系的な解析を高速に且つ大量に行うための「DNAマイクロアレイ技術」および塩基配列を特異的に認識したことを蛍光発光により検出できるプローブとして最近開発された「モレキュラービーコン」に応用することが可能である。これらはいずれも酵素耐性に乏しいDNAを媒体とするため、これらの技術を用いるに際しては厳密なサンプリングが要求される。この要求を満たすことが、前記の技術を高度化する上での鍵となっている。   By converting the conventional DNA-based technology into PNA, it has become possible to compensate for the disadvantages of DNA that could not be overcome. For example, “DNA microarray technology” for systematic analysis of genetic information at high speed and in large quantities and “Molecular Beacon” recently developed as a probe that can detect the specific recognition of a base sequence by fluorescence emission It is possible to apply. Since these all use DNA with poor enzyme resistance as a medium, strict sampling is required when using these techniques. Satisfying this requirement is the key to advancing the above-described technology.

一方PNAは酵素に対し完全な耐性を持つので、DNAマイクロアレイ技術およびモレキュラービーコンにおいてPNAをDNAに代用することによって、前記技術の欠点が克服され、さらに長所が引き出されるものと期待されている。
DNAマイクロアレイ技術およびモレキュラービーコン以外にもPNA化することにより発展が期待される分野は数多いが、それらにおいてはPNAの効率的な機能化、すなわちPNAモノマーへの機能性分子の効率的な導入による新規なPNAモノマーの設計が必要である。
On the other hand, since PNA is completely resistant to enzymes, it is expected that substitution of PNA for DNA in DNA microarray technology and molecular beacons will overcome the disadvantages of the technology and bring out further advantages.
In addition to DNA microarray technology and molecular beacons, there are many fields that are expected to develop as a result of PNA conversion. In these fields, PNA is efficiently functionalized, that is, new by efficient introduction of functional molecules into PNA monomers. New PNA monomer design is required.

PNAオリゴマーの合成方法には通常の固相ペプチド合成法を用いるので、PNAモノマーユニットをPNAの背骨構造によって分類すると、Fmoc型PNAモノマーユニットとtBoc型PNAモノマーユニットの2種類が含まれる(図2)。
Fmoc型PNAモノマーユニットの合成方法は既に確立されており、しかもそのオリゴマーの合成は一般的なDNA自動合成機によって可能であるため、下記のルート

Figure 2006158400

によって、少量スケールでの合成が可能となっている。 Since the usual solid phase peptide synthesis method is used for the synthesis method of the PNA oligomer, if the PNA monomer unit is classified according to the backbone structure of PNA, two types of Fmoc type PNA monomer unit and tBoc type PNA monomer unit are included (FIG. 2). ).
Since the synthesis method of the Fmoc type PNA monomer unit has already been established and the synthesis of the oligomer can be performed by a general DNA automatic synthesizer, the following route is used.
Figure 2006158400

Enables synthesis on a small scale.

当初PNAには下記のようなtBoc型PNAモノマーユニット

Figure 2006158400

が採用され、その後より効率のよい合成方法
Figure 2006158400

が確立された。しかし、前述したように取り扱いが容易なFmoc型が開発されたため、tBoc型の使用頻度は減少している。
しかし、グアニン・チミン・シトシン・アデニン4種類の核酸塩基以外の機能性分子を導入する際、例えば光機能性分子を導入する際には、導入する機能性分子がアルカリ条件に不安定な場合が多いので、アルカリ条件を使用しないtBoc型PNA背骨構造の有用性は高い。「t−ブトキシカルボニルアミノエチルアミン及びアミノ酸誘導体の製造方法」に関しては、本発明者らが特願2000−268638として既に特許出願中である。 Initially, PNA has the following tBoc type PNA monomer units
Figure 2006158400

And then a more efficient synthesis method
Figure 2006158400

Was established. However, since the Fmoc type that is easy to handle has been developed as described above, the frequency of use of the tBoc type is decreasing.
However, when introducing functional molecules other than guanine, thymine, cytosine, and adenine four types of nucleobases, for example, when introducing a photofunctional molecule, the introduced functional molecule may be unstable under alkaline conditions. Since there are many, the usefulness of the tBoc type | mold PNA backbone structure which does not use alkaline conditions is high. Regarding the “method for producing t-butoxycarbonylaminoethylamine and amino acid derivative”, the present inventors have already applied for a patent as Japanese Patent Application No. 2000-268638.

これ以外にも、光機能性オリゴPNAのモノマーユニットの合成例は過去に5例が知られている。これら全てが上記ルートを用いているが、その収率については記載がないか、または極めて低いものでしかない(Peter E. Nielsen, GeraldHaaiman, Anne B. Eldrup PCT Int. Appl. (1998) WO 985295 A1 19981126, T. A. Tran, R.-H. Mattern, B. A. Morgan (1999) J. Pept. Res, 53, 134-145,Jesper Lohse et al. (1997) Bioconjugate Chem., 8, 503-509, Hans-georg Batz, Henrik Frydenlund Hansen, et al. Pct Int. Appl. (1998) WO 9837232A2 19980827, Bruce Armitage, Troels Koch, et al. (1998) Nucleic Acid Res., 26, 715-720)。また、用いられる化合物の構造がアルカリ性条件に比較的安定であることが特徴的であるため、アルカリ性条件に不安定な発色団が付くと、前記従来法と類似の方法、すなわち下記ルートA

Figure 2006158400

Figure 2006158400

では効率良く合成できないと予想された。 In addition to this, five examples of synthesis of monomer units of optical functional oligo PNA have been known in the past. All of these use the above route, but the yield is not described or very low (Peter E. Nielsen, Gerald Haaiman, Anne B. Eldrup PCT Int. Appl. (1998) WO 985295 A1 19981126, TA Tran, R.-H. Mattern, BA Morgan (1999) J. Pept. Res, 53, 134-145, Jesper Lohse et al. (1997) Bioconjugate Chem., 8, 503-509, Hans- Georg Batz, Henrik Frydenlund Hansen, et al. Pct Int. Appl. (1998) WO 9837232A2 19980827, Bruce Armitage, Troels Koch, et al. (1998) Nucleic Acid Res., 26, 715-720). In addition, since the structure of the compound used is characterized by being relatively stable to alkaline conditions, when an unstable chromophore is attached to alkaline conditions, a method similar to the above-described conventional method, that is, the following route A
Figure 2006158400

Figure 2006158400

Therefore, it was predicted that it could not be synthesized efficiently.

したがって、一般に光機能性分子等の機能性分子は高価な場合が多いため、より合目的的な機能性PNAの合成方法、すなわち、(1)機能性PNAモノマーユニットの設計における、機能性分子のPNA背骨構造への効率的な導入、(2)コストパフォーマンスを考えた合成ルート、および(3)遺伝子診断薬としての応用へ適応させるための、これらの機能性分子を超高速に導入する方法が探求された。   Therefore, in general, functional molecules such as photofunctional molecules are often expensive, and therefore, more suitable functional PNA synthesis methods, that is, (1) functional molecules in the design of functional PNA monomer units. Efficient introduction to PNA spine structure, (2) synthetic route considering cost performance, and (3) a method of introducing these functional molecules at an ultra-high speed to adapt to application as a genetic diagnostic agent. Quested.

上記課題に鑑み、本発明者らは、機能性PNAモノマーの新規製造方法として、下記ルートB

Figure 2006158400

に示すように、PNA背骨構造にt−ブトキシカルボニルアミノエチルアミン誘導体6を用いて1のペンタフルオロフェニル基を含む活性エステル体5と縮合してほぼ定量的に光機能性PNAモノマー4を合成する方法を見出した。 In view of the above problems, the present inventors have described the following route B as a novel method for producing a functional PNA monomer.
Figure 2006158400

As shown in FIG. 4, a method for synthesizing photofunctional PNA monomer 4 almost quantitatively by condensing with active ester 5 containing 1 pentafluorophenyl group using t-butoxycarbonylaminoethylamine derivative 6 in the PNA backbone structure I found.

また、本発明者らは、機能性PNAモノマーを合成する別法として、PNA背骨構造に上記t−ブトキシカルボニルアミノエチルアミン誘導体6の代わりにベンジルオキシカルボニル−ω−アミノ酸誘導体を用いる方法(ルートC)を見出した。これらの方法については、既に特許出願がなされている。   As another method for synthesizing a functional PNA monomer, the present inventors use a benzyloxycarbonyl-ω-amino acid derivative instead of the t-butoxycarbonylaminoethylamine derivative 6 in the PNA backbone structure (Route C). I found. Patent applications have already been filed for these methods.

したがって、最終的に機能性PNAを合成するための方法として、上記ルートBおよびルートCのいずれかを用いる方法によって機能性PNAモノマーを合成した後に、それらを重合する方法が工業的にも確立されつつある。すなわち、現在までの機能性PNAの合成法によってPNAプローブとして用いられる機能性PNAを工業的に大量合成することは可能になりつつある。   Therefore, as a method for finally synthesizing functional PNA, a method of polymerizing them after synthesizing functional PNA monomers by a method using any one of the above-mentioned route B and route C is also established industrially. It's getting on. That is, it is becoming possible to industrially synthesize functional PNA used as a PNA probe by a functional PNA synthesis method up to now.

一方、コストパフォーマンスの向上および機能性分子を超高速に導入することを目的とした、機能性PNAを合成方法の改良もなされている。例えば、前記機能性PNAモノマーユニットを用いる方法とは異なるアプローチとして、下記の前駆体的PNAモノマーユニットを利用することによって、ポスト合成的に機能性分子をPNAオリゴマーに導入する方法が報告されている(Oliver Seitz; Tetrahedron Letters 1999, 40, 4161-4164.)。

Figure 2006158400
On the other hand, methods for synthesizing functional PNA have also been improved for the purpose of improving cost performance and introducing functional molecules at ultra-high speed. For example, as a different approach from the method using the functional PNA monomer unit, a method of introducing a functional molecule into a PNA oligomer post-synthetically by using the following precursor PNA monomer unit has been reported. (Oliver Seitz; Tetrahedron Letters 1999, 40, 4161-4164.).
Figure 2006158400

当該方法は、前記前駆体的PNAモノマーユニットをPNAオリゴマーに導入した後、さらに機能性分子を導入することによって機能性PNAを合成するものである。
しかし、当該方法においては、導入できる機能性分子の種類が限定される等の欠点がある。
This method synthesizes a functional PNA by introducing the precursor PNA monomer unit into a PNA oligomer and then introducing a functional molecule.
However, this method has drawbacks such as limitations on the types of functional molecules that can be introduced.

例えば、下図に示すように、市販されている光機能性分子のsuccinimideエステルを導入することはできず、導入するためにはFmoc-Gly等のリンカーをまず導入する必要があるが、結果として上記化合物は使用しにくいものになっている。

Figure 2006158400
For example, as shown in the figure below, it is not possible to introduce a commercially available succinimide ester of a photofunctional molecule, and in order to introduce it, it is necessary to first introduce a linker such as Fmoc-Gly. The compound is difficult to use.
Figure 2006158400

また、細胞中に導入するためのに蛍光プローブとして、これまでDNAオリゴマー・RNAオリゴマー・PNAオリゴマーが利用されているが、これらを細胞中に導入するためには、当然ながら細胞膜を通過させなければならない。しかし、細胞膜は膜表面が負電荷を帯びているため、元々負に帯電しているDNA/RNAオリゴマーを導入するのは非常に困難である。   In addition, DNA oligomers, RNA oligomers, and PNA oligomers have been used as fluorescent probes for introduction into cells, but in order to introduce them into cells, of course, they must pass through the cell membrane. Don't be. However, since the cell surface of the cell membrane is negatively charged, it is very difficult to introduce a DNA / RNA oligomer that is originally negatively charged.

一方PNAオリゴマーは電気的に中性であるが、膜透過しにくいという結果が得られている。したがって、PNAオリゴマーを細胞内に導入するに際しては、膜表面を前処理してその導入をしやすくしたり、あるいはトランスフェクション試薬を用いて導入せざるを得ないのが現状である。   On the other hand, PNA oligomers are electrically neutral, but it is difficult to permeate the membrane. Therefore, when introducing PNA oligomers into cells, it is necessary to pre-treat the membrane surface for easy introduction, or to introduce it using a transfection reagent.

しかし、そのような処理を施してPNAオリゴマーを導入した場合においてプローブの機能が発揮されたとしても、本来生体が示す挙動を正確に表現していることは必ずしも保証されない。しかも、これは細胞1個の場合であり、多細胞(個体)での利用に至っては到底不可能である。
このような現状および観点から、膜透過性機能を有する蛍光PNAプローブの開発が有用であると考えられている。
However, even when the PNA oligomer is introduced after such treatment, even if the function of the probe is exhibited, it is not always guaranteed that the behavior that the living body originally exhibits is accurately expressed. In addition, this is a case of one cell, and it is impossible to use in multiple cells (individuals).
From such a current situation and viewpoint, it is considered useful to develop a fluorescent PNA probe having a membrane permeability function.

なお、膜透過性機能を有する蛍光PNAプローブは既に存在する。例えば、(1)膜透過性機能を有するオリゴペプチドをPNAに結合させたもの、(2)膜透過性機能を有するリン脂質をPNAに結合させたものが挙げられる。しかしながら、これらは膜透過した後細胞内においてプロテアーゼ等の酵素によりPNA以外の部分が分解され、細胞内に滞留してしまうことが予想される。このことは、ターゲットを捕捉出来なかった過剰なPNAプローブが膜透過性機能を失い、その後の洗浄過程で細胞外に出にくくなることにつながるため、本来細胞が持っている遺伝子発現系を正確に表現できないことを意味する。   A fluorescent PNA probe having a membrane permeability function already exists. Examples include (1) an oligopeptide having a membrane permeability function bound to PNA, and (2) a phospholipid having a membrane permeability function bound to PNA. However, after passing through the membrane, it is expected that parts other than PNA are degraded in the cells by enzymes such as proteases and stay in the cells. This means that the excess PNA probe that could not capture the target loses its membrane permeability, making it difficult to get out of the cell during the subsequent washing process. It means that it cannot be expressed.

Peter E. Nielsen, GeraldHaaiman, Anne B. Eldrup PCT Int. Appl. (1998) WO 985295 A1 19981126, T. A. Tran, R.-H. Mattern, B. A. Morgan (1999) J. Pept. Res, 53, 134-145.Peter E. Nielsen, GeraldHaaiman, Anne B. Eldrup PCT Int. Appl. (1998) WO 985295 A1 19981126, TA Tran, R.-H. Mattern, BA Morgan (1999) J. Pept. Res, 53, 134-145 . Jesper Lohse et al. (1997) Bioconjugate Chem., 8, 503-509.Jesper Lohse et al. (1997) Bioconjugate Chem., 8, 503-509. Hans-georg Batz, Henrik Frydenlund Hansen, et al. Pct Int. Appl. (1998) WO 9837232A2 19980827, Bruce Armitage, Troels Koch, et al. (1998) Nucleic Acid Res., 26, 715-720.Hans-georg Batz, Henrik Frydenlund Hansen, et al. Pct Int. Appl. (1998) WO 9837232A2 19980827, Bruce Armitage, Troels Koch, et al. (1998) Nucleic Acid Res., 26, 715-720. Oliver Seitz; Tetrahedron Letters 1999, 40, 4161-4164.Oliver Seitz; Tetrahedron Letters 1999, 40, 4161-4164.

本発明は、コストパフォーマンスに優れ、かつ機能性分子を超高速に導入することができる、機能性PNAの新規合成方法に着目し、当該方法によって製造することができる諸機能を有しているPNAオリゴマー誘導体を提供することを課題としている。   The present invention pays attention to a novel method for synthesizing functional PNA, which is excellent in cost performance and can introduce functional molecules at ultra-high speed, and has various functions that can be produced by the method. It is an object to provide an oligomer derivative.

上記課題に鑑み研究を重ねた結果、本発明者らは、前駆体的PNAモノマーユニットの構造を最適化することによって、驚くべきことに、従来法における前記課題が克服され、かつ極めて広範にわたる機能性PNA誘導体を合成できることを見出し、本発明を完成するに至った。   As a result of repeated studies in view of the above problems, the present inventors have surprisingly overcome the above-mentioned problems in the conventional method by optimizing the structure of the precursor PNA monomer unit, and have a very wide range of functions. The present inventors have found that a functional PNA derivative can be synthesized and have completed the present invention.

即ち、本発明は、(1)下記一般式(I)

Figure 2006158400

(式中、Bは、互いに独立し、同一または異なって、アデニン、グアニン、シトシンまたはチミンであり、Rは、互いに独立し、同一または異なっている機能性カルボン酸誘導体であり、Rは、水素原子または機能性カルボン酸誘導体であり、a〜hは0〜10の整数であり、X〜X、Y、YおよびZ〜Zはいずれも0以上の整数であり、X+X+X≧1であり、Y+Y>0であり、Z+Z+Z+Z+Z≧0である。ただし、X+X+XおよびZ+Z+Z+Z+Zが同時に0であることはなく、X+X+X=0の場合、Rは機能性カルボン酸誘導体である。)で表され、機能性カルボン酸誘導体が、細胞膜透過性機能分子の誘導体、又は光活性機能分子の誘導体、又は臓器選択機能性分子の誘導体、又は殺菌機能性分子の誘導体、又は分子認識機能性分子の誘導体の何れかであることに基づくPNAオリゴマー誘導体化合物に関する。 That is, the present invention provides (1) the following general formula (I)
Figure 2006158400

Wherein B is independently of each other, the same or different and is adenine, guanine, cytosine or thymine, R is a functional carboxylic acid derivative which is independent of each other and is the same or different, and R 1 is It is a hydrogen atom or a functional carboxylic acid derivative, a to h are integers of 0 to 10, X 1 to X 3 , Y 1 , Y 2 and Z 1 to Z 5 are all integers of 0 or more, X 1 + X 2 + X 3 ≧ 1, Y 1 + Y 2 > 0, Z 1 + Z 2 + Z 3 + Z 4 + Z 5 ≧ 0, provided that X 1 + X 2 + X 3 and Z 1 + Z 2 + Z 3 + Z 4 + Z 5 are not 0 at the same time, and when X 1 + X 2 + X 3 = 0, R 1 is a functional carboxylic acid derivative. Functional molecule derivative or light The present invention relates to a PNA oligomer derivative compound based on any one of an active functional molecule derivative, an organ selective functional molecule derivative, a bactericidal functional molecule derivative, or a molecular recognition functional molecule derivative.

さらに、本発明は、(2)膜透過性機能分子が水溶性アミノ酸であることを特徴とする前記(1)のPNAオリゴマー誘導体化合物に関する。   Furthermore, the present invention relates to (2) the PNA oligomer derivative compound according to (1) above, wherein the membrane-permeable functional molecule is a water-soluble amino acid.

さらに、本発明は、(3)水溶性アミノ酸が、アルギニン、リジン、セリンの何れかであることを特徴とする前記(2)のPNAオリゴマー誘導体化合物に関する。   Furthermore, the present invention relates to (3) the PNA oligomer derivative compound of (2) above, wherein the water-soluble amino acid is any one of arginine, lysine and serine.

さらに、本発明は、(4)光活性機能分子が活性エステル型蛍光標識化合物であることを特徴とする前記(1)のPNAオリゴマー誘導体化合物に関する。   Furthermore, the present invention relates to (4) the PNA oligomer derivative compound of (1) above, wherein the photoactive functional molecule is an active ester type fluorescent labeling compound.

さらに、本発明は、(5)活性エステル型蛍光標識化合物が、FITC、ROX、TAMRA、Dabcylの何れかであることを特徴とする前記(4)のPNAオリゴマー誘導体化合物に関する。   Furthermore, the present invention relates to (5) the PNA oligomer derivative compound according to (4) above, wherein the active ester type fluorescently labeled compound is any one of FITC, ROX, TAMRA, and Dabcyl.

さらに、本発明は、(6)臓器選択機能性分子が、ラクトース、トリスエックスの何れかであることを特徴とする前記(1)のPNAオリゴマー誘導体化合物に関する。   Furthermore, the present invention relates to (6) the PNA oligomer derivative compound according to (1) above, wherein the organ-selective functional molecule is either lactose or Tris-X.

さらに、本発明は、(7)分子認識機能性分子が、ビオローゲンであることを特徴とする前記(1)のPNAオリゴマー誘導体化合物に関する。   Furthermore, the present invention relates to (7) the PNA oligomer derivative compound of (1) above, wherein the molecular recognition functional molecule is a viologen.

さらに、本発明は、(8)細胞膜透過性機能分子の誘導体、及び光活性機能分子の誘導体の双方を有していることを特徴とする前記(1)のPNAオリゴマー誘導体化合物に関する。   Furthermore, the present invention relates to (8) the PNA oligomer derivative compound according to (1) above, which has both a cell membrane-permeable functional molecule derivative and a photoactive functional molecule derivative.

さらに、本発明は、(9)X=Z=1であることを特徴とする、前記(8)のPNAオリゴマー誘導体化合物に関する。 Furthermore, the present invention relates to (9) the PNA oligomer derivative compound of (8) above, wherein X 1 = Z 1 = 1.

さらに、本発明は、(10)Y≧2であり、Z=1であることを特徴とする、前記(8、9)のPNAオリゴマー誘導体化合物に関する。 Furthermore, the present invention relates to the PNA oligomer derivative compound of (8, 9) above, wherein (10) Y 1 ≧ 2 and Z 2 = 1.

さらに、本発明は、(11)a≦6であり、b≦4であり、f≦6であることを特徴とする、前記(8〜10)のいずれかに記載のPNAオリゴマー誘導体化合物に関する。   Furthermore, the present invention relates to the PNA oligomer derivative compound according to any one of (8 to 10) above, wherein (11) a ≦ 6, b ≦ 4, and f ≦ 6.

さらに、本発明は、(12)Rが光機能性カルボン酸誘導体であることを特徴とする、前記(8〜11)のいずれかに記載のPNAオリゴマー誘導体化合物に関する。 Furthermore, the present invention relates to the PNA oligomer derivative compound according to any one of (8 to 11) above, wherein (12) R 1 is a photofunctional carboxylic acid derivative.

前記一般式(I)に基づく基本構成に立脚している本発明においては、Naphthalimide型、Flavin型、Dabcyl型、Biotin型、FAM型、Rhodamine型、TAMRA型、ROX型、HABA型、Pyrene型、Coumarine型等の光機能性モノマーユニット、膜透過機能性分子、臓器選択機能性分子、殺菌機能性分子および分子認識機能性分子のいずれかに対応した機能を発揮することができる。   In the present invention based on the basic configuration based on the general formula (I), Naphthalimide type, Flavin type, Dabcyl type, Biotin type, FAM type, Rhodamine type, TAMRA type, ROX type, HABA type, Pyrene type, It can exhibit functions corresponding to photofunctional monomer units such as Coumarine type, transmembrane functional molecules, organ-selective functional molecules, bactericidal functional molecules and molecular recognition functional molecules.

尚、本発明における「機能性PNA」の語は、PNAモノマー同士が2−(N−アミノエチル)グリシン骨格によって直接結合したもののみならず、その間にリンカーとしての炭化水素鎖等を含むものも意味するものである。   The term “functional PNA” in the present invention includes not only those in which PNA monomers are directly bonded by a 2- (N-aminoethyl) glycine skeleton, but also those containing a hydrocarbon chain as a linker between them. That means.

ここで、本発明の実施形態について製造方法に即してさらに詳細に説明する。   Here, the embodiment of the present invention will be described in more detail in line with the manufacturing method.

本発明によるPNAオリゴマー誘導体を合成するルートは、典型的には、下図に示すとおりである。

Figure 2006158400
The route for synthesizing PNA oligomer derivatives according to the present invention is typically as shown in the figure below.

Figure 2006158400

前記工程について具体的に説明するに、最初に必要に応じて、下図

Figure 2006158400

に示すように、Fmoc−ω−アミノ酸とペンタフルオロフェノール(PfpOH)とを反応させて得られるFmoc−ω−アミノ酸ペンタフルオロフェニルエステル(Fmoc−ω−アミノ酸−OPfp)とから、Fmoc−ω−アミノ酸−BocPNA−OHを合成する。
以後の工程において用いる該Fmoc−ω−アミノ酸−OPfpの溶液を得るには、DMFなどの有機溶媒、またはアセトン等と水とを含む水溶性溶媒したものいずれも好適に用いることができる。前記水溶性溶媒を用いた場合には、精製等の後処理の面におけるメリットを有するものである。 The above process will be described in detail.
Figure 2006158400

From Fmoc-ω-amino acid pentafluorophenyl ester (Fmoc-ω-amino acid-OPfp) obtained by reacting Fmoc-ω-amino acid with pentafluorophenol (PfpOH), Fmoc-ω-amino acid -Synthesize Boc PNA-OH.
In order to obtain a solution of the Fmoc-ω-amino acid-OPfp used in the subsequent steps, an organic solvent such as DMF or a water-soluble solvent containing acetone or the like and water can be suitably used. When the water-soluble solvent is used, it has advantages in terms of post-treatment such as purification.

前記Fmoc−ω−アミノ酸−OPfpは、Fmoc−ω−アミノ酸とPfpOHをDMF溶液中にてDCCを加えて反応させることによって、例えば下記式(III)

Figure 2006158400
(式中、nは1〜15の整数を表す)で表されるものが得られる。 The Fmoc-ω-amino acid-OPfp is reacted with Fmoc-ω-amino acid and PfpOH by adding DCC in a DMF solution, for example, by the following formula (III)
Figure 2006158400
(Wherein n represents an integer of 1 to 15) is obtained.

次いで、これにBocPNA−OHのDMF溶液にジイソプロピルエチルアミンとともに添加し、Fmoc−ω−アミノ酸−BocPNA−OHを得る。
Fmoc−ω−アミノ酸−BocPNA−OHは、PNAモノマーユニットの前駆体として機能するため、前駆体的PNAモノマーユニットと呼ぶことができる。
式(III)において、nとしては1〜15までの整数を適宜選択できるが、nの値が大きい方が、ハイブリッド形成時の立体的反発(あるいは障害)を軽減する点において好ましい。
Next, it is added to a DMF solution of Boc PNA-OH together with diisopropylethylamine to obtain Fmoc-ω-amino acid- Boc PNA-OH.
Since Fmoc-ω-amino acid- Boc PNA-OH functions as a precursor of PNA monomer units, it can be referred to as a precursor PNA monomer unit.
In the formula (III), an integer from 1 to 15 can be appropriately selected as n, but a larger value of n is preferable in terms of reducing steric repulsion (or obstacle) during the formation of the hybrid.

次に、下図

Figure 2006158400

に示すように、前駆体的PNAモノマーユニットを用いて、オリゴマーIaを合成する。具体的には、Z基(N−ベンジルオキシカルボニル基)等で保護されたアデニン、グアニン、シトシンまたはチミンを有するPNAモノマーユニットを、前駆体的PNAモノマーユニットと反応させ、tBoc法用固相担体を用いてPNA鎖を逐次縮合・伸長せしめる。 Next, the figure below
Figure 2006158400

The oligomer Ia is synthesized using a precursor PNA monomer unit as shown in FIG. Specifically, a PNA monomer unit having adenine, guanine, cytosine or thymine protected with a Z group (N-benzyloxycarbonyl group) or the like is reacted with a precursor PNA monomer unit, and a solid support for tBoc method Is used to sequentially condense and extend the PNA chain.

PNA鎖の縮合においては、予めtBoc基を脱離しておく必要があるが、その方法に制限はなく、一般的な方法が用いられる。それに続く縮合には、HATU、HBTUおよびBOP等の一般的な縮合剤が用いられる。
また、固相担体に関しては、tBoc法用のものであれば特に制限はないが、特にMBHAが好適に用いられる。
In the PNA chain condensation, the tBoc group needs to be eliminated in advance, but the method is not limited and a general method is used. For the subsequent condensation, common condensing agents such as HATU, HBTU and BOP are used.
Further, the solid phase carrier is not particularly limited as long as it is for the tBoc method, but MBHA is particularly preferably used.

次に、下図

Figure 2006158400

に示すように、ピペリジン処理によってFmoc基を選択的に脱保護してアミノ基とし、Ibを得て、さらに、下図
Figure 2006158400

に示すように、該Ibの前記アミノ基に遊離カルボン酸を有する機能性分子を脱水縮合してIcを得る。
前記カルボン酸として特に制限はないが、反応性の点においては脂肪族カルボン酸が芳香族カルボン酸を上回るため、脂肪族カルボン酸を用いると製造の効率が高く好ましい。 Next, the figure below
Figure 2006158400

As shown in the figure, the Fmoc group was selectively deprotected by piperidine treatment to give an amino group to obtain Ib.
Figure 2006158400

As shown in the above, Ic is obtained by dehydration condensation of a functional molecule having a free carboxylic acid on the amino group of the Ib.
Although there is no restriction | limiting in particular as said carboxylic acid, In terms of reactivity, since aliphatic carboxylic acid exceeds aromatic carboxylic acid, use of aliphatic carboxylic acid is preferable because of high production efficiency.

また、ピペリジン処理によるFmoc基の脱保護は、ある程度の時間をかけることによって好適に行われる。特に、20〜40分が好適であり、最も好適には30分であった。
縮合剤の種類に特に制限はなく、前記PNA鎖の縮合と同様に、HATU、HBTUおよびBOP等の一般的な縮合剤が用いられる。
Further, the deprotection of the Fmoc group by piperidine treatment is suitably performed by taking a certain amount of time. In particular, 20 to 40 minutes was preferable, and 30 minutes was most preferable.
There is no restriction | limiting in particular in the kind of condensing agent, Common condensing agents, such as HATU, HBTU, and BOP, are used similarly to the condensation of the said PNA chain | strand.

なお、機能性分子の導入は、Fmoc−ω−アミノ酸−BocPNA−OHを縮合した後、直ちに行ってもよく(第1法)、あるいは、Fmoc−ω−アミノ酸−BocPNA−OHを含む全てのPNAモノマーユニットを逐次縮合した後に行ってもよい(第2法)。 The functional molecule may be introduced immediately after the condensation of Fmoc-ω-amino acid- Boc PNA-OH (the first method) or all including Fmoc-ω-amino acid- Boc PNA-OH. The PNA monomer unit may be condensed after sequential condensation (second method).

最後に、下図

Figure 2006158400

に示すように、担体レジンからの切り出しとZ基の脱保護を同時に行うことによって、目的とするPNAオリゴマー誘導体化合物を得る。
切り出しおよび脱保護は、Fmoc基の脱保護の後に行われる限りにおいてはその条件に特に制限はない。例えば、TFA/TFMSA/p-cresol/Thioanisole=60/25/10/10のような一般的な条件において好適に行われる。 Finally, the figure below
Figure 2006158400

As shown in FIG. 4, the target PNA oligomer derivative compound is obtained by simultaneously cleaving from the carrier resin and deprotecting the Z group.
The conditions for cutting and deprotecting are not particularly limited as long as they are performed after the deprotection of the Fmoc group. For example, it is suitably performed under general conditions such as TFA / TFMSA / p-cresol / Thioanisole = 60/25/10/10.

式(I)で表されるPNAオリゴマー誘導体化合物として、例えば、Rがメチルレッドのカルボン酸誘導体を含むもの、さらにX+X+X=9であり、Y+Y=1であるもの、またはX=3、X=6であり、Y=1であるもの等が、特に好適に合成される。 As the PNA oligomer derivative compound represented by the formula (I), for example, a compound containing a carboxylic acid derivative in which R is methyl red, X 1 + X 2 + X 3 = 9, and Y 1 + Y 2 = 1 Alternatively, X 1 = 3, X 2 = 6, and Y 1 = 1 are particularly preferably synthesized.

式(I)で表されるPNAオリゴマー誘導体化合物においては、例えば、Rが細胞膜透過性機能分子誘導体等であり、Rが光機能性分子等の機能性カルボン酸誘導体等であるもの、すなわち、末端部を含む複数部位に機能性分子が導入され、それらによって複数の機能が付与された構成を典型例として挙げることができる。前記典型例によるPNAオリゴマー誘導体化合物は、例えば下記のように模式化することができる。

Figure 2006158400
In the PNA oligomer derivative compound represented by the formula (I), for example, R is a cell membrane-permeable functional molecule derivative and the like, and R 1 is a functional carboxylic acid derivative such as a photofunctional molecule, that is, A typical example is a configuration in which functional molecules are introduced into a plurality of sites including a terminal portion and a plurality of functions are imparted thereby. The PNA oligomer derivative compound according to the above typical example can be schematically illustrated as follows, for example.
Figure 2006158400

このようなPNAオリゴマー誘導体化合物は、例えば前記一般式(II)において、X=Z=Z=1であり、かつY≧2であるPNAオリゴマー誘導体である。このようなPNAオリゴマー誘導体化合物は合成のしやすさおよび合成コストの面等において好適である。
上記PNAオリゴマー誘導体化合物において、a、bおよびfはそれぞれ0〜10の整数であれば特に限定されないが、例えばa≦6であり、b≦4であり、f≦6であるものであっても、合成上および実用上のいずれにおいても支障はない。
Such a PNA oligomer derivative compound is, for example, a PNA oligomer derivative in which X 1 = Z 1 = Z 2 = 1 and Y 1 ≧ 2 in the general formula (II). Such a PNA oligomer derivative compound is suitable in terms of ease of synthesis and cost of synthesis.
In the PNA oligomer derivative compound, a, b, and f are not particularly limited as long as each is an integer of 0 to 10, but for example, a ≦ 6, b ≦ 4, and f ≦ 6. There is no problem in both synthesis and practical use.

リンカー部位を導入することによって、個々の機能性部位および塩基配列認識領域の干渉を防ぎ、分子の機能をより確実なものにすることができる。本明細書におけるPNA、PNAモノマーおよびPNAオリゴマーの語には、リンカー部位をその末端および/または内部に含むものも包含される。
これらの部位または領域間の相互干渉を防ぐための部位としては、前記リンカー部位のみならず、一般式(I)におけるf〜hを、所望に応じて選択することによっても可能である。
リンカー部位を構成する基としては、直鎖状または分枝状の炭化水素およびそれらのエーテル体等が挙げられるが、直鎖状炭化水素基は導入の容易さおよびコストなどの面から好適であり、特に炭素数1〜6の直鎖状炭化水素基が好適である。また、エーテル体は、その汎用性において好適である。
By introducing a linker site, interference between individual functional sites and base sequence recognition regions can be prevented, and the function of the molecule can be made more reliable. As used herein, the terms PNA, PNA monomer and PNA oligomer also include those containing linker sites at the ends and / or within.
As a site for preventing mutual interference between these sites or regions, not only the linker site but also f to h in the general formula (I) can be selected as desired.
Examples of the group constituting the linker moiety include linear or branched hydrocarbons and ethers thereof, but the linear hydrocarbon group is preferable from the viewpoint of ease of introduction and cost. In particular, a linear hydrocarbon group having 1 to 6 carbon atoms is preferred. The ether form is suitable for its versatility.

前記複数の機能性分子が導入されたPNAオリゴマー誘導体化合物は、例えばKoch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.; Batz, H.G.; Otteson, K.; Orum, H. J. PeptideRes. 1997, 49, 80-88.を利用して好適に合成される。
塩基配列認識部位は、市販の各種PNAモノマーを用いて固相合成によりオリゴマー化することができる。リンカー部位には、市販のBoc−7−アミノヘプタン酸、Boc−6−アミノカプロン酸等を用いることができる。
Examples of the PNA oligomer derivative compound into which the plurality of functional molecules are introduced include Koch, T .; Hansen, HF; Andersen, P .; Larsen, T .; Batz, HG; Otteson, K .; Orum, HJ Peptide Res. 1997, 49, 80-88.
The base sequence recognition site can be oligomerized by solid phase synthesis using various commercially available PNA monomers. Commercially available Boc-7-aminoheptanoic acid, Boc-6-aminocaproic acid and the like can be used for the linker site.

機能性分子として光機能性分子を導入すれば、蛍光標識することが可能であり、かつ他の機能も有するPNAオリゴマー誘導体化合物を合成することができる。このような蛍光標識部位として、市販のFITC、ROX、TAMRAまたはDabcyl等の市販の活性エステル型蛍光標識化合物を用いて、多様な蛍光発光波長を選択することが可能であるが、導入される蛍光標識化合物はこれらに限定されるものではない。   If a photofunctional molecule is introduced as a functional molecule, a PNA oligomer derivative compound that can be fluorescently labeled and has other functions can be synthesized. As such a fluorescent labeling site, it is possible to select various fluorescent emission wavelengths by using a commercially available active ester type fluorescent labeling compound such as FITC, ROX, TAMRA or Dabcyl. The labeling compound is not limited to these.

本発明のPNAオリゴマー誘導体化合物に導入し得る膜透過性機能分子の典型例として、アルギニンが挙げられるが、リジンおよびセリン等の他の水溶性アミノ酸も好適に用いることができる。   A typical example of a membrane-permeable functional molecule that can be introduced into the PNA oligomer derivative compound of the present invention is arginine, but other water-soluble amino acids such as lysine and serine can also be suitably used.

また、Fmocアミノ酸ユニットを利用することによって、複数個のアミノ酸を導入することも可能である。その合成例は実施例20および21にも示した。しかしながら、上記2化合物は本発明による膜透過性機能を有する蛍光PNAプローブのモデル化合物であり、本発明はこれらに限定されるものではない。   It is also possible to introduce a plurality of amino acids by using the Fmoc amino acid unit. Examples of the synthesis are also shown in Examples 20 and 21. However, the above two compounds are model compounds of a fluorescent PNA probe having a membrane permeability function according to the present invention, and the present invention is not limited to these.

これらのプローブの特徴は、「全てPNA型になっているので、完全な酵素耐性を有すること」である。すなわち、これまでの膜透過性機能を有するプローブは、PNAと膜透過性機能を有するペプチド鎖あるいはリン脂質を共有結合させたものが主流であったが、これらの既知のプローブは優れた膜透過性機能を有するものの、一旦細胞内に入ると酵素群によりペプチド鎖あるいはリン脂質が分解されることが予想される。したがって、これらは、ターゲットを認識していない分解を受けたプローブを洗浄過程で完全に取り除くことができないという欠点を有する。   The characteristic of these probes is "because they are all PNA type and have complete enzyme resistance". In other words, the conventional probes having a membrane permeability function are mainly those in which PNA and a peptide chain or phospholipid having a membrane permeability function are covalently bonded, but these known probes have excellent membrane permeability. Although it has a sexual function, once it enters the cell, it is expected that the peptide chain or phospholipid is degraded by the enzyme group. Therefore, they have the disadvantage that the probe that has undergone degradation that does not recognize the target cannot be completely removed in the washing process.

これに対して、今回設計したプローブは、細胞内においても酵素分解を受けないため、ターゲットを認識していないプローブは洗浄過程で完全に取り除かれるため、正確な遺伝子発現量の定量を可能とするものである。
なお、これらの機能性を有するPNAオリゴマー誘導体化合物以外にも、ラクトースやトリスエックス等の臓器選択機能性分子、タナチンやセクロピン等の殺菌機能性分子およびビオローゲン等の分子認識機能性分子等も、本発明によれば制限なく導入することが可能であり、そのようなPNAオリゴマー誘導体化合物を、大量に低コストで実用に供することが可能になる。
On the other hand, the probe designed this time is not subject to enzymatic degradation even in the cell, and the probe that does not recognize the target is completely removed in the washing process, enabling accurate quantification of gene expression level. Is.
In addition to these functional PNA oligomer derivative compounds, organ-selective functional molecules such as lactose and tris-x, bactericidal functional molecules such as tanatine and cecropin, and molecular recognition functional molecules such as viologen, etc. According to the invention, it is possible to introduce without limitation, and such a PNA oligomer derivative compound can be practically used in a large amount at a low cost.

以下に実施例を用いて本発明をさらに詳細に説明するが、本発明の範囲はこれに限られるものではない。
(実施例1)Fmoc-Gly-BocPNA-OHの合成(1)
Fmoc-Gly-OH (891 mg, 3.0 mmol) とPfpOH (754 mg, 4.5 mmol)のDMF溶液(12mL)にDCC (845 mg, 4.5 mmol)を氷冷下加え、この反応液を0℃で30分次いで室温で15時間撹拌した。反応液を濾過し濾液を減圧濃縮し、残渣をBocPNA-OH (436 mg, 2.0 mmol)のDMF溶液(16 mL)にdiisopropylethylamine (445 μL, 2.6 mmol) を加え、室温で15時間撹拌した。これを減圧濃縮し残渣をシリカゲルカラムクロマト法(0-50% MeOH/CHCl)により精製しFmoc-Gly-BocPNA-OH (121 mg, 12%)を得た。1H NMR (DMSO-d)δ 7.88 (d, J = 7.0 Hz, 2 H), 7.72 (d, J = 7.0 Hz, 2 H), 7.62 (brt) and 7.56 (brt) (1 H), 7.41 (t, J = 7.0 Hz, 2 H), 7.33 (t, J = 7.0 Hz, 2 H), 7.18 (m, 2 H), 6.85 (brt) and 6.79 (brt) (1 H), 4.35 - 4.15 (m, 3 H), 4.05 - 3.85 (m, 3 H), 3.77 (m, 1 H), 3.40 - 3.25 (m, 2 H), 3.10 (m) and 3.03 (s) (2 H), 1.37 (brs, 9 H); 13C NMR (DMSO-d) δ172.2 (d), 169.10 (d), 156.34 (d), 155.58 (d), 143.83, 140.66, 127.58, 127.04, 125.24, 120.04, 77.77 (d), 65.71, 47.34 (d), 46.72, 46.65 (d), 29.23 (d), 28.14 (d); FABMS m/z 498 [(M+H)+].
Hereinafter, the present invention will be described in more detail with reference to examples, but the scope of the present invention is not limited thereto.
Example 1 Synthesis of Fmoc-Gly- Boc PNA-OH (1)
DCC (845 mg, 4.5 mmol) was added to a DMF solution (12 mL) of Fmoc-Gly-OH (891 mg, 3.0 mmol) and PfpOH (754 mg, 4.5 mmol) under ice-cooling, and the reaction solution was added at 0 ° C for 30 minutes. The mixture was then stirred at room temperature for 15 hours. The reaction solution was filtered, the filtrate was concentrated under reduced pressure, and diisopropylethylamine (445 μL, 2.6 mmol) was added to a DMF solution (16 mL) of Boc PNA-OH (436 mg, 2.0 mmol), followed by stirring at room temperature for 15 hours. This was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (0-50% MeOH / CH 2 Cl 2 ) to obtain Fmoc-Gly- Boc PNA—OH (121 mg, 12%). 1 H NMR (DMSO-d 6 ) δ 7.88 (d, J = 7.0 Hz, 2 H), 7.72 (d, J = 7.0 Hz, 2 H), 7.62 (brt) and 7.56 (brt) (1 H), 7.41 (t, J = 7.0 Hz, 2 H), 7.33 (t, J = 7.0 Hz, 2 H), 7.18 (m, 2 H), 6.85 (brt) and 6.79 (brt) (1 H), 4.35- 4.15 (m, 3 H), 4.05-3.85 (m, 3 H), 3.77 (m, 1 H), 3.40-3.25 (m, 2 H), 3.10 (m) and 3.03 (s) (2 H), 1.37 (brs, 9 H); 13 C NMR (DMSO-d 6 ) δ172.2 (d), 169.10 (d), 156.34 (d), 155.58 (d), 143.83, 140.66, 127.58, 127.04, 125.24, 120.04 , 77.77 (d), 65.71, 47.34 (d), 46.72, 46.65 (d), 29.23 (d), 28.14 (d); FABMS m / z 498 [(M + H) + ].

(実施例2) Fmoc-C7-OPfpの合成
Fmoc-C7-OH(381.9 mg,1.0 mmol)とPfpOH(349.7 mg、1.9 mmol)のDMF溶液(2.5mL)にDCC(392.0 mg,1.9 mmol)を氷冷下で加え、この反応液を0 ℃で30分次いで室温で一晩攪拌した。反応終了後DCUreaを濾別して濾液を減圧濃縮し、残渣をシリカゲルカラムクロマト法(CH2Cl2)により精製した後、Hexaneで再結晶し白色粉末としてFmoc-C7-OPfp (537.5 mg,98%)を得た。1H-NMR (CDCl3)δ7.76(d,J= 7.6 Hz, 2 H),7.59 (d,J = 7.6 Hz, 2 H),7.40 (t,J = 7.4 Hz, 2 H),7.31 (t,J = 7.4 Hz, 2 H),4.70 - 4.73 (brt,1 H),4.47 - 4.40 (brd,2 H),4.22 (t,J = 6.42 Hz, 1 H),3.20 (q,J = 5.94 Hz, 2 H),2.66 (t,J = 7.38 Hz, 2 H),1.80 - 1.75 (m,2 H),1.55 - 1.50 (m,2 H),1.45 - 1.34 (m,6 H); 13C-NMR (CDCl3)δ 169.44, 156.43, 143.98, 141.96(m), 141.29, 140.23, 138.67(m), 136.99(m), 127.60, 126.96, 124.97, 119.91, 66.49, 55.73,47.29, 41.34(d), 34.89, 33.22, 29.85, 28.70, 26.42, 25.43, 24.60 ;HRMS(FAB+) calcd. for C29H27F5NO4 [(M+H)+] 547.5131 observed 548.1861.
Example 2 Synthesis of Fmoc-C 7 -OPfp
DCC (392.0 mg, 1.9 mmol) was added to a DMF solution (2.5 mL) of Fmoc-C 7 -OH (381.9 mg, 1.0 mmol) and PfpOH (349.7 mg, 1.9 mmol) under ice-cooling. Stir at <RTIgt; 30 C </ RTI> for 30 minutes and then at room temperature overnight. After completion of the reaction, DCUrea was filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CH 2 Cl 2 ) and recrystallized from Hexane to give Fmoc-C 7 -OPfp (537.5 mg, 98% ) 1 H-NMR (CDCl 3 ) δ7.76 (d, J = 7.6 Hz, 2 H), 7.59 (d, J = 7.6 Hz, 2 H), 7.40 (t, J = 7.4 Hz, 2 H), 7.31 (t, J = 7.4 Hz, 2 H), 4.70-4.73 (brt, 1 H), 4.47-4.40 (brd, 2 H), 4.22 (t, J = 6.42 Hz, 1 H), 3.20 (q, J = 5.94 Hz, 2 H), 2.66 (t, J = 7.38 Hz, 2 H), 1.80-1.75 (m, 2 H), 1.55-1.50 (m, 2 H), 1.45-1.34 (m, 6 H) ; 13 C-NMR (CDCl 3 ) δ 169.44, 156.43, 143.98, 141.96 (m), 141.29, 140.23, 138.67 (m), 136.99 (m), 127.60, 126.96, 124.97, 119.91, 66.49, 55.73,47.29, 41.34 (d), 34.89, 33.22, 29.85, 28.70, 26.42, 25.43, 24.60; HRMS (FAB + ) calcd.for C 29 H 27 F 5 NO 4 [(M + H) + ] 547.5131 observed 548.1861.

(実施例3) Fmoc-Gly-BocPNA-OHの合成(2)
アセトン(6.0 mL)と水(1.0 mL)の混合溶液にNaHCO3(67.2 mg,0.8 mmol)を加え、Fmoc-Gly-OPfp (240.9 mg,0.52 mmol)とBocPNA-OH (87.3 mg,0.4 mmol)を溶解し、室温で6時間攪拌した。氷冷した1 N塩酸で冷却した反応溶液をpH 3.0とし、さらに1%クエン酸水溶液を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄をした。有機層を無水硫酸マグネシウムで乾燥させ溶液を濃縮し、シリカゲルカラムクロマト法(1-5% MeOH/CH2Cl2)及びLH-20(MeOH)で精製した。この後、塩化メチレンに溶かし、減圧濃縮しアモルファスパウダーとしてFmoc-Gly-BocPNA-OH (157.3 mg,80%)を得た。
Example 3 Synthesis of Fmoc-Gly- Boc PNA-OH (2)
NaHCO 3 (67.2 mg, 0.8 mmol) was added to a mixed solution of acetone (6.0 mL) and water (1.0 mL), and Fmoc-Gly-OPfp (240.9 mg, 0.52 mmol) and Boc PNA-OH (87.3 mg, 0.4 mmol) was dissolved and stirred at room temperature for 6 hours. The reaction solution cooled with ice-cooled 1N hydrochloric acid was adjusted to pH 3.0, 1% aqueous citric acid solution was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, the solution was concentrated, and purified by silica gel column chromatography (1-5% MeOH / CH 2 Cl 2 ) and LH-20 (MeOH). Thereafter, the product was dissolved in methylene chloride and concentrated under reduced pressure to obtain Fmoc-Gly- Boc PNA-OH (157.3 mg, 80%) as an amorphous powder.

(実施例4)Fmoc-β-Ala-BocPNA-OHの合成(1)
Fmoc-β-Ala-OH (311 mg, 1.0 mmol)とPfpOH (334 mg, 1.75 mmol)のDMF溶液(2.5 mL)にDCC (288 mg, 1.4 mmol)を氷冷下加え、この反応液を0℃で30分次いで室温で15時間撹拌した。反応液を濾過し濾液を減圧濃縮し、残渣をシリカゲルカラムクロマト法(CHCl)により精製した。これをHexaneとCHClで再結晶し、白色粉末としてFmoc-β-Ala-OPfp (429 mg, 90%) を得た。Fmoc-β-Ala-OPfp(100 mg, 0.21 mmol)とBocPNA-OH (41 mg, 0.19 mmol)のDMF溶液(2 mL)にdiisopropylethylamine (36 μL, 0.21 mmol) を加え、室温で15時間撹拌した。これを減圧濃縮し、残渣をシリカゲルカラムクロマト法(0-10% MeOH/CHCl)により精製しFmoc-β-Ala-BocPNA-OH (41 mg, 42%)を得た。1H NMR (DMSO-d)δ 7.88 (d, J = 7.4 Hz, 2 H), 7.68 (d, J = 7.4 Hz, 2 H), 7.41 (t, J= 7.3 Hz, 2 H), 7.33 (t, J = 7.3 Hz, 2 H), 7.18 (m, 2 H), 6.83 (brt) and6.72 (brt) (2 H), 4.3 - 4.2 (m, 4 H), 4.05 - 3.9 (m, 3 H), 3.33 (brt) and 3.29 (brt) (2 H), 3.19 (m, 2 H), 3.07 (brq) and 3.02 (brq) (2 H), 1.36 (brs, 9 H); 13C NMR (DMSO-d6) δ171.20 (d), 170.85 (d), 155.93, 155.56, 143.87, 140.69, 127.55, 127.01, 125.09, 120.05, 77.73 (d), 65.30 (d),59.69, 47.35 (d), 46.68, 46.49 (d), 37.99 (d), 36.72 (d), 28.14 (d).
Example 4 Synthesis of Fmoc-β-Ala- Boc PNA-OH (1)
DCC (288 mg, 1.4 mmol) was added to a DMF solution (2.5 mL) of Fmoc-β-Ala-OH (311 mg, 1.0 mmol) and PfpOH (334 mg, 1.75 mmol) under ice-cooling, and the reaction mixture was added to 0 mL. Stir for 30 minutes at ° C and then for 15 hours at room temperature. The reaction solution was filtered, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (CH 2 Cl 2 ). This was recrystallized with Hexane and CH 2 Cl 2 to obtain Fmoc-β-Ala-OPfp (429 mg, 90%) as a white powder. Add diisopropylethylamine (36 μL, 0.21 mmol) to DMF solution (2 mL) of Fmoc-β-Ala-OPfp (100 mg, 0.21 mmol) and Boc PNA-OH (41 mg, 0.19 mmol) and stir at room temperature for 15 hours. did. This was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (0-10% MeOH / CH 2 Cl 2 ) to obtain Fmoc-β-Ala- Boc PNA—OH (41 mg, 42%). 1 H NMR (DMSO-d 6 ) δ 7.88 (d, J = 7.4 Hz, 2 H), 7.68 (d, J = 7.4 Hz, 2 H), 7.41 (t, J = 7.3 Hz, 2 H), 7.33 (t, J = 7.3 Hz, 2 H), 7.18 (m, 2 H), 6.83 (brt) and 6.72 (brt) (2 H), 4.3-4.2 (m, 4 H), 4.05-3.9 (m , 3 H), 3.33 (brt) and 3.29 (brt) (2 H), 3.19 (m, 2 H), 3.07 (brq) and 3.02 (brq) (2 H), 1.36 (brs, 9 H); 13 C NMR (DMSO-d 6 ) δ171.20 (d), 170.85 (d), 155.93, 155.56, 143.87, 140.69, 127.55, 127.01, 125.09, 120.05, 77.73 (d), 65.30 (d), 59.69, 47.35 ( d), 46.68, 46.49 (d), 37.99 (d), 36.72 (d), 28.14 (d).

(実施例5)Fmoc-β-Ala-BocPNA-OHの合成(2)
アセトン(1.25 mL)と水(1.25 mL)の混合溶液にNaHCO3(92.4 mg,1.1 mmol)を加え、Fmoc-β-Ala-OPfp (476.0 mg,1.0 mmol)とBocPNA-OH (87.3 mg,0.55 mmol)を溶解し、室温で6時間攪拌した。氷冷した1 N 塩酸で溶液(0 ℃)をpH 3.0とし、反応液に1%クエン酸水溶液を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄をした。有機層を無水硫酸マグネシウムで乾燥させ溶液を濃縮し、シリカゲルカラムクロマト法(1-5% MeOH/CH2Cl2)で精製した。この後、塩化メチレンに溶かし、減圧濃縮しアモルファスパウダーとしてFmoc-β-Ala-BocPNA-OH (225.9 mg,80%)を得た。
Example 5 Synthesis of Fmoc-β-Ala- Boc PNA-OH (2)
NaHCO 3 (92.4 mg, 1.1 mmol) was added to a mixed solution of acetone (1.25 mL) and water (1.25 mL), and Fmoc-β-Ala-OPfp (476.0 mg, 1.0 mmol) and Boc PNA-OH (87.3 mg, 0.55 mmol) was dissolved and stirred at room temperature for 6 hours. The solution (0 ° C.) was adjusted to pH 3.0 with ice-cooled 1 N hydrochloric acid, 1% aqueous citric acid solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, the solution was concentrated, and purified by silica gel column chromatography (1-5% MeOH / CH 2 Cl 2 ). Thereafter, the product was dissolved in methylene chloride and concentrated under reduced pressure to obtain Fmoc-β-Ala- Boc PNA—OH (225.9 mg, 80%) as an amorphous powder.

(実施例6)Fmoc-GABA-BocPNA-OHの合成(1)
Fmoc-GABA-OPfp (100 mg, 0.20 mmol)とBocPNA-OH (40 mg, 0.18 mmol)のDMF溶液(2 mL)にdiisopropylethylamine (34 μL, 0.20 mmol) を加え、室温で15時間撹拌した。これを減圧濃縮し、残渣をシリカゲルカラムクロマト法(0-20% MeOH/CHCl)により精製しFmoc-GABA-BocPNA-OH (43 mg, 45%)を得た。1H NMR (DMSO-d6)δ 7.88 (d, J = 7.4 Hz, 2 H), 7.68 (d, J = 7.4 Hz, 2 H),7.41 (t, J = 7.4 Hz, 2 H), 7.33 (t, J = 7.4 Hz, 2 H), 7.29 (m, 1 H), 6.82 (brt) and 6.71 (brt) (1 H), 4.3 - 4.2 (m, 4 H), 4.05 - 3.9 (m, 3 H),3.35 - 3.25 (m, 2 H), 3.1 - 2.95 (m, 4 H), 1.36 (brs, 9 H); 13C NMR (DMSO-d) δ172.2 (d), 171.5 (d), 156.03, 155.60 (d), 143.89, 140.68, 127.54, 127.00, 125.50, 120.04, 77.70 (d), 65.19, 54.84, 47.89 (d), 46.97 (d), 46.72, 38.20 (d), 29.23 (d), 28.14 (d), 24.98 (d).
Example 6 Synthesis of Fmoc-GABA- Boc PNA-OH (1)
To a DMF solution (2 mL) of Fmoc-GABA-OPfp (100 mg, 0.20 mmol) and Boc PNA-OH (40 mg, 0.18 mmol) was added diisopropylethylamine (34 μL, 0.20 mmol), and the mixture was stirred at room temperature for 15 hours. This was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (0-20% MeOH / CH 2 Cl 2 ) to obtain Fmoc-GABA- Boc PNA—OH (43 mg, 45%). 1 H NMR (DMSO-d 6 ) δ 7.88 (d, J = 7.4 Hz, 2 H), 7.68 (d, J = 7.4 Hz, 2 H), 7.41 (t, J = 7.4 Hz, 2 H), 7.33 (t, J = 7.4 Hz, 2 H), 7.29 (m, 1 H), 6.82 (brt) and 6.71 (brt) (1 H), 4.3-4.2 (m, 4 H), 4.05-3.9 (m, 3 H), 3.35-3.25 (m, 2 H), 3.1-2.95 (m, 4 H), 1.36 (brs, 9 H); 13 C NMR (DMSO-d 6 ) δ172.2 (d), 171.5 ( d), 156.03, 155.60 (d), 143.89, 140.68, 127.54, 127.00, 125.50, 120.04, 77.70 (d), 65.19, 54.84, 47.89 (d), 46.97 (d), 46.72, 38.20 (d), 29.23 ( d), 28.14 (d), 24.98 (d).

(実施例7)Fmoc-GABA-OPfpの合成
Fmoc-GABA-OH (325 mg, 1.0 mmol)とPfpOH (221 mg, 1.2 mmol)のDMF溶液(2.5mL)にDCC (248 mg, 1.2 mmol)を氷冷下加え、この反応液を0℃で30分次いで室温で15時間撹拌した。反応液を濾過し濾液を減圧濃縮し、残渣をシリカゲルカラムクロマト法(CHCl)により精製し、白色粉末としてFmoc-GABA-OPfp (463mg, 94%) を得た。1H NMR (CDCl3)δ7.77 (d, J = 7.5 Hz, 2 H), 7.59 (d, J =7.5 Hz, 2 H), 7.40 (t, J = 7.5 Hz, 2 H), 7.31 (t, J = 7.5 Hz, 2 H), 4.85 (brs, 1 H), 4.45 (d, J = 6.3 Hz, 2 H), 4.21 (t, J = 6.3 Hz, 2 H), 3.32(d, J = 6.5 Hz, 2 H), 2.71 (t, J = 6.5 Hz, 2 H), 1.98 (t, J = 6.5 Hz, 2H); 13C NMR(CDCl3)δ169.02, 156.49, 143.83, 141.87 (m), 141.28, 140.23 (m), 138.61 (m), 136.94 (m), 127.62, 127.46, 124.89, 119.88, 66.52, 47.25, 39.92, 30.42, 25.03.
Example 7 Synthesis of Fmoc-GABA-OPfp
DCC (248 mg, 1.2 mmol) was added to a DMF solution (2.5 mL) of Fmoc-GABA-OH (325 mg, 1.0 mmol) and PfpOH (221 mg, 1.2 mmol) under ice-cooling, and the reaction solution was added at 0 ° C. Stir for 30 minutes and then at room temperature for 15 hours. The reaction solution was filtered, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (CH 2 Cl 2 ) to obtain Fmoc-GABA-OPfp (463 mg, 94%) as a white powder. 1 H NMR (CDCl 3 ) δ7.77 (d, J = 7.5 Hz, 2 H), 7.59 (d, J = 7.5 Hz, 2 H), 7.40 (t, J = 7.5 Hz, 2 H), 7.31 ( t, J = 7.5 Hz, 2 H), 4.85 (brs, 1 H), 4.45 (d, J = 6.3 Hz, 2 H), 4.21 (t, J = 6.3 Hz, 2 H), 3.32 (d, J = 6.5 Hz, 2 H), 2.71 (t, J = 6.5 Hz, 2 H), 1.98 (t, J = 6.5 Hz, 2H); 13 C NMR (CDCl 3 ) δ169.02, 156.49, 143.83, 141.87 ( m), 141.28, 140.23 (m), 138.61 (m), 136.94 (m), 127.62, 127.46, 124.89, 119.88, 66.52, 47.25, 39.92, 30.42, 25.03.

(実施例8) Fmoc-GABA-BocPNA-OHの合成(2)
アセトン(5.0 mL)と水(1.0 mL)の混合溶液にNaHCO3 (67.2 mg,0.8 mmol)を加え、Fmoc-GABA-OPfp (255.5 mg,0.52 mmol)とBocPNA-OH (87.3 mg,0.4 mmol)を溶解し、室温で8時間攪拌した。氷冷した1 N 塩酸で溶液(0 ℃)をpH 3.0とし、反応液に1%クエン酸水溶液を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄をした。有機層を無水硫酸マグネシウムで乾燥させ溶液を濃縮し、シリカゲルカラムクロマト法(1-5% MeOH/CH2Cl2)で精製した。塩化メチレンに溶かした後、減圧濃縮しアモルファスパウダーとしてFmoc-GABA-BocPNA-OH (175.9 mg,84%)を得た。
Example 8 Synthesis of Fmoc-GABA- Boc PNA-OH (2)
To a mixed solution of acetone (5.0 mL) and water (1.0 mL) was added NaHCO 3 (67.2 mg, 0.8 mmol), Fmoc-GABA-OPfp (255.5 mg, 0.52 mmol) and Boc PNA-OH (87.3 mg, 0.4 mmol). ) Was dissolved and stirred at room temperature for 8 hours. The solution (0 ° C.) was adjusted to pH 3.0 with ice-cooled 1 N hydrochloric acid, 1% aqueous citric acid solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, the solution was concentrated, and purified by silica gel column chromatography (1-5% MeOH / CH 2 Cl 2 ). After dissolving in methylene chloride, the solution was concentrated under reduced pressure to obtain Fmoc-GABA- Boc PNA-OH (175.9 mg, 84%) as an amorphous powder.

(実施例9) Fmoc-C4-BocPNA-OHの合成
アセトン(4.0 mL)と水(1.0 mL)の混合溶液にNaHCO3(67.2 mg,0.8 mmol)を加え、Fmoc-C4-OPfp (323.5 mg,0.64 mmol)とBocPNA-OH(87.3 mg,0.4 mmol)を溶解し、室温で12時間攪拌した。氷冷した1 N 塩酸で溶液(0 ℃)をpH 3.0とし、さらに1%クエン酸水溶液を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄をした。有機層を無水硫酸マグネシウムで乾燥させ、シリカゲルカラムクロマト法(1-5% MeOH/CH2Cl2)で精製した。塩化メチレンに溶かした後、減圧濃縮しアモルファスパウダーとしてFmoc-C4-BocPNA-OH (190.7 mg,88%)を得た。1H-NMR(CDCl3) δ7.76(d,J = 6.7 Hz, 2 H),6.96 (mi) and 6.66 (ma) (brd, J = 6.7 Hz, 2 H), 7.41 - 7.37(m, 2 H), 7.32 ‐ 7.28(m,2 H), 7.14 (ma) and 6.68 (mi) (m, 1 H), 5.54 (ma) and 5.43 (mi) (brt, 1 H), 4.45(mi) and 4.37(ma) (m, 2 H), 4.24 - 4.21 (m, 1 H),4.08 - 3.95 (m,2 H),3.54 - 3.48 (m,2 H),3.29 - 3.11 (m, 4 H),2.43 - 2.25 (m, 2 H),1.70 - 1.29 (m,13 H); 13C-NMR (CDCl3) δ 174.39,173.07,171.95,157.51,156.79(d),156.11,144.06(d),141.16,127.46(d),126.90(d),119.77(d), 81.42,79.67,66.39(d),53.35,49.46(d),49.17,48.60,47.15(d), 40.89,40.32(d),38.68,31.87,31.41,29.59,29.11(d),28.28,21.77(d); HRMS (FAB+) calcd. for C29H37N3O7 [(M+H)+] 539.2632 observed 540.2707.
(Example 9) Fmoc-C 4 - Boc PNA-OH synthetic acetone (4.0 mL) and NaHCO 3 (67.2 mg, 0.8 mmol ) in a mixed solution of water (1.0 mL) was added, Fmoc-C 4 - OPfp (323.5 mg, 0.64 mmol) and Boc PNA-OH (87.3 mg, 0.4 mmol) were dissolved and stirred at room temperature for 12 hours. The solution (0 ° C.) was adjusted to pH 3.0 with ice-cooled 1N hydrochloric acid, 1% aqueous citric acid solution was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate and purified by silica gel column chromatography (1-5% MeOH / CH 2 Cl 2 ). It was dissolved in methylene chloride, Fmoc-C 4 as an amorphous powder and concentrated under reduced pressure - to give Boc PNA-OH a (190.7 mg, 88%). 1 H-NMR (CDCl 3 ) δ 7.76 (d, J = 6.7 Hz, 2 H), 6.96 (mi) and 6.66 (ma) (brd, J = 6.7 Hz, 2 H), 7.41-7.37 (m, 2 H), 7.32-7.28 (m, 2 H), 7.14 (ma) and 6.68 (mi) (m, 1 H), 5.54 (ma) and 5.43 (mi) (brt, 1 H), 4.45 (mi) and 4.37 (ma) (m, 2 H), 4.24-4.21 (m, 1 H), 4.08-3.95 (m, 2 H), 3.54-3.48 (m, 2 H), 3.29-3.11 (m, 4 H ), 2.43-2.25 (m, 2 H), 1.70-1.29 (m, 13 H); 13 C-NMR (CDCl 3 ) δ 174.39, 173.07, 171.55, 157.51, 156.79 (d), 156.11, 144.06 (d) , 141.16, 127.46 (d), 126.90 (d), 119.77 (d), 81.42, 79.67, 66.39 (d), 53.35, 49.46 (d), 49.17, 48.60, 47.15 (d), 40.89, 40.32 (d), 38.68, 31.87, 31.41, 29.59, 29.11 (d), 28.28, 21.77 (d); HRMS (FAB + ) calcd. For C 29 H 37 N 3 O 7 [(M + H) + ] 539.2632 observed 540.2707.

(実施例10) Fmoc-C5-BocPNA-OHの合成
アセトン(7.5 mL)と水(1.0 mL)の混合溶液にNaHCO3(67.2 mg,0.8 mmol)を加え、Fmoc-C5-OPfp (311.0 mg,0.6 mmol)とBocPNA-OH (87.3 mg,0.4 mmol)を溶解し、室温で24時間攪拌した。氷冷した1 N 塩酸で溶液(0 ℃)をpH 3.0とし、さらに1%クエン酸水溶液を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄をした。有機層を無水硫酸マグネシウムで乾燥させ溶液を濃縮し、シリカゲルカラムクロマト法(1-5% MeOH/CH2Cl2)で精製した。塩化メチレンに溶かした後、減圧濃縮し白色のアモルファスパウダーとして、Fmoc-C5-BocPNA-OH (198.0 mg,90%)を得た。1H-NMR (DMSO-d6)δ 7.88(d,J = 7.4 Hz, 2 H),7.68 (d, J =7.2 Hz,2 H),7.41 (t,J = 7.4 Hz, 2 H),7.32 (t,J = 7.4 Hz, 2 H),7.22(brt,1 H),6.81 (ma) and 6.67 (mi) (brt, 1 H),4.33 (mi) and 4.29 (ma)(brd,2 H),4.20 (t,J = 7.1 Hz, 1 H),4.08 (mi) and 3.90 (ma) (brs,2H),3.09 - 2.94 (m,4 H),2.30 (ma) and2.14 (mi) (brt,2 H),1.51 - 1.45(m,2 H),1.41 - 1.31 (brs,11 H),1.29-1.21 (m,8 H); 13C-NMR (CDCl3)δ175.1(d),172.27(d),157.20(t),156.63,144.43(d),141.69,128.07,127.45,125.40(d),120.35,81.71,80.00,67.36(d),50.42,49.81(d),48.90(d),47.82(d),41.77,41.16,40.64,39.19,33.12,32.75,29.45(d),28.81,26.59,24.97,24.70; HRMS (FAB+) calcd. for C30H39N3O7 [(M+H)+] 553.2788observed 554.2873.
(Example 10) Fmoc-C 5 - Boc PNA-OH synthetic acetone (7.5 mL) and NaHCO 3 (67.2 mg, 0.8 mmol ) in a mixed solution of water (1.0 mL) was added, Fmoc-C 5 -OPfp ( 311.0 mg, 0.6 mmol) and Boc PNA-OH (87.3 mg, 0.4 mmol) were dissolved and stirred at room temperature for 24 hours. The solution (0 ° C.) was adjusted to pH 3.0 with ice-cooled 1N hydrochloric acid, 1% aqueous citric acid solution was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, the solution was concentrated, and purified by silica gel column chromatography (1-5% MeOH / CH 2 Cl 2 ). Was dissolved in methylene chloride, as an amorphous powder and concentrated under reduced pressure a white, Fmoc-C 5 - to give Boc PNA-OH a (198.0 mg, 90%). 1 H-NMR (DMSO-d 6 ) δ 7.88 (d, J = 7.4 Hz, 2 H), 7.68 (d, J = 7.2 Hz, 2 H), 7.41 (t, J = 7.4 Hz, 2 H), 7.32 (t, J = 7.4 Hz, 2 H), 7.22 (brt, 1 H), 6.81 (ma) and 6.67 (mi) (brt, 1 H), 4.33 (mi) and 4.29 (ma) (brd, 2 H), 4.20 (t, J = 7.1 Hz, 1 H), 4.08 (mi) and 3.90 (ma) (brs, 2H), 3.09-2.94 (m, 4 H), 2.30 (ma) and 2.14 (mi ) (brt, 2 H), 1.51-1.45 (m, 2 H), 1.41-1.31 (brs, 11 H), 1.29-1.21 (m, 8 H); 13 C-NMR (CDCl 3 ) δ175.1 ( d), 172.27 (d), 157.20 (t), 156.63, 144.43 (d), 141.69, 128.07, 127.45, 125.40 (d), 120.35, 81.71, 80.00, 67.36 (d), 50.42, 49.81 (d), 48.90 (d), 47.82 (d), 41.77, 41.16, 40.64, 39.19, 33.12, 32.75, 29.45 (d), 28.81, 26.59, 24.97, 24.70; HRMS (FAB + ) calcd. for C 30 H 39 N 3 O 7 [(M + H) + ] 553.2788observed 554.2873.

(実施例11) Fmoc-C6-BocPNA-OHの合成
アセトン(6.0 mL)と水(1.0 mL)の混合溶液にNaHCO3(67.2 mg,0.8 mmol)を加え、Fmoc-C6-OPfp (331.9 mg,0.6 mmol)とBocPNA-OH (87.3 mg,0.4 mmol)を溶解し、室温で24時間攪拌した。氷冷した1 N 塩酸で溶液(0 ℃)をpH 3.0とし、さらに1%クエン酸水溶液を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄をした。有機層を無水硫酸マグネシウムで乾燥させ、溶液を濃縮しシリカゲルカラムクロマト法(1-5% MeOH/CH2Cl2)で精製した。塩化メチレンに溶かした後、減圧濃縮し白色のアモルファスパウダーとしてFmoc-C6-BocPNA-OH (197.0 mg,87%)を得た。1H-NMR (DMSO-d6)δ7.88 (d,J =7.7 Hz, 2 H),7.68 (ma) and 7.63 (mi) (brd,J = 7.4 Hz,2 H),7.40 (t,J = 7.4 Hz,2 H), 7.32 (t, J =7.4 Hz,2 H), 7.22 (brt, 1 H), 6.79 (ma) and 6.66 (mi) (brt, 1 H), 4.39(mi) and 4.29 (ma) (brt, 2 H), 4.20 (t, J = 6.7 Hz,1 H) 4.08 (mi) and 3.91 (ma) (brs, 2 H), 3.10 - 2.97 (m, 4 H),2.31 (ma) and 2.15 (mi) (brt,2 H),1.50 - 1.47(m,2 H),1.41 - 1.36(m,11 H),1.28-1.24(brd,6 H);13C-NMR (CDCl3)δ175.23(d),172.41(d),157.11(d),156.60,144.34(d),141.69,128.07,127.45,125.40(d),120.35,81.68,80.00(d),67.72,67.50(d),53.87,50.77,50.14(d),48.90,47.82(d),41.29(d),41.36,40.69,39.18,33.19,32.96,30.00,29.11,28.81,26.75(d),25.27(d),24.80(d); HRMS(FAB+) calcd. for C29H41N3O7 [(M+H)+] 567.2945 observed 568.3027.
(Example 11) Fmoc-C 6 - Boc PNA-OH synthetic acetone (6.0 mL) and NaHCO 3 (67.2 mg, 0.8 mmol ) in a mixed solution of water (1.0 mL) was added, Fmoc-C 6 -OPfp ( 331.9 mg, 0.6 mmol) and Boc PNA-OH (87.3 mg, 0.4 mmol) were dissolved and stirred at room temperature for 24 hours. The solution (0 ° C.) was adjusted to pH 3.0 with ice-cooled 1N hydrochloric acid, 1% aqueous citric acid solution was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, the solution was concentrated and purified by silica gel column chromatography (1-5% MeOH / CH 2 Cl 2 ). Was dissolved in methylene chloride, Fmoc-C 6 as an amorphous powder and concentrated under reduced pressure a white - give Boc PNA-OH a (197.0 mg, 87%). 1 H-NMR (DMSO-d 6 ) δ7.88 (d, J = 7.7 Hz, 2 H), 7.68 (ma) and 7.63 (mi) (brd, J = 7.4 Hz, 2 H), 7.40 (t, J = 7.4 Hz, 2 H), 7.32 (t, J = 7.4 Hz, 2 H), 7.22 (brt, 1 H), 6.79 (ma) and 6.66 (mi) (brt, 1 H), 4.39 (mi) and 4.29 (ma) (brt, 2 H), 4.20 (t, J = 6.7 Hz, 1 H) 4.08 (mi) and 3.91 (ma) (brs, 2 H), 3.10-2.97 (m, 4 H), 2.31 (ma) and 2.15 (mi) (brt, 2 H), 1.50-1.47 (m, 2 H), 1.41-1.36 (m, 11 H), 1.28-1.24 (brd, 6 H); 13 C-NMR (CDCl 3 ) δ175.23 (d), 172.41 (d), 157.11 (d), 156.60, 144.34 (d), 141.69, 128.07, 127.45, 125.40 (d), 120.35, 81.68, 80.00 (d), 67.72, 67.50 (d), 53.87, 50.77, 50.14 (d), 48.90, 47.82 (d), 41.29 (d), 41.36, 40.69, 39.18, 33.19, 32.96, 30.00, 29.11, 28.81, 26.75 (d), 25.27 (d ), 24.80 (d); HRMS (FAB + ) calcd. For C 29 H 41 N 3 O 7 [(M + H) + ] 567.2945 observed 568.3027.

(実施例12) Fmoc-C7-BocPNA-OHの合成
アセトン(7.0 mL)と水(1.0 mL)の混合溶液にNaHCO3(67.2 mg,0.8 mmol)を加え、Fmoc-C7-OPfp (328.5 mg,0.6 mmol)とBocPNA-OH (87.3 mg,0.4 mmol)を溶解し、室温で24時間攪拌した。氷冷した1 N 塩酸で溶液(0 ℃)をpH 3.0とし、さらに1%クエン酸水溶液を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄をした。有機層を無水硫酸マグネシウムで乾燥させ、溶液を濃縮しシリカゲルカラムクロマト法(1-5% MeOH/CH2Cl2)で精製した。塩化メチレンに溶かした後、減圧濃縮し白色のアモルファスパウダーとしてFmoc-C7-BocPNA-OH (196.1 mg,84%)を得た。1H-NMR (DMSO-d6);δ7.88(d,J = 7.7 Hz,2 H),7.68 (ma) and 7.63 (mi) (brd,J = 7.4 Hz,2 H),7.40 (t,J = 7.4 Hz,2 H),7.32 (t,J =7.4 Hz,2 H),7.22 (brt,1 H),6.79 (ma) and 6.79 (mi) (brt,1 H),4.39(mi) and 4.29(ma) (brd,J = 6.9 Hz,2 H),4.05 (t,J = 6.7 Hz,1 H),4.08 (mi) and 3.91 (ma) (brs,2 H),3.12 - 2.95 (m,4 H),2.31 (mi) and 2.15 (ma) (brt,2 H),1.50 - 1.47 (m,2 H),1.42 - 1.34 (m,11 H),1.25 (brd,2 H); 13C-NMR (CDCl3) δ 174.72,172.19,156.52,156.05,143.78(d),141.14,127.51, 126.89, 124.86(d), 119.79, 79.43(d),66.80(d),53.33,50.19,49.20, 48.50,47.14(d),41.18(d), 38.60,32.28(d),29.60, 28.83,28.26, 26.27(d),24.68(d),21.77(d); HRMS (FAB+) calcd. for C32H43N3O7 [(M+H)+] 581.3101 observed 582.3171.
(Example 12) Fmoc-C 7 - Boc PNA-OH synthetic acetone (7.0 mL) and NaHCO 3 (67.2 mg, 0.8 mmol ) in a mixed solution of water (1.0 mL) was added, Fmoc-C 7 -OPfp ( 328.5 mg, 0.6 mmol) and Boc PNA-OH (87.3 mg, 0.4 mmol) were dissolved and stirred at room temperature for 24 hours. The solution (0 ° C.) was adjusted to pH 3.0 with ice-cooled 1N hydrochloric acid, 1% aqueous citric acid solution was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, the solution was concentrated and purified by silica gel column chromatography (1-5% MeOH / CH 2 Cl 2 ). Was dissolved in methylene chloride, Fmoc-C 7 as an amorphous powder and concentrated under reduced pressure a white - give Boc PNA-OH a (196.1 mg, 84%). 1 H-NMR (DMSO-d 6 ); δ 7.88 (d, J = 7.7 Hz, 2 H), 7.68 (ma) and 7.63 (mi) (brd, J = 7.4 Hz, 2 H), 7.40 (t , J = 7.4 Hz, 2 H), 7.32 (t, J = 7.4 Hz, 2 H), 7.22 (brt, 1 H), 6.79 (ma) and 6.79 (mi) (brt, 1 H), 4.39 (mi ) and 4.29 (ma) (brd, J = 6.9 Hz, 2 H), 4.05 (t, J = 6.7 Hz, 1 H), 4.08 (mi) and 3.91 (ma) (brs, 2 H), 3.12-2.95 (m, 4 H), 2.31 (mi) and 2.15 (ma) (brt, 2 H), 1.50-1.47 (m, 2 H), 1.42-1.34 (m, 11 H), 1.25 (brd, 2 H) 13 C-NMR (CDCl 3 ) δ 174.72, 172.19, 156.52, 156.05, 143.78 (d), 141.14, 127.51, 126.89, 124.86 (d), 119.79, 79.43 (d), 66.80 (d), 53.33, 50.19, 49.20, 48.50, 47.14 (d), 41.18 (d), 38.60, 32.28 (d), 29.60, 28.83, 28.26, 26.27 (d), 24.68 (d), 21.77 (d); HRMS (FAB + ) calcd. For C 32 H 43 N 3 O 7 [(M + H) + ] 581.3101 observed 582.3171.

(実施例13) Fmoc-C10-BocPNA-OH
アセトン(7.0 mL)と水(1.0 mL)の混合溶液にNaHCO3(67.2 mg,0.8 mmol)を加え、Fmoc-C10-OPfp (353.7 mg,0.6 mmol)とBocPNA-OH (87.3 mg,0.4 mmol)を溶解し、室温で24時間攪拌した。氷冷した1 N 塩酸で溶液(0 ℃)をpH 3.0とし、さらに1%クエン酸水溶液を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄をした。有機層を無水硫酸マグネシウムで乾燥させ、溶液を濃縮しシリカゲルカラムクロマト法(1-5% MeOH/CH2Cl2)で精製した。塩化メチレンに溶かした後、減圧濃縮し白色のアモルファスパウダーとしてFmoc-C10-BocPNA-OH (218.5 mg,88%)を得た。1H-NMR (CDCl3)δ9.60 (brs,1 H),7.73 (d,J = 7.6 Hz,2 H),7.58 (d,J = 6.8 Hz,2 H),7.37 (t,J = 6.8 Hz,2 H),7.29 (t,J = 7.2Hz,2 H),5.52 (ma) and 5.35 (mi) (brd,1 H),5.00 (s,1 H),4.45 (mi)and 4.40 (ma) (brd,J = 6.4 Hz,2 H),4.23 - 4.22 (m,1 H),4.09 (mi) and 4.04 (ma) (brs,2 H),3.57 - 3.46 (m,2 H),3.29 - 3.03 (m,4 H),1.66- 1.58 (brs,2 H),1.52 - 1.37 (m,11 H),1.33 - 1.20 (brs,12 H); 13C-NMR (CDCl3)δ174.5(d),172.43(d),171.64(d),157.83(d),156.98,156.03,143.78(d),141.17,127.52,126.90,124.86(d),119.70(d),81.08,79.43(d),67.26,66.43,50.14,49.29,48.145(d),47.17(t),41.47,40.99,40.16,38.63,32.90,32.43(d),29.55(d),29.22(m),28.28,26.56(d),24.98,24.75; HRMS (FAB+) calcd. for C35H49N3O7[(M+H)+] 623.3571 observed 624.3643.
(Example 13) Fmoc-C 10 - Boc PNA-OH
NaHCO 3 (67.2 mg, 0.8 mmol) was added to a mixed solution of acetone (7.0 mL) and water (1.0 mL), and Fmoc-C 10 -OPfp (353.7 mg, 0.6 mmol) and Boc PNA-OH (87.3 mg, 0.4 mmol) were added. mmol) was dissolved and stirred at room temperature for 24 hours. The solution (0 ° C.) was adjusted to pH 3.0 with ice-cooled 1N hydrochloric acid, 1% aqueous citric acid solution was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, the solution was concentrated and purified by silica gel column chromatography (1-5% MeOH / CH 2 Cl 2 ). It was dissolved in methylene chloride, concentrated under reduced pressure Fmoc-C 10 as an amorphous powder white - give Boc PNA-OH a (218.5 mg, 88%). 1 H-NMR (CDCl 3 ) δ9.60 (brs, 1 H), 7.73 (d, J = 7.6 Hz, 2 H), 7.58 (d, J = 6.8 Hz, 2 H), 7.37 (t, J = 6.8 Hz, 2 H), 7.29 (t, J = 7.2 Hz, 2 H), 5.52 (ma) and 5.35 (mi) (brd, 1 H), 5.00 (s, 1 H), 4.45 (mi) and 4.40 (ma) (brd, J = 6.4 Hz, 2 H), 4.23-4.22 (m, 1 H), 4.09 (mi) and 4.04 (ma) (brs, 2 H), 3.57-3.46 (m, 2 H) , 3.29-3.03 (m, 4 H), 1.66-1.58 (brs, 2 H), 1.52-1.37 (m, 11 H), 1.33-1.20 (brs, 12 H); 13 C-NMR (CDCl 3 ) δ174 .5 (d), 172.43 (d), 171.64 (d), 157.83 (d), 156.98, 156.03, 143.78 (d), 141.17, 127.52, 126.90, 124.86 (d), 119.70 (d), 81.08, 79.43 ( d), 67.26, 66.43, 50.14, 49.29, 48.145 (d), 47.17 (t), 41.47, 40.99, 40.16, 38.63, 32.90, 32.43 (d), 29.55 (d), 29.22 (m), 28.28, 26.56 ( d), 24.98, 24.75; HRMS (FAB + ) calcd. for C 35 H 49 N 3 O 7 [(M + H) + ] 623.3571 observed 624.3643.

(実施例14)Fmoc-C11-OPfpの合成
Fmoc-C11-OH (437.5 mg,2.0 mmol)とPfpOH(276.6 mg,3.0 mmol)のDMF溶液(2.5 mL)にDCC(309.5 mg,3.0 mmol)を氷冷下で加え、この反応液を0 ℃で30分次いで室温で18時間攪拌した。反応終了後DCUreaを濾別して濾液を減圧濃縮し、残渣をシリカゲルカラムクロマト法(CH2Cl2)により精製した後、Hexaneで再結晶し白色粉末としてFmoc-C11-OPfp (575.6 mg,96%)を得た。1H-NMR (CDCl3)δ7.79(d,J = 7.6 Hz,2 H),7.63 (d,J = 7.2 Hz, 2 H),7.43 (t,J =7.6 Hz, 2 H),7.34 (t,J = 7.2 Hz, 2 H),4.86 (brt,1 H),4.47 (mi) and 4.44 (ma)(brd,2 H),4.25 (t,1 H),3.22 (q,J = 6.1 Hz, 2 H),2.68 (t,J = 7.2 Hz, 2 H),1.80 (m,2 H),1.56 - 1.52 (m,2 H),1.47 - 1.42 (m,2 H),1.39- 1.30 (m,12 H); HRMS (FAB+) calcd. for C33H34F5NO4 [(M+H)+]603.6194 observed 604.2490.
Example 14 Synthesis of Fmoc-C 11 -OPfp
DCC (309.5 mg, 3.0 mmol) was added to a DMF solution (2.5 mL) of Fmoc-C 11 -OH (437.5 mg, 2.0 mmol) and PfpOH (276.6 mg, 3.0 mmol) under ice-cooling. The mixture was stirred at 0 ° C. for 30 minutes and then at room temperature for 18 hours. After completion of the reaction, DCUrea was filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CH 2 Cl 2 ) and then recrystallized from Hexane to give Fmoc-C 11 -OPfp (575.6 mg, 96% ) 1 H-NMR (CDCl 3 ) δ 7.79 (d, J = 7.6 Hz, 2 H), 7.63 (d, J = 7.2 Hz, 2 H), 7.43 (t, J = 7.6 Hz, 2 H), 7.34 (t, J = 7.2 Hz, 2 H), 4.86 (brt, 1 H), 4.47 (mi) and 4.44 (ma) (brd, 2 H), 4.25 (t, 1 H), 3.22 (q, J = 6.1 Hz, 2 H), 2.68 (t, J = 7.2 Hz, 2 H), 1.80 (m, 2 H), 1.56-1.52 (m, 2 H), 1.47-1.42 (m, 2 H), 1.39- 1.30 (m, 12 H); HRMS (FAB + ) calcd. For C 33 H 34 F 5 NO 4 [(M + H) + ] 603.6194 observed 604.2490.

(実施例15) Fmoc-C11-BocPNA-OH
アセトン(10 mL)と水(1.0 mL)の混合溶液にNaHCO3(67.2 mg,0.8 mmol)を加え、Fmoc-C11-OPfp (362.2 mg,0.6 mmol)とBocPNA-OH (87.3 mg,0.4 mmol)を溶解し、室温で48時間攪拌した。氷冷した1 N 塩酸で溶液(0 ℃)をpH 3.0とし、さらに1%クエン酸水溶液を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄をした。有機層を無水硫酸マグネシウムで乾燥させ、溶液を濃縮しシリカゲルカラムクロマト法(1-5% MeOH/CH2Cl2)で精製した。塩化メチレンに溶かした後、減圧濃縮し白色のアモルファスパウダーとしてFmoc-C11-BocPNA-OH (227.6 mg,89%)を得た。1H-NMR (CDCl3);δ9.62 (brs,1 H),7.74 (d,J = 7.6 Hz,2 H),7.57 (d,J = 7.5 Hz,2 H),7.37 (t,J = 7.1 Hz,2 H),7.28 (t,J = 6.8Hz,2 H),5.53 (ma) and 5.35 (mi) (brs,H),5.00 (brt,1 H),4.43 (mi)and 4.37 (ma) (brd,J = 6.4 Hz,2 H),4.22 - 4.19 (m,1 H),4.06 (mi) and 4.01 (ma) (brs,2 H),3.51 - 3.44 (m,2 H),3.23 - 3.08 (m,4 H),2.36(ma) and 2.21 (mi) (brt,J = 7.0 Hz,2 H),1.69 - 1.58 (brs,2 H),1.52- 1.40 (m,11 H),1.29 - 1.25 (brd,14 H); 13C-NMR (CDCl3)δ175.45(d),172.428(d),157.91(d),157.01,156.57,144.33(d),141.72,128.05,127.43,125.40(d),120.35,81.63,80.00(d),67.77,66.97,50.67,49.84,49.20(d),47.72(t),42.10,41.53,40.70,39.18,33.51,33.07,30.032,29.83(m),28.82,27.00(d),25.44,25.35; HRMS (FAB+) calcd. for C36H51N3O7 [(M+H)+] 637.3727 observed 638.3794.
(Example 15) Fmoc-C 11 - Boc PNA-OH
NaHCO 3 (67.2 mg, 0.8 mmol) was added to a mixed solution of acetone (10 mL) and water (1.0 mL), and Fmoc-C 11 -OPfp (362.2 mg, 0.6 mmol) and Boc PNA-OH (87.3 mg, 0.4 mmol) were added. mmol) was dissolved and stirred at room temperature for 48 hours. The solution (0 ° C.) was adjusted to pH 3.0 with ice-cooled 1N hydrochloric acid, 1% aqueous citric acid solution was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, the solution was concentrated and purified by silica gel column chromatography (1-5% MeOH / CH 2 Cl 2 ). After dissolving in methylene chloride, the solution was concentrated under reduced pressure to obtain Fmoc-C 11 -Boc PNA-OH (227.6 mg, 89%) as a white amorphous powder. 1 H-NMR (CDCl 3 ); δ9.62 (brs, 1 H), 7.74 (d, J = 7.6 Hz, 2 H), 7.57 (d, J = 7.5 Hz, 2 H), 7.37 (t, J = 7.1 Hz, 2 H), 7.28 (t, J = 6.8 Hz, 2 H), 5.53 (ma) and 5.35 (mi) (brs, H), 5.00 (brt, 1 H), 4.43 (mi) and 4.37 (ma) (brd, J = 6.4 Hz, 2 H), 4.22-4.19 (m, 1 H), 4.06 (mi) and 4.01 (ma) (brs, 2 H), 3.51-3.44 (m, 2 H) , 3.23-3.08 (m, 4 H), 2.36 (ma) and 2.21 (mi) (brt, J = 7.0 Hz, 2 H), 1.69-1.58 (brs, 2 H), 1.52-1.40 (m, 11 H ), 1.29-1.25 (brd, 14 H); 13 C-NMR (CDCl 3 ) δ 175.45 (d), 172.428 (d), 157.91 (d), 157.01, 156.57, 144.33 (d), 141.72, 128.05, 127.43, 125.40 (d), 120.35, 81.63, 80.00 (d), 67.77, 66.97, 50.67, 49.84, 49.20 (d), 47.72 (t), 42.10, 41.53, 40.70, 39.18, 33.51, 33.07, 30.032, 29.83 ( m), 28.82, 27.00 (d), 25.44, 25.35; HRMS (FAB + ) calcd. for C 36 H 51 N 3 O 7 [(M + H) + ] 637.3727 observed 638.3794.

(実施例16)PNA oligo 1(H2N-G-A-T-pMR-G-A-C-G-C-CONH2)の合成(第1法)
tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.; Batz, H.G.; Otteson, K.; φrum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、固相担体MBHA(50 mg)に各種PNAモノマーユニット(チミン7.7 mg、シトシン10.1 mg、アデニン10.6 mg、グアニン10.9 mg、Fmoc-Gly-BocPNA-OH 10.0 mg;各20 mmol)と縮合剤HBTU(7.6 mg、20 mmol)とDIEA(7.0 μL、20 mmol)を用いて逐次伸長反応を行った。この間、Fmoc-Gly-BocPNA-OHを縮合した際には、次のチミジンPNAモノマーユニットと縮合する前に、まずピペリジン処理(20% piperidine in DMF 3 mL、室温30分)してFmoc基を脱保護して、次いで光機能性分子のカルボン酸誘導体としてp-Methyl Red-OH(10.8 mg、40 mmol)を縮合剤HBTU(15.2 mg、40 mmol)とDIEA(13.9 μL、40 mmol)を用いて縮合し目的の位置に導入した。その後、チミジン、アデニン、グアニンのPNAモノマーユニットを逐次縮合したあと、常法(TFA/TFMSA/p-cresol/thioanisol=60/25/10/10)により固相担体からの切り出しとZ基の脱保護を同時に行い、後処理して、目的とするPNA oligo 1を得た。UV λmax (H2O) 303, 548 (nm)。
Example 16 Synthesis of PNA oligo 1 (H 2 NGAT-pMR-GACGC-CONH 2 ) (First Method)
According to the tBoc method (cf. Koch, T .; Hansen, HF; Andersen, P .; Larsen, T .; Batz, HG; Otteson, K .; φrum, HJ Peptide Res. 1997, 49, 80-88.) Solid phase carrier MBHA (50 mg) and various PNA monomer units (thymine 7.7 mg, cytosine 10.1 mg, adenine 10.6 mg, guanine 10.9 mg, Fmoc-Gly- Boc PNA-OH 10.0 mg; 20 mmol each) and condensing agent HBTU ( 7.6 mg, 20 mmol) and DIEA (7.0 μL, 20 mmol) were used for sequential extension reaction. During this time, when Fmoc-Gly- Boc PNA-OH is condensed, before condensing with the next thymidine PNA monomer unit, first piperidine treatment (20% piperidine in DMF 3 mL, room temperature 30 minutes) is used to remove the Fmoc group. Deprotect then use p-Methyl Red-OH (10.8 mg, 40 mmol) as condensing agent HBTU (15.2 mg, 40 mmol) and DIEA (13.9 μL, 40 mmol) as carboxylic acid derivatives of photofunctional molecules And condensed at the desired position. After that, PNA monomer units of thymidine, adenine, and guanine were condensed sequentially, followed by excision from the solid support and removal of the Z group by conventional methods (TFA / TFMSA / p-cresol / thioanisol = 60/25/10/10). Protection was performed at the same time and post-treatment to obtain the target PNA oligo 1. UV λmax (H 2 O) 303, 548 (nm).

(実施例17)PNA oligo 1の合成(第2法)
tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.; Batz, H.G.; Otteson, K.; φrum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、固相担体MBHA(50 mg)に各種PNAモノマーユニット(チミン7.7 mg、シトシン10.1 mg、アデニン10.6 mg、グアニン10.9 mg、Fmoc-Gly-BocPNA-OH 10.0 mg;各20 mmol)と縮合剤HBTU(7.6 mg、20 mmol)とDIEA(7.0 μL、20 mmol)を用いて逐次伸長反応を行った。全てのモノマーユニットを逐次縮合した後、ピペリジン処理(20% piperidine in DMF、室温30分)してFmoc-Gly残基を脱保護して、次いで光機能性分子のカルボン酸誘導体としてp-Methyl Red-OH(10.8 mg、40 mmol)を縮合剤HBTU(15.2 mg、40 mmol)とDIEA(13.9 μL、40 mmol)を用いて縮合し目的の位置に導入した。その後、常法(TFA/TFMSA/p-cresol/thioanisol=60/25/10/10)により固相担体からの切り出しとZ基の脱保護を同時に行い、後処理して、目的とするPNA oligo 1を得た。UV λmax (H2O) 302, 550 (nm)。
(Example 17) Synthesis of PNA oligo 1 (second method)
According to the tBoc method (cf. Koch, T .; Hansen, HF; Andersen, P .; Larsen, T .; Batz, HG; Otteson, K .; φrum, HJ Peptide Res. 1997, 49, 80-88.) Solid phase carrier MBHA (50 mg) and various PNA monomer units (thymine 7.7 mg, cytosine 10.1 mg, adenine 10.6 mg, guanine 10.9 mg, Fmoc-Gly- Boc PNA-OH 10.0 mg; 20 mmol each) and condensing agent HBTU ( 7.6 mg, 20 mmol) and DIEA (7.0 μL, 20 mmol) were used for sequential extension reaction. After sequentially condensing all the monomer units, piperidine treatment (20% piperidine in DMF, room temperature for 30 minutes) deprotects the Fmoc-Gly residue, and then p-Methyl Red as a carboxylic acid derivative of a photofunctional molecule. -OH (10.8 mg, 40 mmol) was condensed using the condensing agent HBTU (15.2 mg, 40 mmol) and DIEA (13.9 μL, 40 mmol) and introduced at the target position. After that, by the usual method (TFA / TFMSA / p-cresol / thioanisol = 60/25/10/10), cutting out from the solid support and deprotection of the Z group at the same time, post-processing, the target PNA oligo Got one. UV λmax (H 2 O) 302, 550 (nm).

(実施例18)PNA oligo 2(H2N-G-A-T-mMR-G-A-C-G-C-CONH2)の合成(第2法)
tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.; Batz, H.G.; Otteson, K.; φrum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、固相担体MBHA(50 mg)に各種PNAモノマーユニット(チミン7.7 mg、シトシン10.1 mg、アデニン10.6 mg、グアニン10.9 mg、Fmoc-Gly-BocPNA-OH 10.0 mg;各20 mmol)と縮合剤HBTU(7.6 mg、20 mmol)とDIEA(7.0 μL、20 mmol)を用いて逐次伸長反応を行った。全てのモノマーユニットを逐次縮合した後、ピペリジン処理(20% piperidine in DMF、室温30分)してFmoc-Gly残基を脱保護して、次いで光機能性分子のカルボン酸誘導体としてm-Methyl Red-OH(10.8 mg、40 mmol)を縮合剤HBTU(15.2 mg、40 mmol)とDIEA(13.9 μL、40 mmol)を用いて縮合し目的の位置に導入した。その後、常法(TFA/TFMSA/p-cresol/thioanisol=60/25/10/10)により固相担体からの切り出しとZ基の脱保護を同時に行い、後処理して、目的とするPNA oligo 2を得た。UVλmax (H2O) 308, 570 (nm)。
(Example 18) Synthesis of PNA oligo 2 (H 2 NGAT-mMR-GACGC-CONH 2 ) (second method)
According to the tBoc method (cf. Koch, T .; Hansen, HF; Andersen, P .; Larsen, T .; Batz, HG; Otteson, K .; φrum, HJ Peptide Res. 1997, 49, 80-88.) Solid phase carrier MBHA (50 mg) and various PNA monomer units (thymine 7.7 mg, cytosine 10.1 mg, adenine 10.6 mg, guanine 10.9 mg, Fmoc-Gly- Boc PNA-OH 10.0 mg; 20 mmol each) and condensing agent HBTU ( 7.6 mg, 20 mmol) and DIEA (7.0 μL, 20 mmol) were used for sequential extension reaction. After sequentially condensing all the monomer units, piperidine treatment (20% piperidine in DMF, room temperature for 30 minutes) is used to deprotect the Fmoc-Gly residue, and then to m-Methyl Red as a carboxylic acid derivative of a photofunctional molecule. -OH (10.8 mg, 40 mmol) was condensed using the condensing agent HBTU (15.2 mg, 40 mmol) and DIEA (13.9 μL, 40 mmol) and introduced at the target position. After that, by the usual method (TFA / TFMSA / p-cresol / thioanisol = 60/25/10/10), cutting out from the solid support and deprotection of the Z group at the same time, post-processing, the target PNA oligo 2 got. UVλmax (H 2 O) 308, 570 (nm).

(実施例19)PNA oligo 3(H2N-G-A-T-oMR-G-A-C-G-C-CONH2)の合成(第2法)
tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.; Batz, H.G.; Otteson, K.; φrum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、固相担体MBHA(50 mg)に各種PNAモノマーユニット(チミン7.7 mg、シトシン10.1 mg、アデニン10.6 mg、グアニン10.9 mg、Fmoc-Gly-BocPNA-OH 10.0 mg;各20 mmol)と縮合剤HBTU(7.6 mg、20 mmol)とDIEA(7.0 μL、20 mmol)を用いて逐次伸長反応を行った。全てのモノマーユニットを逐次縮合した後、ピペリジン処理(20% piperidine in DMF、室温30分)してFmoc-Gly残基を脱保護して、次いで光機能性分子のカルボン酸誘導体としてo-Methyl Red-OH(10.8 mg、40 mmol)を縮合剤HBTU(15.2 mg、40 mmol)とDIEA(13.9 μL、40 mmol)を用いて縮合し目的の位置に導入した。その後、常法(TFA/TFMSA/p-cresol/thioanisol=60/25/10/10)により固相担体からの切り出しとZ基の脱保護を同時に行い、後処理して、目的とするPNA oligo 1を得た。UV λmax (H2O) 302, 561 (nm)。
(Example 19) Synthesis of PNA oligo 3 (H 2 NGAT-oMR-GACGC-CONH 2 ) (second method)
According to the tBoc method (cf. Koch, T .; Hansen, HF; Andersen, P .; Larsen, T .; Batz, HG; Otteson, K .; φrum, HJ Peptide Res. 1997, 49, 80-88.) Solid phase carrier MBHA (50 mg) and various PNA monomer units (thymine 7.7 mg, cytosine 10.1 mg, adenine 10.6 mg, guanine 10.9 mg, Fmoc-Gly- Boc PNA-OH 10.0 mg; 20 mmol each) and condensing agent HBTU ( 7.6 mg, 20 mmol) and DIEA (7.0 μL, 20 mmol) were used for sequential extension reaction. After sequentially condensing all the monomer units, piperidine treatment (20% piperidine in DMF, room temperature for 30 minutes) deprotects the Fmoc-Gly residue, and then o-Methyl Red as a carboxylic acid derivative of a photofunctional molecule. -OH (10.8 mg, 40 mmol) was condensed using the condensing agent HBTU (15.2 mg, 40 mmol) and DIEA (13.9 μL, 40 mmol) and introduced at the target position. After that, by the usual method (TFA / TFMSA / p-cresol / thioanisol = 60/25/10/10), cutting out from the solid support and deprotection of the Z group at the same time, post-processing, the target PNA oligo Got one. UV λmax (H 2 O) 302, 561 (nm).

(実施例20)膜透過性機能を有する蛍光PNAプローブ(1)の合成

Figure 2006158400

前記第2法を用いた。
標準的tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.; Batz, H.G.; Otteson, K.; Orum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、まず、固相担体MBHA(50 mg)にチミンPNAモノマーユニット(7.7 mg、20 mmol)、縮合剤HBTU(7.6 mg、20 mmol)とDIEA(3.5 mL、20 mmol)を用いて逐次伸長反応を行った(塩基配列認識領域の設計)。
次いで、リンカー用ω‐アミノ酸Boc-7-aminoheptanoic Acid(5.2 mg、20 mmol)、Fmoc-Ahx-BocPNA-OH(10.0 mg、20 mmol)と再度Boc-7-aminoheptanoic Acidを、縮合剤HBTU(7.6 mg、20 mmol)とDIEA(3.5 mL、20 mmol)を用いて順次縮合させた(リンカー部位と膜透過性機能領域の設計)。
全てのユニットを逐次縮合した後、ピペリジン処理(20% piperidine in DMF、室温3分)してFmoc基を脱保護した。次いで、機能性カルボン酸誘導体としてFmoc-Arg(Mts)-OH(23.1 mg、40 mmol)を縮合剤HBTU(15.2 mg、40 mmol)とDIEA(7.0 mL、40 mmol)を用いて縮合し目的の位置に機能性分子を導入した(膜透過性機能の導入)。
TFA処理(95% TFA/5% m-cresol)によりBoc基を脱保護した後、FITC(9.3 mg,25 mmol)をDIEA(17.4 mL, 100 mmol)存在下、室温で12時間振盪し蛍光標識化した(蛍光標識部位の設計)。
最後にピペリジン処理(20% piperidine in DMF、室温3分)して残るFmoc基を脱保護した後、常法(TFA/TFMSA/p-cresol/thioanisol=60/25/10/10)により固相担体からの切り出しを行い、後処理して、目的物を得た。MALDI-TOF MS: calcd. 2096.26 (M + H+), found 2096.36. (Example 20) Synthesis of fluorescent PNA probe (1) having membrane permeability function
Figure 2006158400

The second method was used.
Standard tBoc method (cf. Koch, T .; Hansen, HF; Andersen, P .; Larsen, T .; Batz, HG; Otteson, K .; Orum, HJ Peptide Res. 1997, 49, 80-88.) First, sequential extension reaction using solid phase carrier MBHA (50 mg) with thymine PNA monomer unit (7.7 mg, 20 mmol), condensing agent HBTU (7.6 mg, 20 mmol) and DIEA (3.5 mL, 20 mmol) (Design of base sequence recognition region).
Next, ω-amino acid Boc-7-aminoheptanoic acid for linker (5.2 mg, 20 mmol), Fmoc-Ahx- Boc PNA-OH (10.0 mg, 20 mmol) and Boc-7-aminoheptanoic acid again with condensing agent HBTU ( 7.6 mg, 20 mmol) and DIEA (3.5 mL, 20 mmol) were sequentially condensed (design of linker site and membrane-permeable functional region).
After all the units were sequentially condensed, the Fmoc group was deprotected by piperidine treatment (20% piperidine in DMF, room temperature for 3 minutes). Next, Fmoc-Arg (Mts) -OH (23.1 mg, 40 mmol) as a functional carboxylic acid derivative is condensed using the condensing agent HBTU (15.2 mg, 40 mmol) and DIEA (7.0 mL, 40 mmol). Functional molecules were introduced at the position (introduction of membrane permeability function).
After deprotection of Boc group by TFA treatment (95% TFA / 5% m-cresol), FITC (9.3 mg, 25 mmol) was shaken at room temperature for 12 hours in the presence of DIEA (17.4 mL, 100 mmol) and fluorescently labeled (Design of fluorescent labeling site).
Finally, piperidine treatment (20% piperidine in DMF, room temperature for 3 minutes) deprotects the remaining Fmoc group, and then solid-phased by conventional methods (TFA / TFMSA / p-cresol / thioanisol = 60/25/10/10) The target product was obtained by cutting out from the carrier and post-processing. MALDI-TOF MS: calcd. 2096.26 (M + H + ), found 2096.36.

(実施例21)膜透過性機能を有する蛍光PNAプローブ(2)の合成

Figure 2006158400

標準的tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.; Batz, H.G.; Otteson, K.; Orum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、まず、固相担体MBHA(50 mg)にチミンPNAモノマーユニット(7.7 mg、20 mmol)、縮合剤HBTU(7.6 mg、20 mmol)とDIEA(3.5 mL、20 mmol)を用いて逐次伸長反応を行った(塩基配列認識領域の設計)。
次いで、リンカー用ω‐アミノ酸Boc-7-aminoheptanoic Acid(5.2 mg、20 mmol)、Fmoc-Ahx-BocPNA-OH(10.0 mg、20 mmol)と再度Boc-7-aminoheptanoic Acidを、縮合剤HBTU(7.6 mg、20 mmol)とDIEA(3.5 mL、20 mmol)を用いて順次縮合させた(リンカー部位と膜透過性機能領域の設計)。
全てのユニットを逐次縮合した後、ピペリジン処理(20% piperidine in DMF、室温3分)してFmoc基を脱保護した。次いで、機能性カルボン酸誘導体としてFmoc-Arg(Mts)-OH(23.1 mg、40 mmol)を縮合剤HBTU(15.2 mg、40 mmol)とDIEA(7.0 mL、40 mmol)を用いて縮合し目的の位置に機能性分子を導入した(膜透過性機能の導入)。
これをピペリジン処理(20% piperidine in DMF、室温3分)してFmoc基を脱保護した後、再度Fmoc-Arg(Mts)-OH(23.1 mg、40 mmol)を縮合剤HBTU(15.2 mg、40 mmol)とDIEA(7.0 mL、40 mmol)を用いて縮合し目的の位置に機能性分子を導入した(膜透過性機能の追加導入)。
TFA処理(95% TFA/5% m-cresol)によりBoc基を脱保護した後、FITC(9.3 mg, 25 mmol)をDIEA(17.4 mL, 100 mmol)存在下、室温で12時間振盪し蛍光標識化した(蛍光標識部位の設計)。
最後にピペリジン処理(20% piperidine in DMF、室温3分)して残るFmoc基を脱保護した後、常法(TFA/TFMSA/p-cresol/thioanisol=60/25/10/10)により固相担体からの切り出しを行い、後処理して、目的物を得た。MALDI-TOF MS: calcd. 2252.44 (M + H+), found 2252.33. (Example 21) Synthesis of fluorescent PNA probe (2) having membrane permeability function
Figure 2006158400

Standard tBoc method (cf. Koch, T .; Hansen, HF; Andersen, P .; Larsen, T .; Batz, HG; Otteson, K .; Orum, HJ Peptide Res. 1997, 49, 80-88.) First, sequential extension reaction using solid phase carrier MBHA (50 mg) with thymine PNA monomer unit (7.7 mg, 20 mmol), condensing agent HBTU (7.6 mg, 20 mmol) and DIEA (3.5 mL, 20 mmol) (Design of base sequence recognition region).
Next, ω-amino acid Boc-7-aminoheptanoic acid for linker (5.2 mg, 20 mmol), Fmoc-Ahx- Boc PNA-OH (10.0 mg, 20 mmol) and Boc-7-aminoheptanoic acid again with condensing agent HBTU ( 7.6 mg, 20 mmol) and DIEA (3.5 mL, 20 mmol) were sequentially condensed (design of linker site and membrane-permeable functional region).
After all the units were sequentially condensed, the Fmoc group was deprotected by piperidine treatment (20% piperidine in DMF, room temperature for 3 minutes). Next, Fmoc-Arg (Mts) -OH (23.1 mg, 40 mmol) is condensed as a functional carboxylic acid derivative using the condensing agent HBTU (15.2 mg, 40 mmol) and DIEA (7.0 mL, 40 mmol). Functional molecules were introduced at the position (introduction of membrane permeability function).
This was treated with piperidine (20% piperidine in DMF, room temperature for 3 minutes) to deprotect the Fmoc group, and again Fmoc-Arg (Mts) -OH (23.1 mg, 40 mmol) was added to the condensing agent HBTU (15.2 mg, 40 mmol). mmol) and DIEA (7.0 mL, 40 mmol) were used to condense the functional molecule at the desired position (addition of membrane permeability function).
After deprotection of Boc group by TFA treatment (95% TFA / 5% m-cresol), FITC (9.3 mg, 25 mmol) was shaken at room temperature for 12 hours in the presence of DIEA (17.4 mL, 100 mmol) and fluorescently labeled (Design of fluorescent labeling site).
Finally, piperidine treatment (20% piperidine in DMF, room temperature for 3 minutes) deprotects the remaining Fmoc group, and then solid-phased by a conventional method (TFA / TFMSA / p-cresol / thioanisol = 60/25/10/10) The target product was obtained by cutting out from the carrier and post-processing. MALDI-TOF MS: calcd. 2252.44 (M + H + ), found 2252.33.

本発明は、PNAオリゴマー誘導体が有している機能性分子の誘導体の諸機能に基づいて、遺伝子治療などに利用することが可能になる。   The present invention can be used for gene therapy and the like based on the various functions of functional molecule derivatives possessed by PNA oligomer derivatives.

DNAとPNAの構造および荷電の状況の違いを表す図である。It is a figure showing the difference of the structure of DNA and PNA, and the condition of charge. 2種類のPNAモノマーユニットの構造を表す図である。It is a figure showing the structure of two types of PNA monomer units.

Claims (12)

下記一般式(I)
Figure 2006158400

(式中、Bは、互いに独立し、同一または異なっている、アデニン、グアニン、シトシンまたはチミンであり、Rは、互いに独立し、同一または異なって、機能性カルボン酸誘導体であり、Rは、水素原子または機能性カルボン酸誘導体であり、a〜hは0〜10の整数であり、X〜X、Y、YおよびZ〜Zはいずれも0以上の整数であり、X+X+X≧0であり、Y+Y>0であり、Z+Z+Z+Z+Z≧0である。ただし、X+X+XおよびZ+Z+Z+Z+Zが同時に0であることはなく、X+X+X=0の場合、Rは機能性カルボン酸誘導体である。)で表され、機能性カルボン酸誘導体が、細胞膜透過性機能分子の誘導体、又は光活性機能分子の誘導体、又は臓器選択機能性分子の誘導体、又は殺菌機能性分子の誘導体、又は分子認識機能性分子の誘導体の何れかであることに基づくPNAオリゴマー誘導体化合物。
The following general formula (I)
Figure 2006158400

(Wherein, B is independently the same or different are adenine, guanine, cytosine or thymine each other, R represents independently of one another, identical or different, are functional carboxylic acid derivative, R 1 is , A hydrogen atom or a functional carboxylic acid derivative, a to h are integers of 0 to 10, and X 1 to X 3 , Y 1 , Y 2 and Z 1 to Z 5 are all integers of 0 or more. , X 1 + X 2 + X 3 ≧ 0, Y 1 + Y 2 > 0, and Z 1 + Z 2 + Z 3 + Z 4 + Z 5 ≧ 0, provided that X 1 + X 2 + X 3 and Z 1 + Z 2 + Z 3 + Z 4 + Z 5 is not 0 at the same time, and when X 1 + X 2 + X 3 = 0, R 1 is a functional carboxylic acid derivative). A derivative of a sexually functional molecule, or A PNA oligomer derivative compound based on any one of a derivative of a photoactive functional molecule, a derivative of an organ selective functional molecule, a derivative of a bactericidal functional molecule, or a derivative of a molecular recognition functional molecule.
膜透過性機能分子が水溶性アミノ酸であることを特徴とする請求項1記載のPNAオリゴマー誘導体化合物。   The PNA oligomer derivative compound according to claim 1, wherein the membrane-permeable functional molecule is a water-soluble amino acid. 水溶性アミノ酸が、アルギニン、リジン、セリンの何れかであることを特徴とする請求項2記載のPNAオリゴマー誘導体化合物。   The PNA oligomer derivative compound according to claim 2, wherein the water-soluble amino acid is any one of arginine, lysine and serine. 光活性機能分子が活性エステル型蛍光標識化合物であることを特徴とする請求項1記載のPNAオリゴマー誘導体化合物。   2. The PNA oligomer derivative compound according to claim 1, wherein the photoactive functional molecule is an active ester type fluorescent labeling compound. 活性エステル型蛍光標識化合物が、FITC、ROX、TAMRA、Dabcylの何れかであることを特徴とする請求項4記載のPNAオリゴマー誘導体化合物。   5. The PNA oligomer derivative compound according to claim 4, wherein the active ester type fluorescent labeling compound is any one of FITC, ROX, TAMRA, and Dabcyl. 臓器選択機能性分子が、ラクトース、トリスエックスの何れかであることを特徴とする請求項1記載のPNAオリゴマー誘導体化合物。   2. The PNA oligomer derivative compound according to claim 1, wherein the organ-selective functional molecule is either lactose or Tris-X. 分子認識機能性分子が、ビオローゲンであることを特徴とする請求項1記載のPNAオリゴマー誘導体化合物。   The PNA oligomer derivative compound according to claim 1, wherein the molecular recognition functional molecule is a viologen. 細胞膜透過性機能分子の誘導体、及び光活性機能分子の誘導体の双方を有していることを特徴とする請求項1記載のPNAオリゴマー誘導体化合物。   The PNA oligomer derivative compound according to claim 1, which has both a cell membrane-permeable functional molecule derivative and a photoactive functional molecule derivative. =Z=1であることを特徴とする、請求項8に記載のPNAオリゴマー誘導体化合物。 The PNA oligomer derivative compound according to claim 8, wherein X 1 = Z 1 = 1. ≧2であり、Z=1であることを特徴とする、請求項8、9に記載のPNAオリゴマー誘導体化合物。 10. The PNA oligomer derivative compound according to claim 8, wherein Y 1 ≧ 2 and Z 2 = 1. a≦6であり、b≦4であり、f≦6であることを特徴とする、請求項8〜10のいずれかに記載のPNAオリゴマー誘導体化合物。   The PNA oligomer derivative compound according to claim 8, wherein a ≦ 6, b ≦ 4, and f ≦ 6. が光機能性カルボン酸誘導体であることを特徴とする、請求項8〜11のいずれかに記載のPNAオリゴマー誘導体化合物。 The PNA oligomer derivative compound according to any one of claims 8 to 11, wherein R 1 is a photofunctional carboxylic acid derivative.
JP2005371734A 2001-09-19 2005-12-26 Pna oligomeric derivative compound Withdrawn JP2006158400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371734A JP2006158400A (en) 2001-09-19 2005-12-26 Pna oligomeric derivative compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001285191 2001-09-19
JP2005371734A JP2006158400A (en) 2001-09-19 2005-12-26 Pna oligomeric derivative compound

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002121667A Division JP4000453B2 (en) 2001-09-19 2002-04-24 Novel functional peptide nucleic acid and production method thereof

Publications (1)

Publication Number Publication Date
JP2006158400A true JP2006158400A (en) 2006-06-22

Family

ID=36661042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371734A Withdrawn JP2006158400A (en) 2001-09-19 2005-12-26 Pna oligomeric derivative compound

Country Status (1)

Country Link
JP (1) JP2006158400A (en)

Similar Documents

Publication Publication Date Title
EP1054893A1 (en) Synthetic polymers and methods, kits or compositions for modulating the solubility of same
EP0973945A4 (en) Chiral peptide nucleic acids and methods for preparing same
JP5750209B2 (en) Functional molecule, amidite for functional molecule synthesis, and target substance analysis method
US6809190B2 (en) Functional peptide nucleic acid and its production method
JP4000453B2 (en) Novel functional peptide nucleic acid and production method thereof
US20080138817A1 (en) Novel Functional Peptide Nucleic Acid Monomer and Process for Producing the Same
Aldrian‐Herrada et al. Solid‐phase synthesis of peptide nucleic acid (PNA) monomers and their oligomerization using disulphide anchoring linkers
JP3800245B2 (en) Novel functional peptide nucleic acid and production method thereof
EP4083054A1 (en) Method for producing pna oligomer in solution process
JP2006158400A (en) Pna oligomeric derivative compound
JP2007275071A (en) Novel functional peptide nucleic acid and its production method
EP1474430B1 (en) Bi-functionalised metallocenes use for marking biological molecules
JP2002503265A (en) Novel monomer constructs for labeling peptide nucleic acids
JP3837633B2 (en) Novel functional peptide nucleic acid and production method thereof
JP7220439B1 (en) Method for producing chimeric molecules
JP2004196662A (en) New functional peptide nucleic acid and method for producing the same
JP2004275140A (en) Method for producing dna or rna conjugate
JP2006204303A (en) Novel functional peptide nucleic acid and process for producing the same
KR20210151593A (en) Novel Morpholino Oligonucleotide derivatives
US20030208050A1 (en) Nucleoside derivatives
Aboul‐Fadl et al. Synthesis of a peptide nucleic acid with a novel 1‐methyl‐6‐mercaptopurine base
JPH10231290A (en) Preparation of nucleic acid-bonded compound
Witschi Modified peptide nucleic acids (PNA) and amonafide derivatives: Synthesis and applications of trans-cyclopentane and trans-pyrrolidine PNAs and small molecules derived from amonafide

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704