JP2006156887A - Wavelength conversion laser equipment - Google Patents

Wavelength conversion laser equipment Download PDF

Info

Publication number
JP2006156887A
JP2006156887A JP2004348661A JP2004348661A JP2006156887A JP 2006156887 A JP2006156887 A JP 2006156887A JP 2004348661 A JP2004348661 A JP 2004348661A JP 2004348661 A JP2004348661 A JP 2004348661A JP 2006156887 A JP2006156887 A JP 2006156887A
Authority
JP
Japan
Prior art keywords
wavelength conversion
light
semiconductor optical
wavelength
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004348661A
Other languages
Japanese (ja)
Inventor
Kimitada Tojo
公資 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004348661A priority Critical patent/JP2006156887A/en
Publication of JP2006156887A publication Critical patent/JP2006156887A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a semiconductor optical amplification element 1 from being damaged so as to improve its reliability and lifetime. <P>SOLUTION: A second high harmonic light moves back to a semiconductor optical amplifier 1 due to reflection at an optical waveguide inside the wavelength conversion device 5, at a light-exiting side 5b, and at lenses 7 disposed in successive positions to the wavelength conversion device 5. The reverse-traveling light is reflected or absorbed by an optical device 6. The second high harmonic light reverse-traveling to the optical amplifier 1 is either not condensed at the light-exiting side of the semiconductor optical amplifier 1, or even if condensed, it does not have so strong a power density, as to damage the semiconductor optical amplifier 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、波長変換レーザ装置に関し、さらに詳しくは、信頼性および寿命を向上することができる波長変換レーザ装置に関する。   The present invention relates to a wavelength conversion laser device, and more particularly to a wavelength conversion laser device capable of improving reliability and lifetime.

従来、半導体発光素子と、内部に回折格子を形成した光ファイバとを組み合わせた半導体レーザモジュールが知られている(例えば、特許文献1参照。)。
また、非線形物質からなる基板に形成した周期状分極反転層により波長変換するレーザ光源が知られている(例えば、特許文献2参照。)。
特許第3120828号公報 特許第3223648号公報
Conventionally, a semiconductor laser module in which a semiconductor light emitting element and an optical fiber having a diffraction grating formed therein are combined is known (for example, see Patent Document 1).
Also known is a laser light source that converts the wavelength by a periodically poled layer formed on a substrate made of a non-linear material (see, for example, Patent Document 2).
Japanese Patent No. 3120828 Japanese Patent No. 3223648

本願発明者は、半導体光増幅素子と、グレーティング部を内部に形成した偏波保持型光ファイバと、半導体光増幅素子と偏波保持型光ファイバとで構成される光共振器から出射した光を波長変換する波長変換素子とを具備する波長変換レーザ装置を開発してきた。
しかし、この波長変換レーザ装置では、半導体光増幅素子が壊れることがあり、信頼性および寿命に問題点があった。
そこで、本発明の目的は、半導体光増幅素子が壊れることを防止でき、信頼性および寿命を向上することができる波長変換レーザ装置を提供することにある。
The inventor of the present application transmits light emitted from an optical resonator composed of a semiconductor optical amplifier, a polarization maintaining optical fiber having a grating portion formed therein, and a semiconductor optical amplifier and a polarization maintaining optical fiber. A wavelength conversion laser device having a wavelength conversion element for wavelength conversion has been developed.
However, in this wavelength conversion laser device, the semiconductor optical amplification element may be broken, and there are problems in reliability and life.
SUMMARY OF THE INVENTION An object of the present invention is to provide a wavelength conversion laser device that can prevent a semiconductor optical amplifier from being broken and can improve reliability and life.

第1の観点では、本発明は、半導体光増幅素子と、グレーティング部を内部に形成した偏波保持型光ファイバと、前記半導体光増幅素子と前記偏波保持型光ファイバとで構成される光共振器から出射した光を波長変換する波長変換素子と、前記波長変換素子で発生した波長変換光が前記半導体光増幅素子に逆行するのを防止または抑制するための光学素子とを具備することを特徴とする波長変換レーザ装置を提供する。
本発明の発明者が鋭意研究したところ、次のことが判明した。すなわち、波長変換素子で発生した波長変換光は、基本的には光共振器からの光の進行方向と同じ方向にしか発生しないが、波長変換素子の内部や出射側端面での反射や波長変換素子以降の光学素子での反射により、ごくわずかではあるが、半導体光増幅素子へと逆行する。この逆行する波長変換光は、半導体光増幅素子から出射する光とは逆の経路をたどって半導体光増幅素子の出射側端面に集光される。波長変換光の光子エネルギーは半導体のバンドギャップよりも大きいため、半導体光増幅素子の出射側端面に集光された波長変換光は、半導体光増幅素子に吸収される。このとき、波長変換光のパワーがごくわずかではあっても、半導体光増幅素子の出射側端面の極めて小さな領域に集光されるため、半導体光増幅素子を破壊するのに十分なパワー密度になることがある。
そこで、上記第1の観点による波長変換レーザ装置では、波長変換素子で発生した波長変換光が半導体光増幅素子に逆行するのを防止または抑制するための光学素子を設ける。これにより、逆行する波長変換光が半導体光増幅素子の出射側端面に集光されなくなるか又は集光されても半導体光増幅素子を破壊しうる程のパワー密度にならなくなるため、半導体光増幅素子が壊れることを防止でき、信頼性および寿命を向上することが出来る。
In a first aspect, the present invention relates to a light comprising a semiconductor optical amplifying element, a polarization maintaining optical fiber having a grating portion formed therein, and the semiconductor optical amplifying element and the polarization maintaining optical fiber. A wavelength conversion element that converts the wavelength of light emitted from the resonator; and an optical element that prevents or suppresses the wavelength conversion light generated by the wavelength conversion element from going back to the semiconductor optical amplification element. A wavelength conversion laser device is provided.
The inventor of the present invention diligently studied and found the following. That is, the wavelength-converted light generated by the wavelength conversion element is basically generated only in the same direction as the light traveling direction from the optical resonator, but is reflected inside the wavelength conversion element and at the emission side end face or wavelength conversion. Due to the reflection at the optical element after the element, it goes back to the semiconductor optical amplifying element, though only slightly. This backward wavelength-converted light follows the path opposite to that emitted from the semiconductor optical amplifying element, and is condensed on the emission side end face of the semiconductor optical amplifying element. Since the photon energy of the wavelength-converted light is larger than the band gap of the semiconductor, the wavelength-converted light collected on the output side end face of the semiconductor optical amplifier is absorbed by the semiconductor optical amplifier. At this time, even if the power of the wavelength-converted light is very small, the light is condensed in an extremely small area on the output side end face of the semiconductor optical amplifier, so that the power density is sufficient to destroy the semiconductor optical amplifier. Sometimes.
Therefore, the wavelength conversion laser device according to the first aspect is provided with an optical element for preventing or suppressing the wavelength conversion light generated by the wavelength conversion element from going back to the semiconductor optical amplification element. As a result, the reverse wavelength-converted light is not collected on the output side end face of the semiconductor optical amplifying element, or even if it is collected, the power density is not high enough to destroy the semiconductor optical amplifying element. Can be prevented, and reliability and life can be improved.

第2の観点では、本発明は、上記構成載の波長変換レーザ装置において、前記光学素子は、前記波長変換素子で発生し前記半導体光増幅素子へ逆行しようとする波長変換光を反射または吸収するフィルタであることを特徴とする波長変換レーザ装置を提供する。
上記第2の観点による波長変換レーザ装置では、半導体光増幅素子へ逆行しようとする波長変換光をフィルタで反射または吸収するため、逆行する波長変換光が半導体光増幅素子の出射側端面に集光されなくなるか又は集光されても半導体光増幅素子を破壊しうる程のパワー密度にならない。よって、半導体光増幅素子が壊れることを防止でき、信頼性および寿命を向上することが出来る。
In a second aspect, the present invention provides the wavelength conversion laser device having the above-described configuration, wherein the optical element reflects or absorbs the wavelength-converted light generated by the wavelength conversion element and going backward to the semiconductor optical amplification element. A wavelength conversion laser device characterized by being a filter is provided.
In the wavelength conversion laser device according to the second aspect, the wavelength-converted light that is going to go back to the semiconductor optical amplifying element is reflected or absorbed by the filter, so that the reverse wavelength-converted light is condensed on the end face of the semiconductor optical amplifying element. Even if it is lost or condensed, the power density is not high enough to destroy the semiconductor optical amplifier. Therefore, it is possible to prevent the semiconductor optical amplifying element from being broken, and to improve the reliability and life.

本発明の波長変換レーザ装置によれば、半導体光増幅素子が壊れることを防止でき、信頼性および寿命を向上することが出来る。   According to the wavelength conversion laser device of the present invention, the semiconductor optical amplification element can be prevented from being broken, and the reliability and life can be improved.

以下、図に示す実施形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1に係る波長変換レーザ装置100を示す構成説明図である。
この波長変換レーザ装置100は、光反射面1aと光出射面1bとで挟まれた領域に電流を注入することにより光を発生し増幅する半導体光増幅素子1と、内部にグレーティング部3を形成した偏波保持型光ファイバ2と、偏波保持型光ファイバ2から出射した光を集光するレンズ4と、レンズ4を透過して入射された光の第2高調波光を出力する波長変換素子5と、波長変換素子5で発生した第2高調波光が半導体光増幅素子1に逆行するのを抑制または防止するための光学素子6と、波長変換素子5から出力された第2高調波光をコリメートするレンズ7と、レンズ7から出射した第2高調波光の一部を分岐するビームスプリッタ8と、分岐した第2高調波光を受光する受光素子9と、受光素子9で受光した第2高調波光の強度を検出すると共に検出強度が一定になるように半導体光増幅素子1に注入する電流を制御する半導体光増幅素子駆動回路21と、グレーティング部3のグレーティング周期を調整するための光ファイバ伸張機構10と、偏波保持型光ファイバ2の温度を調整するための温調素子32と、偏波保持型光ファイバ2の温度を検出するための感温素子31と、感温素子31で検出した温度に基づいて温調素子32を駆動する温度制御回路22とを具備している。
FIG. 1 is an explanatory diagram illustrating a wavelength conversion laser device 100 according to the first embodiment.
This wavelength conversion laser device 100 includes a semiconductor optical amplification element 1 that generates and amplifies light by injecting a current into a region sandwiched between a light reflecting surface 1a and a light emitting surface 1b, and a grating portion 3 therein. Polarization-maintaining optical fiber 2, lens 4 that condenses the light emitted from polarization-maintaining optical fiber 2, and wavelength conversion element that outputs the second harmonic light of the light incident through the lens 4 5, an optical element 6 for suppressing or preventing the second harmonic light generated by the wavelength conversion element 5 from going back to the semiconductor optical amplification element 1, and the second harmonic light output from the wavelength conversion element 5 are collimated Of the second harmonic light emitted from the lens 7, the light receiving element 9 for receiving the branched second harmonic light, and the second harmonic light received by the light receiving element 9. Detect intensity At the same time, the semiconductor optical amplifier driving circuit 21 that controls the current injected into the semiconductor optical amplifier 1 so that the detection intensity is constant, the optical fiber extension mechanism 10 for adjusting the grating period of the grating section 3, and the polarization A temperature control element 32 for adjusting the temperature of the holding optical fiber 2, a temperature sensing element 31 for detecting the temperature of the polarization maintaining optical fiber 2, and a temperature based on the temperature detected by the temperature sensing element 31. And a temperature control circuit 22 for driving the adjusting element 32.

半導体光増幅素子1は、例えば波長が900[nm]〜1100[nm]の範囲の光を発生し増幅する。光反射面1aにはこの波長に対して高反射率となるコーティングが施され、光出射面1bにはこの波長に対して低反射率となるコーティングが施されている。   The semiconductor optical amplifying element 1 generates and amplifies light having a wavelength in the range of 900 [nm] to 1100 [nm], for example. The light reflecting surface 1a is provided with a coating having a high reflectance with respect to this wavelength, and the light emitting surface 1b is provided with a coating having a low reflectance with respect to this wavelength.

偏波保持型光ファイバ2の入射側の端面2aは、半導体光増幅素子1から出射した光がより多く入射するように、テーパ状またはくさび状に加工されている。   The incident-side end face 2a of the polarization maintaining optical fiber 2 is processed into a taper shape or a wedge shape so that more light emitted from the semiconductor optical amplifying element 1 enters.

偏波保持型光ファイバ2のグレーティング部3は、ある波長帯域の光のみ反射する。例えば、900[nm]〜1100[nm]の間に中心波長λiを持ち、約0.6[nm]の帯域幅を持つ光のみを反射する。帯域幅は、グレーティング部3の長さで決まり、中心波長λiは、屈折率が変動する周期を光ファイバ伸張機構10により後述のように調整できる。
グレーティング部3は、偏波保持型光ファイバ2の一部に屈折率が周期的に変動するような加工を施して形成されている。例えば、エキシマレーザ等の紫外レーザをビームスプリッタで2光束に分け、異なる光路を通した後、光ファイバ上に重ね合わせて照射し、干渉縞を発生させ、紫外線強度に応じて生じる光ファイバのフォトリフラクティブ効果により、干渉縞と同じ間隔で周期的に屈折率を変動させることにより形成されている。グレーティング部3の周期,長さを適宜設定することにより、帯域幅や中心波長および反射率を自由に設定できる。
The grating section 3 of the polarization maintaining optical fiber 2 reflects only light in a certain wavelength band. For example, only light having a center wavelength λi between 900 [nm] and 1100 [nm] and having a bandwidth of about 0.6 [nm] is reflected. The bandwidth is determined by the length of the grating portion 3, and the center wavelength λi can be adjusted by the optical fiber stretching mechanism 10 as will be described later, with the period in which the refractive index varies.
The grating unit 3 is formed by processing a part of the polarization maintaining optical fiber 2 so that the refractive index periodically varies. For example, an ultraviolet laser, such as an excimer laser, is split into two light beams by a beam splitter, passes through different optical paths, and is superimposed on the optical fiber to generate interference fringes. It is formed by periodically changing the refractive index at the same interval as the interference fringes by the refraction effect. By appropriately setting the period and length of the grating section 3, the bandwidth, center wavelength, and reflectance can be set freely.

半導体光増幅素子1とグレーティング部3とで光共振器が構成される。すなわち、半導体光増幅素子1を出射した光は、偏波保持型光ファイバ2の入射側端面2aに入射される。偏波保持型光ファイバ2に入射した光は、グレーティング部3で決定される波長帯域の光が反射され、半導体光増幅素子1へ戻り、半導体光増幅素子1で増幅され、再び半導体光増幅素子1を出射し、偏波保持型光ファイバ2に入射する。これが繰り返されることにより、グレーティング部3の周期で決定される波長帯域の光が偏波保持型光ファイバ2の出射側端面2bから出射される。また、端面2bは、反射防止膜を施すことが好ましい。   The semiconductor optical amplifying element 1 and the grating unit 3 constitute an optical resonator. That is, the light emitted from the semiconductor optical amplifying element 1 enters the incident side end face 2 a of the polarization maintaining optical fiber 2. The light incident on the polarization-maintaining optical fiber 2 reflects light in the wavelength band determined by the grating unit 3, returns to the semiconductor optical amplifier element 1, is amplified by the semiconductor optical amplifier element 1, and again is the semiconductor optical amplifier element. 1 exits and enters the polarization maintaining optical fiber 2. By repeating this, light in a wavelength band determined by the period of the grating section 3 is emitted from the emission-side end face 2 b of the polarization maintaining optical fiber 2. The end face 2b is preferably provided with an antireflection film.

偏波保持型光ファイバ2の出射側端面2bから出射された光は、レンズ4で波長変換素子5の端面5aに集光される。レンズ4には、反射防止膜が施されている。   The light emitted from the emission-side end face 2 b of the polarization maintaining optical fiber 2 is condensed on the end face 5 a of the wavelength conversion element 5 by the lens 4. The lens 4 is provided with an antireflection film.

波長変換素子5は、例えば、LiNbO,LiTaO,MgO:LiNbO,MgO:LiTaO,KNbO,KTiOPO、あるいはこれらに分極反転処理を施したものに、光導波路を形成したものである。波長変換素子5は、例えば中心波長が900[nm]〜1100[nm]の光が入射することにより、その第2高調波である中心波長が450[nm]〜550[nm]の光を発生する。
波長変換素子5の入射側端面5aおよび出射側端面5bは、反射防止膜が施されていることが好ましい。
The wavelength conversion element 5 is, for example, an optical waveguide formed on LiNbO 3 , LiTaO 3 , MgO: LiNbO 3 , MgO: LiTaO 3 , KNbO 3 , KTiOPO 4 , or those obtained by subjecting these to polarization inversion processing. . The wavelength conversion element 5 generates light having a center wavelength of 450 [nm] to 550 [nm], which is the second harmonic, when light having a center wavelength of 900 [nm] to 1100 [nm] is incident, for example. To do.
The incident side end face 5a and the emission side end face 5b of the wavelength conversion element 5 are preferably provided with antireflection films.

図2は、光学素子6の第1構成例である。
この光学素子6は、基本波光(偏波保持型光ファイバ2の出射側端面2bから出射された光)は透過し、第2高調波光は反射する誘電体多層膜4bを持つガラス製フィルタである。
FIG. 2 is a first configuration example of the optical element 6.
The optical element 6 is a glass filter having a dielectric multilayer film 4b that transmits fundamental wave light (light emitted from the emission-side end face 2b of the polarization maintaining optical fiber 2) and reflects second harmonic light. .

図3は、光学素子6の第2構成例である。
この光学素子6は、基本波光(偏波保持型光ファイバ2の出射側端面2bから出射された光)は透過し、第2高調波光は吸収し減衰させる性質を持つガラス製フィルタである。
FIG. 3 shows a second configuration example of the optical element 6.
This optical element 6 is a glass filter having a property of transmitting fundamental wave light (light emitted from the emission-side end face 2b of the polarization maintaining optical fiber 2) and absorbing and attenuating second harmonic light.

ビームスプリッタ8は、例えばハーフミラーまたは貼り合わせプリズムであり、レンズ7から出射した光の一部を分岐して受光素子9へ導き、残りの光を波長変換レーザ装置100外へ透過させる。   The beam splitter 8 is, for example, a half mirror or a bonded prism. The beam splitter 8 branches part of the light emitted from the lens 7 and guides it to the light receiving element 9, and transmits the remaining light to the outside of the wavelength conversion laser device 100.

受光素子9は、入射した光の強度によって起電力や抵抗値などの電気的特性が定まる素子であり、例えば、GaAsP系のフォトダイオードである。   The light receiving element 9 is an element whose electrical characteristics such as electromotive force and resistance value are determined by the intensity of incident light, and is, for example, a GaAsP photodiode.

感温素子31は、例えばサーミスタ,バレッタ,熱電対であり、温度によって抵抗や起電力などの電気的特性値が定まる素子である。   The temperature sensing element 31 is, for example, a thermistor, a barrette, or a thermocouple, and is an element whose electrical characteristic values such as resistance and electromotive force are determined by temperature.

温調素子32は、例えばペルチエ素子やヒータであり、光ファイバ伸張機構10を冷却または加熱しうる。   The temperature control element 32 is, for example, a Peltier element or a heater, and can cool or heat the optical fiber extension mechanism 10.

図4は、光ファイバ伸張機構10の外観を示す斜視図である。
光ファイバ伸張機構10は、ベース11と、ベース11の上面に形成された基部13と、ベース11の上面でスライドして基部13に対する距離を変えうる可動部16と、基部13に対する可動部16の距離を変えるためのネジ棒17と、ネジ棒17を手動または工具を用いて回転させうる操作部18とを具備している。
FIG. 4 is a perspective view showing the appearance of the optical fiber extension mechanism 10.
The optical fiber extension mechanism 10 includes a base 11, a base portion 13 formed on the upper surface of the base 11, a movable portion 16 that can slide on the upper surface of the base 11 to change the distance to the base portion 13, and the movable portion 16 with respect to the base portion 13. A screw rod 17 for changing the distance and an operation unit 18 capable of rotating the screw rod 17 manually or using a tool are provided.

基部13,可動部16およびベース11は、例えばインバーまたはスーパーインバーなどの熱膨張係数の極めて小さい材料製である。   The base 13, the movable part 16, and the base 11 are made of a material having a very small thermal expansion coefficient, such as Invar or Super Invar.

偏波保持型光ファイバ2は、基部13,可動部16およびベース11に巻き付けられ、基部13の側面に設けられた第1固定部14及び第2固定部15でグレーティング部3を挟む部分が固定されている。   The polarization maintaining optical fiber 2 is wound around the base portion 13, the movable portion 16 and the base 11, and the portion sandwiching the grating portion 3 between the first fixing portion 14 and the second fixing portion 15 provided on the side surface of the base portion 13 is fixed. Has been.

また、感温素子31はベース11に埋め込まれ、温調素子32はベース11の下面に取り付けられている。   The temperature sensing element 31 is embedded in the base 11, and the temperature adjustment element 32 is attached to the lower surface of the base 11.

操作部18を回して基部13と可動部16の距離を変えると、光ファイバ伸張機構10の第1固定部14から可動部16を経て第2固定部15に至る外周の長さが変わり、第1固定部14と第2固定部15とで挟まれたグレーティング部3を挟む部分が伸縮し、グレーティング部3のグレーティング周期を調節することが出来る。これにより、偏波保持型光ファイバ2から波長変換素子5へと出射する光の波長を、波長変換素子5の波長変換可能帯域に合わせることが出来る。   When the distance between the base portion 13 and the movable portion 16 is changed by turning the operation portion 18, the length of the outer periphery from the first fixed portion 14 of the optical fiber extension mechanism 10 through the movable portion 16 to the second fixed portion 15 changes. A portion sandwiching the grating portion 3 sandwiched between the first fixing portion 14 and the second fixing portion 15 expands and contracts, and the grating period of the grating portion 3 can be adjusted. Thereby, the wavelength of the light emitted from the polarization maintaining optical fiber 2 to the wavelength conversion element 5 can be matched with the wavelength convertible band of the wavelength conversion element 5.

温度制御回路22の温度制御動作は次のように行われる。
(1)半導体光増幅素子駆動回路21で制御し、一定強度の波長変換光を出力する。
(2)例えば30℃〜50℃の間で連続的もしくは段階的に温度掃引を行い、温度tと電流iの関係を調べ、最小電流iminを与える温度toを記憶する。
(3)以後、記憶した温度toになるように温調素子32を駆動する。
The temperature control operation of the temperature control circuit 22 is performed as follows.
(1) Controlled by the semiconductor optical amplifying element drive circuit 21, and outputs wavelength-converted light having a constant intensity.
(2) For example, temperature sweep is performed continuously or stepwise between 30 ° C. and 50 ° C., the relationship between the temperature t and the current i is examined, and the temperature to which gives the minimum current imin is stored.
(3) Thereafter, the temperature control element 32 is driven so as to have the stored temperature to.

なお、温度掃引を行って最小電流iminを与える温度toを記憶する動作は、例えば電源投入時に1回だけ行ってもよいし、運転中に定期的に行ってもよい。   Note that the operation for storing the temperature to which the minimum current imin is performed by performing the temperature sweep may be performed only once when the power is turned on, or may be periodically performed during the operation.

実施例1の波長変換レーザ装置100によれば、波長変換素子5の内部の光導波路や出射側端面5bでの反射や波長変換素子5以降のレンズ7などでの反射により半導体光増幅素子1へと逆行する第2高調波光が、光学素子6で反射または吸収され、半導体光増幅素子1の出射側端面に集光されなくなるか又は集光されても半導体光増幅素子1を破壊しうる程のパワー密度にならなくなるため、半導体光増幅素子1が壊れることを防止でき、信頼性および寿命を向上することが出来る。   According to the wavelength conversion laser device 100 of the first embodiment, the semiconductor optical amplifying element 1 is reflected by reflection at the optical waveguide inside the wavelength conversion element 5, reflection at the emission-side end face 5 b, or reflection at the lens 7 after the wavelength conversion element 5. The second harmonic light, which goes in reverse, is reflected or absorbed by the optical element 6 and is not collected on the output side end face of the semiconductor optical amplifying element 1, or even if it is collected, the semiconductor optical amplifying element 1 can be destroyed. Since it does not become a power density, it can prevent that the semiconductor optical amplifier element 1 breaks, and can improve reliability and lifetime.

本発明の波長変換レーザ装置は、バイオエンジニアリング分野や計測分野などで利用できる。   The wavelength conversion laser device of the present invention can be used in the bioengineering field, the measurement field, and the like.

実施例1に係る波長変換レーザ装置を示す構成説明図である。1 is a configuration explanatory view showing a wavelength conversion laser device according to Example 1. FIG. 光学素子の第1構成例を示す説明図である。It is explanatory drawing which shows the 1st structural example of an optical element. 光学素子の第2構成例を示す説明図である。It is explanatory drawing which shows the 2nd structural example of an optical element. 光ファイバ伸張機構を示す斜視図である。It is a perspective view which shows an optical fiber expansion | extension mechanism.

符号の説明Explanation of symbols

1 半導体光増幅素子
1a 光反射面
1b 光出射面
2 光ファイバ
2a 入射側端面
2b 出射側端面
3 グレーティング部
4,7 レンズ
5 波長変換素子
5a 入射側端面
5b 出射側端面
6 光学素子
8 ビームスプリッタ
9 受光素子
10 光ファイバ伸張機構
11 ベース
13 基部
14 第1固定部
15 第2固定部
16 可動部
17 ネジ棒
18 操作部
21 半導体光増幅素子駆動回路
22 温度制御回路
31 感温素子
32 温調素子
100 波長変換レーザ装置
DESCRIPTION OF SYMBOLS 1 Semiconductor optical amplification element 1a Light reflection surface 1b Light emission surface 2 Optical fiber 2a Incident side end surface 2b Emission side end surface 3 Grating part 4, 7 Lens 5 Wavelength conversion element 5a Incident side end surface 5b Emission side end surface 6 Optical element 8 Beam splitter 9 Light receiving element 10 Optical fiber extension mechanism 11 Base 13 Base 14 First fixing part 15 Second fixing part 16 Movable part 17 Screw rod 18 Operation part 21 Semiconductor optical amplifier driving circuit 22 Temperature control circuit 31 Temperature sensing element 32 Temperature control element 100 Wavelength conversion laser device

Claims (2)

半導体光増幅素子と、グレーティング部を内部に形成した偏波保持型光ファイバと、前記半導体光増幅素子と前記偏波保持型光ファイバとで構成される光共振器から出射した光を波長変換する波長変換素子と、前記波長変換素子で発生した波長変換光が前記半導体光増幅素子に逆行するのを防止または抑制するための光学素子とを具備することを特徴とする波長変換レーザ装置。   Wavelength conversion is performed on light emitted from an optical resonator composed of a semiconductor optical amplification element, a polarization maintaining optical fiber having a grating portion formed therein, and the semiconductor optical amplification element and the polarization maintaining optical fiber. A wavelength conversion laser device comprising: a wavelength conversion element; and an optical element for preventing or suppressing wavelength converted light generated by the wavelength conversion element from going back to the semiconductor optical amplification element. 請求項1に記載の波長変換レーザ装置において、前記光学素子は、前記波長変換素子で発生し前記半導体光増幅素子へ逆行しようとする波長変換光を反射または吸収するフィルタであることを特徴とする波長変換レーザ装置。   2. The wavelength conversion laser device according to claim 1, wherein the optical element is a filter that reflects or absorbs wavelength-converted light that is generated by the wavelength conversion element and is going to go back to the semiconductor optical amplification element. 3. Wavelength conversion laser device.
JP2004348661A 2004-12-01 2004-12-01 Wavelength conversion laser equipment Pending JP2006156887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348661A JP2006156887A (en) 2004-12-01 2004-12-01 Wavelength conversion laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348661A JP2006156887A (en) 2004-12-01 2004-12-01 Wavelength conversion laser equipment

Publications (1)

Publication Number Publication Date
JP2006156887A true JP2006156887A (en) 2006-06-15

Family

ID=36634752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348661A Pending JP2006156887A (en) 2004-12-01 2004-12-01 Wavelength conversion laser equipment

Country Status (1)

Country Link
JP (1) JP2006156887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138056A (en) * 2009-12-28 2011-07-14 Shimadzu Corp Wavelength conversion laser device
WO2022265895A3 (en) * 2021-06-08 2023-03-30 Ipg Photonics Corporation Method and device for increasing useful life of laser system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204834A (en) * 1990-11-30 1992-07-27 Ngk Insulators Ltd Wavelength convertor and wavelength converting type laser light source device
WO2004025363A1 (en) * 2002-09-10 2004-03-25 The Furukawa Electric Co., Ltd. Wavelength conversion module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204834A (en) * 1990-11-30 1992-07-27 Ngk Insulators Ltd Wavelength convertor and wavelength converting type laser light source device
WO2004025363A1 (en) * 2002-09-10 2004-03-25 The Furukawa Electric Co., Ltd. Wavelength conversion module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138056A (en) * 2009-12-28 2011-07-14 Shimadzu Corp Wavelength conversion laser device
WO2022265895A3 (en) * 2021-06-08 2023-03-30 Ipg Photonics Corporation Method and device for increasing useful life of laser system

Similar Documents

Publication Publication Date Title
US7218655B2 (en) Solid state laser insensitive to temperature changes
JP4609993B2 (en) Terahertz wave generation method and apparatus
JP5484592B2 (en) High linear power laser system
JP7396299B2 (en) laser equipment
US20090041062A1 (en) Fiber-based tunable laser
RU2328064C2 (en) Fiber intracavity-doubled laser (variants)
JPH11168252A (en) Small solid-state laser
US20080310466A1 (en) Apparatus and Method of Generating Laser Beam
JP4470480B2 (en) Wavelength conversion laser device
JP2006156887A (en) Wavelength conversion laser equipment
JP2005101504A (en) Laser apparatus
JP4111076B2 (en) Wavelength conversion laser device
KR20110081087A (en) Laser device
JP6966042B2 (en) Two-wavelength simultaneous oscillation type infrared optical parametric oscillator
JPWO2006098313A1 (en) Optical amplifier and laser device
US8179934B2 (en) Frequency conversion laser head
US7154919B2 (en) Optical fiber laser and laser light emitting method
JP4111075B2 (en) Wavelength conversion laser device
JP2015087729A (en) Wavelength conversion laser device
JP4066738B2 (en) Laser equipment
JP2010534415A (en) Position sensitive detector in wavelength monitoring
JP7513886B2 (en) Laser device and method of operating a laser device
WO2021125162A1 (en) Beam quality control device and laser device using same
JP5330612B2 (en) Polarization-dependent optical isolator
JP2004165393A (en) Wavelength conversion laser equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Effective date: 20100301

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831