JP2006154687A - Optical variable attenuator array - Google Patents

Optical variable attenuator array Download PDF

Info

Publication number
JP2006154687A
JP2006154687A JP2004370168A JP2004370168A JP2006154687A JP 2006154687 A JP2006154687 A JP 2006154687A JP 2004370168 A JP2004370168 A JP 2004370168A JP 2004370168 A JP2004370168 A JP 2004370168A JP 2006154687 A JP2006154687 A JP 2006154687A
Authority
JP
Japan
Prior art keywords
optical
variable attenuator
liquid crystal
optical variable
attenuator array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004370168A
Other languages
Japanese (ja)
Inventor
Soichi Kobayashi
壮一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHOTONIC SCIENCE TECHNOLOGY IN
Photonic Science Technology Inc PSTI
Original Assignee
PHOTONIC SCIENCE TECHNOLOGY IN
Photonic Science Technology Inc PSTI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHOTONIC SCIENCE TECHNOLOGY IN, Photonic Science Technology Inc PSTI filed Critical PHOTONIC SCIENCE TECHNOLOGY IN
Priority to JP2004370168A priority Critical patent/JP2006154687A/en
Publication of JP2006154687A publication Critical patent/JP2006154687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost, small-sized, and low-PDL optical variable attenuator array for WDM. <P>SOLUTION: This optical variable attenuator has such a structure that: a plurality of resin optical waveguides are formed on an electrode formed on a substrate; a graded type multi-mode waveguide is formed on the waveguides; a groove is formed in the multi-mode waveguide; and the refractive indexes of the waveguides are adjudged by heating liquid crystal injected into the groove while simultaneously applying voltage by the electrode at right angles to a propagation direction of light. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光可変減衰器に関するものである。さらに詳述すればWDM伝送用の多チャンネルに対応する低挿入損失、低PDL、低価格の光可変減衰器に関するものである。The present invention relates to an optical variable attenuator. More specifically, the present invention relates to an optical variable attenuator having low insertion loss, low PDL, and low cost corresponding to a multi-channel for WDM transmission.

インターネットの急速な普及による今後のトラフィックの増大に対応するため光伝送システムの大容量化が必要になっている。このためWDMシステムの波長チャンネルの高密度化が進んでいる。高密度WDMすなわちDWDMシステムでは多チャンネルを一括して増幅するエルビウムドープ光ファイバアンプ(以下EDFA)が使われている。EDFAを用いた光伝送システムは既存の光ケーブルを使って少ない中継器数で経済的に大容量化できるので現在幹線系、光海底伝送系で広く普及している。EDFAは一般にゲインの波長特性がある。WDM伝送で各チャンネルの信号電力の不揃いがあればそれがアンプで増幅され不揃いが増幅される。最終的には受信部でS/Nの不揃いにより十分なシステムマージンを確保できない。従って波長チャンネルごとにレベルを調整する光可変減衰器アレイが必要となる。In order to cope with future traffic increase due to the rapid spread of the Internet, it is necessary to increase the capacity of the optical transmission system. For this reason, the density of wavelength channels in WDM systems is increasing. In a high-density WDM or DWDM system, an erbium-doped optical fiber amplifier (hereinafter referred to as EDFA) that amplifies multiple channels at once is used. An optical transmission system using an EDFA can be economically increased with a small number of repeaters using an existing optical cable, so that it is currently widely used in trunk and optical submarine transmission systems. An EDFA generally has a wavelength characteristic of gain. If there is an irregularity in the signal power of each channel in WDM transmission, it is amplified by an amplifier and the irregularity is amplified. Eventually, a sufficient system margin cannot be ensured due to the S / N mismatch at the receiving unit. Therefore, an optical variable attenuator array that adjusts the level for each wavelength channel is required.

現在の光伝送システムの主流は2点間の通信いわゆるポイント対ポイント通信である。しかし今後波長をネットワークで有効に利用するためにはリングあるいはメッシュ状のネットワークでWDM技術を適用する必要がある。このためにはリングネットワークのノードで特定波長に乗せた信号をアドドロップする光アドドロップマルチプレクサー(OADM)や光クロスコネクト(OXC)が必要である。EDFAの準安定レベルの誘導寿命は100μ秒であり伝送ビット周期よりはるかに長いためEDFAは飽和領域で動作する線形増幅器となっている。すなわちゲインは信号の平均電力で決定される。したがってEDFAを含むラインのパケット交換やアドドロップで発生する入力信号のわずかな変化に対応できない。従ってEDFAを用いた多段中継増幅システムやOADMを使う今後の光通信システムでは各チャンネルの光レベルをダイナミックに制御する光可変減衰器アレイ(VOA)が必要である。The mainstream of current optical transmission systems is so-called point-to-point communication between two points. However, in order to use the wavelength effectively in the network in the future, it is necessary to apply the WDM technology in a ring or mesh network. For this purpose, an optical add / drop multiplexer (OADM) or an optical cross connect (OXC) for adding / dropping a signal on a specific wavelength at a node of the ring network is required. Since the induction life of the metastable level of EDFA is 100 μs, which is much longer than the transmission bit period, EDFA is a linear amplifier that operates in the saturation region. That is, the gain is determined by the average power of the signal. Therefore, it is not possible to cope with a slight change in an input signal generated by packet exchange or add / drop of a line including an EDFA. Therefore, in a future optical communication system using a multistage relay amplification system using EDFA or OADM, an optical variable attenuator array (VOA) that dynamically controls the optical level of each channel is required.

VOAの方式には機械式と非機械式が提案されているが信頼性、可変速度の点からは非機械式が望ましい。非機械式VOAにはファラデー回転素子を用いた磁気光学方式、マッハツェンダ(MZ)干渉系を用いた電気光学方式、平面導波路(PLC)上に干渉系を設けた熱光学方式、液晶や光学結晶の偏光面を制御する偏光制御方式などがある。WDM伝送用には多チャンネルに対応できる光可変減衰器が必要でありPLC導波路(石英、LiNbO(LN),ポリマー)上に光パワーを制御する素子を搭載できる光可変減衰器アレイが集積化の点で望ましい。Mechanical and non-mechanical types have been proposed as VOA methods, but non-mechanical types are desirable in terms of reliability and variable speed. Non-mechanical VOA includes a magneto-optical system using a Faraday rotator, an electro-optical system using a Mach-Zehnder (MZ) interference system, a thermo-optical system in which an interference system is provided on a planar waveguide (PLC), a liquid crystal and an optical crystal There is a polarization control method for controlling the polarization plane of the light. For WDM transmission, an optical variable attenuator that can handle multiple channels is required, and an optical variable attenuator array that can mount optical power control elements on a PLC waveguide (quartz, LiNbO 3 (LN), polymer) is integrated. It is desirable in terms of conversion.

WDM伝送においてはEDFAを多段で利用する。EDFAには光アイソレータ、光カップラ、光サーキュレータなどの光部品が多数使われている。従って個別部品の偏波依存損失(PDL)は小さい方が望ましい。この点においてPLCを使った熱光学効果を利用したタイプは温度を制御するため基板と導波路との熱膨張係数の違いにより変化するのでPDLが0.3dB以上と大きい。偏波ダイバーシティを用いた偏光制御型もTEとTMモードの光路を分離し、処理後再び偏波を合成する方式を使うのでTE,TMモードの光路で減衰が異なりやすいのでPDLが大きい。
一方LiNbO(LN)を使ったMZ方式は本質的にPDLが5dB程度と大きい。
In WDM transmission, EDFA is used in multiple stages. Many optical parts such as optical isolators, optical couplers, and optical circulators are used in the EDFA. Therefore, it is desirable that the polarization dependent loss (PDL) of the individual components is small. In this respect, the type using the thermo-optic effect using the PLC changes depending on the difference in thermal expansion coefficient between the substrate and the waveguide in order to control the temperature, so the PDL is as large as 0.3 dB or more. The polarization control type using polarization diversity also uses a method of separating the TE and TM mode optical paths and synthesizing the polarization again after processing, so that the attenuation is easily different between the TE and TM mode optical paths, so the PDL is large.
On the other hand, the MZ method using LiNbO 3 (LN) essentially has a large PDL of about 5 dB.

以上の点から最近WDM用の光可変減衰器アレイとして非特許文献1に見られるようなPLC上に複数の導波路を形成し導波路の一部に液晶層を設け印加電圧を制御して減衰量を制御する方式が検討されている。しかしながら液晶材料と導波路との線膨張係数との差によってPDLが大きくなるという問題があった。
平林 克彦ほか2名「液晶を用いた光通信用可変光減衰器アレイ」NTT R&D Vol.51No.4、pp347−353、2002
From the above points, as a variable optical attenuator array for WDM recently, a plurality of waveguides are formed on a PLC as shown in Non-Patent Document 1, a liquid crystal layer is provided in a part of the waveguides, and the applied voltage is controlled to attenuate. A method of controlling the amount is being studied. However, there is a problem that the PDL becomes large due to the difference between the linear expansion coefficients of the liquid crystal material and the waveguide.
Katsuhiko Hirabayashi et al. “Variable optical attenuator array for optical communication using liquid crystal” NTT R & D Vol. 51No. 4, pp 347-353, 2002

本発明の目的は上記の従来技術の問題点を解決し低損失、低PDL、低価格のWDM用光可変減衰器アレイを提供することにある。An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a low loss, low PDL, and low cost optical variable attenuator array for WDM.

上記の目的を達成するために本発明に係わる光可変減衰器は基板上に形成した電極上に複数の樹脂光導波路を形成し該導波路にグレーデッド型多モード光導波路を形成し該多モード光導波路中に溝を形成し該溝に注入された液晶に該電極によって電圧を光の伝播方向と垂直に印加すると同時に発熱させ導波路の屈折率を調整させることを特徴とする構造を採用した。In order to achieve the above object, an optical variable attenuator according to the present invention includes a plurality of resin optical waveguides formed on an electrode formed on a substrate, and a graded multimode optical waveguide is formed in the waveguide. Adopted a structure characterized in that a groove is formed in the optical waveguide, and a voltage is applied to the liquid crystal injected into the groove perpendicularly to the light propagation direction and at the same time, heat is generated and the refractive index of the waveguide is adjusted. .

以上説明したように本発明の光可変減衰器アレイは小型、低PDL、低コストという特徴を有するためEDFAを用いるWDM伝送システムに適用されれば長距離・大容量伝送が実現できるのみならずOADMを用いたダイナミックな光ネットワークが実現でき今後の急増するトラフィックニーズに対応できる。As described above, the optical variable attenuator array of the present invention has features of small size, low PDL, and low cost. Therefore, when it is applied to a WDM transmission system using EDFA, it can realize not only long distance and large capacity transmission but also OADM. It is possible to realize a dynamic optical network using the network and respond to the rapidly increasing traffic needs in the future.

図1以下の図を用いて本発明光可変減衰器アレイの構造および製造方法の一つの実施例を説明する。図1は基板1に下部電極2をパターニングした状態図を示す。図2はポリシランを材料とするアンダークラッド部3を紫外線レーザ4を用いて形成する状態図を示す。ここで使用する紫外線レーザの波長でポリシラン材料をフォトブリーチングする最適の波長は250〜350nmであり、He−Cdレーザ、エキシマレーザ、YAGレーザの高調波が適している。ここで基板1に紫外線透過ガラスを用いて基板の下側から紫外線を照射することにより徐々に屈折率を変化したアンダークラッド層を形成する方法を用いる。その後図3に示すようにシングルモードコア部5とマルチモードコア部6を同様の材料を用いて紫外線レーザ4を用いて形成する。同様に図4でオーバークラッド部7を紫外線レーザ4を用いて形成する。その後図5に示すようにオーバークラッド部7に上部電極8をパターニングし形成する。電極に電圧を印加し発熱させ温度を所定に制御しベーキングすることによって導波路のコア部の屈折率を最終的に所定の値に制御する。次に図6に示すようにダイサー9によって液晶を注入する液晶溝11を形成する。その後図7に示すように壁面と下部に上部電極8を有し注入孔12を有する液晶部カバー10を被せ、オーバークラッド部7上の上部電極8と液晶部カバー10の上部電極8どうしを接続する。次に図8のように液晶13を注入孔12から注入し封じる。その後図9に示すように光ファイバアレイ(1)14,光ファイバアレイ(2)15と光導波路部16と結合する。図10はパッケージ化された光可変減衰器アレイ17を示す。An embodiment of the structure and manufacturing method of the optical variable attenuator array of the present invention will be described with reference to FIG. FIG. 1 shows a state diagram in which a lower electrode 2 is patterned on a substrate 1. FIG. 2 shows a state diagram in which an underclad portion 3 made of polysilane is formed using an ultraviolet laser 4. The optimum wavelength for photobleaching the polysilane material with the wavelength of the ultraviolet laser used here is 250 to 350 nm, and the harmonics of He-Cd laser, excimer laser, and YAG laser are suitable. Here, a method is used in which an ultraviolet ray transmitting glass is used for the substrate 1 to form an under cladding layer whose refractive index is gradually changed by irradiating ultraviolet rays from the lower side of the substrate. Thereafter, as shown in FIG. 3, the single mode core portion 5 and the multimode core portion 6 are formed using the same material and using the ultraviolet laser 4. Similarly, the overclad portion 7 is formed using the ultraviolet laser 4 in FIG. After that, as shown in FIG. 5, the upper electrode 8 is patterned and formed on the over clad portion 7. By applying a voltage to the electrodes to generate heat, the refractive index of the core portion of the waveguide is finally controlled to a predetermined value by baking at a predetermined temperature. Next, as shown in FIG. 6, a liquid crystal groove 11 for injecting liquid crystal is formed by a dicer 9. Then, as shown in FIG. 7, the liquid crystal part cover 10 having the upper electrode 8 on the wall surface and the lower part and having the injection hole 12 is covered, and the upper electrode 8 on the over clad part 7 and the upper electrode 8 of the liquid crystal part cover 10 are connected to each other. To do. Next, the liquid crystal 13 is injected from the injection hole 12 and sealed as shown in FIG. Thereafter, as shown in FIG. 9, the optical fiber array (1) 14, the optical fiber array (2) 15 and the optical waveguide portion 16 are coupled. FIG. 10 shows a packaged optical variable attenuator array 17.

ここで使用した液晶は非特許文献1に示されているような紫外線硬化樹脂とネマティック液晶を混合したポリマーネットワーク液晶(大日本インク工業株式会社の商品名)を用いた。この種の液晶は電圧が印加されていないときには高分子がランダムな方向を向いており伝播する光が散乱されて損失になる。一方電圧を印加すると液晶はその電界方向に揃い配向が揃い光が透過するようになる。ここではまた前記液晶とは異なるスメクチック液晶を用いた。この種の液晶は電圧印加と共に熱を加えることにより自己保持機能、すなわち光の透過率を電圧印加せずに保持できる機能を有する。The liquid crystal used here was a polymer network liquid crystal (trade name of Dainippon Ink & Chemicals, Inc.) in which an ultraviolet curable resin and a nematic liquid crystal as shown in Non-Patent Document 1 were mixed. In this type of liquid crystal, when no voltage is applied, the polymer is oriented in a random direction and the propagating light is scattered and lost. On the other hand, when a voltage is applied, the liquid crystals are aligned in the direction of the electric field and aligned so that light is transmitted. Here, another smectic liquid crystal different from the liquid crystal is used. This type of liquid crystal has a self-holding function, that is, a function capable of holding the light transmittance without applying a voltage by applying heat together with voltage application.

光減衰器の損失は溝の厚み、液晶の種類、紫外線硬化条件などに依存する。特に導波路コアから出射した光ビームが拡散するので溝の厚みを大きくすると損失が大きくなったり印加電圧が大きくなるという難点があった。本発明ではマルチモード導波路の部分がコリメータレンズの機能を有するので光が液晶中を平行ビームで伝播するため厚みを大きくしても低損失かつ可変範囲を大きくとれるという特徴がある。The loss of the optical attenuator depends on the groove thickness, the type of liquid crystal, UV curing conditions, and the like. In particular, since the light beam emitted from the waveguide core is diffused, there is a problem that when the thickness of the groove is increased, the loss increases or the applied voltage increases. In the present invention, since the multi-mode waveguide portion has the function of a collimator lens, light propagates through the liquid crystal in a parallel beam, so that the loss can be increased and the variable range can be increased even if the thickness is increased.

従来の光可変減衰器アレイではレンズ機能を有するマルチモード導波路を使っていないので導波路コアから出射する光ビームはNAに依存した角度を有する。一般に光媒質に角度を持って光が入射すると偏光によって減衰量が異なるいわゆる偏波依存損失PDLが発生する。本発明では液晶媒質を平行ビームが伝播するのでPDLも低いという特徴がある。Since the conventional optical variable attenuator array does not use a multimode waveguide having a lens function, the light beam emitted from the waveguide core has an angle depending on NA. In general, when light is incident on an optical medium at an angle, a so-called polarization-dependent loss PDL in which the amount of attenuation differs depending on the polarization is generated. The present invention is characterized in that the PDL is low because the parallel beam propagates through the liquid crystal medium.

一方従来の光可変減衰器アレイでは溝の両端面に透明電極ITOを形成する必要があり垂直に蒸着するなどの複雑な製造方法が必要になるという難点があった。もちろん本発明のマルチモード導波路を用いれば従来の透明電極を用いる方式においても低挿入損失、低PDLという進歩性はあると言える。しかし本発明によれば必ずしも透明電極を必要とせず光の伝播方向と垂直な方向から電界を印加できるので工程が簡略化されるため低価格化が可能である。また図7の液晶部カバー10の内面の上部電極8をコアまで接近させることができるので低電圧化も可能となる。On the other hand, in the conventional optical variable attenuator array, it is necessary to form transparent electrodes ITO on both end faces of the groove, and there is a difficulty that a complicated manufacturing method such as vertical deposition is required. Of course, if the multimode waveguide of the present invention is used, it can be said that there is an inventive step of low insertion loss and low PDL even in a conventional method using a transparent electrode. However, according to the present invention, a transparent electrode is not necessarily required, and an electric field can be applied from a direction perpendicular to the light propagation direction, so that the process is simplified and the cost can be reduced. Further, since the upper electrode 8 on the inner surface of the liquid crystal part cover 10 in FIG. 7 can be brought close to the core, the voltage can be lowered.

実際のWDMシステムに本発明光可変減衰器アレイを適用する場合には光減衰器の後段で光レベルをモニターし光可変減衰器にフィードバックする必要がある場合がある。すなわち本発明光可変減衰器は信号制御回路と組み合わされて使用される。この場合の信号制御回路はCPUと電圧印加部とEEROMからなる。図11は本発明光可変減衰器に信号制御回路を付加する場合の温度特性、波長特性の自動校正法を示す構成図である。すなわち本発明光可変減衰器17を温度センサー18とともに恒温槽19に入れ波長可変レーザ20の波長を選択し温度を変えながら信号処理部21の電圧印加部22からの印加電圧と光可変減衰器17の出力の関係を測定し記憶させるものである。光減衰量は予め測定された入射レーザ光と受光器26の出力の比から求められる。このようにして測定された光可変減衰器の減衰量の温度特性はCPU24を介してEEROM25に記憶される。以上の手順を波長を変えて行うことで波長と温度の校正テーブルが作成できる。このようにして補正テーブルを有するEEROM25と電圧印加部22を備えた信号処理回路と本発明光可変減衰器とを組合わせれば温度に依存しない電気的に減衰量が制御できる光可変減衰器アレイが構成できる。電流印加部23はスメクティック液晶の場合に減衰量を変化させたい場合に使用される。When the optical variable attenuator array of the present invention is applied to an actual WDM system, it may be necessary to monitor the optical level after the optical attenuator and feed it back to the optical variable attenuator. That is, the optical variable attenuator of the present invention is used in combination with a signal control circuit. In this case, the signal control circuit includes a CPU, a voltage application unit, and an EEROM. FIG. 11 is a block diagram showing an automatic calibration method for temperature characteristics and wavelength characteristics when a signal control circuit is added to the optical variable attenuator of the present invention. That is, the optical variable attenuator 17 of the present invention is placed in the thermostatic chamber 19 together with the temperature sensor 18, and the applied voltage from the voltage applying unit 22 of the signal processing unit 21 and the optical variable attenuator 17 are selected while changing the temperature by selecting the wavelength of the wavelength tunable laser 20. The output relationship is measured and stored. The amount of light attenuation is obtained from the ratio of the incident laser light measured in advance and the output of the light receiver 26. The temperature characteristic of the attenuation amount of the optical variable attenuator thus measured is stored in the EEROM 25 via the CPU 24. A wavelength and temperature calibration table can be created by performing the above procedure while changing the wavelength. By combining the signal processing circuit having the EEROM 25 having the correction table and the voltage application unit 22 and the optical variable attenuator of the present invention in this way, an optical variable attenuator array capable of electrically controlling the amount of attenuation independent of temperature is obtained. Can be configured. The current application unit 23 is used when it is desired to change the attenuation in the case of a smectic liquid crystal.

基板に下部電極をパターニングした状態図State diagram of patterning the bottom electrode on the substrate アンダークラッドを紫外線レーザを用いて形成する状態図Phase diagram of forming the underclad using an ultraviolet laser コア部を紫外線レーザを用いて形成する状態図State diagram of forming the core using an ultraviolet laser オーバークラッド部を紫外線レーザを用いて形成する状態図Phase diagram of forming the over clad part using an ultraviolet laser 上部クラッドに上部電極をパターニングした状態図State diagram of upper electrode patterned on upper clad ダイサーによる溝形成法Grooving method with dicer 上部電極カバーと溝付導波路の位置関係図Positional relationship between upper electrode cover and grooved waveguide 液晶を溝に注入する方法図How to inject liquid crystal into the groove ファイバアレイと結合したモジュールModule combined with fiber array パッケージされた光可変減衰器アレイモジュールPackaged optical variable attenuator array module 光可変減衰器の温度、波長自動校正法Temperature and wavelength automatic calibration method of variable optical attenuator

符号の説明Explanation of symbols

1 基板
2 下部電極
3 アンダークラッド部
4 紫外線レーザ
5 シングルモードコア部
6 マルチモードコア部
7 オーバークラッド部
8 上部電極
9 ダイサー
10 液晶部カバー
11 液晶溝
12 注入孔
13 液晶
14 光ファイバアレイ(1)
15 光ファイバアレイ(2)
16 光導波路部
17 本発明光可変減衰器
18 温度センサ
19 恒温槽
20 波長可変光源
21 信号処理部
22 電圧印加部
23 電流印加部
24 CPU
25 EEROM
26 受光器
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower electrode 3 Under clad part 4 Ultraviolet laser 5 Single mode core part 6 Multi mode core part 7 Over clad part 8 Upper electrode 9 Dicer 10 Liquid crystal part cover 11 Liquid crystal groove 12 Injection hole 13 Liquid crystal 14 Optical fiber array (1)
15 Optical fiber array (2)
16 Optical waveguide part 17 Optical variable attenuator 18 of this invention Temperature sensor 19 Constant temperature bath 20 Wavelength variable light source 21 Signal processing part 22 Voltage application part 23 Current application part 24 CPU
25 EEROM
26 Receiver

Claims (3)

シングルモード光導波路中に屈折率グレーデッド型マルチモード光導波路を有しそのマルチモード光導波路中に溝を設け該溝に液晶を埋めた構造を有する光可変減衰器アレイOptical variable attenuator array having a structure in which a refractive index graded multimode optical waveguide is provided in a single mode optical waveguide, and a groove is provided in the multimode optical waveguide and liquid crystal is filled in the groove. 請求項1における光導波路が基板上に形成した電極上にポリシラン光導波路で形成されることを特徴とする光可変減衰器アレイ2. The optical variable attenuator array according to claim 1, wherein the optical waveguide is formed of a polysilane optical waveguide on an electrode formed on a substrate. 請求項1において電極は該液晶に光の伝播方向と垂直あるいは平行あるいは2次元的に電圧をかけ透過率を変える機能と熱を発生させる機能とを同時に有する構造を有することを特徴とする光可変減衰器アレイ2. The variable light according to claim 1, wherein the electrode has a structure having a function of changing the transmittance by applying a voltage to the liquid crystal perpendicularly, in parallel or two-dimensionally with the light propagation direction and generating heat. Attenuator array
JP2004370168A 2004-11-25 2004-11-25 Optical variable attenuator array Pending JP2006154687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370168A JP2006154687A (en) 2004-11-25 2004-11-25 Optical variable attenuator array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370168A JP2006154687A (en) 2004-11-25 2004-11-25 Optical variable attenuator array

Publications (1)

Publication Number Publication Date
JP2006154687A true JP2006154687A (en) 2006-06-15

Family

ID=36633035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370168A Pending JP2006154687A (en) 2004-11-25 2004-11-25 Optical variable attenuator array

Country Status (1)

Country Link
JP (1) JP2006154687A (en)

Similar Documents

Publication Publication Date Title
US6628850B1 (en) Dynamic wavelength-selective grating modulator
US7224881B2 (en) Variable optical attenuator
CA2276489A1 (en) Stable nonlinear mach-zehnder fiber switch
CN104838309A (en) Optical device
KR20150032758A (en) Optical amplifier for multi-core optical fiber
Takahashi Planar lightwave circuit devices for optical communication: present and future
JP2006154687A (en) Optical variable attenuator array
JP2005062500A (en) Thermo-optical variable optical attenuator and array type variable optical attenuator using the same
JP2004055717A (en) Variable light gain control device
Eldada Photonic integrated circuits
Blasl et al. Polarization insensitive variable optical attenuator based on field induced waveguides with a liquid crystal core
JP2005235867A (en) Laser diode module
Ke et al. All-optical controlled variable optical attenuator using photochromic sol gel material
Hirabayashi et al. Liquid-crystal level equalizer arrays on fiber arrays
CA2300941A1 (en) Multiple-window dense wavelength division multiplexed communications link with optical amplification and dispersion compensation
Eldada Telecom optical componentry: past, present, future
US7405855B2 (en) Reconfigurable optical filter
Frolov et al. EDWA: key enabler of optical integration on PLC
US6532322B1 (en) Channel equalizer with acousto-optic variable attenuators
Eldada et al. Hybrid organic-inorganic optoelectronic subsystems on a chip
US8077748B1 (en) Hybrid waveguide laser with a fiber gain medium
WO2024123247A1 (en) Optical power limiter
Bona Integrated optical planar waveguide components
KR20020057717A (en) In-line type variable fiber-optic attenuator
Vonsovici et al. AOSC multichannel electronic variable optical attenuator