JP2006153360A - Heat exchanger and its manufacturing method - Google Patents

Heat exchanger and its manufacturing method Download PDF

Info

Publication number
JP2006153360A
JP2006153360A JP2004345389A JP2004345389A JP2006153360A JP 2006153360 A JP2006153360 A JP 2006153360A JP 2004345389 A JP2004345389 A JP 2004345389A JP 2004345389 A JP2004345389 A JP 2004345389A JP 2006153360 A JP2006153360 A JP 2006153360A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
substrate
exchanger according
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004345389A
Other languages
Japanese (ja)
Inventor
Mitsunori Taniguchi
光徳 谷口
Osao Kido
長生 木戸
Kiyoshi Kinoshita
清志 木下
Takashi Okuya
隆 奥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004345389A priority Critical patent/JP2006153360A/en
Priority to US11/720,135 priority patent/US20080121387A1/en
Priority to PCT/JP2005/021228 priority patent/WO2006059498A1/en
Priority to CN 200580041119 priority patent/CN101069057A/en
Priority to KR1020077012103A priority patent/KR20070088654A/en
Priority to TW094141875A priority patent/TW200630581A/en
Publication of JP2006153360A publication Critical patent/JP2006153360A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive heat exchanger capable of preventing the impairing of heat exchanging performance caused by clogging of tubes. <P>SOLUTION: A plurality of tube bundle blocks 40 composed of a plurality of tubes 10 communicated with a number of through holes of bases 20, and mounted approximately vertically from surfaces of the bases 20, are mounted between the bases 20 having a number of through holes, the tube bundle blocks 40 are stacked through spacers 30 mounted on the circumference of back faces of the bases 20, mixing chambers 70 are respectively formed between the tube bundle blocks 40, and the tubes 10, the bases 20 and the spacers 30 are integrally molded, thus an area where the internal fluid is not circulated because of clogging of a part of the tube bundles, can be narrowed to the tube bundle one block, and the significant lowering of heat exchanging quantity can be prevented. Further as it is unnecessary to make joining of the tube 10 and the base 20, and the base 20 and the spacer 30 anew, the man hour and costs can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は冷却システム、放熱システムや加熱システム等用の熱交換器に関するもので、特に情報機器などコンパクト性を要求されるシステムで使用される液体と気体の熱交換器及びその製造方法に関するものである。   The present invention relates to a heat exchanger for a cooling system, a heat dissipation system, a heating system, and the like, and more particularly to a liquid and gas heat exchanger used in a system that requires compactness such as information equipment and a method for manufacturing the same. is there.

従来、この種の熱交換器としては、管とフィンとから構成されたものが一般的であるが、近年はそのコンパクト化を図るために、管径及び管ピッチを小さくし、管を高密度化する傾向にある。その極端な形態としては、管外径が0.5mm程度の非常に細い管のみから熱交換部が構成されたものがある(例えば、特許文献1参照)。   Conventionally, this type of heat exchanger is generally composed of tubes and fins. However, in recent years, in order to achieve compactness, the tube diameter and tube pitch are reduced, and the tubes are made dense. It tends to become. As an extreme form thereof, there is one in which the heat exchanging portion is composed only of a very thin tube having a tube outer diameter of about 0.5 mm (for example, see Patent Document 1).

図15は、特許文献1に記載された従来の熱交換器の正面図である。   FIG. 15 is a front view of a conventional heat exchanger described in Patent Document 1. FIG.

図15に示すように、従来の熱交換器は、所定間隔を置いて対向配置される入口タンク1と出口タンク2と、入口タンク1と出口タンク2の間に断面円環の複数の管3が配置され、管3の外部を外部流体が流通されるコア部4が構成されている。管3内を流通する内部流体としては主に水や不凍液が用いられ、外部流体としては空気が主流であり、それぞれが流通し、熱交換を行う。   As shown in FIG. 15, the conventional heat exchanger includes an inlet tank 1 and an outlet tank 2 which are arranged to face each other at a predetermined interval, and a plurality of tubes 3 having a circular cross section between the inlet tank 1 and the outlet tank 2. Is arranged, and a core portion 4 is formed through which an external fluid flows through the outside of the tube 3. Water or antifreeze is mainly used as an internal fluid that circulates in the pipe 3, and air is mainly used as an external fluid, and each circulates and performs heat exchange.

そして、管3を碁盤目状に配置するとともに、管3の外径を0.2mm以上0.8mm以下とし、隣接する管3のピッチを管外径で除した値を0.5以上3.5以下とすることで、使用動力に対する熱交換量を大幅に向上できるとしている。
特開2001−116481号公報
And while arrange | positioning the pipe | tube 3 in grid shape, the outer diameter of the pipe | tube 3 shall be 0.2 mm or more and 0.8 mm or less, and the value which remove | divided the pitch of the adjacent pipe | tube 3 by the pipe outer diameter is 0.5 or more. By setting it to 5 or less, it is said that the amount of heat exchange for the power used can be greatly improved.
JP 2001-116481 A

しかしながら、上記従来の構成では管3が非常に微細であるため、内部流体の循環経路内に侵入した微小な塵、埃でも管3を目詰まりさせてしまい、管3の内部流体入口で目詰まりをおこすと管3は熱交換しなくなり、熱交換量が著しく低下するという課題があった。   However, since the pipe 3 is very fine in the conventional configuration, the pipe 3 is clogged even by minute dust or dust that has entered the circulation path of the internal fluid, and is clogged at the internal fluid inlet of the pipe 3. When this occurs, there is a problem in that the tube 3 does not exchange heat and the amount of heat exchange is significantly reduced.

また、上記従来の熱交換器を構成する具体的な要素や製造方法については示されていないが、一般的には、多数の細い管3と、特定の面に多数の細かい円孔を予め空けた入口タンク1と出口タンク2を用意し、入口タンク1及び出口タンク2の円孔に管3の両端を挿入し、溶接等によって管3の挿入部を入口タンク1及び出口タンク2に接着する方法が考えられ、入口タンク1や出口タンク2に管3の挿入用の微細な円孔を所定の微細なピッチで設けることと、非常に多くの管3を入口タンク1や出口タンク2に挿入し接着する工程が非常に困難であり、熱交換性能が高くても、非常に高価であるという課題も有していた。   Although specific elements and manufacturing methods constituting the conventional heat exchanger are not shown, in general, a large number of thin tubes 3 and a large number of fine circular holes on a specific surface are previously formed. The inlet tank 1 and the outlet tank 2 are prepared, both ends of the pipe 3 are inserted into the circular holes of the inlet tank 1 and the outlet tank 2, and the insertion portion of the pipe 3 is bonded to the inlet tank 1 and the outlet tank 2 by welding or the like. The method can be considered, and the inlet tank 1 and the outlet tank 2 are provided with fine holes for inserting the pipes 3 at a predetermined fine pitch, and a large number of pipes 3 are inserted into the inlet tank 1 and the outlet tank 2. However, the bonding process is very difficult, and even if the heat exchange performance is high, there is a problem that it is very expensive.

本発明は、上記従来の課題を解決するもので、管3が目詰まりをおこしても著しく熱交換量が低下しない熱交換器を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a heat exchanger in which the amount of heat exchange is not significantly reduced even when the tube 3 is clogged.

また、本発明は非常に優れた熱交換性能を維持しながら、安価な熱交換器を提供することを目的とする。   Another object of the present invention is to provide an inexpensive heat exchanger while maintaining very excellent heat exchange performance.

上記従来の課題を解決するために、本発明の熱交換器は多数の貫通穴を備えた基板間に管内が前記貫通穴と連通し前記基板の表面から略垂直に設けられた複数の管から構成される管群ブロックが混合室を介して複数積層されたものである。   In order to solve the above-described conventional problems, a heat exchanger according to the present invention includes a plurality of tubes provided in a tube between a plurality of through-holes that communicate with the through-holes and are substantially perpendicular to the surface of the substrate. A plurality of configured tube group blocks are stacked through a mixing chamber.

これにより、管群の一部が目詰まりしても管群ブロック出口の混合室で内部流体が混合され次の管群ブロックへと流れるため、目詰まりをおこして内部流体が流通しない領域は管群一ブロック分で抑えることができる。   As a result, even if a part of the tube group is clogged, the internal fluid is mixed in the mixing chamber at the outlet of the tube group block and flows to the next tube group block. It can be suppressed by one block in the group.

また、本発明の熱交換器は、前記混合室が前記基板の背面と前記基板の背面の一部に取り付けたスペーサーにより構成されたことを特徴とするものである。   Moreover, the heat exchanger of the present invention is characterized in that the mixing chamber is constituted by a spacer attached to the back surface of the substrate and a part of the back surface of the substrate.

これにより、スペーサーで混合室の高さを容易に位置決めすることができる。   Thereby, the height of the mixing chamber can be easily positioned by the spacer.

また、本発明の熱交換器は、前記混合室が前記基板の背面と前記基板の周上に設けられた前記スペーサーにより構成されたことを特徴とするものである。   Moreover, the heat exchanger of the present invention is characterized in that the mixing chamber is constituted by the spacer provided on the back surface of the substrate and on the periphery of the substrate.

これにより、スペーサーで混合室の側壁を形成することができる。   Thereby, the side wall of a mixing chamber can be formed with a spacer.

また、本発明の熱交換器は管内に複数の流路を備えた多穴管を用いることを特徴としたものである。   The heat exchanger of the present invention is characterized by using a multi-hole tube having a plurality of flow paths in the tube.

これにより、内部流体の流路数を確保しながら管本数が低減できる。   Thereby, the number of tubes can be reduced while ensuring the number of flow paths of the internal fluid.

また、本発明の熱交換器は多穴管の断面形状を扁平状とし、管内の流路を長辺方向に配列するとともに、多穴管は多穴管相互で長辺方向が平行となるように間隔を空けて基板上に配列したものである。   In the heat exchanger of the present invention, the cross-sectional shape of the multi-hole tube is flattened, the flow paths in the tube are arranged in the long side direction, and the multi-hole pipes are parallel to each other in the long side direction. Are arranged on the substrate at intervals.

これにより、円管のように外部流体の後流側で外部流体の流路が拡大されることがなく外部流体の流速が増すため、外部流体と管の熱伝達率が向上し、熱交換量を向上させることができる。   This increases the flow rate of the external fluid without expanding the flow path of the external fluid on the downstream side of the external fluid as in the case of a circular tube, improving the heat transfer coefficient between the external fluid and the tube, and the amount of heat exchange. Can be improved.

また、本発明の熱交換器は管群、基板及びスペーサーを一体成形したものである。   Further, the heat exchanger of the present invention is an integral molding of a tube group, a substrate and a spacer.

これにより、管と基板及び基板とスペーサーを改めて接合する必要が無い。   Thereby, it is not necessary to newly join the tube and the substrate and the substrate and the spacer.

また、本発明の熱交換器は管群ブロック相互を直接接合して積層したものである。   Further, the heat exchanger of the present invention is obtained by directly joining and stacking tube group blocks.

これにより、ロウ材で管内流路を目詰まりさせることはない。   As a result, the pipe flow path is not clogged with the brazing material.

また、本発明の熱交換器は拡散接合で接合したものである。   The heat exchanger of the present invention is joined by diffusion bonding.

また、本発明の熱交換器は超音波接合で接合したものである。   The heat exchanger of the present invention is joined by ultrasonic joining.

これにより、基材自体も溶融しないため、管内流路を目詰まりさせることはない。   Thereby, since the base material itself does not melt, the flow path in the tube is not clogged.

また、本発明の熱交換器は管群ブロック及びスペーサーが樹脂材料で製作したものである。   In the heat exchanger of the present invention, the tube group block and the spacer are made of a resin material.

これにより、比較的安価な材料である樹脂を用いることにより、材料費が低減できる。   Thereby, material cost can be reduced by using resin which is a comparatively cheap material.

また、本発明の熱交換器は流動性がよい低粘度の樹脂材料で製作したものである。   The heat exchanger according to the present invention is made of a low viscosity resin material having good fluidity.

これにより、射出成形により製作する場合、微細な管形状であっても端部まで樹脂を供給することができ、不良品の数を低減できる。   Thereby, when manufacturing by injection molding, even if it is a fine tube shape, resin can be supplied to an edge part and the number of inferior goods can be reduced.

また、本発明の熱交換器は蒸気透過率が小さい樹脂材料で製作したものである。   The heat exchanger according to the present invention is made of a resin material having a low vapor permeability.

これにより、内部流体として水や不凍液を用いた場合、熱交換器からの内部流体の透過量を低減でき、管壁を薄くすることができる。   Thereby, when water or antifreeze is used as the internal fluid, the permeation amount of the internal fluid from the heat exchanger can be reduced, and the tube wall can be made thin.

また、本発明の熱交換器はポリプロピレン(PP)またはポリエチレンテレフタレート(PET)で製作したものである。   The heat exchanger of the present invention is made of polypropylene (PP) or polyethylene terephthalate (PET).

これにより、端部まで樹脂を供給することができ、かつ管壁を薄くすることができる。   Thereby, resin can be supplied to an edge part and a pipe wall can be made thin.

本発明の熱交換器は、内部流体流通方向に細分化しており、管群の一部が目詰まりをおこしても内部流体が流通しない領域を管群一ブロック分にすることができ熱交換量の著しい低下を防ぐことができる。   The heat exchanger of the present invention is subdivided in the direction of internal fluid flow, and even if a part of the tube group is clogged, the region where the internal fluid does not flow can be made into one block of the tube group. Can be prevented.

また本発明の熱交換器は、混合室が基板の背面と基板の背面の一部に取り付けたスペーサーにより構成されており、スペーサーで混合室の高さを容易に位置決めできるため、工数の低減が図れ安価に提供できる。   In the heat exchanger of the present invention, the mixing chamber is composed of a spacer attached to the back surface of the substrate and a part of the back surface of the substrate, and the height of the mixing chamber can be easily positioned by the spacer, so the number of man-hours can be reduced. It can be provided inexpensively.

また本発明の熱交換器は、混合室が基板の背面と基板の周上に設けられたスペーサーにより構成されており、スペーサーで混合室の側壁を形成できるため、改めて側壁を設ける必要が無く、安価に提供できる。   Further, in the heat exchanger of the present invention, the mixing chamber is composed of a spacer provided on the back surface of the substrate and the periphery of the substrate, and the side wall of the mixing chamber can be formed with the spacer, so there is no need to provide a side wall again. Can be provided at low cost.

また本発明の熱交換器は、複数の流路を設けた多穴管を用いることで、内部流体の流路数を確保しながら、基板と接合する管本数を低減することができるため、工数を低減でき安価に提供できる。   Further, the heat exchanger of the present invention can reduce the number of pipes bonded to the substrate while securing the number of flow paths of the internal fluid by using a multi-hole pipe provided with a plurality of flow paths. Can be provided at low cost.

また本発明の熱交換器は、多穴管の断面形状を扁平状にし、管内の流路を長辺方向に配列するとともに、多穴管は多穴管相互で長辺方向が平行となるように間隔を空けて基板上に配列したため、外部流体の流路幅を小さくすることができ風速が大きくなるため、外部流体と管の熱伝達率が向上し、熱交換量を向上することができ、管が目詰まりすることによる熱交換量の低下の一部をカバーでき、著しい熱交換量の低下を防ぐことができる。   In the heat exchanger of the present invention, the cross-sectional shape of the multi-hole tube is flattened, the flow paths in the tube are arranged in the long side direction, and the multi-hole pipes are parallel to each other. Since they are arranged on the substrate with a space between them, the flow width of the external fluid can be reduced and the wind speed is increased, so that the heat transfer coefficient between the external fluid and the tube is improved, and the amount of heat exchange can be improved. A part of the decrease in the heat exchange amount due to the clogging of the tube can be covered, and a significant decrease in the heat exchange amount can be prevented.

また本発明の熱交換器は、管群、基板及びスペーサーを一体成形することにより、管と基板及び基板とスペーサーを改めて接合する必要が無く、工数の低減が図れ安価に提供できる。   The heat exchanger of the present invention can be provided at a low cost by reducing the number of man-hours by integrally forming the tube group, the substrate and the spacer, thereby eliminating the need to join the tube and the substrate and the substrate and the spacer again.

また本発明の熱交換器は、管群ブロック相互を直接接合して製作するため、ロウ材で内部流体の流路を目詰まりさせることはなく、不良品の数を低減することができ、安価に提供できる。   In addition, since the heat exchanger of the present invention is manufactured by directly joining the tube group blocks, the flow path of the internal fluid is not clogged with the brazing material, the number of defective products can be reduced, and the cost is low. Can be provided.

また本発明の熱交換器は、拡散接合で接合したことにより、基材自体も溶融しないため、さらに内部流体の流路を目詰まりさせることはなく、さらに不良品の数を低減することができ、さらに安価に提供することができる。   In addition, since the base material itself does not melt because the heat exchanger of the present invention is joined by diffusion bonding, the internal fluid flow path is not clogged, and the number of defective products can be further reduced. It can be provided at a lower cost.

また本発明の熱交換器は、超音波接合で接合したことにより、基材自体も溶融しないため、さらに内部流体の流路を目詰まりさせることはなく、さらに不良品の数を低減することができ、さらに安価に提供することができる。   In addition, since the base material itself does not melt because the heat exchanger of the present invention is joined by ultrasonic joining, the internal fluid flow path is not clogged, and the number of defective products can be further reduced. Can be provided at a lower cost.

また本発明の熱交換器は、管群ブロック及びスペーサーが樹脂材料で製作されているため、直材費を低減することができ、安価に提供できる。   Moreover, since the tube group block and the spacer are made of a resin material, the heat exchanger of the present invention can reduce the direct material cost and can be provided at low cost.

また本発明の熱交換器は、流動性がよい低粘度の樹脂材料で製作したため、射出成形により製作する場合、微細な管形状であっても端部まで樹脂を供給することができ、不良品の数を低減することができ、安価に提供できる。   In addition, since the heat exchanger of the present invention is manufactured from a low-viscosity resin material with good fluidity, when manufactured by injection molding, the resin can be supplied to the end even if it is in a fine tube shape. Can be provided at low cost.

また本発明の熱交換器は、蒸気透過率が小さい樹脂材料で製作したものであり、内部流体として水や不凍液を用いた場合、熱交換器からの内部流体の透過量を低減でき、管壁を薄くできるため安価に提供できる。   The heat exchanger of the present invention is manufactured from a resin material having a low vapor permeability. When water or antifreeze is used as the internal fluid, the amount of permeation of the internal fluid from the heat exchanger can be reduced, and the tube wall Can be provided at low cost.

また本発明の熱交換器は、ポリプロピレン(PP)またはポリエチレンテレフタレート(PET)で製作したものであり、端部まで樹脂を供給することができ、不良品の数を低減することができる。かつ管壁を薄くすることができる。これらにより、熱交換器を安価に提供できる。   The heat exchanger according to the present invention is made of polypropylene (PP) or polyethylene terephthalate (PET), and can supply resin to the end portion, thereby reducing the number of defective products. In addition, the tube wall can be made thin. As a result, the heat exchanger can be provided at low cost.

請求項1に記載の発明は、多数の貫通穴を備えた基板間に管内が前記貫通穴と連通し前記基板の表面から略垂直に設けられた複数の管から構成される管群ブロックが混合室を介して複数積層された熱交換器であり、内部流体の流通方向に細分化しており、管群の一部が目詰まりをおこしても内部流体が流通しない領域を管群一ブロック分にすることができ熱交換量の著しい低下を防ぐことができる。   According to the first aspect of the present invention, a tube group block composed of a plurality of tubes in which the inside of a tube communicates with the through hole between the substrates having a plurality of through holes and is provided substantially perpendicularly from the surface of the substrate is mixed. This is a heat exchanger that is stacked in multiple layers through the chamber, and is subdivided in the flow direction of the internal fluid, and even if part of the tube group is clogged, the area where the internal fluid does not flow is divided into one block of the tube group It is possible to prevent a significant decrease in the amount of heat exchange.

請求項2に記載の発明は、請求項1に記載の発明の熱交換器の混合室が前記基板の背面と前記基板の背面の一部に取り付けたスペーサーにより構成されたものであり、スペーサーで混合室の高さを容易に位置決めできるため、工数の低減が図れ安価に提供できる。   The invention according to claim 2 is such that the mixing chamber of the heat exchanger according to claim 1 is constituted by a spacer attached to the back surface of the substrate and a part of the back surface of the substrate. Since the height of the mixing chamber can be easily positioned, man-hours can be reduced and the mixing chamber can be provided at a low cost.

請求項3に記載の発明は、請求項2に記載の発明の熱交換器の混合室が基板の背面と基板の周上に設けられたスペーサーにより構成されており、スペーサーで混合室の側壁を形成できるため、改めて側壁を設ける必要が無く、安価に提供できる。   In the invention described in claim 3, the mixing chamber of the heat exchanger of the invention described in claim 2 is configured by a spacer provided on the back surface of the substrate and on the periphery of the substrate, and the side wall of the mixing chamber is formed by the spacer. Since it can be formed, it is not necessary to provide a side wall again and can be provided at low cost.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明の熱交換器に管内に複数の流路を備えた多穴管を用いたものであり、内部流体の流路数を確保しながら、基板と接合する管本数を低減することができるため、工数を削減でき安価に提供できる。   Invention of Claim 4 uses the multi-hole pipe | tube provided with the several flow path in the pipe | tube to the heat exchanger of invention of any one of Claim 1 to 3, and is the inside fluid. Since the number of pipes to be bonded to the substrate can be reduced while securing the number of flow paths, the number of man-hours can be reduced and it can be provided at low cost.

請求項5に記載の発明は、請求項4に記載の発明の前記多穴管の断面形状を扁平状とし、管内の前記流路を長辺方向に配列するとともに、前記多穴管は前記多穴管相互で長辺方向が略平行となるように間隔を空けて前記基板上に配列したものであり、外部流体の流路幅を小さくすることができ風速が大きくなるため、外部流体と管の熱伝達率が向上し、熱交換量を向上することができ、管が目詰まりすることによる熱交換量の低下の一部をカバーでき、著しい熱交換量の低下を防ぐことができる。   According to a fifth aspect of the invention, the cross-sectional shape of the multi-hole tube according to the fourth aspect of the invention is flattened, the flow paths in the tube are arranged in the long side direction, and the multi-hole tube is The pipes are arranged on the substrate with an interval so that the long side directions are substantially parallel to each other, and the flow width of the external fluid can be reduced and the wind speed is increased. The heat transfer rate can be improved, the amount of heat exchange can be improved, a part of the decrease in the amount of heat exchange due to the clogging of the tube can be covered, and the significant decrease in the amount of heat exchange can be prevented.

請求項6に記載の発明は、請求項2から5のいずれか一項に記載の発明の熱交換器において、前記管群、前記基板及び前記スペーサーを一体成形したものであり、管と基板の接合及び基板とスペーサーの接合を改めてする必要が無く、工数が低減でき安価に提供できる。   A sixth aspect of the present invention is the heat exchanger according to any one of the second to fifth aspects, wherein the tube group, the substrate and the spacer are integrally formed. There is no need to re-bond the bonding and the bonding of the substrate and the spacer, and the man-hours can be reduced and can be provided at low cost.

請求項7に記載の発明は、請求項1から6のいずれか一項に記載の発明の熱交換器において、前記管群ブロック相互を直接接合して積層したものであり、ロウ材で管内流路を目詰まりさせることはなく、不良品の数を低減することができ、安価に提供できる。   A seventh aspect of the present invention is the heat exchanger according to any one of the first to sixth aspects, wherein the tube group blocks are directly joined to each other and laminated together. The road is not clogged, the number of defective products can be reduced, and it can be provided at low cost.

請求項8に記載の発明は、請求項7に記載の発明の前記接合方法が拡散接合であり、基材自体も溶融しないため、さらに管内流路を目詰まりさせることはなく、さらに不良品の数を低減することができさらに安価に提供することができる。   The invention according to claim 8 is that the joining method of the invention according to claim 7 is diffusion bonding, and the base material itself does not melt, so that the flow path in the tube is not further clogged, and a defective product is further prevented. The number can be reduced, and it can be provided at a lower cost.

請求項9に記載の発明は、請求項7に記載の発明の前記接合方法が超音波接合であり、基材自体も溶融しないため、さらに管内流路を目詰まりさせることはなく、さらに不良品の数を低減することができさらに安価に提供することができる。   The invention according to claim 9 is that the joining method of the invention according to claim 7 is ultrasonic joining, and the base material itself is not melted. Can be reduced, and can be provided at a lower cost.

請求項10に記載の発明は、請求項1から6のいずれか一項に記載の発明の熱交換器において、前記管群ブロック及び前記スペーサーが樹脂材料で製作されたものであり、直材費を低減することができ、安価に提供できる。   A tenth aspect of the present invention is the heat exchanger according to any one of the first to sixth aspects, wherein the tube group block and the spacer are made of a resin material. Can be reduced and can be provided at low cost.

請求項11に記載の発明は、請求項10に記載の発明の前記樹脂材料が流動性がよい低粘度材料で製作されたものであり、射出成形により製作する場合、微細な管形状であっても端部まで樹脂を供給することができるため、不良品の数を低減でき安価に提供できる。   The invention described in claim 11 is the resin material of the invention described in claim 10 made of a low-viscosity material having good fluidity. When manufactured by injection molding, the resin material has a fine tube shape. In addition, since the resin can be supplied to the end portion, the number of defective products can be reduced and can be provided at low cost.

請求項12に記載の発明は、請求項10または11に記載の発明の熱交換器において、蒸気透過率が小さい前記樹脂材料を用いたものであり、内部流体として水や不凍液を用いた場合、熱交換器からの内部流体の透過量を低減できるため、管壁を薄くすることができ、安価に提供できる。   The invention according to claim 12 is the heat exchanger according to claim 10 or 11, wherein the resin material having a low vapor permeability is used, and when water or antifreeze is used as an internal fluid, Since the permeation | transmission amount of the internal fluid from a heat exchanger can be reduced, a pipe wall can be made thin and can be provided cheaply.

請求項13に記載の発明は、請求項10から12のいずれか一項に記載の発明の前記樹脂材料がポリプロピレン(PP)またはポリエチレンテレフタレート(PET)であり、端部まで樹脂を供給することができ、かつ管壁を薄くすることができるため、安価に提供できる。   In the invention described in claim 13, the resin material according to any one of claims 10 to 12 is polypropylene (PP) or polyethylene terephthalate (PET), and the resin is supplied to the end. Since the tube wall can be made thin, it can be provided at a low cost.

(実施の形態1)
図1は、本発明の実施の形態1の熱交換器の正面図、図2は、同実施の形態の熱交換器の側面図、図3は図2のA−A線断面図、図4は図2のB−B線断面図を示すものである。
(Embodiment 1)
1 is a front view of a heat exchanger according to a first embodiment of the present invention, FIG. 2 is a side view of the heat exchanger according to the first embodiment, and FIG. 3 is a cross-sectional view taken along line AA in FIG. FIG. 2 is a sectional view taken along line BB in FIG.

図1から図4において、熱交換器は管10、基板20及びスペーサー30からなる管群ブロック40を管10内を流れる内部流体の流通方向に3段積層し、両端に入口ヘッダー50と出口ヘッダー60を設置したものである。本実施の形態では、管10は円管であり、内部流体流路が1つ設けられている。なお、管10形状は円管でなくても良く、例えば矩形管、多角形管や楕円管であっても良い。   1 to 4, the heat exchanger has a tube group block 40 including a tube 10, a substrate 20, and a spacer 30 stacked in three stages in the flow direction of the internal fluid flowing in the tube 10, and an inlet header 50 and an outlet header at both ends. 60 is installed. In the present embodiment, the tube 10 is a circular tube and is provided with one internal fluid flow path. Note that the shape of the tube 10 may not be a circular tube, and may be, for example, a rectangular tube, a polygonal tube, or an elliptical tube.

隣接する管群ブロック40は基板20の周上に設置されたスペーサー30同士を接合しているため基板20間に混合室70が形成されている。なお、本実施の形態では隣接する管群ブロック40の双方にスペーサー30が設けられているが、少なくともどちらか一方にスペーサー30が設けられていれば良く、この場合は一方の管群ブロック40のスペーサー30と他方の管群ブロック40の基板20とが接合されることとなる。ここで、管群ブロック40相互はロウ材を用いないで直接接合されており、ロウ材を用いていないため、ロウ材の溶出により管10内を目詰まりさせることはない。   Adjacent tube group blocks 40 join together spacers 30 installed on the circumference of the substrate 20, so that a mixing chamber 70 is formed between the substrates 20. In this embodiment, the spacers 30 are provided on both of the adjacent tube group blocks 40. However, it is sufficient that the spacers 30 are provided on at least one of the tube group blocks 40. The spacer 30 and the substrate 20 of the other tube group block 40 are joined. Here, since the tube group blocks 40 are directly joined without using a brazing material and no brazing material is used, the inside of the tube 10 is not clogged by the elution of the brazing material.

本実施の形態では、拡散接合を用いている。拡散接合はロウ付けとは異なり、基材が溶融しない温度までの加熱と加圧を同時に掛けることにより原子の拡散(相互拡散)現象が生じ、原子の結びつきにより接合を行うため、基材が溶出することが無く、管10内を目詰まりさせることはない。このようにロウ材を用いない拡散接合で接合することにより、管10内を目詰まりさせるといった不良品の発生を極力抑えることができ、安価に熱交換器を提供できる。   In this embodiment, diffusion bonding is used. Diffusion bonding, unlike brazing, causes the diffusion of atoms (interdiffusion) by applying heat and pressure to a temperature at which the substrate does not melt at the same time. The tube 10 is not clogged. By joining by diffusion joining without using a brazing material in this way, it is possible to suppress the occurrence of defective products such as clogging in the tube 10 as much as possible, and to provide a heat exchanger at a low cost.

なお、超音波接合としても同様の効果が得られる。また、その他の直接接合方法としては溶着接合、圧着接合がある。   In addition, the same effect is acquired also as ultrasonic bonding. Other direct bonding methods include welding bonding and pressure bonding.

図5から図7は管群ブロック40を説明する図であり、図5は同実施の形態の熱交換器の管群ブロックの斜視図、図6は同実施の形態の熱交換器の管群ブロックの正面図、図7は同実施の形態の熱交換器の管群ブロックの上面図である。   5 to 7 are views for explaining the tube group block 40, FIG. 5 is a perspective view of the tube group block of the heat exchanger of the embodiment, and FIG. 6 is a tube group of the heat exchanger of the embodiment. FIG. 7 is a top view of a tube group block of the heat exchanger according to the embodiment.

管群ブロック40は管10、基板20及びスペーサー30を射出成形等で一体成形されている。管群ブロック40の材料としては安価で、成形しやすい樹脂材料が良い。特に射出成形で製作する場合、管10の管径が小さく、本数が多いため複雑な形状となり、端部まで樹脂を供給すると入った観点から粘性が小さく、流動性がよい材料がよい。このような材料を用いることにより、不良品の数を低減でき、安価に熱交換器を提供することができる。また、内部流体に水や不凍液を用いる場合、蒸気透過率が小さい樹脂材料を用いれば、内部流体が透過しにくいため、管10の壁厚を薄くすることができ材料費を低減でき、安価に熱交換器を提供することができる。これらにより、流動性が良く、蒸気透過率が小さくかつ安価なポリプロピレン(PP)またはポリエチレンテレフタレート(PET)を用いるのが最適である。   In the tube group block 40, the tube 10, the substrate 20, and the spacer 30 are integrally formed by injection molding or the like. The material of the tube group block 40 is preferably a resin material that is inexpensive and easy to mold. In particular, when manufactured by injection molding, a tube 10 having a small diameter and a large number has a complicated shape, and a material having low viscosity and good fluidity is preferable from the viewpoint of entering the resin to the end. By using such a material, the number of defective products can be reduced, and a heat exchanger can be provided at low cost. In addition, when water or antifreeze is used for the internal fluid, if a resin material having a low vapor permeability is used, the internal fluid is difficult to permeate, so that the wall thickness of the tube 10 can be reduced, and the material cost can be reduced. A heat exchanger can be provided. For these reasons, it is optimal to use polypropylene (PP) or polyethylene terephthalate (PET) which has good fluidity, low vapor permeability and is inexpensive.

本実施の形態では管10は碁盤目状に配置されているが、千鳥状でも良い。   In the present embodiment, the tubes 10 are arranged in a grid pattern, but may be a staggered pattern.

以上のように構成された熱交換器について、以下その動作、作用を説明する。   About the heat exchanger comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

内部流体は入口ヘッダー50内に流入し、管10それぞれに分流され、管群ブロック40a内を通過し、混合室70aに流入し、混合された後、また管10それぞれに分流され、管群ブロック40b、さらに混合室70bを通って管群ブロック40cを通過し、出口ヘッダー60より熱交換器外へと流出する。一方、管10外では管10相互間を外部流体が流動し、管10を介して、内部流体と外部流体が熱交換する。   The internal fluid flows into the inlet header 50, is divided into each of the tubes 10, passes through the tube group block 40a, flows into the mixing chamber 70a, is mixed, and then is divided into each of the tubes 10 again. 40 b passes through the tube block 40 c through the mixing chamber 70 b and flows out of the heat exchanger through the outlet header 60. On the other hand, outside the tube 10, an external fluid flows between the tubes 10, and the internal fluid and the external fluid exchange heat through the tube 10.

コンタミ等の異物が混入し、管10a内に詰まった場合、内部流体は管10a内を流れず、管10aは熱交換に寄与しなくなる。しかし、管10aの下流に位置する管10b、10cでは、内部流体が混合室70a、70bで混合された後、再分流されるため管10b、10c内を内部流体が流れるため熱交換に寄与することができる。このように、内部流体の流動方向に管群ブロック40を分割したため、目詰まりが生じ熱交換に寄与しない領域を削減することができ、著しい熱交換量の低下を防ぐことができる。   When foreign matter such as contamination enters and clogs the tube 10a, the internal fluid does not flow through the tube 10a, and the tube 10a does not contribute to heat exchange. However, in the pipes 10b and 10c located downstream of the pipe 10a, the internal fluid is mixed again in the mixing chambers 70a and 70b and then redistributed, so that the internal fluid flows in the pipes 10b and 10c, thereby contributing to heat exchange. be able to. As described above, since the tube group block 40 is divided in the flow direction of the internal fluid, it is possible to reduce a region where clogging occurs and does not contribute to heat exchange, and it is possible to prevent a significant decrease in heat exchange amount.

さらに、熱交換量が大きく外部流体との温度差が小さくなった外部流体上流側に位置する管10d内を流れた内部流体と熱交換量が小さく外部流体との温度差が大きい外部流体下流に位置する管10e内を流れた内部流体とが混合室70a、70bで混合されるため、内部流体下流に位置する管群ブロック40b、40cを通過する際、外部流体と内部流体との平均温度差が大きくなり、熱交換量が向上することとなる。   Further, the heat exchange amount is large and the temperature difference between the external fluid and the external fluid is small. The internal fluid flowing in the pipe 10d located on the upstream side of the external fluid and the heat exchange amount is small and the temperature difference between the external fluid and the external fluid is large. Since the internal fluid that has flowed through the pipe 10e is mixed in the mixing chambers 70a and 70b, an average temperature difference between the external fluid and the internal fluid when passing through the tube group blocks 40b and 40c located downstream of the internal fluid. Becomes larger and the amount of heat exchange is improved.

なお、本実施の形態では管群ブロック40を3段積層したが、2段以上の複数段であればよい。   In this embodiment, the tube group block 40 is stacked in three stages, but may be a plurality of stages of two or more stages.

(実施の形態2)
図8は、本発明の実施の形態2の熱交換器の正面図、図9は、同実施の形態の熱交換器の側面図、図10は図9のC−C線断面図、図11は図9のD−D線断面図を示すものである。
(Embodiment 2)
8 is a front view of the heat exchanger according to the second embodiment of the present invention, FIG. 9 is a side view of the heat exchanger according to the second embodiment, and FIG. 10 is a cross-sectional view taken along line CC in FIG. FIG. 9 is a sectional view taken along the line DD of FIG.

図8から図11において、熱交換器は管110、基板120及びスペーサー130からなる管群ブロック140を管110内を流れる内部流体の流通方向に3段積層し、両端に入口ヘッダー50と出口ヘッダー60を設置したものである。本実施の形態では、管110は断面形状が扁平状であり、複数の流路115が長辺方向に配列されている。管110は長辺方向が平行となるように間隔を空けて基板120上に設置されている。   8 to 11, the heat exchanger has a tube group block 140 composed of a tube 110, a substrate 120 and a spacer 130 stacked in three stages in the flow direction of the internal fluid flowing through the tube 110, and an inlet header 50 and an outlet header at both ends. 60 is installed. In the present embodiment, the tube 110 has a flat cross-sectional shape, and a plurality of flow paths 115 are arranged in the long side direction. The tubes 110 are installed on the substrate 120 at intervals so that the long side directions are parallel to each other.

隣接する管群ブロック140は基板120の周上に設置されたスペーサー130同士を接合しているため基板120間に混合室170が形成されている。なお、本実施の形態では隣接する管群ブロック140の双方にスペーサー130が設けられているが、少なくともどちらか一方にスペーサー130が設けられていれば良く、この場合は一方の管群ブロック140のスペーサー130と他方の管群ブロック140の基板120とが接合されることとなる。ここで、管群ブロック140相互はロウ材を用いず直接接合されており、ロウ材を用いていないため、ロウ材の溶出により、管110内を目詰まりさせることはない。   Adjacent tube group blocks 140 join spacers 130 installed on the circumference of the substrate 120, so that a mixing chamber 170 is formed between the substrates 120. In this embodiment, the spacers 130 are provided on both of the adjacent tube group blocks 140. However, it is sufficient that the spacers 130 are provided on at least one of the tube group blocks 140. The spacer 130 and the substrate 120 of the other tube group block 140 are joined. Here, since the tube group blocks 140 are directly joined without using a brazing material and no brazing material is used, the inside of the tube 110 is not clogged by the elution of the brazing material.

本実施の形態では、拡散接合を用いている。拡散接合はロウ付けとは異なり、基材が溶融しない温度までの加熱と加圧を同時に掛けることにより原子の拡散(相互拡散)現象が生じ、原子の結びつきにより接合を行うため、基材が溶出することが無く、管110内を目詰まりさせることはない。このようにロウ材を用いない拡散接合で接合することにより、管110内を目詰まりさせるといった不良品の発生を極力抑えることができ、安価に熱交換器を提供できる。   In this embodiment, diffusion bonding is used. Diffusion bonding, unlike brazing, causes the diffusion of atoms (interdiffusion) by applying heat and pressure to a temperature at which the substrate does not melt at the same time. The tube 110 is not clogged. Thus, by joining by diffusion joining without using a brazing material, it is possible to suppress the generation of defective products such as clogging in the tube 110 as much as possible, and to provide a heat exchanger at low cost.

なお、超音波接合としても同様の効果が得られる。また、その他の直接接合方法としては溶着接合、圧着接合がある。   In addition, the same effect is acquired also as ultrasonic bonding. Other direct bonding methods include welding bonding and pressure bonding.

図12から図14は管群ブロック140を説明する図であり、図12は同実施の形態の熱交換器の管群ブロックの斜視図、図13は同実施の形態の熱交換器の管群ブロックの正面図、図14は同実施の形態の熱交換器の管群ブロックの側面図である。   12 to 14 are views for explaining the tube group block 140, FIG. 12 is a perspective view of the tube group block of the heat exchanger of the embodiment, and FIG. 13 is the tube group of the heat exchanger of the embodiment. FIG. 14 is a side view of a tube group block of the heat exchanger of the same embodiment.

管群ブロック140は管110、基板120及びスペーサー130を接合し成形されている。管110は複数の流路115を有しており、流路数を確保しながら基板120と接合する管本数を低減することができるため、工数を削減でき安価に熱交換器を提供できる。   The tube group block 140 is formed by joining the tube 110, the substrate 120 and the spacer 130. Since the pipe 110 has a plurality of flow paths 115 and the number of pipes bonded to the substrate 120 can be reduced while securing the number of flow paths, the number of steps can be reduced and a heat exchanger can be provided at low cost.

以上のように構成された熱交換器について、以下その動作、作用を説明する。   About the heat exchanger comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

内部流体は入口ヘッダー50内に流入し、管110の流路115それぞれに分流され、管群ブロック140a内を通過し、混合室170aに流入し、混合された後、また管110の流路115それぞれに分流され、管群ブロック140b、さらに混合室170bを通って管群ブロック140cを通過し、出口ヘッダー60より熱交換器外へと流出する。一方、管110外では管110相互間を外部流体が流動し、管110を介して、内部流体と外部流体が熱交換する。この際、管110の断面形状を扁平状とし、長辺方向が平行となるように間隔を空けて配列しているため、実施の形態1の管10の後流部のように外部流体が流れる流路が拡大されることが無く、外部流体の流速が大きくなるため、外部流体と管110の熱伝達率が向上し、熱交換量を向上することができる。   The internal fluid flows into the inlet header 50, is divided into each of the flow paths 115 of the pipe 110, passes through the pipe group block 140a, flows into the mixing chamber 170a, is mixed, and then flows again into the flow path 115 of the pipe 110. Each flow is divided, passes through the tube group block 140b, further passes through the tube group block 140c through the mixing chamber 170b, and flows out from the outlet header 60 to the outside of the heat exchanger. On the other hand, outside the pipe 110, the external fluid flows between the pipes 110, and the internal fluid and the external fluid exchange heat through the pipe 110. At this time, since the cross-sectional shape of the tube 110 is flat, and the long-side direction is arranged so as to be parallel to each other, the external fluid flows like the wake portion of the tube 10 of the first embodiment. Since the flow path is not enlarged and the flow rate of the external fluid is increased, the heat transfer coefficient between the external fluid and the pipe 110 is improved, and the heat exchange amount can be improved.

コンタミ等の異物が混入し、流路115a内に詰まった場合、内部流体は流路115a内を流れず、流路115aは熱交換に寄与しなくなる。しかし、流路115aの下流に位置する流路115b、115cでは、内部流体が混合室170a、170bで混合された後、再分流されるため流路115b、115c内を内部流体が流れるため熱交換に寄与することができる。このように、内部流体の流動方向に管群ブロック140を分割したため、目詰まりが生じ熱交換に寄与しない領域を削減することができ、著しい熱交換量の低下を防ぐことができる。   When foreign matter such as contamination enters and clogs the flow path 115a, the internal fluid does not flow in the flow path 115a, and the flow path 115a does not contribute to heat exchange. However, in the flow paths 115b and 115c located downstream of the flow path 115a, the internal fluid is mixed again in the mixing chambers 170a and 170b and then redistributed, so that the internal fluid flows in the flow paths 115b and 115c, so that heat exchange is performed. Can contribute. As described above, since the tube group block 140 is divided in the flow direction of the internal fluid, a region where clogging occurs and does not contribute to heat exchange can be reduced, and a significant reduction in heat exchange amount can be prevented.

さらに、熱交換量の多い外部流体上流側に位置する流路115d内を流れ外部流体との温度差が小さくなった内部流体と熱交換量が小さい外部流体下流に位置する流路115e内を流れ外部流体との温度差が大きい内部流体とが混合室170a、170bで混合されるため、管群ブロック140b、140cを通過する際、外部流体と内部流体の平均温度差が大きくなり、熱交換量が向上することとなる。   Furthermore, it flows in the flow path 115d located on the upstream side of the external fluid with a large amount of heat exchange and flows in the flow path 115e located on the downstream side of the external fluid with a small amount of heat exchange and the internal fluid having a small temperature difference from the external fluid. Since the internal fluid having a large temperature difference from the external fluid is mixed in the mixing chambers 170a and 170b, the average temperature difference between the external fluid and the internal fluid increases when passing through the tube group blocks 140b and 140c, and the heat exchange amount Will be improved.

なお、本実施の形態では管群ブロック140を3段積層したが、2段以上の複数段であればよい。また、本実施の形態では管110と基板120を接合しているが、実施の形態1と同様に一体で形成されていても良い。   In this embodiment, the tube group block 140 is stacked in three stages, but may be a plurality of stages of two or more stages. Further, in this embodiment, the tube 110 and the substrate 120 are joined, but they may be integrally formed as in the first embodiment.

以上のように、本発明にかかる熱交換器は、非常に優れた熱交換性能を維持しながら、安価に実現でき、冷凍冷蔵機器や空調機器用の熱交換器や、廃熱回収機器等の用途にも適用できる。   As described above, the heat exchanger according to the present invention can be realized at low cost while maintaining very excellent heat exchange performance, such as heat exchangers for refrigeration equipment and air conditioning equipment, waste heat recovery equipment, etc. It can also be applied to applications.

本発明の実施の形態1における熱交換器の正面図The front view of the heat exchanger in Embodiment 1 of this invention 同実施の形態の熱交換器の側面図Side view of the heat exchanger of the same embodiment 図2のA−A線断面図AA line sectional view of FIG. 図2のB−B線断面図BB sectional view of FIG. 同実施の形態の熱交換器の管群ブロックの斜視図The perspective view of the tube group block of the heat exchanger of the embodiment 図1の管群ブロックの正面図Front view of the tube group block of FIG. 図1の管群ブロックの上面図Top view of the tube group block of FIG. 本発明の実施の形態2における熱交換器の正面図Front view of heat exchanger according to Embodiment 2 of the present invention 同実施の形態の熱交換器の側面図Side view of the heat exchanger of the same embodiment 図9のC−C線断面図CC sectional view of FIG. 図9のD−D線断面図DD sectional view of FIG. 図8の管群ブロックの斜視図The perspective view of the tube group block of FIG. 図8の管群ブロックの正面図Front view of the tube group block of FIG. 図8の管群ブロックの側面図Side view of tube group block of FIG. 従来の熱交換器の正面図Front view of conventional heat exchanger

符号の説明Explanation of symbols

10、10a、10b、10c、10d、10e、110 管
20、120 基板
30、130 スペーサー
40、40a、40b、40c、140、140a、140b、140c 管群ブロック
70、70a、70b、170、170a、170b 混合室
115、115a、115b、115c、115d、115e 流路
10, 10a, 10b, 10c, 10d, 10e, 110 tube 20, 120 substrate 30, 130 spacer 40, 40a, 40b, 40c, 140, 140a, 140b, 140c tube group block 70, 70a, 70b, 170, 170a, 170b mixing chamber 115, 115a, 115b, 115c, 115d, 115e flow path

Claims (13)

多数の貫通穴を備えた基板間に管内が前記貫通穴と連通し前記基板の表面から略垂直に設けられた複数の管から構成される管群ブロックが混合室を介して複数積層された熱交換器。   Heat in which a plurality of tube group blocks each composed of a plurality of tubes provided between a substrate having a large number of through holes and communicated with the through holes in a tube substantially perpendicularly from the surface of the substrate via a mixing chamber Exchanger. 前記混合室が前記基板の背面と前記基板の背面の一部に取り付けたスペーサーにより構成されたことを特徴とする請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the mixing chamber is configured by a spacer attached to a back surface of the substrate and a part of the back surface of the substrate. 前記スペーサーが前記基板の周上に設けられたことを特徴とする請求項2に記載の熱交換器。   The heat exchanger according to claim 2, wherein the spacer is provided on a circumference of the substrate. 前記管が管内に複数の流路を備えた多穴管であることを特徴とした請求項1から3のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein the pipe is a multi-hole pipe having a plurality of flow paths in the pipe. 前記多穴管の断面形状を扁平状とし、管内の前記流路を長辺方向に配列するとともに、前記多穴管は前記多穴管相互で長辺方向が略平行となるように間隔を空けて前記基板上に配列した請求項4に記載の熱交換器。   The cross-sectional shape of the multi-hole tube is flat, the flow paths in the tube are arranged in the long side direction, and the multi-hole tube is spaced so that the long side direction is substantially parallel to the multi-hole tube. The heat exchanger according to claim 4 arranged on the substrate. 前記管、前記基板及び前記スペーサーを一体成形したことを特徴とする請求項2から5のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 2 to 5, wherein the tube, the substrate, and the spacer are integrally formed. 前記管群ブロック相互を直接接合して積層した請求項1から6のいずれか一項に記載の熱交換器の製造方法。   The method for manufacturing a heat exchanger according to any one of claims 1 to 6, wherein the tube group blocks are directly joined and laminated. 前記接合方法が拡散接合であることを特徴とする請求項7に記載の熱交換器の製造方法。   The method for manufacturing a heat exchanger according to claim 7, wherein the bonding method is diffusion bonding. 前記接合方法が超音波接合であることを特徴とする請求項7に記載の熱交換器の製造方法。   The method for manufacturing a heat exchanger according to claim 7, wherein the bonding method is ultrasonic bonding. 前記管群ブロック及び前記スペーサーが樹脂材料で製作されることを特徴とする請求項1から6のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 6, wherein the tube group block and the spacer are made of a resin material. 前記樹脂材料は流動性のよい低粘度材料であることを特徴とする請求項10に記載の熱交換器。   The heat exchanger according to claim 10, wherein the resin material is a low-viscosity material having good fluidity. 前記樹脂材料は蒸気透過率が小さいことを特徴とする請求項10または11に記載の熱交換器。   The heat exchanger according to claim 10 or 11, wherein the resin material has a low vapor permeability. 前記樹脂材料がポリプロピレン(PP)またはポリエチレンテレフタレート(PET)である請求項10から12のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 10 to 12, wherein the resin material is polypropylene (PP) or polyethylene terephthalate (PET).
JP2004345389A 2004-11-30 2004-11-30 Heat exchanger and its manufacturing method Pending JP2006153360A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004345389A JP2006153360A (en) 2004-11-30 2004-11-30 Heat exchanger and its manufacturing method
US11/720,135 US20080121387A1 (en) 2004-11-30 2005-11-18 Heat Exchanger and Method of Producing the Same
PCT/JP2005/021228 WO2006059498A1 (en) 2004-11-30 2005-11-18 Heat exchanger and method of producing the same
CN 200580041119 CN101069057A (en) 2004-11-30 2005-11-18 Heat exchanger and its manufacturing method
KR1020077012103A KR20070088654A (en) 2004-11-30 2005-11-18 Heat exchanger and method of producing the same
TW094141875A TW200630581A (en) 2004-11-30 2005-11-29 Heat exchanger and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345389A JP2006153360A (en) 2004-11-30 2004-11-30 Heat exchanger and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006153360A true JP2006153360A (en) 2006-06-15

Family

ID=36631873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345389A Pending JP2006153360A (en) 2004-11-30 2004-11-30 Heat exchanger and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2006153360A (en)
CN (1) CN101069057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012107964A1 (en) * 2011-02-08 2012-08-16 パナソニック株式会社 Exhaust-circulating electric vacuum cleaner
WO2013011904A1 (en) * 2011-07-15 2013-01-24 日本電気株式会社 Cooling device and instrument accommodation device using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416458B (en) * 2011-11-28 2013-05-29 无锡凯博易机电科技有限公司 Primary die-casting forming equipment and method for flow collecting pipe of microchannel parallel flow heat exchanger
CN104154644A (en) * 2014-08-21 2014-11-19 珠海格力电器股份有限公司 Air conditioner
CN104315882A (en) * 2014-09-23 2015-01-28 河南科隆集团有限公司 Automobile radiator
CN104501638B (en) * 2014-12-25 2017-05-03 海信(广东)空调有限公司 Heat exchange fin, heat exchanger and air conditioner
CN109764569B (en) * 2018-12-28 2021-05-18 哈电集团(秦皇岛)重型装备有限公司 Structurally expandable refrigerator and method of manufacturing the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49142859U (en) * 1973-04-04 1974-12-10
JPS5572790A (en) * 1978-11-06 1980-05-31 Akzo Nv Heat exchanger using smallldiameter pipe
JPS58221394A (en) * 1982-06-18 1983-12-23 Toshiba Corp Heat exchanger
JPS59124866U (en) * 1983-02-14 1984-08-22 スズキ株式会社 motorcycle radiator
JPS61108482A (en) * 1984-11-02 1986-05-27 Toshiba Corp Joining method of tube plate and heat exchanger tube
JPS61192171U (en) * 1985-05-23 1986-11-29
JPS6229584U (en) * 1985-08-07 1987-02-23
JPS63311084A (en) * 1987-05-14 1988-12-19 テユポン・カナダ・インコーポレーテツド Comfort heat exchanger
JPH08508332A (en) * 1992-12-21 1996-09-03 セザローニ,アンソニー・ジヨセフ Panel heat exchanger formed from preformed panels
JPH09113154A (en) * 1995-10-11 1997-05-02 Nippon Light Metal Co Ltd Heat exchanger
JPH11108568A (en) * 1997-10-07 1999-04-23 Kioritz Corp Method and device for exchanging heat
JP2002225138A (en) * 2001-01-11 2002-08-14 Lg Electronics Inc Method for joining header of pipes of plastic heat exchanger and for joining header tank

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49142859U (en) * 1973-04-04 1974-12-10
JPS5572790A (en) * 1978-11-06 1980-05-31 Akzo Nv Heat exchanger using smallldiameter pipe
JPS58221394A (en) * 1982-06-18 1983-12-23 Toshiba Corp Heat exchanger
JPS59124866U (en) * 1983-02-14 1984-08-22 スズキ株式会社 motorcycle radiator
JPS61108482A (en) * 1984-11-02 1986-05-27 Toshiba Corp Joining method of tube plate and heat exchanger tube
JPS61192171U (en) * 1985-05-23 1986-11-29
JPS6229584U (en) * 1985-08-07 1987-02-23
JPS63311084A (en) * 1987-05-14 1988-12-19 テユポン・カナダ・インコーポレーテツド Comfort heat exchanger
JPH08508332A (en) * 1992-12-21 1996-09-03 セザローニ,アンソニー・ジヨセフ Panel heat exchanger formed from preformed panels
JPH09113154A (en) * 1995-10-11 1997-05-02 Nippon Light Metal Co Ltd Heat exchanger
JPH11108568A (en) * 1997-10-07 1999-04-23 Kioritz Corp Method and device for exchanging heat
JP2002225138A (en) * 2001-01-11 2002-08-14 Lg Electronics Inc Method for joining header of pipes of plastic heat exchanger and for joining header tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012107964A1 (en) * 2011-02-08 2012-08-16 パナソニック株式会社 Exhaust-circulating electric vacuum cleaner
WO2013011904A1 (en) * 2011-07-15 2013-01-24 日本電気株式会社 Cooling device and instrument accommodation device using same
JPWO2013011904A1 (en) * 2011-07-15 2015-02-23 日本電気株式会社 COOLING DEVICE AND DEVICE STORAGE DEVICE USING THE SAME
US9288931B2 (en) 2011-07-15 2016-03-15 Nec Corporation Cooling system and device housing apparatus using the same

Also Published As

Publication number Publication date
CN101069057A (en) 2007-11-07

Similar Documents

Publication Publication Date Title
WO2006059498A1 (en) Heat exchanger and method of producing the same
RU2470244C2 (en) Heat exchanger, multichamber header and manufacturing method of that header
JP2006242406A (en) Evaporator
JPWO2013191056A1 (en) Heat exchanger
CN204188026U (en) For the standard element of heat exchanger, heat exchanger core and heat exchanger
JP2018532093A (en) Heat exchanger
JP2006153360A (en) Heat exchanger and its manufacturing method
JP5295330B2 (en) Plate heat exchanger and refrigeration air conditioner
JP2008070026A (en) Heat exchanger
JP2007232356A (en) Heat exchanger for vehicle
JP2006207937A (en) Heat exchanger, and its manufacturing method
JP2007064606A (en) Heat exchanger tube for egr cooler
CN102735092B (en) Novel parallel flow heat exchanger with flow separating structure
JP2005180714A (en) Heat exchanger and inner fin used by it
JP4774753B2 (en) Heat exchanger and manufacturing method thereof
JP4879292B2 (en) Plate heat exchanger and refrigeration air conditioner
CN100476336C (en) Heat exchanger and method of producing the same
KR101401987B1 (en) Plate Type Heat Exchanger
JP4742919B2 (en) Manufacturing method of heat exchanger
KR20070064938A (en) Heat exchanger
JP4622492B2 (en) Heat exchanger and manufacturing method thereof
JP5933605B2 (en) Plate heat exchanger
CN210119143U (en) Heat exchanger and refrigeration equipment with same
JP2010255918A (en) Air heat exchanger
JP2005061778A (en) Evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

RD01 Notification of change of attorney

Effective date: 20091120

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A131 Notification of reasons for refusal

Effective date: 20101012

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110301

Free format text: JAPANESE INTERMEDIATE CODE: A02