JP2006153295A - Heat exchanger and its manufacturing method - Google Patents

Heat exchanger and its manufacturing method Download PDF

Info

Publication number
JP2006153295A
JP2006153295A JP2004340524A JP2004340524A JP2006153295A JP 2006153295 A JP2006153295 A JP 2006153295A JP 2004340524 A JP2004340524 A JP 2004340524A JP 2004340524 A JP2004340524 A JP 2004340524A JP 2006153295 A JP2006153295 A JP 2006153295A
Authority
JP
Japan
Prior art keywords
water
pipe
refrigerant
heat exchanger
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004340524A
Other languages
Japanese (ja)
Other versions
JP4488871B2 (en
Inventor
Hideki Mori
秀樹 森
Hideaki Nakano
秀明 中野
Takayuki Hanaki
隆行 花木
Takashi Kanetani
隆 金谷
Takahiko Kawai
孝彦 河合
Mitsusada Hayakawa
満貞 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004340524A priority Critical patent/JP4488871B2/en
Publication of JP2006153295A publication Critical patent/JP2006153295A/en
Application granted granted Critical
Publication of JP4488871B2 publication Critical patent/JP4488871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger for a water heater having improved space efficiency and high reliability with no leakage from a joint between a refrigerant pipe and a water circuit while suppressing the corrosion due to water and the deposition of mineral components including calcium carbonate in water at a high temperature and eliminating the need for installing a heat insulating cover to prevent the radiation of heat, and to provide its manufacturing method. <P>SOLUTION: The heat exchanger comprises a resin water pipe 2 having a flow path in which water flows, and a copper refrigerant pipe 20 in which refrigerant flows, arranged in the flow path of the water pipe 2. In this case, the water pipe 2 can be spirally formed in a resin body 1 and the refrigerant pipe 20 be mounted along the water pipe 2. Double pipes consisting of grooved steel pipes different in diameter can be used as the refrigerant pipe 20. It is also acceptable that water and refrigerant flow in the water pipe 2 and the refrigerant pipe 20 in mutually opposite directions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂成形された水回路に冷媒配管を巻き付けるなどして形成した給湯器用の熱交換器及びその製造方法に関するものである。   The present invention relates to a heat exchanger for a water heater formed by wrapping a refrigerant pipe around a resin-molded water circuit and a method for manufacturing the same.

従来の給湯用の熱交換器は、冷媒配管と水配管を接触させることによって冷媒配管中の高温流体と水配管中の低温水との間で熱伝導を行い、水配管中の低温水を加熱するようにしたものである。しかしながら、配管同士の接触では放熱ロスが大きく、熱交換器の性能が十分ではなかった。   Conventional heat exchangers for hot water supply heat transfer between the high-temperature fluid in the refrigerant pipe and the low-temperature water in the water pipe by bringing the refrigerant pipe and the water pipe into contact with each other, thereby heating the low-temperature water in the water pipe. It is what you do. However, the contact between the pipes has a large heat dissipation loss, and the performance of the heat exchanger is not sufficient.

そこで、水配管中に冷媒配管を挿入して冷媒配管と水とが直接接触するようにして熱交換性能を改善する二重管構造の熱交換器があった(例えば、特許文献1参照)。
また、水配管中に複数の冷媒配管を設けることによって更に熱交換性能を上げようとする熱交換器もあった(例えば、特許文献2参照)。
In view of this, there has been a heat exchanger with a double-pipe structure that improves heat exchange performance by inserting refrigerant piping into water piping so that the refrigerant piping and water are in direct contact with each other (see, for example, Patent Document 1).
In addition, there has been a heat exchanger that further improves the heat exchange performance by providing a plurality of refrigerant pipes in the water pipe (see, for example, Patent Document 2).

特開昭63−180092号公報JP 63-180092 A 特開2003−202194号公報JP 2003-202194 A

しかしながら、特許文献1、2に示すように、従来の水配管内に冷媒配管を設ける構造では、水配管が直管の状態で冷媒配管を挿入し、その後所定の形状に曲げ加工を行うため、加工時の曲げ可能半径が大きくなり、構造上スペース効率の低下、製造上の制約が大きくなる等の問題があった。
また、冷媒配管を接合するときは冷媒配管を一度水配管から外側に出す必要があり、その部分のろう付けが困難となり、かつ漏れ等が生ずることによって信頼性が低下するという問題があった。
さらに、水配管が銅製の配管であるため、温水部分の放熱防止のために断熱カバーの設置が不可欠であった。
However, as shown in Patent Documents 1 and 2, in the structure in which the refrigerant pipe is provided in the conventional water pipe, the refrigerant pipe is inserted in a state where the water pipe is a straight pipe, and then bent into a predetermined shape. There are problems that the bendable radius at the time of processing is increased, the space efficiency is reduced due to the structure, and the manufacturing restrictions are increased.
Further, when joining the refrigerant pipes, the refrigerant pipes need to be taken out of the water pipes once, so that there is a problem that the brazing of the part becomes difficult and the reliability is lowered due to leakage or the like.
Furthermore, since the water pipe is a copper pipe, it is indispensable to install a heat insulating cover to prevent heat dissipation from the hot water portion.

一方、給湯器の長期使用時の信頼性においても、銅製配管を用いた水回路は水道水の水質の影響によって配管が腐食し、また、熱交換により水道水が高温になる部分においては水道水中の炭酸カルシウムが配管壁面に析出し、流量の低下、閉塞、熱交換性能の低下等の不具合が発生した。   On the other hand, in terms of reliability during long-term use of water heaters, water circuits using copper pipes corrode pipes due to the influence of the quality of tap water, and in areas where tap water becomes hot due to heat exchange, tap water Of calcium carbonate deposited on the pipe wall surface, causing problems such as a decrease in flow rate, blockage, and a decrease in heat exchange performance.

本発明は、上記のような課題を解決するためになされたもので、スペース効率が向上し、小スペースでの熱交換器の組込みが可能となり、また、冷媒配管と水回路の継ぎ目の漏れ等がなく信頼性が高い、さらに、水による腐食、高温時の水中の炭酸カルシウム等のミネラル成分の析出による流量低下、流路の閉塞及び熱交換性能の低下等を抑制することができ、また、放熱防止用の断熱カバーの設置が不要となる給湯器用の熱交換器及びその製造方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, improves the space efficiency, enables the incorporation of a heat exchanger in a small space, and leaks the joint between the refrigerant pipe and the water circuit. There is no high reliability, and furthermore, it is possible to suppress corrosion due to water, flow rate decrease due to precipitation of mineral components such as calcium carbonate in water at high temperature, blockage of the flow path and decrease in heat exchange performance, etc. It is an object of the present invention to obtain a heat exchanger for a hot water heater that does not require the installation of a heat insulating cover for preventing heat dissipation and a method for manufacturing the same.

本発明にかかる熱交換器は、水が流動する流路を備えた樹脂製の水配管と、該水配管の流路内に配置され内部に冷媒が流れる銅製の冷媒配管とを備えたものである。   A heat exchanger according to the present invention includes a resin water pipe having a flow path through which water flows, and a copper refrigerant pipe that is disposed in the flow path of the water pipe and through which a refrigerant flows. is there.

本発明に係る熱交換器は、水が流動する流路が樹脂で形成され、その流路内に曲げ加工後の銅製の冷媒配管を取り付けたので、後加工が容易であり、容積効率の高い。また、水が流動する流路を樹脂で形成するようにしたので水回路の腐食がなく、水中の炭酸カルシウム等のミネラル成分の析出も抑制することができ、製品の信頼性が向上する。さらに、水流路を樹脂で形成してあり水回路自体が断熱性を有するため、断熱カバー等の設置が不要となる。   In the heat exchanger according to the present invention, a flow path through which water flows is formed of resin, and a copper refrigerant pipe after bending is attached in the flow path, so that post-processing is easy and volumetric efficiency is high. . In addition, since the flow path through which water flows is formed of resin, there is no corrosion of the water circuit, precipitation of mineral components such as calcium carbonate in water can be suppressed, and the reliability of the product is improved. Furthermore, since the water flow path is made of resin and the water circuit itself has a heat insulating property, it is not necessary to install a heat insulating cover or the like.

実施の形態1.
図1は本発明の実施の形態1に係る給湯用の熱交換器の分解斜視図である。図において、水回路を構成する樹脂製の水配管2は、樹脂本体1の一方の側面から他方の側面にかけて一定の断面を有する溝部がらせん状を形成するようにしたもので、このようにして形成した水路に沿って冷媒流路となる銅製配管20を巻きつけてある。
Embodiment 1 FIG.
FIG. 1 is an exploded perspective view of a heat exchanger for hot water supply according to Embodiment 1 of the present invention. In the figure, the water pipe 2 made of resin constituting the water circuit is such that a groove portion having a certain cross section forms a spiral shape from one side surface of the resin body 1 to the other side surface. A copper pipe 20 serving as a refrigerant flow path is wound around the formed water channel.

すなわち、樹脂本体1に形成された水配管2は、第1の側壁3、第1の壁部5、第2の壁部6、第3の壁部7、第2の側壁4の間に形成された第1の溝部8、第2の溝部9、第3の溝部10、第4の溝部11を備え、樹脂本体1の背面側において、第1の溝部8と第2の溝部9とが、第2の溝部9と第3の溝部10とが、第3の溝部10と第4の溝部11とが、それぞれ螺旋溝部(図示せず)によって連通している。   That is, the water pipe 2 formed on the resin body 1 is formed between the first side wall 3, the first wall part 5, the second wall part 6, the third wall part 7, and the second side wall 4. The first groove portion 8, the second groove portion 9, the third groove portion 10, and the fourth groove portion 11 are provided, and on the back side of the resin body 1, the first groove portion 8 and the second groove portion 9 are The second groove portion 9 and the third groove portion 10 are in communication with the third groove portion 10 and the fourth groove portion 11 through a spiral groove portion (not shown).

そして上記の水配管2には、第1〜第4の溝部8〜11とそれらをつなげる螺旋溝部に沿って、冷媒流路となる銅製の冷媒配管20が巻き付けてある。この冷媒配管20は、第4の溝部11の手前上部より第4の溝部11に挿入され、第3の壁部7の背部より螺旋溝部を通って第3の溝部10の下部に通じ、下部より前部に到りここでU状に折り返して上部を通り、第2の壁部10の背部より螺旋溝部を通って第2の溝部9の下部に通じ、下部より前部に到りここでU状に折り返して上部を通り、第1の壁部5の背部より螺旋溝部を通って第1の溝部8の下部に通じ、下部より前部に到りここより前方に突出する。冷媒配管20の第4の溝部11側には配管入口部21が形成され、第1の溝部8側には配管出口部22が形成されている。   A copper refrigerant pipe 20 serving as a refrigerant flow path is wound around the water pipe 2 along the first to fourth groove parts 8 to 11 and the spiral groove part connecting them. This refrigerant pipe 20 is inserted into the fourth groove part 11 from the upper front side of the fourth groove part 11, passes from the back part of the third wall part 7 through the spiral groove part to the lower part of the third groove part 10, and from the lower part It reaches the front part, folds back in a U shape, passes through the upper part, passes through the spiral groove part from the back part of the second wall part 10 to the lower part of the second groove part 9, and reaches the front part from the lower part where U The first wall portion 5 passes through the upper portion, passes through the spiral groove portion, passes through the lower portion of the first groove portion 8, reaches the front portion from the lower portion, and projects forward from here. A pipe inlet 21 is formed on the refrigerant groove 20 on the fourth groove 11 side, and a pipe outlet 22 is formed on the first groove 8 side.

樹脂本体1の上面及び背面には、樹脂本体1と同様の素材よりなるL字状で上面30a及び背面30bにより構成された第1の蓋部30を被せ、樹脂本体1の下面及び前面には、L字状で下面31a及び前面31bよりなる第2の蓋部31を被せ、これらによって閉じられた水回路を形成している。この際、樹脂本体1と第1、第2の蓋部30、31との封止は、接着剤による接合もしくは超音波による溶着により行い、水密性を確保できるようにしてある。   The upper surface and the back surface of the resin body 1 are covered with a first lid portion 30 made of the same material as the resin body 1 and configured by the upper surface 30a and the back surface 30b. A second lid portion 31 that is L-shaped and includes a lower surface 31a and a front surface 31b is covered, thereby forming a closed water circuit. At this time, the resin main body 1 and the first and second lid portions 30 and 31 are sealed by bonding with an adhesive or welding with ultrasonic waves so as to ensure water tightness.

なお、第2の蓋部31の前面31bには、配管入口部21及び配管出口部22に対応する部分にこれらを貫通させて外部に取り出す配管入口孔32及び配管出口孔32がそれぞれ設けられ、配管入口孔20の下部には水配管2の出口に対応した水回路出口部34、及び配管出口孔33の上部には水配管2の入口に対応した水回路入口部35が設けられている。   In addition, the front surface 31b of the second lid portion 31 is provided with a pipe inlet hole 32 and a pipe outlet hole 32 that penetrate the portions through the portions corresponding to the pipe inlet portion 21 and the pipe outlet portion 22 and take them out to the outside. A water circuit outlet 34 corresponding to the outlet of the water pipe 2 is provided below the pipe inlet hole 20, and a water circuit inlet 35 corresponding to the inlet of the water pipe 2 is provided above the pipe outlet hole 33.

樹脂本体1と第1、第2の蓋部30,31の構成材料は、耐熱性、耐水性を有しており、水中に有害な物質を溶出することがない、また銅に対して影響することがない材料であることが必要であり、例えば、ポリエチレンテレフタレート(PET)、ナイロン、硬質塩化ビニル樹脂、シリコーン樹脂等によって構成されている。
また、銅製の冷媒配管20は、キズ、腐食等で配管に穴があいた場合にも、冷媒配管20中の冷媒や冷凍機油が水配管2に漏洩することを防止するため、二重管構造としている。例えば、冷媒配管20には、径の異なる溝付鋼管からなる二重管を用いることができる。
The constituent materials of the resin main body 1 and the first and second lid portions 30 and 31 have heat resistance and water resistance, do not elute harmful substances in water, and affect copper. For example, it is made of polyethylene terephthalate (PET), nylon, hard vinyl chloride resin, silicone resin, or the like.
Further, the copper refrigerant pipe 20 has a double pipe structure in order to prevent the refrigerant and the refrigerating machine oil in the refrigerant pipe 20 from leaking into the water pipe 2 even when the pipe has a hole due to scratches, corrosion, or the like. Yes. For example, a double pipe made of a grooved steel pipe having a different diameter can be used as the refrigerant pipe 20.

次に本実施の形態の組立手順の一例について説明する。まず、熱交換器を製造するには、樹脂本体1に水が流動する流路を形成する。その水配管2の第1〜第4の溝部8〜11に沿って、この溝部8〜11に沿うようにあらかじめ曲げ加工した銅製の冷媒配管20を巻き付けた後、水配管2と銅製の冷媒配管20とをパッキンシールや接着剤等によって封止する。こうして、水配管2の第1〜第4の溝部8〜11及びそれらの間をつなぐ螺旋溝部に冷媒配管20を取り付け、樹脂本体1に第1の蓋部30及び第2の蓋部31を被せ、第2の蓋部31の前面31bの配管入口孔32及び配管出口孔33からそれぞれ配管入口部21及び配管出口部22を引き出す。   Next, an example of the assembly procedure of this embodiment will be described. First, in order to manufacture a heat exchanger, a flow path through which water flows is formed in the resin body 1. After winding the copper refrigerant pipe 20 bent in advance along the first to fourth groove parts 8 to 11 of the water pipe 2 along the groove parts 8 to 11, the water pipe 2 and the copper refrigerant pipe are wound. 20 is sealed with a packing seal or an adhesive. Thus, the refrigerant pipe 20 is attached to the first to fourth groove parts 8 to 11 of the water pipe 2 and the spiral groove part connecting them, and the resin body 1 is covered with the first lid part 30 and the second lid part 31. The pipe inlet part 21 and the pipe outlet part 22 are pulled out from the pipe inlet hole 32 and the pipe outlet hole 33 of the front surface 31b of the second lid part 31, respectively.

次に、熱交換器の作用に付いて説明する。上記のようにして形成した熱交換器において、冷媒配管20の配管入口部21から冷媒配管20内に高温冷媒が入り込み、水配管2の水回路入口部35からは常温の水道水が入り込む。こうして、冷媒配管20の配管入口部21より冷媒配管20内に入った高温冷媒は冷媒配管20内を流れ、配管出口部22に向かう。一方、水配管2には水回路入口部35より常温の水道水が流入し、第1〜第4の溝部8〜11を通って水回路出口部34から排出する。これによって、熱交換器中で冷媒配管20を流れる冷媒と、水配管2を流れる水との間で熱交換が行われ、冷媒配管20の配管出口部22からは低温冷媒が排出され、水配管2の水回路出口部34からは高温水が排出される。   Next, the operation of the heat exchanger will be described. In the heat exchanger formed as described above, high-temperature refrigerant enters the refrigerant pipe 20 from the pipe inlet 21 of the refrigerant pipe 20, and normal temperature tap water enters from the water circuit inlet 35 of the water pipe 2. In this way, the high-temperature refrigerant that has entered the refrigerant pipe 20 from the pipe inlet portion 21 of the refrigerant pipe 20 flows through the refrigerant pipe 20 toward the pipe outlet portion 22. On the other hand, normal temperature tap water flows into the water pipe 2 from the water circuit inlet 35 and passes through the first to fourth grooves 8 to 11 and is discharged from the water circuit outlet 34. Thereby, heat exchange is performed between the refrigerant flowing through the refrigerant pipe 20 and the water flowing through the water pipe 2 in the heat exchanger, and the low-temperature refrigerant is discharged from the pipe outlet portion 22 of the refrigerant pipe 20. High temperature water is discharged from the second water circuit outlet 34.

以上のように、本実施の形態は、水が流動する流路が樹脂によって形成され、その流路に曲げ加工後の冷媒配管20が巻きつけられているので、冷媒配管20の形状自由度及び加工性が向上し、スペース効率に優れる。また、冷媒配管20の冷媒流路と水配管2の水流路が完全対向流となるため、熱交換性能の効率が高くなる。   As described above, in the present embodiment, the flow path through which water flows is formed of resin, and the bent refrigerant pipe 20 is wound around the flow path. Workability is improved and space efficiency is excellent. In addition, since the refrigerant flow path of the refrigerant pipe 20 and the water flow path of the water pipe 2 are completely opposite flows, the efficiency of the heat exchange performance is increased.

また、水配管2に冷媒配管20を連続して巻きつける構造のため、運転時に高圧となる冷媒配管20の継ぎ目が少なくて済み、また水配管2と冷媒配管20の接合部をパッキン、シール、接着剤等で封止するため、接合が簡易であり、その接合部の腐食等がないため長期間使用時の信頼性を向上させることができる。さらに、水配管2を樹脂で形成することによって、熱交換した高温水の温度低下を抑制するための断熱効果も有するので、断熱コストが抑制でき、断熱カバー設置スペースをあらたに設ける必要性がなく、さらには熱交換性能の向上も期待することができる。   Further, since the refrigerant pipe 20 is continuously wound around the water pipe 2, the number of joints between the refrigerant pipe 20 that becomes high pressure during operation is small, and the joint between the water pipe 2 and the refrigerant pipe 20 is sealed, sealed, Since sealing is performed with an adhesive or the like, bonding is simple, and there is no corrosion or the like at the bonded portion, so reliability during long-term use can be improved. Furthermore, since the water pipe 2 is made of resin, it also has a heat insulating effect for suppressing the temperature drop of the heat-exchanged high temperature water, so that the heat insulating cost can be suppressed and there is no need to newly provide a heat insulating cover installation space. Furthermore, improvement in heat exchange performance can be expected.

また、水配管2は樹脂を用いているので、水道水の水質がいかなるものであっても腐食は発生しない。さらに、水配管2の壁面は樹脂よりなるので電位が発生せず、炭酸カルシウム等のミネラル分が析出せず、冷媒配管20の外側のみに炭酸カルシウム等が析出するが、水回路全体ではこれらの析出を抑制することができ、製品寿命の延長を期待することができる。   Further, since the water pipe 2 uses a resin, no corrosion occurs regardless of the quality of the tap water. Furthermore, since the wall surface of the water pipe 2 is made of resin, no electric potential is generated, minerals such as calcium carbonate are not deposited, and calcium carbonate is deposited only on the outside of the refrigerant pipe 20. Precipitation can be suppressed and product life can be expected to be extended.

実施の形態2.
実施の形態1では、あらかじめ螺旋状に曲げ加工した冷媒配管20を樹脂本体1の水配管2に沿って設置した熱交換器を示したが、本実施の形態は、樹脂プレートに蛇行状の水回路を形成し、この水回路に沿ってあらかじめ曲げ加工した冷媒配管を設置した熱交換器モジュールを1ユニット形成し、かかる熱交換器モジュールを面の垂直方向に積み重ね、それぞれの水回路及び冷媒配管を連続させた熱交換器に関するものである。
Embodiment 2. FIG.
In the first embodiment, the heat exchanger in which the refrigerant pipe 20 bent in advance in a spiral shape is installed along the water pipe 2 of the resin main body 1 is shown. However, in the present embodiment, the meandering water is formed on the resin plate. A heat exchanger module is formed in which a circuit is formed and a refrigerant pipe bent in advance along the water circuit is formed, and the heat exchanger modules are stacked in the direction perpendicular to the surface, and each water circuit and refrigerant pipe are stacked. It is related with the heat exchanger which made this continue.

図2は本発明の実施の形態2に係る熱交換器の平面図、図3は図2の側面図である。図において、水回路を形成する樹脂本体1は、樹脂プレートに一定断面の蛇行した溝部を有する水配管2を形成させて、それぞれの樹脂プレートが1ユニットを構成する第1、第2、第3、第4の熱交換器モジュール40,60,70,80を積層したもので、それぞれの溝部にあらかじめ曲げ加工した第1、第2、第3、第4の冷媒配管90,100,110,120を取り付けて、隣接する熱交換器モジュール40,60,70,80の溝部に配設された第1〜第4の冷媒配管90,100,110,120同士を連通させたものである。   2 is a plan view of a heat exchanger according to Embodiment 2 of the present invention, and FIG. 3 is a side view of FIG. In the figure, a resin main body 1 forming a water circuit is formed by forming a water pipe 2 having meandering grooves with a constant cross section on a resin plate, and each resin plate constitutes one unit. The fourth heat exchanger modules 40, 60, 70, and 80 are stacked, and the first, second, third, and fourth refrigerant pipes 90, 100, 110, and 120 are previously bent in the respective groove portions. And the first to fourth refrigerant pipes 90, 100, 110, 120 disposed in the groove portions of the adjacent heat exchanger modules 40, 60, 70, 80 are communicated with each other.

図2において、第1の熱交換器モジュール40は、四方が第1の側壁40、第2の側壁41、前壁42、背壁43によって囲まれ、これらの壁部40〜43内には、第1、第2の側壁40,41に対して平行に配置した6本の直線水配管44〜50と、これらの隣接する通路を連通してU字状の折曲水配管44a〜49aを形成する第1〜第6の内壁51〜56が設けられている。そして、第1、第3、第5の内壁51,53,55の一端部は背壁43の内面側に接続され、第2、第4、第6の内壁52,54,56の他端部は前壁42の内面側に接続され、それぞれの他端部にU字状の折曲水配管44a〜49aを形成している。
上記のように構成した水配管44〜50,44a〜49aを備えた第1の熱交換器モジュール40の下部には同様に水配管を備えた第2の熱交換器モジュール60が取付けられ、さらにその下部には第3の熱交換器モジュール70、第4の熱交換器モジュール80が取付けられている。
In FIG. 2, the first heat exchanger module 40 is surrounded by a first side wall 40, a second side wall 41, a front wall 42, and a back wall 43 on all sides, and in these wall portions 40 to 43, Six straight water pipes 44-50 arranged in parallel to the first and second side walls 40, 41 and these adjacent passages communicate with each other to form U-shaped bent water pipes 44a-49a. First to sixth inner walls 51 to 56 are provided. One end portions of the first, third, and fifth inner walls 51, 53, and 55 are connected to the inner surface side of the back wall 43, and the other end portions of the second, fourth, and sixth inner walls 52, 54, and 56 are connected. Are connected to the inner surface side of the front wall 42, and U-shaped bent water pipes 44a to 49a are formed at the respective other end portions.
Similarly, a second heat exchanger module 60 having a water pipe is attached to the lower part of the first heat exchanger module 40 having the water pipes 44 to 50 and 44a to 49a configured as described above. A third heat exchanger module 70 and a fourth heat exchanger module 80 are attached to the lower part thereof.

そして、各モジュール40,60,70,80に設けられた水配管については、第1の熱交換器モジュール40の水配管44〜50,44a〜49aの最下流端部と、第2の熱交換器モジュール60の水配管の上流端部との重ね合わせの部分に配管継目穴40aを設けて、第1の熱交換器モジュール40と第2の熱交換器モジュール60に設けた水配管が連続してつながるようにしてある。同様にして、第2の熱交換器モジュール60の水配管の最下流端部と、第3の熱交換器モジュール70の水配管の最上流端部との重ね合わせの部分に配管継目穴60cを設け、第2の熱交換器モジュール60と第3の熱交換器モジュール70に設けた水配管が連続的につながるようにしてある。また、第3の熱交換器モジュール70の水配管の最下流端部と、第4の熱交換器モジュール80の水配管の最上流端部との重ね合わせの部分に配管継目穴70aを設け、第3と第4の熱交換器モジュール70,80に設けた水配管が連続的につながるようにしてある。   And about the water piping provided in each module 40,60,70,80, the most downstream end part of the water piping 44-50 of the 1st heat exchanger module 40, 44a-49a, and 2nd heat exchange. A pipe joint hole 40a is provided in a portion where the upstream end of the water pipe of the heat exchanger module 60 is overlapped, and the water pipes provided in the first heat exchanger module 40 and the second heat exchanger module 60 are continuous. Are connected. Similarly, a pipe joint hole 60c is formed in a portion where the most downstream end portion of the water pipe of the second heat exchanger module 60 and the most upstream end portion of the water pipe of the third heat exchanger module 70 are overlapped. The water piping provided in the second heat exchanger module 60 and the third heat exchanger module 70 is continuously connected. Also, a pipe seam hole 70a is provided in the overlapping portion of the most downstream end of the water pipe of the third heat exchanger module 70 and the most upstream end of the water pipe of the fourth heat exchanger module 80, The water pipes provided in the third and fourth heat exchanger modules 70 and 80 are continuously connected.

また、第1、第2の熱交換器モジュール40,60の水配管の最上流端部及び最下流端部にはそれぞれ外部と通じる第1、第2の間口40b,60aが設けられ、第2、第3の熱交換器モジュール60,70の水配管の最下流端部及び最上流端部にはそれぞれ外部と通じる第3、第4の間口60b、70aが設けられ、第3、第4の熱交換器モジュール70,80の水配管の最上流端部及び最下流端部にはそれぞれ外部と通じる第5、第6の間口70b、80aが設けられている。そして、第1の熱交換器モジュール40の水配管の最下流端部には、面上方に位置して外部に通じる水配管出口130が設けられ、第4の熱交換器モジュール80の水配管の最上流端部には面下方に位置して外部に通じる水配管入口140が設けられている。   Further, first and second openings 40b and 60a communicating with the outside are provided at the most upstream end and the most downstream end of the water pipes of the first and second heat exchanger modules 40 and 60, respectively. The third and fourth inlets 60b and 70a communicating with the outside are provided at the most downstream end and the most upstream end of the water pipes of the third heat exchanger modules 60 and 70, respectively. Fifth and sixth openings 70b and 80a communicating with the outside are provided at the most upstream end and the most downstream end of the water piping of the heat exchanger modules 70 and 80, respectively. A water pipe outlet 130 located above the surface and leading to the outside is provided at the most downstream end of the water pipe of the first heat exchanger module 40, and the water pipe of the fourth heat exchanger module 80 A water pipe inlet 140 that is located below the surface and communicates with the outside is provided at the most upstream end.

そして、第1〜第4の熱交換器モジュール40,60,70,80に形成された水回路には、それぞれのプレート上で蛇行し、上下のモジュール間でU字状に折れ曲がった銅製の冷媒配管200が取り付けられている。すなわち、第1の熱交換器モジュール40の水配管では、第1の冷媒配管90が直線水配管44〜50では直線状に、折曲水配管44a〜49aではほぼU字状に取り付けられており、水配管が全体として水回路に沿って蛇行した状態になっている。第1の冷媒配管90の最上流端では第1の冷媒配管90が第1の開口40cよりプレート外に突出して、冷媒配管入口部90aを形成している。   In the water circuits formed in the first to fourth heat exchanger modules 40, 60, 70 and 80, copper refrigerant meandering on each plate and bent in a U shape between the upper and lower modules. A pipe 200 is attached. That is, in the water pipe of the first heat exchanger module 40, the first refrigerant pipe 90 is attached in a straight line shape in the straight water pipes 44 to 50 and in a substantially U shape in the bent water pipes 44a to 49a. The water pipe is meandering along the water circuit as a whole. At the most upstream end of the first refrigerant pipe 90, the first refrigerant pipe 90 protrudes out of the plate from the first opening 40c to form a refrigerant pipe inlet portion 90a.

一方、第1の冷媒配管90の最下流端は、第1の熱交換モジュール40の下流端に位置する第1の間口40bよりプレート外に突出している。この突出部は継ぎ目部90bを構成し、下方向にU字状に屈曲して反転し、第2の熱交換モジュール60の第2の間口60
cより第2の熱交換モジュール60の水回路に入り、第2の冷媒配管100を構成する。そして、第2の熱交換モジュール60内を水回路に沿って蛇行した後、水回路の最下流端に位置する第3の間口60bより外部に突出する。この突出部は再び下方向にU字状に屈曲して反転し、第3の熱交換モジュール70の第4の間口70aより第3の熱交換モジュール70の水回路に入り、第3の冷媒配管110を構成する。そして、第3の熱交換モジュール70内を水回路に沿って蛇行した後、水回路の最下流に位置する第5の間口70bより外部に突出する。この突出部は下方向にU字状に屈曲して反転し、第4の熱交換モジュール80の第6の間口80aより第4の熱交換モジュール80の水回路に入り、第4の冷媒配管120を構成する。そして、第4の熱交換モジュール80内を水回路に沿って蛇行した後、第4の冷媒配管120の冷媒配管出口部120aが第4の熱交換モジュール80の下流端の第4の間口80aよりプレート外に突出する。
On the other hand, the most downstream end of the first refrigerant pipe 90 protrudes out of the plate from the first opening 40 b located at the downstream end of the first heat exchange module 40. This projecting portion constitutes a joint portion 90b, is bent downward in a U shape, and is inverted, and the second opening 60 of the second heat exchange module 60 is inverted.
c enters the water circuit of the second heat exchange module 60 and constitutes the second refrigerant pipe 100. And after meandering the inside of the 2nd heat exchange module 60 along a water circuit, it protrudes outside from the 3rd opening 60b located in the most downstream end of a water circuit. This protruding portion is bent downward again into a U shape and reversed, enters the water circuit of the third heat exchange module 70 through the fourth opening 70a of the third heat exchange module 70, and enters the third refrigerant pipe. 110 is configured. And after meandering the inside of the 3rd heat exchange module 70 along a water circuit, it protrudes outside from the 5th opening 70b located in the most downstream of a water circuit. This protruding portion is bent downward in a U shape and inverted, enters the water circuit of the fourth heat exchange module 80 through the sixth opening 80a of the fourth heat exchange module 80, and enters the fourth refrigerant pipe 120. Configure. And after meandering the inside of the 4th heat exchange module 80 along a water circuit, the refrigerant | coolant piping exit part 120a of the 4th refrigerant | coolant piping 120 is from the 4th port 80a of the downstream end of the 4th heat exchange module 80. Projects out of the plate.

このようにして第1〜第4の熱交換モジュール40,60,70,80を積み重ね、水配管200については重ね合わせの部分に間口40b,60a,60b,70a,70b,80aを設け、水配管200が連続的に繋がる構造としており、また、冷媒配管200においては継ぎ目部を樹脂プレートの外に出し、段積み部の接合をUベント等を使用して接合するようにして熱交換器を形成してある。
なお、この熱交換器の重ね合わせ部は、接着剤もしくは超音波溶着によって接合し、水回路と冷媒回路の継ぎ目はパッキン、シールまたは接着により接合する。
In this way, the first to fourth heat exchange modules 40, 60, 70, 80 are stacked, and the water pipe 200 is provided with the front ports 40b, 60a, 60b, 70a, 70b, 80a in the overlapping portion, and the water pipe 200 is connected continuously, and in the refrigerant pipe 200, a seam portion is taken out of the resin plate, and a heat exchanger is formed by joining the stacked portions using a U vent or the like. It is.
The overlapping portion of the heat exchanger is joined by an adhesive or ultrasonic welding, and the joint between the water circuit and the refrigerant circuit is joined by packing, sealing, or adhesion.

次に、本実施の形態の組立手順の一例について説明する。まず、加熱交換器の製造方法について説明すると、第1、第2、第3、第4の熱交換器モジュール40,60,70,80にそれぞれ水配管の流路を形成する。一方、第1〜第4の冷媒配管90,100,110,120を平面蛇行形状に形成すると共にこれらを連通させて連続した冷媒配管200を形成する。そして、水配管の流路に沿って冷媒配管200を取り付け、この際、冷媒配管200の冷媒配管入口部90aを外部に突出させ、3箇所の継ぎ目部を外部に突出させて反転させ、冷媒配管出口部120aを外部に突出させる。そして、段積み部をベント等を使用して接合する。こうして、熱交換器の重ね合わせ部を接合し、樹脂回路と冷媒回路の継ぎ目を接着して接合する。   Next, an example of the assembly procedure of this embodiment will be described. First, the manufacturing method of the heat exchanger will be described. Water piping channels are formed in the first, second, third, and fourth heat exchanger modules 40, 60, 70, and 80, respectively. On the other hand, the first to fourth refrigerant pipes 90, 100, 110, 120 are formed in a plane meandering shape and communicated to form a continuous refrigerant pipe 200. Then, the refrigerant pipe 200 is attached along the flow path of the water pipe, and at this time, the refrigerant pipe inlet portion 90a of the refrigerant pipe 200 is protruded to the outside, and the three seam portions are protruded to the outside to be reversed. The exit part 120a is protruded outside. Then, the stacked portions are joined using a vent or the like. In this way, the overlapping portions of the heat exchanger are joined, and the joint of the resin circuit and the refrigerant circuit is bonded and joined.

上記のように構成した熱交換器においては、最上面に位置する第1の熱交換器モジュール40の冷媒配管入口部90aから高温冷媒が流入し、一方、第4の熱交換モジュール80の水配管入口部140から常温の水道水が流入する。すなわち、冷媒配管入口部90aから流入した高温冷媒は、第1の熱交換器モジュール40の第1の冷媒配管90内を蛇行して流れ、その最下流端でU字状に屈曲して反転し、第2の熱交換器モジュール60の第2の冷媒配管100内を蛇行して流れ、その最下流端で再度U字状に屈曲して反転し、第3の熱交換器モジュール70の第3の冷媒配管110内を蛇行して流れ、その最下流端でU字状に屈曲して反転し、第4の熱交換器モジュール80の第4の冷媒配管120内を蛇行して流れ、その最下流端に位置する冷媒配管出口120aから外部に流出する。   In the heat exchanger configured as described above, high-temperature refrigerant flows from the refrigerant pipe inlet 90a of the first heat exchanger module 40 located on the uppermost surface, while the water pipe of the fourth heat exchange module 80. Room temperature tap water flows from the inlet 140. That is, the high-temperature refrigerant that has flowed from the refrigerant pipe inlet 90a meanders in the first refrigerant pipe 90 of the first heat exchanger module 40, bends in a U shape at the most downstream end thereof, and is inverted. The second heat exchanger module 60 meanders and flows through the second refrigerant pipe 100, bends again in the U shape at the most downstream end thereof, and then reverses, so that the third heat exchanger module 70 The refrigerant pipe 110 meanders to flow, bends in a U shape at the most downstream end thereof, and then reverses, and flows through the fourth refrigerant pipe 120 of the fourth heat exchanger module 80. The refrigerant flows out from the refrigerant pipe outlet 120a located at the downstream end.

一方、第4の熱交換器モジュール80の水配管入口部140から流入した常温の水道水は、第4の熱交換器モジュール80の水配管内を蛇行して流れ、その下流端で配管継ぎ目穴70aを通って第3の熱交換器モジュール70に至り、以後先と同様に、第3の熱交換モジュール70の水配管内、配管継ぎ目穴60c、第2の熱交換器モジュール60の水配管内、配管継ぎ目穴40a、第1の熱交換器モジュール40の水配管内を通って、水配管出口部130から外部に流出する。
こうして、熱交換器中で冷媒と水との間で熱交換が行われ、冷媒配管出口120aからは低温冷媒、水配管出口部130からは高温水が外部に排出される。
On the other hand, the room temperature tap water flowing from the water pipe inlet 140 of the fourth heat exchanger module 80 meanders and flows through the water pipe of the fourth heat exchanger module 80, and a pipe joint hole is formed at the downstream end thereof. 70a to the third heat exchanger module 70, and thereafter, in the water pipe of the third heat exchange module 70, the pipe joint hole 60c, and the water pipe of the second heat exchanger module 60, as before. Then, the water passes through the pipe joint hole 40 a and the water pipe of the first heat exchanger module 40, and flows out from the water pipe outlet 130.
Thus, heat exchange is performed between the refrigerant and water in the heat exchanger, and the low-temperature refrigerant is discharged from the refrigerant pipe outlet 120a and the high-temperature water is discharged from the water pipe outlet 130.

本実施の形態は、以上のように、水が流動する流路を樹脂によって形成し、その流路内に銅管によって形成した冷媒配管20を設置した熱交換器であって、樹脂プレートに平面状に水回路を形成してその樹脂プレートを積層し、そこに冷媒配管20を取り付けて熱交換器を形成することによって、樹脂回路の成形と冷媒配管の曲げ加工を独立して実施することができるため、組付けが容易にでき、形状自由度及び加工性が向上し、スペース効率に優れた熱交換器を得ることが可能となる。また、冷媒配管20と水配管2が完全対向流となる構造のため、熱交換性能の効率が高くなる。   As described above, the present embodiment is a heat exchanger in which a flow path through which water flows is formed of a resin, and a refrigerant pipe 20 formed of a copper pipe is installed in the flow path. The resin circuit is formed and the refrigerant pipe is bent independently by forming a water circuit in a shape and laminating the resin plate and attaching the refrigerant pipe 20 to form a heat exchanger. Therefore, assembly can be easily performed, the degree of freedom in shape and workability can be improved, and a heat exchanger excellent in space efficiency can be obtained. Moreover, since the refrigerant pipe 20 and the water pipe 2 are in a completely opposite flow, the efficiency of heat exchange performance is increased.

また、水配管2と冷媒配管20の接合部をパッキン、シール、接着剤等で封止するため、接合部の信頼性を向上することができる。さらに、水配管2を樹脂で形成したので熱交換した高温水の温度低下を抑制する断熱効果も有することになり、断熱コストを抑制することができ、および断熱カバー設置スペースの必要性がなく、さらには熱交換性能の向上も期待することができる。   Moreover, since the junction part of the water piping 2 and the refrigerant | coolant piping 20 is sealed with packing, a seal | sticker, an adhesive agent, etc., the reliability of a junction part can be improved. Furthermore, since the water pipe 2 is made of resin, it has a heat insulating effect to suppress the temperature drop of the high-temperature water subjected to heat exchange, the heat insulating cost can be suppressed, and there is no need for a heat insulating cover installation space, Furthermore, an improvement in heat exchange performance can be expected.

また、水回路は樹脂によって形成されているため、水道水の水質によって腐食が発生することはない。さらに、樹脂配管壁面は電位が発生しないため炭酸カルシウムの析出がなく、冷媒配管20には炭酸カルシウムが析出するが回路全体の析出を抑制し、製品寿命が延長する。   Moreover, since the water circuit is formed of resin, corrosion does not occur due to the quality of tap water. Further, since no potential is generated on the resin pipe wall surface, there is no precipitation of calcium carbonate, and calcium carbonate is deposited on the refrigerant pipe 20, but the precipitation of the entire circuit is suppressed and the product life is extended.

本発明の実施例1に係る熱交換器の分解斜視図である。It is a disassembled perspective view of the heat exchanger which concerns on Example 1 of this invention. 本発明の実施例2に係る熱交換器の平面図である。It is a top view of the heat exchanger which concerns on Example 2 of this invention. 図2の側面図である。FIG. 3 is a side view of FIG. 2.

符号の説明Explanation of symbols

1 樹脂本体、2 水配管、20,200 冷媒配管、40,60,70,80 第1〜第4の熱交換器モジュール、40a,60c,70a 配管継ぎ目穴、40b,60a,60b,70a,70b,80a 第1〜第6の間口。
DESCRIPTION OF SYMBOLS 1 Resin main body, 2 water piping, 20,200 Refrigerant piping, 40, 60, 70, 80 1st-4th heat exchanger module, 40a, 60c, 70a Piping joint hole, 40b, 60a, 60b, 70a, 70b , 80a First to sixth frontage.

Claims (7)

水が流動する流路を備えた樹脂製の水配管と、該水配管の流路内に配置され内部に冷媒が流れる銅製の冷媒配管とを備えたことを特徴とする熱交換器。   A heat exchanger comprising: a resin water pipe provided with a flow path through which water flows; and a copper refrigerant pipe disposed in the flow path of the water pipe and through which a refrigerant flows. 樹脂本体に水配管を螺旋状に形成し該水配管に沿って冷媒配管を取り付けたことを特徴とする請求項1記載の熱交換器。   The heat exchanger according to claim 1, wherein a water pipe is formed in a spiral shape on the resin body, and a refrigerant pipe is attached along the water pipe. 樹脂プレートを積層し、各樹脂プレート上に蛇行させた水配管を形成すると共に該水配管に沿って冷媒配管を取り付け、隣接する樹脂プレートに形成した水配管の上流端及び下流端同士及び冷媒配管の上流端及び下流端同士を順次連接させたことを特徴とする請求項1記載の熱交換器。   Laminating resin plates, forming water pipes meandering on each resin plate and attaching refrigerant pipes along the water pipes, upstream and downstream ends of the water pipes formed on adjacent resin plates, and refrigerant pipes The heat exchanger according to claim 1, wherein the upstream end and the downstream end are sequentially connected to each other. 前記冷媒配管に径の異なる溝付鋼管からなる二重管を用いることを特徴とする請求項1,2,3のいずれかに記載の熱交換器。   The heat exchanger according to claim 1, wherein a double pipe made of a grooved steel pipe having a different diameter is used for the refrigerant pipe. 前記水配管及び冷媒配管を流れる水及び冷媒が対向して流れることを特徴とする請求項1,2,3,4のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1, 2, 3, and 4, wherein water and refrigerant flowing through the water pipe and the refrigerant pipe face each other. 前記水配管を形成する樹脂が耐熱性及び耐水性を有し、銅製の冷媒配管に対し影響のない材料によって形成されたことを特徴とする請求項1,2,3,4,5のいずれかに記載の熱交換器。   6. The resin forming the water pipe is formed of a material having heat resistance and water resistance and having no influence on the copper refrigerant pipe. The heat exchanger as described in. 水が流動する流路を樹脂形成して水回路を形成すると共に、銅製の冷媒配管を曲げ加工し、樹脂成形した前記水回路に曲げ加工した前記冷媒配管を取り付けることを特徴とする熱交換器の製造方法。
A heat exchanger characterized by forming a water circuit by forming a flow path through which water flows, bending a copper refrigerant pipe, and attaching the bent refrigerant pipe to the resin-formed water circuit Manufacturing method.
JP2004340524A 2004-11-25 2004-11-25 Heat exchanger Active JP4488871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340524A JP4488871B2 (en) 2004-11-25 2004-11-25 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340524A JP4488871B2 (en) 2004-11-25 2004-11-25 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2006153295A true JP2006153295A (en) 2006-06-15
JP4488871B2 JP4488871B2 (en) 2010-06-23

Family

ID=36631817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340524A Active JP4488871B2 (en) 2004-11-25 2004-11-25 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4488871B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032382A (en) * 2006-07-05 2008-02-14 Matsushita Electric Ind Co Ltd Heat exchanger, refrigeration cycle unit, and hot water supply unit
JP2009002631A (en) * 2007-06-25 2009-01-08 Furukawa Electric Co Ltd:The Heat exchanger and heat exchanging system
CN103398600A (en) * 2013-03-07 2013-11-20 谭文胜 Bath water waste heat recoverer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105967U (en) * 1983-12-21 1985-07-19 三菱重工業株式会社 Heat exchanger
JPH05223474A (en) * 1991-06-04 1993-08-31 Autokuehler Gmbh & Co Kg Heat exchanger for cooling drier in compressed air facility and tube/plate type heat exchanger aiming at usage in heat exchanger
JPH06180194A (en) * 1992-12-11 1994-06-28 Nippondenso Co Ltd Shell and tube heat-exchanger
JP2002162175A (en) * 2000-11-22 2002-06-07 Sunpot Co Ltd Double tube heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105967U (en) * 1983-12-21 1985-07-19 三菱重工業株式会社 Heat exchanger
JPH05223474A (en) * 1991-06-04 1993-08-31 Autokuehler Gmbh & Co Kg Heat exchanger for cooling drier in compressed air facility and tube/plate type heat exchanger aiming at usage in heat exchanger
JPH06180194A (en) * 1992-12-11 1994-06-28 Nippondenso Co Ltd Shell and tube heat-exchanger
JP2002162175A (en) * 2000-11-22 2002-06-07 Sunpot Co Ltd Double tube heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032382A (en) * 2006-07-05 2008-02-14 Matsushita Electric Ind Co Ltd Heat exchanger, refrigeration cycle unit, and hot water supply unit
JP2009002631A (en) * 2007-06-25 2009-01-08 Furukawa Electric Co Ltd:The Heat exchanger and heat exchanging system
CN103398600A (en) * 2013-03-07 2013-11-20 谭文胜 Bath water waste heat recoverer
CN103398600B (en) * 2013-03-07 2015-06-17 谭文胜 Bath water waste heat recoverer

Also Published As

Publication number Publication date
JP4488871B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
WO2013183113A1 (en) Plate-type heat exchanger and refrigeration cycle device comprising same
JP5206830B2 (en) Heat exchanger
JP6615423B1 (en) Plate heat exchanger, heat pump device equipped with plate heat exchanger, and heat pump air-conditioning / hot water supply system equipped with heat pump device
US20130277028A1 (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
US6662862B1 (en) Plate heat exchanger
JP2006317096A (en) Heat exchanger for electric water heater
JP4488871B2 (en) Heat exchanger
JP2009264686A (en) Heat exchanger and heat pump type heating device
JP4936546B2 (en) Heat exchanger
CN110431663B (en) Heat exchanger
JP2007240098A (en) Heat exchanger
JP4084359B2 (en) Liquid heat exchanger
JP5773353B2 (en) Heat exchanger
JP2009180401A (en) Heat exchanger
JP2006317094A (en) Heat exchanger
US10852077B2 (en) Heat exchanger with heat transferring layer
JP2004257729A (en) Method of manufacturing heat exchanger
JP2005147567A (en) Double pipe type heat exchanger
JP3954891B2 (en) Heat exchanger
US11009296B2 (en) Heat exchange conduit and heat exchanger
JP4879095B2 (en) Heat exchanger and heat utilization device
JP4284727B2 (en) Heat exchanger
JP5940152B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the same
JP2006097970A (en) Heat exchanger
JP6601380B2 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250