JP2006150458A - レーザ加工装置 - Google Patents

レーザ加工装置 Download PDF

Info

Publication number
JP2006150458A
JP2006150458A JP2006069918A JP2006069918A JP2006150458A JP 2006150458 A JP2006150458 A JP 2006150458A JP 2006069918 A JP2006069918 A JP 2006069918A JP 2006069918 A JP2006069918 A JP 2006069918A JP 2006150458 A JP2006150458 A JP 2006150458A
Authority
JP
Japan
Prior art keywords
workpiece
laser beam
laser
laser light
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006069918A
Other languages
English (en)
Other versions
JP3935188B2 (ja
Inventor
Fumitsugu Fukuyo
文嗣 福世
Kenji Fukumitsu
憲志 福満
Naoki Uchiyama
直己 内山
Toshimitsu Wakuta
敏光 和久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36629349&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2006150458(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2006069918A priority Critical patent/JP3935188B2/ja
Publication of JP2006150458A publication Critical patent/JP2006150458A/ja
Application granted granted Critical
Publication of JP3935188B2 publication Critical patent/JP3935188B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

【課題】 加工対象物の表面に溶融や切断予定ラインから外れた割れが生じることなく、かつ精密に加工対象物を切断することができるレーザ加工装置を提供する。
【解決手段】 レーザ加工装置100は、加工対象物1が載置される載置台107と、パルスレーザ光であるレーザ光Lを出射するレーザ光源101と、加工対象物1の内部にレーザ光Lを集光し、1パルスのレーザ光Lの照射により、その集光点Pの位置で改質スポットを形成させる集光用レンズ105と、隣り合う改質スポット間の距離が略一定となるように切断予定ライン5に沿って形成された複数の改質スポットによって改質領域を形成するために、レーザ光Lの繰り返し周波数及び集光点Pの移動速度を略一定にして、切断予定ライン5に沿って集光点Pを直線的に移動させる機能を有するステージ制御部115及び全体制御部127と、を備える。
【選択図】 図17

Description

本発明は、半導体材料基板、圧電材料基板やガラス基板等の加工対象物の切断に使用されるレーザ加工装置に関する。
レーザ応用の一つに切断があり、レーザによる一般的な切断は次の通りである。例えば半導体ウェハやガラス基板のような加工対象物の切断する箇所に、加工対象物が吸収する波長のレーザ光を照射し、レーザ光の吸収により切断する箇所において加工対象物の表面から裏面に向けて加熱溶融を進行させて加工対象物を切断する。しかし、この方法では加工対象物の表面のうち切断する箇所となる領域周辺も溶融される。よって、加工対象物が半導体ウェハの場合、半導体ウェハの表面に形成された半導体素子のうち、上記領域付近に位置する半導体素子が溶融する恐れがある。
加工対象物の表面の溶融を防止する方法として、例えば、下記の特許文献1や特許文献2に開示されたレーザによる切断方法がある。これらの文献に開示された切断方法では、加工対象物の切断する箇所をレーザ光により加熱し、そして加工対象物を冷却することにより、加工対象物の切断する箇所に熱衝撃を生じさせて加工対象物を切断する。
特開2000−219528号公報 特開2000−15467号公報
しかし、これらの文献に開示された切断方法では、加工対象物に生じる熱衝撃が大きいと、加工対象物の表面に、切断予定ラインから外れた割れやレーザ照射していない先の箇所までの割れ等の不必要な割れが発生することがある。よって、これらの切断方法では精密切断をすることができない。特に、加工対象物が半導体ウェハ、液晶表示装置が形成されたガラス基板、電極パターンが形成されたガラス基板の場合、この不必要な割れにより半導体チップ、液晶表示装置、電極パターンが損傷することがある。また、これらの切断方法では平均入力エネルギーが大きいので、半導体チップ等に与える熱的ダメージも大きい。
本発明の目的は、加工対象物の表面に不必要な割れを発生させることなくかつその表面が溶融しないレーザ加工装置を提供することである。
本発明に係るレーザ加工装置は、ウェハ状の加工対象物の内部に、切断の起点となる改質領域を形成するレーザ加工装置であって、加工対象物が載置される載置台と、パルスレーザ光を出射するレーザ光源と、載置台に載置された加工対象物の内部に、レーザ光源から出射されたパルスレーザ光を集光し、1パルスのパルスレーザ光の照射により、そのパルスレーザ光の集光点の位置で改質スポットを形成させる集光用レンズと、隣り合う改質スポット間の距離が略一定となるように加工対象物の切断予定ラインに沿って形成された複数の改質スポットによって改質領域を形成するために、パルスレーザ光の集光点を加工対象物の内部に位置させた状態で、パルスレーザ光の繰り返し周波数及びパルスレーザ光の集光点の移動速度を略一定にして、切断予定ラインに沿ってパルスレーザ光の集光点を直線的に移動させる機能を有する制御部と、を備えることを特徴とする。
本発明に係るレーザ加工装置においては、ウェハ状の加工対象物の内部に集光点を合わせてパルスレーザ光を照射することにより、切断予定ラインに沿って加工対象物の内部に改質領域を形成している。加工対象物の切断する箇所に何らかの起点があると、加工対象物を比較的小さな力で割って切断することができる。本発明に係るレーザ加工装置によれば、改質領域を起点として切断予定ラインに沿って加工対象物が割れることにより、加工対象物を切断することができる。よって、比較的小さな力で加工対象物を切断することができるので、加工対象物の表面に切断予定ラインから外れた不必要な割れを発生させることなく加工対象物の切断が可能となる。
また、本発明に係るレーザ加工装置においては、加工対象物の内部に局所的に改質領域を形成している。よって、加工対象物の表面ではレーザ光がほとんど吸収されないので、加工対象物の表面が溶融することはない。
なお、制御部は、載置台及び集光用レンズの少なくとも1つの移動を制御することが好ましい。これにより、切断予定ラインに沿ってパルスレーザ光の集光点を直線的に移動させることが可能となる。
本発明に係るレーザ加工装置によれば、加工対象物の表面に溶融や切断予定ラインから外れた割れが生じることなく、加工対象物を切断することができる。よって、加工対象物を切断することにより作製される製品(例えば、半導体チップ、圧電デバイスチップ、液晶等の表示装置)の歩留まりや生産性を向上させることができる。
以下、本発明の好適な実施形態について図面を用いて説明する。本実施形態に係るレーザ加工方法は、多光子吸収により改質領域を形成している。多光子吸収はレーザ光の強度を非常に大きくした場合に発生する現象である。まず、多光子吸収について簡単に説明する。
材料の吸収のバンドギャップEよりも光子のエネルギーhνが小さいと光学的に透明となる。よって、材料に吸収が生じる条件はhν>Eである。しかし、光学的に透明でも、レーザ光の強度を非常に大きくするとnhν>Eの条件(n=2,3,4,・・・である)で材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の強度はレーザ光の集光点のピークパワー密度(W/cm)で決まり、例えばピークパワー密度が1×10(W/cm)以上の条件で多光子吸収が生じる。ピークパワー密度は、(集光点におけるレーザ光の1パルス当たりのエネルギー)÷(レーザ光のビームスポット断面積×パルス幅)により求められる。また、連続波の場合、レーザ光の強度はレーザ光の集光点の電界強度(W/cm)で決まる。
このような多光子吸収を利用する本実施形態に係るレーザ加工の原理について図1〜図6を用いて説明する。図1はレーザ加工中の加工対象物1の平面図であり、図2は図1に示す加工対象物1のII−II線に沿った断面図であり、図3はレーザ加工後の加工対象物1の平面図であり、図4は図3に示す加工対象物1のIV−IV線に沿った断面図であり、図5は図3に示す加工対象物1のV−V線に沿った断面図であり、図6は切断された加工対象物1の平面図である。
図1及び図2に示すように、加工対象物1の表面3には切断予定ライン5がある。切断予定ライン5は直線状に延びた仮想線である。本実施形態に係るレーザ加工は、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光Lを加工対象物1に照射して改質領域7を形成する。なお、集光点とはレーザ光Lが集光した箇所のことである。
レーザ光Lを切断予定ライン5に沿って(すなわち矢印A方向に沿って)相対的に移動させることにより、集光点Pを切断予定ライン5に沿って移動させる。これにより、図3〜図5に示すように改質領域7が切断予定ライン5に沿って加工対象物1の内部にのみ形成される。本実施形態に係るレーザ加工方法は、加工対象物1がレーザ光Lを吸収することにより加工対象物1を発熱させて改質領域7を形成するのではない。加工対象物1にレーザ光Lを透過させ加工対象物1の内部に多光子吸収を発生させて改質領域7を形成している。よって、加工対象物1の表面3ではレーザ光Lがほとんど吸収されないので、加工対象物1の表面3が溶融することはない。
加工対象物1の切断において、切断する箇所に起点があると加工対象物1はその起点から割れるので、図6に示すように比較的小さな力で加工対象物1を切断することができる。よって、加工対象物1の表面3に不必要な割れを発生させることなく加工対象物1の切断が可能となる。
なお、改質領域を起点とした加工対象物の切断は、次の二通りが考えられる。一つは、改質領域形成後、加工対象物に人為的な力が印加されることにより、改質領域を起点として加工対象物が割れ、加工対象物が切断される場合である。これは、例えば加工対象物の厚みが大きい場合の切断である。人為的な力が印加されるとは、例えば、加工対象物の切断予定ラインに沿って加工対象物に曲げ応力やせん断応力を加えたり、加工対象物に温度差を与えることにより熱応力を発生させたりすることである。他の一つは、改質領域を形成することにより、改質領域を起点として加工対象物の断面方向(厚さ方向)に向かって自然に割れ、結果的に加工対象物が切断される場合である。これは、例えば加工対象物の厚みが小さい場合、厚さ方向に改質領域が1つでも可能であり、加工対象物の厚みが大きい場合、厚さ方向に複数の改質領域を形成することで可能となる。なお、この自然に割れる場合も、切断する箇所の表面上において、改質領域が形成されていない部分まで割れが先走ることがなく、改質部を形成した部分のみを割断することができるので、割断を制御よくすることができる。近年、シリコンウェハ等の半導体ウェハの厚さは薄くなる傾向にあるので、このような制御性のよい割断方法は大変有効である。
さて、本実施形態において多光子吸収により形成される改質領域として、次の(1)〜(3)がある。
(1)改質領域が一つ又は複数のクラックを含むクラック領域の場合
レーザ光を加工対象物(例えばガラスやLiTaOからなる圧電材料)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上でかつパルス幅が1μs以下の条件で照射する。このパルス幅の大きさは、多光子吸収を生じさせつつ加工対象物表面に余計なダメージを与えずに、加工対象物の内部にのみクラック領域を形成できる条件である。これにより、加工対象物の内部には多光子吸収による光学的損傷という現象が発生する。この光学的損傷により加工対象物の内部に熱ひずみが誘起され、これにより加工対象物の内部にクラック領域が形成される。電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1ns〜200nsが好ましい。なお、多光子吸収によるクラック領域の形成は、例えば、第45回レーザ熱加工研究会論文集(1998年.12月)の第23頁〜第28頁の「固体レーザー高調波によるガラス基板の内部マーキング」に記載されている。
本発明者は、電界強度とクラックの大きさとの関係を実験により求めた。実験条件は次ぎの通りである。
(A)加工対象物:パイレックス(登録商標)ガラス(厚さ700μm)
(B)レーザ
光源:半導体レーザ励起Nd:YAGレーザ
波長:1064nm
レーザ光スポット断面積:3.14×10−8cm
発振形態:Qスイッチパルス
繰り返し周波数:100kHz
パルス幅:30ns
出力:出力<1mJ/パルス
レーザ光品質:TEM00
偏光特性:直線偏光
(C)集光用レンズ
レーザ光波長に対する透過率:60パーセント
(D)加工対象物が載置される載置台の移動速度:100mm/秒
なお、レーザ光品質がTEM00とは、集光性が高くレーザ光の波長程度まで集光可能を意味する。
図7は上記実験の結果を示すグラフである。横軸はピークパワー密度であり、レーザ光がパルスレーザ光なので電界強度はピークパワー密度で表される。縦軸は1パルスのレーザ光により加工対象物の内部に形成されたクラック部分(クラックスポット)の大きさを示している。クラックスポットが集まりクラック領域となる。クラックスポットの大きさは、クラックスポットの形状のうち最大の長さとなる部分の大きさである。グラフ中の黒丸で示すデータは集光用レンズ(C)の倍率が100倍、開口数(NA)が0.80の場合である。一方、グラフ中の白丸で示すデータは集光用レンズ(C)の倍率が50倍、開口数(NA)が0.55の場合である。ピークパワー密度が1011(W/cm)程度から加工対象物の内部にクラックスポットが発生し、ピークパワー密度が大きくなるに従いクラックスポットも大きくなることが分かる。
次に、本実施形態に係るレーザ加工において、クラック領域形成による加工対象物の切断のメカニズムについて図8〜図11を用いて説明する。図8に示すように、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光Lを加工対象物1に照射して切断予定ラインに沿って内部にクラック領域9を形成する。クラック領域9は一つ又は複数のクラックを含む領域である。図9に示すようにクラック領域9を起点としてクラックがさらに成長し、図10に示すようにクラックが加工対象物1の表面3と裏面21に到達し、図11に示すように加工対象物1が割れることにより加工対象物1が切断される。加工対象物の表面と裏面に到達するクラックは自然に成長する場合もあるし、加工対象物に力が印加されることにより成長する場合もある。
(2)改質領域が溶融処理領域の場合
レーザ光を加工対象物(例えばシリコンのような半導体材料)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上でかつパルス幅が1μs以下の条件で照射する。これにより加工対象物の内部は多光子吸収によって局所的に加熱される。この加熱により加工対象物の内部に溶融処理領域が形成される。溶融処理領域とは一旦溶融後再固化した領域、溶融状態中の領域及び溶融から再固化する状態中の領域のうち少なくともいずれか一つを意味する。また、溶融処理領域は一旦溶融後再固化した領域であり、相変化した領域や結晶構造が変化した領域ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化した領域、単結晶構造から非晶質構造及び多結晶構造を含む構造に変化した領域を意味する。加工対象物がシリコン単結晶構造の場合、溶融処理領域は例えば非晶質シリコン構造である。なお、電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1ns〜200nsが好ましい。
本発明者は、シリコンウェハの内部で溶融処理領域が形成されることを実験により確認した。実験条件は次ぎの通りである。
(A)加工対象物:シリコンウェハ(厚さ350μm、外径4インチ)
(B)レーザ
光源:半導体レーザ励起Nd:YAGレーザ
波長:1064nm
レーザ光スポット断面積:3.14×10−8cm
発振形態:Qスイッチパルス
繰り返し周波数:100kHz
パルス幅:30ns
出力:20μJ/パルス
レーザ光品質:TEM00
偏光特性:直線偏光
(C)集光用レンズ
倍率:50倍
NA:0.55
レーザ光波長に対する透過率:60パーセント
(D)加工対象物が載置される載置台の移動速度:100mm/秒
図12は上記条件でのレーザ加工により切断されたシリコンウェハの一部における断面の写真を表した図である。シリコンウェハ11の内部に溶融処理領域13が形成されている。なお、上記条件により形成された溶融処理領域の厚さ方向の大きさは100μm程度である。
溶融処理領域13が多光子吸収により形成されたことを説明する。図13は、レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。ただし、シリコン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示している。シリコン基板の厚みtが50μm、100μm、200μm、500μm、1000μmの各々について上記関係を示した。
例えば、Nd:YAGレーザの波長である1064nmにおいて、シリコン基板の厚みが500μm以下の場合、シリコン基板の内部ではレーザ光が80%以上透過することが分かる。図12に示すシリコンウェハ11の厚さは350μmであるので、多光子吸収による溶融処理領域はシリコンウェハの中心付近、つまり表面から175μmの部分に形成される。この場合の透過率は、厚さ200μmのシリコンウェハを参考にすると、90%以上なので、レーザ光がシリコンウェハ11の内部で吸収されるのは僅かであり、ほとんどが透過する。このことは、シリコンウェハ11の内部でレーザ光が吸収されて、溶融処理領域がシリコンウェハ11の内部に形成(つまりレーザ光による通常の加熱で溶融処理領域が形成)されたものではなく、溶融処理領域が多光子吸収により形成されたことを意味する。多光子吸収による溶融処理領域の形成は、例えば、溶接学会全国大会講演概要第66集(2000年4月)の第72頁〜第73頁の「ピコ秒パルスレーザによるシリコンの加工特性評価」に記載されている。
なお、シリコンウェハは、溶融処理領域を起点として断面方向に向かって割れを発生させ、その割れがシリコンウェハの表面と裏面に到達することにより、結果的に切断される。シリコンウェハの表面と裏面に到達するこの割れは自然に成長する場合もあるし、加工対象物に力が印加されることにより成長する場合もある。なお、溶融処理領域からシリコンウェハの表面と裏面に割れが自然に成長するのは、一旦溶融後再固化した状態となった領域から割れが成長する場合、溶融状態の領域から割れが成長する場合及び溶融から再固化する状態の領域から割れが成長する場合のうち少なくともいずれか一つである。いずれの場合も切断後の切断面は図12に示すように内部にのみ溶融処理領域が形成される。加工対象物の内部に溶融処理領域を形成する場合、割断時、切断予定ラインから外れた不必要な割れが生じにくいので、割断制御が容易となる。
(3)改質領域が屈折率変化領域の場合
レーザ光を加工対象物(例えばガラス)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上でかつパルス幅が1ns以下の条件で照射する。パルス幅を極めて短くして、多光子吸収を加工対象物の内部に起こさせると、多光子吸収によるエネルギーが熱エネルギーに転化せずに、加工対象物の内部にはイオン価数変化、結晶化又は分極配向等の永続的な構造変化が誘起されて屈折率変化領域が形成される。電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1ns以下が好ましく、1ps以下がさらに好ましい。多光子吸収による屈折率変化領域の形成は、例えば、第42回レーザ熱加工研究会論文集(1997年.11月)の第105頁〜第111頁の「フェムト秒レーザー照射によるガラス内部への光誘起構造形成」に記載されている。
以上のように本実施形態によれば、改質領域を多光子吸収により形成している。そして、本実施形態は、パルスレーザ光の繰り返し周波数の大きさやパルスレーザ光の集光点の相対的移動速度の大きさを調節することにより、1パルスのパルスレーザ光で形成される改質スポットと次の1パルスのパルスレーザ光で形成される改質スポットとの距離を制御している。つまり隣り合う改質スポット間の距離を制御している。以下この距離をピッチpとして説明をする。ピッチpの制御についてクラック領域を例に説明する。
パルスレーザ光の繰り返し周波数をf(Hz)、加工対象物のX軸ステージ又はY軸ステージの移動速度をv(mm/sec)とする。これらのステージの移動速度はパルスレーザ光の集光点の相対的移動の速度の一例である。パルスレーザ光の1ショットで形成されるクラック部分をクラックスポットという。よって、切断予定ライン5の単位長さあたりに形成されるクラックスポットの数nは、以下の通りである。
n=f/v
単位長さあたりに形成されるクラックスポットの数nの逆数がピッチpに相当する。
p=1/n
よって、パルスレーザ光の繰り返し周波数の大きさ及びパルスレーザ光の集光点の相対的移動速度の大きさのうち少なくともいずれかを調節すれば、ピッチpを制御することができる。すなわち、繰り返し周波数をf(Hz)を大きくすることやステージの移動速度をv(mm/sec)を小さくすることにより、ピッチpを小さく制御できる。逆に、繰り返し周波数をf(Hz)を小さくすることやステージの移動速度をv(mm/sec)を大きくすることにより、ピッチpを大きく制御できる。
ところで、ピッチpと切断予定ライン5方向におけるクラックスポットの寸法dとの関係は図14〜図16に示す三通りがある。図14〜図16は、本実施形態に係るレーザ加工によりクラック領域が形成された加工対象物の切断予定ライン5に沿った部分の平面図である。クラックスポット90は1パルスのパルスレーザ光で形成される。複数のクラックスポット90が切断予定ライン5に沿って並ぶように形成されることにより、クラック領域9が形成される。
図14は、ピッチpが寸法dより大きい場合を示している。クラック領域9は切断予定ライン5に沿って加工対象物の内部に断続的に形成されている。図15は、ピッチpが寸法dと略等しい場合を示している。クラック領域9は切断予定ライン5に沿って加工対象物の内部に連続に形成されている。図16は、ピッチpが寸法dより小さい場合を示している。クラック領域9は切断予定ライン5に沿って加工対象物の内部に連続的に形成されている。
図14によれば、クラック領域9が切断予定ライン5に沿って連続していないので、切断予定ライン5の箇所はある程度の強度を保持している。よって、レーザ加工終了後に加工対象物の切断工程を行う場合、加工対象物のハンドリングが容易となる。図15及び図16によれば、クラック領域9が切断予定ライン5に沿って連続的に形成されているので、クラック領域9を起点とした加工対象物の切断が容易となる。
図14によればピッチpが寸法dより大きくされており、図15によればピッチpを寸法dと略等しくされているので、パルスレーザ光の照射により多光子吸収の生じる領域が既に形成されたクラックスポット90と重なるのを防止できる。この結果、クラックスポットの寸法のばらつきを小さくすることができる。すなわち、本発明者によれば、パルスレーザ光の照射により多光子吸収の生じる領域が既に形成されたクラックスポット90と重なると、この領域に形成されるクラックスポット90の寸法のばらつきが大きくなる、ことが分かった。クラックスポット90の寸法のばらつきが大きくなると、加工対象物を切断予定ラインに沿って精密に切断するのが困難となり、また、切断面の平坦性も悪くなる。図14及び図15によれば、クラックスポットの寸法のばらつきを小さくできるので、切断予定ラインに沿って加工対象物を精密に切断することができ、かつ、切断面を平坦にすることができる。
以上説明したように、本実施形態によれば、パルスレーザ光の繰り返し周波数の大きさやパルスレーザ光の集光点の相対的移動速度の大きさを調節することにより、ピッチpを制御することができる。これにより、加工対象物の厚さや材質等を考慮してピッチpを変えることにより、加工対象物に応じたレーザ加工が可能となる。
なお、ピッチpの制御ができることについて、クラックスポットの場合で説明したが、溶融処理スポットや屈折率変化スポットでも同様のことが言える。但し、溶融処理スポットや屈折率変化スポットについてはすでに形成された溶融処理スポットや屈折率変化スポットとの重なりが生じても問題はない。また、パルスレーザ光の集光点の相対的移動とは、パルスレーザ光の集光点を固定して加工対象物を移動させる場合でもよいし、加工対象物を固定してパルスレーザ光の集光点を移動させる場合でもよいし、加工対象物とパルスレーザ光の集光点とを互いに逆方向に移動させる場合でもよいし、加工対象物とパルスレーザ光の集光点とを速度を異ならせかつ同じ方向に移動させる場合でもよい。
次に、本実施形態に係るレーザ加工装置について説明する。図17はこのレーザ加工装置100の概略構成図である。レーザ加工装置100は、レーザ光Lを発生するレーザ光源101と、レーザ光Lの出力やパルス幅等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、レーザ光Lの反射機能を有しかつレーザ光Lの光軸の向きを90°変えるように配置されたダイクロイックミラー103と、ダイクロイックミラー103で反射されたレーザ光Lを集光する集光用レンズ105と、集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1が載置される載置台107と、載置台107をX軸方向に移動させるためのX軸ステージ109と、載置台107をX軸方向に直交するY軸方向に移動させるためのY軸ステージ111と、載置台107をX軸及びY軸方向に直交するZ軸方向に移動させるためのZ軸ステージ113と、これら三つのステージ109,111,113の移動を制御するステージ制御部115と、を備える。
レーザ光源101はパルスレーザ光を発生するNd:YAGレーザである。レーザ光源101に用いることができるレーザとして、この他、Nd:YVOレーザやNd:YLFレーザやチタンサファイアレーザがある。クラック領域や溶融処理領域を形成する場合、Nd:YAGレーザ、Nd:YVOレーザ、Nd:YLFレーザを用いるのが好適である。屈折率変化領域を形成する場合、チタンサファイアレーザを用いるのが好適である。
レーザ光源101はQスイッチレーザである。図18は、レーザ光源101に備えられるQスイッチレーザの概略構成図である。Qスイッチレーザは、所定間隔を設けて配置されたミラー51,53と、ミラー51とミラー53との間に配置されたレーザ媒質55と、レーザ媒質55に励起用の入力を加える励起源57、レーザ媒質55とミラー51との間に配置されたQスイッチ59と、を備える。レーザ媒質55の材料は例えばNd:YAGである。
Qスイッチ59を利用して共振器の損失を高くした状態で励起源57から励起入力をレーザ媒質55に加えることにより、レーザ媒質55の反転分布を所定値まで上昇させる。その後、Qスイッチ59を利用して共振器の損失を低くした状態にすることにより、蓄積されたエネルギーを瞬時に発振させパルスレーザ光Lを発生させる。レーザ光源制御部102からの信号S(例えば超音波パルスの繰り返し周波数の変化)によりQスイッチ59が高い状態になるように制御される。よって、レーザ光源制御部102からの信号Sにより、レーザ光源101から出射されるパルスレーザ光Lの繰り返し周波数を調節することができる。レーザ光源制御部102が周波数調節手段の一例となる。繰り返し周波数の調節は、レーザ加工装置の操作者が後で説明する全体制御部127にキーボード等を用いて繰り返し周波数の大きさを入力することによりなされる。以上がレーザ光源101の詳細である。
レーザ加工中、加工対象物1をX軸方向やY軸方向に移動させることにより、切断予定ラインに沿って改質領域を形成する。よって、例えば、X軸方向に改質領域を形成する場合、X軸ステージ109の移動速度を調節することにより、パルスレーザ光の集光点の相対的移動の速度を調節することができる。また、Y軸方向に改質領域を形成する場合、Y軸ステージ111の移動速度を調節することにより、パルスレーザ光の集光点の相対的移動の速度を調節することができる。これらのステージの移動速度の調節はステージ制御部115により制御される。ステージ制御部115は速度調節手段の一例となる。速度の調節は、レーザ加工装置の操作者が後で説明する全体制御部127にキーボード等を用いて速度の大きさを入力することによりなされる。なお、集光点Pを移動可能とし、その移動速度を調節することにより、パルスレーザ光の集光点の相対的移動の速度を調節することもできる。
Z軸方向は加工対象物1の表面3と直交する方向なので、加工対象物1に入射するレーザ光Lの焦点深度の方向となる。よって、Z軸ステージ113をZ軸方向に移動させることにより、加工対象物1の内部にレーザ光Lの集光点Pを合わせることができる。また、この集光点PのX(Y)軸方向の移動は、加工対象物1をX(Y)軸ステージ109(111)によりX(Y)軸方向に移動させることにより行う。X(Y)軸ステージ109(111)が移動手段の一例となる。
集光用レンズ105は集光手段の一例である。Z軸ステージ113はレーザ光の集光点を加工対象物の内部に合わせる手段の一例である。集光用レンズ105をZ軸方向に移動させることによっても、レーザ光の集光点を加工対象物の内部に合わせることができる。
レーザ加工装置100はさらに、載置台107に載置された加工対象物1を可視光線により照明するために可視光線を発生する観察用光源117と、ダイクロイックミラー103及び集光用レンズ105と同じ光軸上に配置された可視光用のビームスプリッタ119と、を備える。ビームスプリッタ119と集光用レンズ105との間にダイクロイックミラー103が配置されている。ビームスプリッタ119は、可視光線の約半分を反射し残りの半分を透過する機能を有しかつ可視光線の光軸の向きを90°変えるように配置されている。観察用光源117から発生した可視光線はビームスプリッタ119で約半分が反射され、この反射された可視光線がダイクロイックミラー103及び集光用レンズ105を透過し、加工対象物1の切断予定ライン5等を含む表面3を照明する。
レーザ加工装置100はさらに、ビームスプリッタ119、ダイクロイックミラー103及び集光用レンズ105と同じ光軸上に配置された撮像素子121及び結像レンズ123を備える。撮像素子121としては例えばCCD(charge-coupled device)カメラがある。切断予定ライン5等を含む表面3を照明した可視光線の反射光は、集光用レンズ105、ダイクロイックミラー103、ビームスプリッタ119を透過し、結像レンズ123で結像されて撮像素子121で撮像され、撮像データとなる。
レーザ加工装置100はさらに、撮像素子121から出力された撮像データが入力される撮像データ処理部125と、レーザ加工装置100全体を制御する全体制御部127と、モニタ129と、を備える。撮像データ処理部125は、撮像データを基にして観察用光源117で発生した可視光の焦点が表面3上に合わせるための焦点データを演算する。この焦点データを基にしてステージ制御部115がZ軸ステージ113を移動制御することにより、可視光の焦点が表面3に合うようにする。よって、撮像データ処理部125はオートフォーカスユニットとして機能する。また、撮像データ処理部125は、撮像データを基にして表面3の拡大画像等の画像データを演算する。この画像データは全体制御部127に送られ、全体制御部で各種処理がなされ、モニタ129に送られる。これにより、モニタ129に拡大画像等が表示される。
全体制御部127には、ステージ制御部115からのデータ、撮像データ処理部125からの画像データ等が入力し、これらのデータも基にしてレーザ光源制御部102、観察用光源117及びステージ制御部115を制御することにより、レーザ加工装置100全体を制御する。よって、全体制御部127はコンピュータユニットとして機能する。
図19は全体制御部127の一例の一部分を示すブロック図である。全体制御部127は距離演算部141、寸法記憶部143及び画像作成部145を備える。距離演算部141には、パルスレーザ光の繰り返し周波数の大きさ及びステージ109、111の移動速度の大きさが入力される。これらの入力はレーザ加工装置の操作者がキーボード等を用いて行う。
距離演算部141は上述した式(n=f/v, p=1/n)を利用して隣り合う改質スポット間の距離(ピッチ)を演算する。距離演算部141は、この距離データをモニタ129に送る。これにより、モニタ129には入力された周波数の大きさ及び速度の大きさのもとで形成される改質スポット間の距離が表示される。
また、この距離データは画像作成部145にも送られる。寸法記憶部143には予めこのレーザ加工装置で形成される改質スポットの寸法が記憶されている。画像作成部145は、この距離データと寸法記憶部143に記憶された寸法のデータとを基にして、この距離と寸法とにより形成される改質領域の画像データを作成しモニタ129に送る。これにより、モニタ129には改質領域の画像も表示される。よって、レーザ加工前に隣り合う改質スポット間の距離や改質領域の形状を知ることができる。
距離演算部141は式(n=f/v, p=1/n)を利用して改質スポット間の距離を演算しているが次のようにしてもよい。まず、繰り返し周波数の大きさとステージ109、111の移動速度と改質スポット間の距離との関係を予め登録したテーブルを作成し、このテーブルのデータを距離演算部141に記憶させる。繰り返し周波数の大きさ及びステージ109、111の移動速度の大きさが距離演算部141に入力されることにより、距離演算部141は上記テーブルの中からこれらの大きさの条件で形成される改質スポットにおける改質スポット間の距離を読み出す。
なお、繰り返し周波数の大きさを固定しステージの移動速度の大きさを可変としてもよい。逆に、ステージの移動速度の大きさを固定し繰り返し周波数の大きさを可変としてもよい。これらの場合も距離演算部141において上述した式やテーブルを用いることにより、改質スポット間の距離や改質領域の画像をモニタ129に表示させるための処理を行う。
以上のように図19に示す全体制御部127では繰り返し周波数の大きさやステージの移動速度の大きさを入力することにより、隣り合う改質スポット間の距離を演算している。隣り合う改質スポット間の所望の距離を入力し、繰り返し周波数の大きさやステージの移動速度の大きさを制御してもよい。以下これについて説明する。
図20は全体制御部127の他の例の一部分を示すブロック図である。全体制御部127は周波数演算部147を備える。レーザ加工装置の操作者はキーボード等により周波数演算部147に隣り合う改質スポット間の距離の大きさを入力する。この距離の大きさは、加工対象物の厚さや材質等を考慮して決定される。この入力により周波数演算部147は上記式やテーブルを基にして、この距離の大きさとなるための周波数を演算する。この例ではステージの移動速度は固定である。周波数演算部147は演算されたデータをレーザ光源制御部102に送る。この周波数の大きさに調節されたレーザ加工装置で加工対象物をレーザ加工することにより、隣り合う改質スポット間の距離を所望の大きさにすることができる。この周波数の大きさのデータはモニタ129にも送られ、この周波数の大きさが表示される。
図21は全体制御部127のさらに他の例の一部分を示すブロック図である。全体制御部127は速度演算部149を備える。上記と同様に隣り合う改質スポット間の距離の大きさが速度演算部149に入力される。この入力により速度演算部149は上記式やテーブルを基にして、この距離の大きさとなるためのステージ移動速度を演算する。この例では繰り返し周波数は固定である。速度演算部149は演算されたデータをステージ制御部115に送る。このステージ移動速度の大きさに調節されたレーザ加工装置で加工対象物をレーザ加工することにより、隣り合う改質スポット間の距離を所望の大きさにすることができる。このステージ移動速度の大きさのデータはモニタ129にも送られ、このステージ移動速度の大きさが表示される。
図22は全体制御部127のさらに他の例の一部分を示すブロック図である。全体制御部127は組み合わせ演算部151を備える。図20及び図21の場合と異なる点は、繰り返し周波数及びステージ移動速度の両方が演算されることである。上記と同様に隣り合う改質スポット間の距離の大きさを組み合わせ演算部151に入力する。組み合わせ演算部151は上記式やテーブルを基にして、この距離の大きさとなるための繰り返し周波数及びステージ移動速度を演算する。
組み合わせ演算部151は演算されたデータをレーザ光源制御部102及びステージ制御部115に送る。レーザ光源制御部102は演算された繰り返し周波数の大きさとなるようにレーザ光源101を調節する。ステージ制御部115は演算されたステージ移動速度の大きさとなるようにステージ109、111を調節する。これらの調節がなされたレーザ加工装置で加工対象物をレーザ加工することにより、隣り合う改質スポット間の距離を所望の大きさにすることができる。演算された繰り返し周波数の大きさ及びステージ移動速度の大きさのデータはモニタ129にも送られ、演算されたこれらの値が表示される。
次に、図17及び図23を用いて、本実施形態に係るレーザ加工装置を用いたレーザ加工方法を説明する。図23は、このレーザ加工方法を説明するためのフローチャートである。加工対象物1はシリコンウェハである。
まず、加工対象物1の光吸収特性を図示しない分光光度計等により測定する。この測定結果に基づいて、加工対象物1に対して透明な波長又は吸収の少ない波長のレーザ光Lを発生するレーザ光源101を選定する(S101)。次に、加工対象物1の厚さを測定する。厚さの測定結果及び加工対象物1の屈折率を基にして、加工対象物1のZ軸方向の移動量を決定する(S103)。これは、レーザ光Lの集光点Pが加工対象物1の内部に位置させるために、加工対象物1の表面3に位置するレーザ光Lの集光点を基準とした加工対象物1のZ軸方向の移動量である。この移動量を全体制御部127に入力される。
加工対象物1をレーザ加工装置100の載置台107に載置する。そして、観察用光源117から可視光を発生させて加工対象物1を照明する(S105)。照明された切断予定ライン5を含む加工対象物1の表面3を撮像素子121により撮像する。この撮像データは撮像データ処理部125に送られる。この撮像データに基づいて撮像データ処理部125は観察用光源117の可視光の焦点が表面3に位置するような焦点データを演算する(S107)。
この焦点データはステージ制御部115に送られる。ステージ制御部115は、この焦点データを基にしてZ軸ステージ113をZ軸方向の移動させる(S109)。これにより、観察用光源117の可視光の焦点が表面3に位置する。なお、撮像データ処理部125は撮像データに基づいて、切断予定ライン5を含む加工対象物1の表面3の拡大画像データを演算する。この拡大画像データは全体制御部127を介してモニタ129に送られ、これによりモニタ129に切断予定ライン5付近の拡大画像が表示される。
全体制御部127には予めステップS103で決定された移動量データが入力されており、この移動量データがステージ制御部115に送られる。ステージ制御部115はこの移動量データに基づいて、レーザ光Lの集光点Pが加工対象物1の内部となる位置に、Z軸ステージ113により加工対象物1をZ軸方向に移動させる(S111)。
次に、1パルスのパルスレーザで形成される溶融処理スポットにおける隣り合う溶融処理スポット間の距離、つまりピッチpの大きさを決定する(S112)。ピッチpは加工対象物1の厚さや材質等を考慮して決定される。ピッチpの大きさを図22に示す全体制御部127に入力する。
次に、レーザ光源101からレーザ光Lを発生させて、レーザ光Lを加工対象物1の表面3の切断予定ライン5に照射する。レーザ光Lの集光点Pは加工対象物1の内部に位置しているので、溶融処理領域は加工対象物1の内部にのみ形成される。そして、切断予定ライン5に沿うようにX軸ステージ109やY軸ステージ111を移動させて、溶融処理領域を切断予定ライン5に沿うように加工対象物1の内部に形成する(S113)。そして、加工対象物1を切断予定ライン5に沿って曲げることにより、加工対象物1を切断する(S115)。これにより、加工対象物1をシリコンチップに分割する。
本実施形態の効果を説明する。これによれば、多光子吸収を起こさせる条件でかつ加工対象物1の内部に集光点Pを合わせて、パルスレーザ光Lを切断予定ライン5に照射している。そして、X軸ステージ109やY軸ステージ111を移動させることにより、集光点Pを切断予定ライン5に沿って移動させている。これにより、改質領域(例えばクラック領域、溶融処理領域、屈折率変化領域)を切断予定ライン5に沿うように加工対象物1の内部に形成している。加工対象物の切断する箇所に何らかの起点があると、加工対象物を比較的小さな力で割って切断することができる。よって、改質領域を起点として切断予定ライン5に沿って加工対象物1を割ることにより、比較的小さな力で加工対象物1を切断することができる。これにより、加工対象物1の表面3に切断予定ライン5から外れた不必要な割れを発生させることなく加工対象物1を切断することができる。
また、本実施形態によれば、加工対象物1に多光子吸収を起こさせる条件でかつ加工対象物1の内部に集光点Pを合わせて、パルスレーザ光Lを切断予定ライン5に照射している。よって、パルスレーザ光Lは加工対象物1を透過し、加工対象物1の表面3ではパルスレーザ光Lがほとんど吸収されないので、改質領域形成が原因で表面3が溶融等のダメージを受けることはない。
以上説明したように本実施形態によれば、加工対象物1の表面3に切断予定ライン5から外れた不必要な割れや溶融が生じることなく、加工対象物1を切断することができる。よって、加工対象物1が例えば半導体ウェハの場合、半導体チップに切断予定ラインから外れた不必要な割れや溶融が生じることなく、半導体チップを半導体ウェハから切り出すことができる。表面に電極パターンが形成されている加工対象物や、圧電素子ウェハや液晶等の表示装置が形成されたガラス基板のように表面に電子デバイスが形成されている加工対象物についても同様である。よって、本実施形態によれば、加工対象物を切断することにより作製される製品(例えば半導体チップ、圧電デバイスチップ、液晶等の表示装置)の歩留まりを向上させることができる。
また、本実施形態によれば、加工対象物1の表面3の切断予定ライン5は溶融しないので、切断予定ライン5の幅(この幅は、例えば半導体ウェハの場合、半導体チップとなる領域同士の間隔である。)を小さくできる。これにより、一枚の加工対象物1から作製される製品の数が増え、製品の生産性を向上させることができる。
また、本実施形態によれば、加工対象物1の切断加工にレーザ光を用いるので、ダイヤモンドカッタを用いたダイシングよりも複雑な加工が可能となる。例えば、図24に示すように切断予定ライン5が複雑な形状であっても、本実施形態によれば切断加工が可能となる。これらの効果は後に説明する例でも同様である。
また、本実施形態によれば、パルスレーザ光の繰り返し周波数の大きさの調節や、X軸ステージ109、Y軸ステージ111の移動速度の大きさの調節により、隣合う溶融処理スポットの距離を制御できる。加工対象物1の厚さや材質等を考慮して距離の大きさを変えることにより、目的に応じた加工が可能となる。
なお、本発明に係るレーザ加工装置は、以下の通りである。
本発明に係るレーザ加工装置は、パルス幅が1μs以下のパルスレーザ光を出射するレーザ光源と、周波数の大きさの入力に基づいてレーザ光源から出射されるパルスレーザ光の繰り返し周波数の大きさを調節する周波数調節手段と、レーザ光源から出射されたパルスレーザ光の集光点のピークパワー密度が1×10(W/cm)以上になるようにパルスレーザ光を集光する集光手段と、集光手段により集光されたパルスレーザ光の集光点を加工対象物の内部に合わせる手段と、加工対象物の切断予定ラインに沿ってパルスレーザ光の集光点を相対的に移動させる移動手段と、を備え、加工対象物の内部に集光点を合わせて1パルスのパルスレーザ光を加工対象物に照射することにより加工対象物の内部に1つの改質スポットが形成され、加工対象物の内部に集光点を合わせかつ切断予定ラインに沿って集光点を相対的に移動させて複数パルスのパルスレーザ光を加工対象物に照射することにより、切断予定ラインに沿って加工対象物の内部に複数の改質スポットが形成され、入力された周波数の大きさに基づいて隣り合う改質スポット間の距離を演算する距離演算手段と、距離演算手段により演算された距離を表示する距離表示手段と、を備えることを特徴とする。
本発明に係るレーザ加工装置によれば、加工対象物の内部に集光点を合わせてレーザ光を照射しかつ多光子吸収という現象を利用することにより、加工対象物の内部に改質領域を形成している。加工対象物の切断する箇所に何らかの起点があると、加工対象物を比較的小さな力で割って切断することができる。本発明に係るレーザ加工装置によれば、改質領域を起点として切断予定ラインに沿って加工対象物が割れることにより、加工対象物を切断することができる。よって、比較的小さな力で加工対象物を切断することができるので、加工対象物の表面に切断予定ラインから外れた不必要な割れを発生させることなく加工対象物の切断が可能となる。なお、集光点とはレーザ光が集光した箇所のことである。切断予定ラインは加工対象物の表面や内部に実際に引かれた線でもよいし、仮想の線でもよい。
また、本発明に係るレーザ加工装置によれば、加工対象物の内部に局所的に多光子吸収を発生させて改質領域を形成している。よって、加工対象物の表面ではレーザ光がほとんど吸収されないので、加工対象物の表面が溶融することはない。以上のことはこれから説明するレーザ加工装置についても言えることである。
また、本発明者によれば、パルスレーザ光の集光点の相対的移動速度が一定の場合、パルスレーザ光の繰り返し周波数を小さくすると、1パルスのパルスレーザ光で形成される改質部分(改質スポットという)と次の1パルスのパルスレーザ光で形成される改質スポットとの距離が大きくなるように制御できることが分かった。逆に、パルスレーザ光の繰り返し周波数を大きくするとこの距離が小さくなるように制御できることが分かった。なお、本明細書ではこの距離を隣り合う改質スポット間の距離又はピッチと表現する。
よって、パルスレーザ光の繰り返し周波数を大きく又は小さくする調節を行うことにより、隣り合う改質スポット間の距離を制御できる。加工対象物の種類や厚さ等に応じてこの距離を変えることにより、加工対象物に応じた切断加工が可能となる。なお、切断予定ラインに沿って加工対象物の内部に複数の改質スポットが形成されることにより改質領域が規定される。
また、本発明に係るレーザ加工装置によれば、入力された周波数の大きさに基づいて隣り合う改質スポット間の距離を演算し、演算された距離を表示している。よって、レーザ加工装置に入力された周波数の大きさに基づいて形成される改質スポットについて、レーザ加工前に隣り合う改質スポット間の距離を知ることができる。
本発明に係るレーザ加工装置は、パルス幅が1μs以下のパルスレーザ光を出射するレーザ光源と、レーザ光源から出射されたパルスレーザ光の集光点のピークパワー密度が1×10(W/cm)以上になるようにパルスレーザ光を集光する集光手段と、集光手段により集光されたパルスレーザ光の集光点を加工対象物の内部に合わせる手段と、加工対象物の切断予定ラインに沿ってパルスレーザ光の集光点を相対的に移動させる移動手段と、速度の大きさの入力に基づいて移動手段によるパルスレーザ光の集光点の相対的移動速度の大きさを調節する速度調節手段と、を備え、加工対象物の内部に集光点を合わせて1パルスのパルスレーザ光を加工対象物に照射することにより、加工対象物の内部に1つの改質スポットが形成され、加工対象物の内部に集光点を合わせかつ切断予定ラインに沿って集光点を相対的に移動させて、複数パルスのパルスレーザ光を加工対象物に照射することにより、切断予定ラインに沿って加工対象物の内部に複数の改質スポットが形成され、入力された速度の大きさに基づいて隣り合う改質スポット間の距離を演算する距離演算手段と、距離演算手段により演算された距離を表示する距離表示手段と、を備えることを特徴とする。
本発明者によれば、パルスレーザ光の繰り返し周波数が一定の場合、パルスレーザ光の集光点の相対的移動速度を小さくすると、隣り合う改質スポット間の距離が小さくなるように制御でき、逆にパルスレーザ光の集光点の相対的移動速度を大きくすると隣り合う改質スポット間の距離が大きくなるように制御できることが分かった。よって、パルスレーザ光の集光点の相対的移動速度を大きく又は小さくする調節を行うことにより、隣り合う改質スポット間の距離を制御できる。従って、加工対象物の種類や厚さ等に応じてこの距離を変えることにより、加工対象物に応じた切断加工が可能となる。なお、パルスレーザ光の集光点の相対的移動とは、パルスレーザ光の集光点を固定して加工対象物を移動させてもよいし、加工対象物を固定してパルスレーザ光の集光点を移動させてもよいし、両方を移動させてもよい。
また、本発明に係るレーザ加工装置によれば、入力された速度の大きさに基づいて隣り合う改質スポット間の距離を演算し、演算された距離を表示している。よって、レーザ加工装置に入力された速度の大きさに基づいて形成される改質スポットについて、レーザ加工前に隣り合う改質スポット間の距離を知ることができる。
本発明に係るレーザ加工装置は、パルス幅が1μs以下のパルスレーザ光を出射するレーザ光源と、周波数の大きさの入力に基づいてレーザ光源から出射されるパルスレーザ光の繰り返し周波数の大きさを調節する周波数調節手段と、レーザ光源から出射されたパルスレーザ光の集光点のピークパワー密度が1×10(W/cm)以上になるようにパルスレーザ光を集光する集光手段と、集光手段により集光されたパルスレーザ光の集光点を加工対象物の内部に合わせる手段と、加工対象物の切断予定ラインに沿ってパルスレーザ光の集光点を相対的に移動させる移動手段と、速度の大きさの入力に基づいて移動手段によるパルスレーザ光の集光点の相対的移動速度の大きさを調節する速度調節手段と、を備え、加工対象物の内部に集光点を合わせて1パルスのパルスレーザ光を加工対象物に照射することにより、加工対象物の内部に1つの改質スポットが形成され、加工対象物の内部に集光点を合わせかつ切断予定ラインに沿って集光点を相対的に移動させて、複数パルスのパルスレーザ光を加工対象物に照射することにより、切断予定ラインに沿って加工対象物の内部に複数の改質スポットが形成され、入力された周波数の大きさと速度の大きさとに基づいて隣り合う改質スポット間の距離を演算する距離演算手段と、距離演算手段により演算された距離を表示する距離表示手段と、を備えることを特徴とする。
本発明に係るレーザ加工装置によれば、パルスレーザ光の繰り返し周波数の大きさ及びパルスレーザ光の集光点の相対的移動速度の大きさの両方を調節することにより、隣り合う改質スポット間の距離を制御できる。これらの調節を組み合わせることにより、この距離について制御できる大きさの種類を増やすことが可能となる。また、本発明に係るレーザ加工装置によれば、レーザ加工前に隣り合う改質スポット間の距離を知ることができる。
これらのレーザ加工装置において、レーザ加工装置により形成される改質スポットの寸法を予め記憶している寸法記憶手段と、寸法記憶手段に記憶された寸法と距離演算手段により演算された距離とに基づいて、切断予定ラインに沿って形成される複数の改質スポットの画像を作成する画像作成手段と、画像作成手段により作成された画像を表示する画像表示手段と、を備えるようにすることができる。これによれば、形成される複数の改質スポット、つまり改質領域についてレーザ加工前に視覚的に把握することができる。
本発明に係るレーザ加工装置は、パルス幅が1μs以下のパルスレーザ光を出射するレーザ光源と、レーザ光源から出射されるパルスレーザ光の繰り返し周波数の大きさを調節する周波数調節手段と、レーザ光源から出射されたパルスレーザ光の集光点のピークパワー密度が1×10(W/cm)以上になるようにパルスレーザ光を集光する集光手段と、集光手段により集光されたパルスレーザ光の集光点を加工対象物の内部に合わせる手段と、加工対象物の切断予定ラインに沿ってパルスレーザ光の集光点を相対的に移動させる移動手段と、を備え、加工対象物の内部に集光点を合わせて1パルスのパルスレーザ光を加工対象物に照射することにより、加工対象物の内部に1つの改質スポットが形成され、加工対象物の内部に集光点を合わせかつ切断予定ラインに沿って集光点を相対的に移動させて、複数パルスのパルスレーザ光を加工対象物に照射することにより、切断予定ラインに沿って加工対象物の内部に複数の改質スポットが形成され、隣り合う改質スポット間の距離の大きさの入力に基づいて、隣り合う改質スポット間の距離をこの大きさにするために、レーザ光源から出射されるパルスレーザ光の繰り返し周波数の大きさを演算する周波数演算手段を備え、周波数調節手段は周波数演算手段により演算された周波数の大きさとなるようにレーザ光源から出射されるパルスレーザ光の繰り返し周波数の大きさを調節する、ことを特徴とする。
本発明に係るレーザ加工装置によれば、隣り合う改質スポット間の距離の大きさの入力に基づいて、隣り合う改質スポット間の距離をこの大きさにするために、レーザ光源から出射されるパルスレーザ光の繰り返し周波数の大きさを演算している。周波数調節手段は周波数演算手段により演算された周波数の大きさとなるようにレーザ光源から出射されるパルスレーザ光の繰り返し周波数の大きさを調節している。よって、隣り合う改質スポット間の距離を所望の大きさにすることができる。
本発明に係るレーザ加工装置において、周波数演算手段により演算された周波数の大きさを表示する周波数表示手段を備えるようにすることができる。これによれば、隣り合う改質スポット間の距離の大きさの入力に基づいてレーザ加工装置を動作させる場合、レーザ加工前に周波数を知ることができる。
本発明に係るレーザ加工装置は、パルス幅が1μs以下のパルスレーザ光を出射するレーザ光源と、レーザ光源から出射されたパルスレーザ光の集光点のピークパワー密度が1×10(W/cm)以上になるようにパルスレーザ光を集光する集光手段と、集光手段により集光されたパルスレーザ光の集光点を加工対象物の内部に合わせる手段と、加工対象物の切断予定ラインに沿ってパルスレーザ光の集光点を相対的に移動させる移動手段と、移動手段によるパルスレーザ光の集光点の相対的移動速度の大きさを調節する速度調節手段と、を備え、加工対象物の内部に集光点を合わせて1パルスのパルスレーザ光を加工対象物に照射することにより、加工対象物の内部に1つの改質スポットが形成され、加工対象物の内部に集光点を合わせかつ切断予定ラインに沿って集光点を相対的に移動させて、複数パルスのパルスレーザ光を加工対象物に照射することにより、切断予定ラインに沿って加工対象物の内部に複数の改質スポットが形成され、隣り合う改質スポット間の距離の大きさの入力に基づいて、隣り合う改質スポット間の距離をこの大きさにするために、移動手段によるパルスレーザ光の集光点の相対的移動速度の大きさを演算する速度演算手段と、を備え、速度調節手段は速度演算手段により演算された相対的移動速度の大きさとなるように移動手段によるパルスレーザ光の集光点の相対的移動速度の大きさを調節する、ことを特徴とする。
本発明に係るレーザ加工装置によれば、隣り合う改質スポット間の距離の大きさの入力に基づいて、隣り合う改質スポット間の距離をこの大きさにするために、移動手段によるパルスレーザ光の集光点の相対的移動速度の大きさを演算している。速度調節手段は速度演算手段により演算された相対的移動速度の大きさとなるように移動手段によるパルスレーザ光の集光点の相対的移動速度の大きさを調節している。よって、隣り合う改質スポット間の距離を所望の大きさにすることができる。
本発明に係るレーザ加工装置において、速度演算手段により演算された相対的移動速度の大きさを表示する速度表示手段を備えるようにすることができる。これによれば、隣り合う改質スポット間の距離の大きさの入力に基づいてレーザ加工装置を動作させる場合、レーザ加工前に相対的移動速度を知ることができる。
本発明に係るレーザ加工装置は、パルス幅が1μs以下のパルスレーザ光を出射するレーザ光源と、レーザ光源から出射されるパルスレーザ光の繰り返し周波数の大きさを調節する周波数調節手段と、レーザ光源から出射されたパルスレーザ光の集光点のピークパワー密度が1×10(W/cm)以上になるようにパルスレーザ光を集光する集光手段と、集光手段により集光されたパルスレーザ光の集光点を加工対象物の内部に合わせる手段と、加工対象物の切断予定ラインに沿ってパルスレーザ光の集光点を相対的に移動させる移動手段と、移動手段によるパルスレーザ光の集光点の相対的移動速度の大きさを調節する速度調節手段と、を備え、加工対象物の内部に集光点を合わせて1パルスのパルスレーザ光を加工対象物に照射することにより、加工対象物の内部に1つの改質スポットが形成され、加工対象物の内部に集光点を合わせかつ切断予定ラインに沿って集光点を相対的に移動させて、複数パルスのパルスレーザ光を加工対象物に照射することにより、切断予定ラインに沿って加工対象物の内部に複数の改質スポットが形成され、隣り合う改質スポット間の距離の大きさの入力に基づいて、隣り合う改質スポット間の距離をこの大きさにするために、レーザ光源から出射されるパルスレーザ光の繰り返し周波数の大きさと移動手段によるパルスレーザ光の集光点の相対的移動速度の大きさとの組み合わせを演算する組み合わせ演算手段を備え、周波数調節手段は組み合わせ演算手段により演算された周波数の大きさとなるようにレーザ光源から出射されるパルスレーザ光の繰り返し周波数の大きさを調節し、速度調節手段は組み合わせ演算手段により演算された相対的移動速度の大きさとなるように移動手段によるパルスレーザ光の集光点の相対的移動速度の大きさを調節する、ことを特徴とする。
本発明に係るレーザ加工装置によれば、隣り合う改質スポット間の距離の大きさの入力に基づいて、隣り合う改質スポット間の距離をこの大きさにするために、パルスレーザ光の繰り返し周波数の大きさとパルスレーザ光の集光点の相対的移動速度の大きさとの組み合わせを演算している。周波数調節手段及び速度調節手段は演算された組み合わせの値となるように、パルスレーザ光の繰り返し周波数の大きさ及びパルスレーザ光の集光点の相対的移動速度の大きさを調節している。よって、隣り合う改質スポット間の距離を所望の大きさにすることができる。
本発明に係るレーザ加工装置において、組み合わせ演算手段により演算された周波数の大きさ及び相対的移動速度の大きさを表示する表示手段を備えるようにすることもできる。これによれば、隣り合う改質スポット間の距離の大きさの入力に基づいてレーザ加工装置を動作させる場合、レーザ加工前に周波数と相対的移動速度との組み合わせを知ることができる。
上記のすべての本発明に係るレーザ加工装置により、切断予定ラインに沿って加工対象物の内部に複数の改質スポットを形成することができる。これらの改質スポットにより改質領域が規定される。改質領域は加工対象物の内部においてクラックが発生した領域であるクラック領域、加工対象物の内部において溶融処理した領域である溶融処理領域及び加工対象物の内部において屈折率が変化した領域である屈折率変化領域のうち少なくともいずれか一つを含む。
上記のすべての本発明に係るレーザ加工装置によれば、隣り合う改質スポット間の距離を調節できるので、改質領域を切断予定ラインに沿って連続的に形成したり断続的に形成したりすることができる。改質領域を連続的に形成すると、連続的に形成しない場合と比べて改質領域を起点とした加工対象物の切断が容易となる。改質領域を断続的に形成すると、改質領域が切断予定ラインに沿って連続していないので、切断予定ラインの箇所はある程度の強度を保持している。
本実施形態に係るレーザ加工によってレーザ加工中の加工対象物の平面図である。 図1に示す加工対象物のII−II線に沿った断面図である。 本実施形態に係るレーザ加工によるレーザ加工後の加工対象物の平面図である。 図3に示す加工対象物のIV−IV線に沿った断面図である。 図3に示す加工対象物のV−V線に沿った断面図である。 本実施形態に係るレーザ加工によって切断された加工対象物の平面図である。 本実施形態に係るレーザ加工における電界強度とクラックの大きさとの関係を示すグラフである。 本実施形態に係るレーザ加工の第1工程における加工対象物の断面図である。 本実施形態に係るレーザ加工の第2工程における加工対象物の断面図である。 本実施形態に係るレーザ加工の第3工程における加工対象物の断面図である。 本実施形態に係るレーザ加工の第4工程における加工対象物の断面図である。 本実施形態に係るレーザ加工により切断されたシリコンウェハの一部における断面の写真を表した図である。 本実施形態に係るレーザ加工におけるレーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。 本実施形態に係るレーザ加工によりクラック領域が形成された加工対象物の切断予定ラインに沿った部分の第1例の平面図である。 本実施形態に係るレーザ加工によりクラック領域が形成された加工対象物の切断予定ラインに沿った部分の第2例の平面図である。 本実施形態に係るレーザ加工によりクラック領域が形成された加工対象物の切断予定ラインに沿った部分の第3例の平面図である。 本実施形態に係るレーザ加工装置の概略構成図である。 本実施形態に係るレーザ加工装置のレーザ光源に備えられるQスイッチレーザの概略構成図である。 本実施形態に係るレーザ加工装置の全体制御部の一例の一部分を示すブロック図である。 本実施形態に係るレーザ加工装置の全体制御部の他の例の一部分を示すブロック図である。 本実施形態に係るレーザ加工装置の全体制御部のさらに他の例の一部分を示すブロック図である。 本実施形態に係るレーザ加工装置の全体制御部のさらに他の例の一部分を示すブロック図である。 本実施形態に係るレーザ加工を説明するためのフローチャートである。 本実施形態に係るレーザ加工により切断可能なパターンを説明するための加工対象物の平面図である。
符号の説明
1…加工対象物、5…切断予定ライン、7…改質領域、100…レーザ加工装置、101…レーザ光源、105…集光用レンズ、107…載置台、115…ステージ制御部(制御部)、127…全体制御部(制御部)、L…レーザ光、P…集光点。

Claims (2)

  1. ウェハ状の加工対象物の内部に、切断の起点となる改質領域を形成するレーザ加工装置であって、
    前記加工対象物が載置される載置台と、
    パルスレーザ光を出射するレーザ光源と、
    前記載置台に載置された前記加工対象物の内部に、前記レーザ光源から出射されたパルスレーザ光を集光し、1パルスのパルスレーザ光の照射により、そのパルスレーザ光の集光点の位置で改質スポットを形成させる集光用レンズと、
    隣り合う前記改質スポット間の距離が略一定となるように前記加工対象物の切断予定ラインに沿って形成された複数の前記改質スポットによって前記改質領域を形成するために、パルスレーザ光の集光点を前記加工対象物の内部に位置させた状態で、パルスレーザ光の繰り返し周波数及びパルスレーザ光の集光点の移動速度を略一定にして、前記切断予定ラインに沿ってパルスレーザ光の集光点を直線的に移動させる機能を有する制御部と、を備えることを特徴とするレーザ加工装置。
  2. 前記制御部は、前記載置台及び前記集光用レンズの少なくとも1つの移動を制御することを特徴とする請求項1記載のレーザ加工装置。
JP2006069918A 2000-09-13 2006-03-14 レーザ加工装置 Expired - Lifetime JP3935188B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069918A JP3935188B2 (ja) 2000-09-13 2006-03-14 レーザ加工装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000278306 2000-09-13
JP2006069918A JP3935188B2 (ja) 2000-09-13 2006-03-14 レーザ加工装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001278707A Division JP4762458B2 (ja) 2000-09-13 2001-09-13 レーザ加工装置

Publications (2)

Publication Number Publication Date
JP2006150458A true JP2006150458A (ja) 2006-06-15
JP3935188B2 JP3935188B2 (ja) 2007-06-20

Family

ID=36629349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069918A Expired - Lifetime JP3935188B2 (ja) 2000-09-13 2006-03-14 レーザ加工装置

Country Status (1)

Country Link
JP (1) JP3935188B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003624A (ja) * 2009-06-17 2011-01-06 Shin Etsu Polymer Co Ltd 半導体ウェーハの製造方法及びその装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003624A (ja) * 2009-06-17 2011-01-06 Shin Etsu Polymer Co Ltd 半導体ウェーハの製造方法及びその装置

Also Published As

Publication number Publication date
JP3935188B2 (ja) 2007-06-20

Similar Documents

Publication Publication Date Title
JP4880722B2 (ja) 加工対象物切断方法
JP3626442B2 (ja) レーザ加工方法
JP4762458B2 (ja) レーザ加工装置
JP4964376B2 (ja) レーザ加工装置及びレーザ加工方法
JP4664140B2 (ja) レーザ加工方法
JP4837320B2 (ja) 加工対象物切断方法
JP2002192371A (ja) レーザ加工方法及びレーザ加工装置
JP4659301B2 (ja) レーザ加工方法
JP3751970B2 (ja) レーザ加工装置
JP3867107B2 (ja) レーザ加工方法
JP4142694B2 (ja) レーザ加工方法
JP3867109B2 (ja) レーザ加工方法
JP4128204B2 (ja) レーザ加工方法
JP3935187B2 (ja) レーザ加工方法
JP3867108B2 (ja) レーザ加工装置
JP3867103B2 (ja) 半導体材料基板の切断方法
JP3867102B2 (ja) 半導体材料基板の切断方法
JP3867101B2 (ja) 半導体材料基板の切断方法
JP3935188B2 (ja) レーザ加工装置
JP3867110B2 (ja) レーザ加工方法
JP4095092B2 (ja) 半導体チップ
JP2006148175A (ja) レーザ加工方法
JP2003001473A (ja) レーザ加工装置
JP2006205259A (ja) レーザ加工方法
JP2003088979A (ja) レーザ加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060314

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3935188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

EXPY Cancellation because of completion of term
R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157