JP2006145653A - Optical member sheet and manufacturing method thereof - Google Patents

Optical member sheet and manufacturing method thereof Download PDF

Info

Publication number
JP2006145653A
JP2006145653A JP2004332834A JP2004332834A JP2006145653A JP 2006145653 A JP2006145653 A JP 2006145653A JP 2004332834 A JP2004332834 A JP 2004332834A JP 2004332834 A JP2004332834 A JP 2004332834A JP 2006145653 A JP2006145653 A JP 2006145653A
Authority
JP
Japan
Prior art keywords
layer
convex lens
refractive index
optical member
member sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004332834A
Other languages
Japanese (ja)
Inventor
Yoshihide Nagata
佳秀 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2004332834A priority Critical patent/JP2006145653A/en
Publication of JP2006145653A publication Critical patent/JP2006145653A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical member sheet capable of attaining improvement in brightness, by realizing diffusion control of the outgoing radiation light and thereby suppressing loss of rays in the conventional backlight systems, and to provide a manufacturing method thereof. <P>SOLUTION: By alternately forming a photosensitive resin layer 30 on an exposure part 31 and a non-exposure part 32, by using a condensing effect of a convex lens form object 20, and further, by making a structure having a low refractive index layer 50 on the bottom part of the exposure part 31, there is the effect of making the refraction angle smaller than the incident angle, when the rays of the light made incident from an adhesive layer 60 side are made to exit from a low-refractive layer 50 to the photosensitive resin layer 30 and a light transmissive resin substrate 10; and further, when the rays of light are made to exit to the atmosphere through the convex lens form object 20, the rays of light are further refracted and diffusion control of the rays of light becomes possible in the front direction of the convex lens form object 20, and thus improvement in luminance can be attained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は各種光学フィルム、レンズシ−ト等、主として光学用途に用いられる光学部材表面に凸レンズ形状を有する光学部材シ−トに関するものである。   The present invention relates to an optical member sheet having a convex lens shape on the surface of an optical member mainly used for optical applications, such as various optical films and lens sheets.

近年、パーソナルコンピュータ向けのモニターや薄型TV等、各種表示装置として透過型の液晶表示(ディスプレイ)装置が多用されており、このような液晶表示装置では、通常、液晶素子の背面に面状の照明装置即ちバックライト(面光源装置)が配設されている。この面光源装置は、例えば冷陰極放電管等の線状光を面状光に変換する機構とされている。   In recent years, a transmissive liquid crystal display (display) device has been widely used as various display devices such as monitors for personal computers and thin TVs. In such a liquid crystal display device, a planar illumination is usually provided on the back surface of the liquid crystal element. A device, that is, a backlight (surface light source device) is provided. This surface light source device has a mechanism for converting linear light, such as a cold cathode discharge tube, into planar light.

線状光を面状光に変換する方法としては、例えばプリズムシート等を用いて、レンズ目が線状光源に対して平行になるように配置して面状に拡げる手法が代表的である。この際重要なことは、ただ光を面状にするだけでなく、できるだけ光線の向きを正面方向に出射させることである。
モニター等の画面は特殊な環境でない限り、正面方向から見ることが普通である。そのため、モニター等画面の正面方向に光線を集中することができれば、画面輝度の向上が可能となる。
A typical method for converting linear light into planar light is, for example, a method of using a prism sheet or the like and arranging the lens eyes so as to be parallel to the linear light source and expanding the planar light. In this case, what is important is not only to make the light planar, but also to emit the direction of the light beam in the front direction as much as possible.
A monitor or the like is usually viewed from the front unless it is in a special environment. Therefore, if the light rays can be concentrated in the front direction of the screen such as a monitor, the screen brightness can be improved.

以下に公知文献を示す。
特開2004−146383号
The known literature is shown below.
JP 2004-146383 A

しかし、これら従来の透過型液晶ディスプレイ装置は、バックライト部材の一部であるプリズムシートにおいて、線光源からプリズムシートへの入射光角度が急であるほど光線損失が増え、十分な光線拡散制御ができないという課題がある。   However, in these conventional transmissive liquid crystal display devices, in the prism sheet that is a part of the backlight member, the light beam loss increases as the incident light angle from the line light source to the prism sheet increases, and sufficient light diffusion control is performed. There is a problem that it cannot be done.

本発明は上記課題を鑑みたものであり、プリズムシートに代えて、凸レンズ形状物を連続的に配置した光学部材シートを用いることにより、出射光の拡散を制御し、さらに光路に低屈折率層を配置することで前記凸レンズ形状物への入射光角度を緩和し、従来のバックライトシステムでの光線損失を現象させ、光学部材表面に対して法線方向の輝度向上を可能とする光学部材シート及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and by using an optical member sheet in which convex lens-shaped objects are continuously arranged instead of a prism sheet, the diffusion of emitted light is controlled, and a low refractive index layer is provided in the optical path. An optical member sheet that relaxes the incident light angle to the convex lens-shaped object, causes a light loss in the conventional backlight system, and improves the luminance in the normal direction with respect to the optical member surface And it aims at providing the manufacturing method.

請求項1に記載の発明は、一方の面に凸レンズ形状物が連続して形成された透光性樹脂基材と、前記透光性樹脂基材の他方の面に、隣り合う前記凸レンズ形状物の境界を含む領域に形成された反射層と、前記反射層と隣接して形成される低屈折率層と、前記反射層と前記低屈折率層に重畳してなる粘着層と、を有し、前記低屈折率層は前記透光性樹脂基材及び前記粘着層と比べて屈折率が低いこと、を特徴とする。 The invention according to claim 1 is a translucent resin base material in which convex lens-shaped objects are continuously formed on one surface, and the convex lens-shaped object adjacent to the other surface of the translucent resin base material. A reflective layer formed in a region including the boundary, a low refractive index layer formed adjacent to the reflective layer, and an adhesive layer superimposed on the reflective layer and the low refractive index layer. The low refractive index layer has a lower refractive index than the light-transmitting resin substrate and the adhesive layer.

請求項2に記載の発明は、一方の面に凸レンズ形状物が連続して形成された透光性樹脂基材と、前記透光性樹脂基材の他方の面に形成された感光性樹脂層と、前記凸レンズ形状物のレンズ集光作用による集光部を除く非集光部に相当する感光性樹脂層に形成した反射層と、前記反射層と隣接して形成される低屈折率層と、前記反射層と前記低屈折率層に重畳してなる粘着層と、を有し、前記低屈折率層が前記透明性樹脂基材及び前記粘着層より屈折率が低いことを特徴とする。   The invention according to claim 2 is a translucent resin base material in which a convex lens-shaped object is continuously formed on one surface, and a photosensitive resin layer formed on the other surface of the translucent resin base material. A reflective layer formed on a photosensitive resin layer corresponding to a non-condensing part excluding a condensing part due to a lens condensing function of the convex lens-shaped object, and a low refractive index layer formed adjacent to the reflective layer, And an adhesive layer superimposed on the low refractive index layer, wherein the low refractive index layer has a lower refractive index than the transparent resin substrate and the adhesive layer.

請求項3に記載の発明は上記の光学部材シートにおいて低屈折率層が気体であることを特徴とする。   The invention according to claim 3 is characterized in that in the optical member sheet, the low refractive index layer is a gas.

請求項4に記載の発明は、上記の光学部材シートにおいて、前記粘着層を硬化させることにより、前記粘着層自体を保護層として用いることを特徴とする。   The invention according to claim 4 is characterized in that, in the optical member sheet, the adhesive layer itself is used as a protective layer by curing the adhesive layer.

請求項5に記載の発明は、上記の光学部材シートにおいて、前記粘着層の外面に保護層を有することを特徴とする。   The invention according to claim 5 is characterized in that the optical member sheet has a protective layer on an outer surface of the adhesive layer.

請求項6に記載の発明は、上記の光学部材シートにおいて、粘着層の外面に拡散層を有することを特徴とする。   The invention described in claim 6 is characterized in that the optical member sheet has a diffusion layer on the outer surface of the adhesive layer.

請求項7に記載の発明は、透光性樹脂基材の一方の面に前記凸レンズ形状物を形成する凸レンズ形状物形成工程と、前記透光性樹脂基材の他方の面に感光性樹脂層を形成する工程と、前記凸レンズ形状物の配置面側から平行である電離放射線を照射し、前記凸レンズ形状物の集光効果により、前記感光性樹脂層を露光部と未露光部とにパターニングする工程と、前記感光性樹脂層の未露光部下側に反射層を配置する工程と、前記反射層の下側に前記感光性樹脂層と対向配置された粘着層を形成することで前記感光性樹脂層の露光部下に低屈折率層を形成する工程と、を有することを特徴とする。   The invention according to claim 7 is a convex lens shaped object forming step of forming the convex lens shaped object on one surface of the translucent resin base material, and a photosensitive resin layer on the other surface of the translucent resin base material. And ionizing radiation that is parallel from the arrangement surface side of the convex lens-shaped object, and patterning the photosensitive resin layer into an exposed part and an unexposed part by the light condensing effect of the convex lens-shaped object Forming a reflective layer below the unexposed portion of the photosensitive resin layer; and forming an adhesive layer opposite to the photosensitive resin layer below the reflective layer to form the photosensitive resin. And a step of forming a low refractive index layer under the exposed portion of the layer.

請求項8に記載の発明は、上記光学部材シートの製造方法において、前記凸レンズ形状物形成工程は、前記透光性樹脂基材上に電離放射線硬化型樹脂を塗布する工程と、前記電離放射線硬化型樹脂の塗布された前記透光性樹脂基材を前記凸レンズ形状の成形型に押圧する工程と、電離放射線を照射して前記電離放射線硬化型樹脂を硬化して前記凸レンズ形状を転写する工程と、前記電離放射線硬化型樹脂の反応硬化物と一体となった透光性樹脂基材を、成形型から剥離する工程と、を有することを特徴とする。   According to an eighth aspect of the present invention, in the method of manufacturing an optical member sheet, the convex lens-shaped object forming step includes a step of applying an ionizing radiation curable resin on the translucent resin base material, and the ionizing radiation curing. A step of pressing the translucent resin substrate coated with a mold resin against the convex lens-shaped mold, a step of irradiating with ionizing radiation to cure the ionizing radiation-curable resin and transferring the convex lens shape; And a step of peeling the translucent resin base material integrated with the reaction cured product of the ionizing radiation curable resin from the mold.

本発明の光学部材シート及びその製造方法では、上記の構成により出射光の拡散制御を実現することで、従来のバックライトシステムでの光線損失を抑制し、輝度の向上を達成できる。また、粘着層の硬化や保護層の付加により光学部材シートの保護性が高まる。 In the optical member sheet and the manufacturing method thereof according to the present invention, by realizing the diffusion control of the emitted light by the above configuration, the light loss in the conventional backlight system can be suppressed, and the luminance can be improved. Further, the protection of the optical member sheet is enhanced by the curing of the adhesive layer and the addition of a protective layer.

以下、本発明の実施の形態について説明する。
図1は第1の実施形態を示すもので、本発明の光学部材シート1の断面図を示す。
光学部材シート1は透光性樹脂基板10と、凸レンズ形状物20と、感光性樹脂層30と、反射層40と、低屈折率層50と、粘着層60とを有する。
Embodiments of the present invention will be described below.
FIG. 1 shows a first embodiment and shows a cross-sectional view of an optical member sheet 1 of the present invention.
The optical member sheet 1 includes a translucent resin substrate 10, a convex lens shaped object 20, a photosensitive resin layer 30, a reflective layer 40, a low refractive index layer 50, and an adhesive layer 60.

透光性樹脂基板10は断面形状が矩形であり、材質としては光透過性樹脂が好ましく、ポリエステル、ポリカーボネイト、ポリ塩化ビニル等が挙げられる。透光性樹脂基材の厚さは、透光性、強度の観点から50〜250μm程度に設けられる。また一方の表面は凸レンズ形状物20を形成する際に密着力向上の為に易接着処理等の表面処理を施す。   The translucent resin substrate 10 has a rectangular cross-sectional shape, and the material is preferably a translucent resin, and examples thereof include polyester, polycarbonate, and polyvinyl chloride. The thickness of the translucent resin substrate is set to about 50 to 250 μm from the viewpoint of translucency and strength. One surface is subjected to a surface treatment such as an easy adhesion treatment in order to improve the adhesion when forming the convex lens-shaped object 20.

凸レンズ形状物20は断面形状が略半円であり、透光性樹脂基材10の易接着処理を施した一方の面に連続的に配置される。凸レンズ形状物20は該凸レンズ形状物20の曲面部上方から入射された光を透光性樹脂基材10を通して感光性樹脂30に集光させる。凸レンズ形状物20の形状としては集光効果を供する形状であればよく、レンチキュラーレンズ、クロスレンチキュラーレンズ、マイクロレンズが挙げられる。材質としては電離放射線効果型樹脂が好ましい。   The convex lens-shaped object 20 has a substantially semicircular cross-sectional shape, and is continuously disposed on one surface of the translucent resin substrate 10 that has been subjected to the easy adhesion treatment. The convex lens shaped object 20 condenses light incident from above the curved surface portion of the convex lens shaped object 20 onto the photosensitive resin 30 through the translucent resin substrate 10. The shape of the convex lens shaped object 20 may be any shape that provides a condensing effect, and examples thereof include lenticular lenses, cross lenticular lenses, and microlenses. The material is preferably an ionizing radiation effect type resin.

前記電離放射線硬化型樹脂としては、例えばウレタン(メタ)アクリレートオリゴマーや、エポキシ(メタ)アクリレートオリゴマー等の組成物があり、反応希釈剤、光重合開始剤、増感剤、その他の添加剤等を添加して屈折率等の調整が可能である。この反応性希釈材としては、各種反応性希釈材が用いられるが、カプロラクトン変成ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレートが粘度、硬化物の柔軟性をはじめとする物性や作業安全性の理由から好ましい。   Examples of the ionizing radiation curable resin include compositions such as urethane (meth) acrylate oligomers and epoxy (meth) acrylate oligomers, and reaction diluents, photopolymerization initiators, sensitizers, other additives, and the like. The refractive index and the like can be adjusted by adding. As the reactive diluent, various reactive diluents are used, but caprolactone-modified hydroxypivalate ester neopentyl glycol diacrylate is preferable for reasons of physical properties such as viscosity and flexibility of the cured product and work safety. .

ウレタン(メタ)アクリレートオリゴマーは、ポリオール類と、有機ポリイソシアネート類とを反応させて得られる。
前記ポリオール類としては、例えばエチレングリコール、1,4ブタンジオール、ネオペンチグリコール、ポリカプロラクトンポリオール、ポリエステルポリオール、ポリカーボネイトジオール、ポリテトラメチレングリコール等がある。また前記有機ポリイソシアネート類としては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、キシレンイソシアネート等が挙げられ、これら単独又は2種類以上を混合して用いることができる。
The urethane (meth) acrylate oligomer is obtained by reacting polyols with organic polyisocyanates.
Examples of the polyols include ethylene glycol, 1,4 butanediol, neopenthiglycol, polycaprolactone polyol, polyester polyol, polycarbonate diol, and polytetramethylene glycol. Examples of the organic polyisocyanates include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, and xylene isocyanate, and these can be used alone or in combination of two or more.

エポキシ(メタ)アクリレートオリゴマーは、エポキシ樹脂類と(メタ)アクリル酸とを反応させて得られる。
前記エポキシ樹脂類としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型プロピレンオキサイド付加物の末端グリシジルエーテル、フルオレンエポキシ樹脂等が挙げられる。
The epoxy (meth) acrylate oligomer is obtained by reacting epoxy resins with (meth) acrylic acid.
Examples of the epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, terminal glycidyl ether of bisphenol A type propylene oxide adduct, and fluorene epoxy resin.

感光性樹脂層30は、透光性樹脂基材10の他方の面に形成される。感光性樹脂層30の材質は電離放射線未照射状態で粘着性を有し、電離放射線を照射することにより粘着性を失うものが要求され、なかでも未照射部と照射部との境界で粘着性の有無が明瞭に現れ、透光性樹脂基材10と同等の屈折率を有するものが好ましい。感光性樹脂層30は凸レンズ形状物20上方から電離放射線を照射し、凸レンズ形状物20の集光効果を利用して露光部31と未露光部32とを交互に形成する。   The photosensitive resin layer 30 is formed on the other surface of the translucent resin substrate 10. The material of the photosensitive resin layer 30 is sticky when not exposed to ionizing radiation, and is required to lose its stickiness when irradiated with ionizing radiation. The presence or absence of is clearly shown, and those having a refractive index equivalent to that of the translucent resin substrate 10 are preferable. The photosensitive resin layer 30 irradiates ionizing radiation from above the convex lens-shaped object 20, and uses the light condensing effect of the convex lens-shaped object 20 to alternately form exposed portions 31 and unexposed portions 32.

反射層40は感光性樹脂層30の未露光部32下部のみに形成される。反射層40の材質は樹脂成分と要求される反射率に応じた顔料成分とを分散混合したものを用いる。顔料によっては異なる効果を得ることもでき、光隠蔽性かつ白色度の高い酸化チタンやアルミニウム等を顔料として使用すると高反射性効果を得ることができ、また黒色のカーボンを顔料として使用することにより反射効果が低く、逆に吸光効果を得ることができる。   The reflective layer 40 is formed only below the unexposed portion 32 of the photosensitive resin layer 30. The reflective layer 40 is made of a material obtained by dispersing and mixing a resin component and a pigment component corresponding to the required reflectance. Depending on the pigment, different effects can be obtained. When using titanium oxide, aluminum, etc., which have high light-shielding properties and high whiteness, a highly reflective effect can be obtained, and by using black carbon as the pigment. The reflection effect is low, and the light absorption effect can be obtained.

低屈折率層50は感光性樹脂層30の露光部31下部に形成される。ここでは上部には感光性樹脂層30、と左右には反射層40と、下部には粘着層60で周囲を囲まれた空気層が低屈折率層50となる。   The low refractive index layer 50 is formed below the exposed portion 31 of the photosensitive resin layer 30. Here, the low refractive index layer 50 is a photosensitive resin layer 30 at the top, a reflective layer 40 at the left and right, and an air layer surrounded by an adhesive layer 60 at the bottom.

粘着層60は、反射層40と低屈折率層50の下部に形成される。粘着層60には、感光性樹脂、またはガラス転移点(Tg)が0℃以下であるような低ガラス転移点樹脂などが挙げられる。
低ガラス転移点樹脂としては、例えばアクリル系、ゴム系、ビニル系、シリコン系等が挙げられる。
前記粘着層60が最外層にあたる場合は、電離放射線等を照射することにより硬化させ、保護層としての機能を持たせることができる。また、粘着層60の外側に他の部材を配置するのであれば、低ガラス転移点樹脂層を単純に粘着手段として用いて貼合するなど、用途によって適宜選択する。
The adhesive layer 60 is formed below the reflective layer 40 and the low refractive index layer 50. Examples of the adhesive layer 60 include a photosensitive resin or a low glass transition point resin having a glass transition point (Tg) of 0 ° C. or lower.
Examples of the low glass transition point resin include acrylic, rubber, vinyl, and silicon.
When the pressure-sensitive adhesive layer 60 is the outermost layer, it can be cured by irradiating with ionizing radiation or the like to have a function as a protective layer. Moreover, if other members are arranged outside the adhesive layer 60, the low glass transition point resin layer is simply used as an adhesive means and is appropriately selected depending on the application.

図2は本発明の光学部材シートにおいて、反射層40に高反射率となる顔料を使用し、粘着層60を硬化して保護層とした場合の光透過状態を断面図として示したものである。   FIG. 2 is a cross-sectional view showing a light transmission state when a pigment having a high reflectance is used for the reflective layer 40 in the optical member sheet of the present invention, and the adhesive layer 60 is cured to form a protective layer. .

拡散光源70が粘着層60下方に配置され、拡散光線71〜74が様々な角度で出射される。拡散光線71〜73は空気中から粘着層60に入射し、粘着層60は空気と比較して屈折率が大きいため、拡散光線71〜73の屈折角は入射角に対して小さくなる。次に拡散光線71〜73は粘着層60から低屈折率層50に入射する。その際、上記とは逆に低屈折率層50は粘着層60と比較して屈折率が小さいため、拡散光線71〜73の屈折角は大きくなり、粘着層60に入射する際の入射角と同じ角度になる。尚、拡散光源70には冷陰極蛍光管やLED等が挙げられる。   A diffused light source 70 is disposed below the adhesive layer 60, and diffused light rays 71 to 74 are emitted at various angles. The diffused rays 71 to 73 are incident on the adhesive layer 60 from the air, and the refractive index of the diffused rays 71 to 73 is smaller than the incident angle because the adhesive layer 60 has a higher refractive index than air. Next, the diffused rays 71 to 73 enter the low refractive index layer 50 from the adhesive layer 60. At this time, the low refractive index layer 50 has a refractive index smaller than that of the adhesive layer 60, contrary to the above, so that the refraction angle of the diffused rays 71 to 73 is increased, and the incident angle when entering the adhesive layer 60 is It becomes the same angle. Examples of the diffused light source 70 include a cold cathode fluorescent tube and an LED.

次に低屈折率層50を通過した光線71、72は感光性樹脂層30の露光部31を通して透光性樹脂基材10に入射する。この際、感光性樹脂層30と透光性樹脂基材10とで屈折率が同等のものを使用して、入射角と屈折角に差が生じないようにする。次に光線は透光性樹脂基材10を抜け、凸レンズ形状物20を通して凸レンズ形状物20の法線方向、即ち正面方向へ出射される。
光線73は反射層40側部表面で反射した後、透光性樹脂基材10に入射する経路をとる。いずれも低屈折率層50から低屈折率層50より屈折率の大きい透光性樹脂基材10へ入射するため、光線の屈折角は入射角より小さくなる。
Next, the light rays 71 and 72 that have passed through the low refractive index layer 50 enter the translucent resin substrate 10 through the exposed portion 31 of the photosensitive resin layer 30. At this time, the photosensitive resin layer 30 and the translucent resin base material 10 having the same refractive index are used so that no difference occurs between the incident angle and the refraction angle. Next, the light beam passes through the translucent resin substrate 10, and is emitted through the convex lens shaped object 20 in the normal direction of the convex lens shaped object 20, that is, the front direction.
The light beam 73 is reflected on the surface of the side of the reflective layer 40 and then takes a path that enters the translucent resin substrate 10. In either case, the light is incident from the low refractive index layer 50 to the translucent resin base material 10 having a higher refractive index than that of the low refractive index layer 50, so that the refractive angle of the light beam is smaller than the incident angle.

図3は本発明である光学部材シートの製造方法を示す。透光性樹脂基材10の一方の面に電離放射線硬化型樹脂を塗布し、成形型に押圧することで凸レンズ形状物20を形成する。その後、電離放射線効果型樹脂に電離放射線を照射し、硬化することで、透光性樹脂基材10と凸レンズ形状物20が一体となったシートを製造することができる(b)。   FIG. 3 shows a method for producing an optical member sheet according to the present invention. The ionizing radiation curable resin is applied to one surface of the translucent resin base material 10 and pressed against the mold to form the convex lens shaped article 20. Thereafter, the ionizing radiation effect type resin is irradiated with ionizing radiation and cured, whereby a sheet in which the translucent resin base material 10 and the convex lens shaped object 20 are integrated can be manufactured (b).

透光性樹脂基材10の他方の面に感光性樹脂層30を形成する(c)。その後、凸レンズ形状物20上方側から略平行光となる電離放射線を照射すると、凸レンズ形状物20の集光効果により感光性樹脂層30は露光部31と未露光部32とを形成する(d)。この際、露光部31は硬化して粘着性がなくなる。その後、感光性樹脂層30に顔料を分散混合した樹脂を押印することで未露光部32に選択的に反射層40を形成する(e)。   The photosensitive resin layer 30 is formed on the other surface of the translucent resin substrate 10 (c). Thereafter, when ionizing radiation that is substantially parallel light is irradiated from above the convex lens-shaped object 20, the photosensitive resin layer 30 forms an exposed part 31 and an unexposed part 32 due to the condensing effect of the convex lens-shaped object 20 (d). . At this time, the exposed portion 31 is cured and is not tacky. After that, the reflective layer 40 is selectively formed on the unexposed portion 32 by imprinting a resin in which a pigment is dispersed and mixed into the photosensitive resin layer 30 (e).

反射層40を形成後、粘着性部材を押圧することにより、粘着層60を形成することができる。この時、感光性樹脂層30の露光部31下部に低屈折率層50が形成され、反射層40と交互に配置される(f)。   After forming the reflective layer 40, the adhesive layer 60 can be formed by pressing the adhesive member. At this time, the low refractive index layer 50 is formed below the exposed portion 31 of the photosensitive resin layer 30 and is alternately arranged with the reflective layer 40 (f).

本発明である光学部材シート1は、凸レンズ形状物20の集光効果を利用して感光性樹脂層30を露光部31と未露光部32とに交互に形成し、さらには露光部31下部に低屈折率層50を有する構造とすることで、粘着層60側から入射された光線が低屈折率層50から感光性樹脂層30、及び透光性樹脂基材10を通過する際の屈折角を入射角より小さくする効果がある。さらに凸レンズ形状物20を通して光線が大気中に出射される際にはさらに屈折されて凸レンズ形状物20の正面方向に光線の拡散制御が可能となり輝度の向上が達成できる。   In the optical member sheet 1 according to the present invention, the photosensitive resin layer 30 is alternately formed in the exposed portion 31 and the unexposed portion 32 by using the light condensing effect of the convex lens-shaped object 20, and further on the lower portion of the exposed portion 31. By adopting a structure having the low refractive index layer 50, a refraction angle when light incident from the adhesive layer 60 side passes through the photosensitive resin layer 30 and the translucent resin substrate 10 from the low refractive index layer 50. Is smaller than the incident angle. Further, when the light beam is emitted into the atmosphere through the convex lens-shaped object 20, it is further refracted and the diffusion of the light beam can be controlled in the front direction of the convex lens-shaped object 20, thereby improving the luminance.

また、低屈折率層50と反射層40は交互に配置されるため、光源からの光線の入射角度が大きく、反射層40の壁面に衝突する場合においても、反射層40により、効率よく反射され、透光性樹脂基材10に出射される。
さらに、製造方法においては凸レンズ形状物20の集光効果を利用して感光性樹脂層30の露光部31と未露光部32とを交互配置し、また、凸レンズ形状物20に対応した位置に露光部31を形成することで、反射層40を未露光部32に対応した位置に形成することが可能となる。
Further, since the low refractive index layer 50 and the reflection layer 40 are alternately arranged, even when the incident angle of the light beam from the light source is large and collides with the wall surface of the reflection layer 40, it is efficiently reflected by the reflection layer 40. The light is emitted to the translucent resin base material 10.
Further, in the manufacturing method, the exposed portion 31 and the unexposed portion 32 of the photosensitive resin layer 30 are alternately arranged using the light condensing effect of the convex lens shaped object 20, and exposure is performed at a position corresponding to the convex lens shaped object 20. By forming the portion 31, the reflective layer 40 can be formed at a position corresponding to the unexposed portion 32.

図4は第2の実施形態である本発明の光学部材シートにおいて、反射層40に低反射率となる顔料を使用し吸光効果を高め、粘着層60の外面に拡散層100を設けた構成における光線の透過状態を断面図で示したものである。ここで拡散光源90は例えば外光のようなノイズ光原因となる光源であり、略平行光源80は略平行光線を出射する光源である。略平行光源80は凸レンズ形状物20上方に位置している。拡散光源90からの拡散光線92は拡散層100側から入射し、拡散層100にて拡散された拡散光線92は粘着層60を通過し、低屈折率層50よりも大きい屈折率をもつ粘着層60から低屈折率層50へ入射するため、入射角が臨界角以上の場合、全反射が生じ、再び拡散層100側へと戻される。   FIG. 4 shows a second embodiment of the optical member sheet of the present invention in which the light-absorbing effect is enhanced by using a pigment having a low reflectance for the reflective layer 40 and the diffusion layer 100 is provided on the outer surface of the adhesive layer 60. The light transmission state is shown in a sectional view. Here, the diffuse light source 90 is a light source that causes noise light such as external light, and the substantially parallel light source 80 is a light source that emits substantially parallel light rays. The substantially parallel light source 80 is located above the convex lens shaped object 20. The diffused light beam 92 from the diffused light source 90 enters from the diffusion layer 100 side, and the diffused light beam 92 diffused by the diffusion layer 100 passes through the adhesive layer 60 and has a refractive index larger than that of the low refractive index layer 50. Since the light is incident on the low refractive index layer 50 from 60, total reflection occurs when the incident angle is greater than or equal to the critical angle, and the light is returned again to the diffusion layer 100 side.

また、拡散光線91は粘着層60を通過し、反射層40へ入射した際、反射層40に分散された低反射率顔料の効果により吸収され、著しく減衰する。凸レンズ形状物20側から入射した略平行光線81、82は凸レンズ形状物20により集光されて透光性樹脂基材10及び感光性樹脂層30を通過するため、反射層40に吸収されることがない。低屈折率層50に入射する際は低屈折率層50の屈折率が感光性樹脂層30よりも小さいため、屈折角は入射角よりも大きくなり、粘着層60を通過し、拡散層100において拡散された光線が出射される。
即ち、この構成では拡散層100側からのノイズ光は反射層40に効率よく吸収され、さらに反射層40は遮光パターンとしての働きにより、コントラストの向上が可能となる。
Further, when the diffused light ray 91 passes through the adhesive layer 60 and enters the reflective layer 40, it is absorbed by the effect of the low reflectance pigment dispersed in the reflective layer 40 and is significantly attenuated. The substantially parallel light beams 81 and 82 incident from the convex lens shaped object 20 side are collected by the convex lens shaped object 20 and pass through the translucent resin base material 10 and the photosensitive resin layer 30, and thus are absorbed by the reflective layer 40. There is no. When entering the low refractive index layer 50, since the refractive index of the low refractive index layer 50 is smaller than that of the photosensitive resin layer 30, the refractive angle becomes larger than the incident angle, passes through the adhesive layer 60, and passes through the diffusion layer 100. A diffused light beam is emitted.
That is, in this configuration, noise light from the diffusion layer 100 side is efficiently absorbed by the reflection layer 40, and the reflection layer 40 can improve contrast by acting as a light shielding pattern.

図4において、粘着層60が硬化して光学部材シートの保護層として機能することも可能であり、また粘着層60の外面に耐傷性機能等を備える基材を押圧することにより保護層を得ることもできる。   In FIG. 4, the adhesive layer 60 can be cured to function as a protective layer of the optical member sheet, and a protective layer is obtained by pressing a substrate having a scratch resistance function or the like on the outer surface of the adhesive layer 60. You can also

なお、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々に変形することが可能である。   In addition, this invention is not limited to the said embodiment, It can change variously in the range which does not deviate from the summary.

本発明による光学部材シートの第1の実施形態の構成を示す断面概略図である。It is a section schematic diagram showing composition of a 1st embodiment of an optical member sheet by the present invention. 本発明による光学部材シートの第1の実施形態の光透過状態を示す断面概略図である。It is a cross-sectional schematic diagram which shows the light transmissive state of 1st Embodiment of the optical member sheet | seat by this invention. 本発明による形状物を有する光学部材シートの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the optical member sheet | seat which has a shape object by this invention. 本発明による光学部材シートの第2の実施形態を示す断面概略図である。It is a section schematic diagram showing a 2nd embodiment of an optical member sheet by the present invention.

符号の説明Explanation of symbols

1 ・・・光学部材シート
10 ・・・透光性樹脂基材
20 ・・・凸レンズ形状物
30 ・・・感光性樹脂層
31 ・・・感光性樹脂層の露光部
32 ・・・感光性樹脂層の未露光部
40 ・・・反射層
50 ・・・低屈折率層
60 ・・・粘着層
70 ・・・拡散光源
71〜74 ・・・拡散光線
80 ・・・平行光源
81、82 ・・・平行光線
90 ・・・拡散光源
91、92 ・・・拡散光線
100 ・・・拡散層
DESCRIPTION OF SYMBOLS 1 ... Optical member sheet 10 ... Translucent resin base material 20 ... Convex-lens shaped object 30 ... Photosensitive resin layer 31 ... Exposed part 32 of photosensitive resin layer ... Photosensitive resin Unexposed portion 40 of layer ... Reflective layer 50 ... Low refractive index layer 60 ... Adhesive layer 70 ... Diffuse light sources 71 to 74 ... Diffuse light beam 80 ... Parallel light sources 81, 82・ Parallel beam 90 ・ ・ ・ Diffusion light source 91, 92 ・ ・ ・ Diffusion beam 100 ・ ・ ・ Diffusion layer

Claims (8)

一方の面に凸レンズ形状物が連続して形成された透光性樹脂基材と、
前記透光性樹脂基材の他方の面に、隣り合う前記凸レンズ形状物の境界を含む領域に形成された反射層と、
前記反射層と隣接して形成される低屈折率層と、
前記反射層と前記低屈折率層に重畳してなる粘着層と、
を有し、
前記低屈折率層は前記透光性樹脂基材及び前記粘着層と比べて屈折率が低いこと、
を特徴とする光学部材シート。
A translucent resin base material in which convex lens-shaped objects are continuously formed on one surface;
A reflective layer formed in a region including the boundary of the adjacent convex lens-shaped object on the other surface of the translucent resin substrate;
A low refractive index layer formed adjacent to the reflective layer;
An adhesive layer superimposed on the reflective layer and the low refractive index layer;
Have
The low refractive index layer has a low refractive index compared to the translucent resin substrate and the adhesive layer,
An optical member sheet characterized by the above.
一方の面に凸レンズ形状物が連続して形成された透光性樹脂基材と、
前記透光性樹脂基材の他方の面に形成された感光性樹脂層と、
前記凸レンズ形状物のレンズ集光作用による集光部を除く非集光部に相当する感光性樹脂層に形成した反射層と、
前記反射層と隣接して形成される低屈折率層と、
前記反射層と前記低屈折率層に重畳してなる粘着層と、
を有し、
前記低屈折率層が前記透明性樹脂基材及び前記粘着層より屈折率が低いことを特徴とする光学部材シート。
A translucent resin base material in which convex lens-shaped objects are continuously formed on one surface;
A photosensitive resin layer formed on the other surface of the translucent resin substrate;
A reflective layer formed on a photosensitive resin layer corresponding to a non-condensing part excluding a condensing part by a lens condensing function of the convex lens-shaped object;
A low refractive index layer formed adjacent to the reflective layer;
An adhesive layer superimposed on the reflective layer and the low refractive index layer;
Have
The optical member sheet, wherein the low refractive index layer has a lower refractive index than the transparent resin substrate and the adhesive layer.
請求項1又は2に記載の光学部材シートにおいて低屈折率層が気体であることを特徴とする光学部材シート。   The optical member sheet according to claim 1 or 2, wherein the low refractive index layer is a gas. 請求項1から3にいずれか記載の光学部材シートにおいて、
前記粘着層を硬化させることにより、前記粘着層自体を保護層として用いることを特徴とする光学部材シート。
In the optical member sheet according to any one of claims 1 to 3,
An optical member sheet, wherein the adhesive layer itself is used as a protective layer by curing the adhesive layer.
請求項1から3にいずれか記載の光学部材シートにおいて、
前記粘着層の外面に保護層を有することを特徴とする光学部材シート。
In the optical member sheet according to any one of claims 1 to 3,
An optical member sheet comprising a protective layer on the outer surface of the adhesive layer.
請求項1から3又は5にいずれか記載の光学部材シートにおいて、粘着層の外面に拡散層を有することを特徴とする光学部材シート。   6. The optical member sheet according to claim 1, further comprising a diffusion layer on an outer surface of the adhesive layer. 透光性樹脂基材の一方の面に前記凸レンズ形状物を形成する凸レンズ形状物形成工程と、
前記透光性樹脂基材の他方の面に感光性樹脂層を形成する工程と、
前記凸レンズ形状物の配置面側から平行である電離放射線を照射し、前記凸レンズ形状物の集光効果により、前記感光性樹脂層を露光部と未露光部とにパターニングする工程と、
前記感光性樹脂層の未露光部下側に反射層を配置する工程と、
前記反射層の下側に前記感光性樹脂層と対向配置された粘着層を形成することで前記感光性樹脂層の露光部下に低屈折率層を形成する工程と、
を有することを特徴とする光学部材シートの製造方法。
A convex lens shaped object forming step of forming the convex lens shaped object on one surface of the translucent resin substrate;
Forming a photosensitive resin layer on the other surface of the translucent resin substrate;
Irradiating ionizing radiation that is parallel from the arrangement surface side of the convex lens-shaped object, and patterning the photosensitive resin layer into an exposed part and an unexposed part due to the light condensing effect of the convex lens-shaped object;
Arranging a reflective layer below the unexposed portion of the photosensitive resin layer;
Forming a low refractive index layer under the exposed portion of the photosensitive resin layer by forming an adhesive layer disposed opposite to the photosensitive resin layer under the reflective layer;
A method for producing an optical member sheet, comprising:
請求項7に記載の光学部材シートの製造方法において、
前記凸レンズ形状物形成工程は、
前記透光性樹脂基材上に電離放射線硬化型樹脂を塗布する工程と、
前記電離放射線硬化型樹脂の塗布された前記透光性樹脂基材を前記凸レンズ形状の成形型に押圧する工程と、
電離放射線を照射して前記電離放射線硬化型樹脂を硬化して前記凸レンズ形状を転写する工程と、
前記電離放射線硬化型樹脂の反応硬化物と一体となった透光性樹脂基材を、成形型から剥離する工程と、
を有することを特徴とする光学部材シートの製造方法。
In the manufacturing method of the optical member sheet according to claim 7,
The convex lens shape object forming step includes:
Applying an ionizing radiation curable resin on the translucent resin substrate;
Pressing the translucent resin substrate coated with the ionizing radiation curable resin against the convex lens-shaped mold; and
Irradiating with ionizing radiation to cure the ionizing radiation curable resin and transferring the convex lens shape;
Peeling the translucent resin base material integrated with the reaction cured product of the ionizing radiation curable resin from the mold; and
A method for producing an optical member sheet, comprising:
JP2004332834A 2004-11-17 2004-11-17 Optical member sheet and manufacturing method thereof Pending JP2006145653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332834A JP2006145653A (en) 2004-11-17 2004-11-17 Optical member sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332834A JP2006145653A (en) 2004-11-17 2004-11-17 Optical member sheet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006145653A true JP2006145653A (en) 2006-06-08

Family

ID=36625463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332834A Pending JP2006145653A (en) 2004-11-17 2004-11-17 Optical member sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006145653A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058660A1 (en) 2006-12-06 2008-07-10 Citizen Electronics Co., Ltd., Fujiyoshida-shi Optical component, backlight unit and display device with the same
DE102008021721A1 (en) 2007-05-08 2008-11-27 Citizen Electronics Co., Ltd., Fujiyoshida-shi Optical component, backlight unit and display device
JP2010032674A (en) * 2008-07-28 2010-02-12 Sony Corp Stereoscopic image display apparatus and manufacturing method therefor
JP2010032677A (en) * 2008-07-28 2010-02-12 Sony Corp Stereoscopic display apparatus and method of manufacturing the same
EP2184626A1 (en) * 2007-08-28 2010-05-12 Sharp Kabushiki Kaisha Method for manufacturing optical member, parent material for manufacture of optical member, transfer mold, lighting system for display device, display device, and television receiver
US8330805B2 (en) 2008-07-28 2012-12-11 Sony Corporation Stereoscopic image display apparatus and method of manufacturing the same
US8421852B2 (en) 2008-07-28 2013-04-16 Sony Corporation Method for manufacturing stereoscopic image display apparatus and stereoscopic image display apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058660A1 (en) 2006-12-06 2008-07-10 Citizen Electronics Co., Ltd., Fujiyoshida-shi Optical component, backlight unit and display device with the same
DE102008021721A1 (en) 2007-05-08 2008-11-27 Citizen Electronics Co., Ltd., Fujiyoshida-shi Optical component, backlight unit and display device
US7618179B2 (en) 2007-05-08 2009-11-17 Citizen Electronics Co., Ltd. Optical member, backlight unit and display apparatus
JPWO2009028226A1 (en) * 2007-08-28 2010-11-25 シャープ株式会社 Optical member manufacturing method, optical member manufacturing base material, transfer mold, display device illumination device, display device, and television receiver
EP2184626A4 (en) * 2007-08-28 2011-06-15 Sharp Kk Method for manufacturing optical member, parent material for manufacture of optical member, transfer mold, lighting system for display device, display device, and television receiver
EP2184626A1 (en) * 2007-08-28 2010-05-12 Sharp Kabushiki Kaisha Method for manufacturing optical member, parent material for manufacture of optical member, transfer mold, lighting system for display device, display device, and television receiver
JP2010032674A (en) * 2008-07-28 2010-02-12 Sony Corp Stereoscopic image display apparatus and manufacturing method therefor
JP4582218B2 (en) * 2008-07-28 2010-11-17 ソニー株式会社 Stereoscopic image display device and manufacturing method thereof
JP4582219B2 (en) * 2008-07-28 2010-11-17 ソニー株式会社 Stereoscopic image display device and manufacturing method thereof
JP2010032677A (en) * 2008-07-28 2010-02-12 Sony Corp Stereoscopic display apparatus and method of manufacturing the same
US8330805B2 (en) 2008-07-28 2012-12-11 Sony Corporation Stereoscopic image display apparatus and method of manufacturing the same
US8416285B2 (en) 2008-07-28 2013-04-09 Sony Corporation Stereoscopic image display apparatus and method of manufacturing the same
US8421852B2 (en) 2008-07-28 2013-04-16 Sony Corporation Method for manufacturing stereoscopic image display apparatus and stereoscopic image display apparatus

Similar Documents

Publication Publication Date Title
JP4167659B2 (en) Transmission type screen and rear projection type display device
JP5716733B2 (en) Daylighting sheet, daylighting device, and building
JP2006145653A (en) Optical member sheet and manufacturing method thereof
JP2000321675A (en) Microlens array sheet and its production and rear transmission type screen using this sheet
JP2002174703A (en) Lens array sheet and transmission type screen
JP2003240910A (en) Microlens array sheet and back projection type screen using the same
JP5888450B2 (en) Daylighting sheet, daylighting device, and building
JP4078832B2 (en) Lens array sheet and transmissive screen
JP4251033B2 (en) Lens array sheet and transmissive screen
JPH1039118A (en) Ray-directional sheet, and directional surface light source formed by using the same
JPH10253808A (en) Optical sheet and manufacture therefor and directional sheet-like light source
JP2000275738A (en) Optical article and back transmission type screen using the same
JPH10261309A (en) Optical sheet and directional surface light source
JP5796691B2 (en) Daylighting sheet, daylighting device, and building
JP2008281910A (en) Transmission type screen and rear projection type display device
JP6037067B2 (en) Daylighting sheet, daylighting device, and building
JP6037068B2 (en) Daylighting sheet, daylighting device, and building
JP2007271645A (en) Transmission type screen and rear projection type display apparatus
JP6215376B2 (en) Daylighting sheet, daylighting device, and building
JP5888449B2 (en) Daylighting sheet, daylighting device, and building
JP2005017919A (en) Transmission type screen
JP2014119740A (en) Daylighting sheet, daylighting device and building
JPH11295817A (en) Lenticular screen
KR20190060569A (en) Polarizing plate and optical display device comprising the same
KR20070052868A (en) Liquid crystal display and manufacturing method of the same