JP2006145509A - Method of marking molded fuel for high-temperature gas-cooled reactor - Google Patents

Method of marking molded fuel for high-temperature gas-cooled reactor Download PDF

Info

Publication number
JP2006145509A
JP2006145509A JP2004339815A JP2004339815A JP2006145509A JP 2006145509 A JP2006145509 A JP 2006145509A JP 2004339815 A JP2004339815 A JP 2004339815A JP 2004339815 A JP2004339815 A JP 2004339815A JP 2006145509 A JP2006145509 A JP 2006145509A
Authority
JP
Japan
Prior art keywords
fuel
marking
temperature gas
compact
marking display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004339815A
Other languages
Japanese (ja)
Other versions
JP4358089B2 (en
Inventor
Atsushi Yasuda
淳 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2004339815A priority Critical patent/JP4358089B2/en
Publication of JP2006145509A publication Critical patent/JP2006145509A/en
Application granted granted Critical
Publication of JP4358089B2 publication Critical patent/JP4358089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To economically apply marking display for identification to fuel for a high-temperature gas-cooled reactor, such as fuel compact or fuel pebble bed. <P>SOLUTION: The fuel compact 10 for the high-temperature gas-cooled reactor is press-molded, then the marking display 14 is applied to the surface of the fuel compact 10 by ink jet type printing, the marking display 14 is heat-treated on a heat treating tray 16 to dry ink, then the fuel compact 10 is calcined to graphitize the ink component. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高温ガス炉用燃料コンパクトや燃料ペブルベッドの如き成型燃料にマーキングを施す方法に関し、更に詳細に述べると、例えば、成型燃料の1個単位のウラン燃料を識別するために成型燃料にマーキング表示を施す方法の改良に関するものである。   The present invention relates to a method for marking a molded fuel such as a high temperature gas reactor fuel compact or a fuel pebble bed. More specifically, the present invention relates to a molded fuel to identify a unit of uranium fuel in a molded fuel. The present invention relates to an improvement in a method for marking.

原子力発電には、特に黒鉛(C)を減速材としてヘリウムガスを循環させて約900℃の高温の熱を取り出すことができる高温ガス炉と称されるものが用いられている。この高温ガス炉は、燃料を含む炉心構造を熱容量が大きく高温で健全性を維持する黒鉛で構成し、炉心を冷却するために、高温下でも化学反応が起こることがないヘリウムガスを冷却ガスとして用いているので、固有の安全性が高く、この高い出口温度のヘリウムガスを回収して、この高温の熱を発電、水素製造、化学プラント等の広い分野で利用することができる。   In nuclear power generation, a so-called high-temperature gas furnace that can extract high-temperature heat of about 900 ° C. by circulating helium gas using graphite (C) as a moderator is used. In this high temperature gas reactor, the core structure containing fuel is composed of graphite with a large heat capacity and maintaining soundness at high temperatures, and helium gas that does not cause chemical reaction even at high temperatures is used as a cooling gas to cool the core. Since it is used, the inherent safety is high, and this high outlet temperature helium gas can be recovered, and this high-temperature heat can be used in a wide range of fields such as power generation, hydrogen production, and chemical plants.

この高温ガス炉の燃料は、二酸化ウランをセラミックス状に焼結した直径が約350−650ミクロンの燃料核の周囲に4層の被覆を施して形成されている。第一層は、密度が約1g/cmの低密度熱分解炭素の被覆であり、これは、ガス状の核***生成物(FP)のガス溜めとしての機能と燃料核のスウェリングを吸収するバッファとしての機能とを併せ持っている。第二層は、密度が約1.8g/cmの高密度熱分解炭素の被覆であり、これは、ガス状FPの保持機能を有する。第三層は、密度が約3.2g/cmの炭化珪素(SiC)の被覆であり、これは、固体FPの保持機能を有すると共に、被覆の主要な補強部材としての機能を有する。最後に、第四層は、第二層と同様に、密度が約1.8g/cmの高密度熱分解炭素の被覆であり、これは、ガス状FPの保持機能と第三層の保護層としての機能を有する。 The fuel of this HTGR is formed by coating four layers around a fuel core having a diameter of about 350 to 650 microns obtained by sintering uranium dioxide into a ceramic form. The first layer is a coating of low density pyrolytic carbon with a density of about 1 g / cm 3 , which absorbs the function of the gaseous fission product (FP) as a reservoir and fuel nuclear swelling. It also has a function as a buffer. The second layer is a coating of high density pyrolytic carbon having a density of about 1.8 g / cm 3 , which has a retention function for gaseous FP. The third layer is a coating of silicon carbide (SiC) having a density of about 3.2 g / cm 3 , which has a function of holding solid FP and functioning as a main reinforcing member of the coating. Finally, the fourth layer, like the second layer, is a high-density pyrolytic carbon coating with a density of about 1.8 g / cm 3 , which is a gaseous FP retention function and third layer protection. It functions as a layer.

一般的な被覆燃料粒子は、約500−1000ミクロンの直径を有する。この被覆燃料粒子は、黒鉛マトリックス中に分散させた後、一定形状の燃料コンパクトの形態に成型加工され、この燃料コンパクトの一定数量を黒鉛筒に入れ、上下を栓で密封して燃料棒とされる。この燃料棒は、六角柱型黒鉛ブロックの複数の挿入口に差し込まれて高温ガス炉の燃料となる。多数個の六角柱型黒鉛ブロックをハニカム配列に多段に重ねて炉心を構成している。   Typical coated fuel particles have a diameter of about 500-1000 microns. The coated fuel particles are dispersed in a graphite matrix, and then molded into a fixed fuel compact shape. A fixed amount of the fuel compact is placed in a graphite tube, and the top and bottom are sealed with plugs to form fuel rods. The This fuel rod is inserted into a plurality of insertion ports of the hexagonal column type graphite block and becomes fuel for the high temperature gas furnace. A large number of hexagonal columnar graphite blocks are stacked in multiple stages on a honeycomb array to constitute a core.

高温ガス炉の燃料は、一般的には、次のようにして製造される。まず、酸化ウラン粉末を硝酸に溶かして硝酸ウラニル原液とし、この硝酸ウラニル原液に純水、増粘剤を添加し攪拌して滴下原液を作る。増粘剤は、滴下された硝酸ウラニル原液の滴液が落下中にそれ自体の表面張力で真球状になるように作用する。このような増粘剤としては、アルカリ条件下で凝固する性質を有する樹脂、例えば、ポリビニールアルコール樹脂、ポリエチレングリコール、メトローズ等を使用することができる。このように調製された滴下原液は、所定の温度に冷却されて粘度が調整された後、細径の滴下ノズルを振動させる等の方法を用いてアンモニア水中に滴下される。   Generally, the fuel for the HTGR is manufactured as follows. First, uranium oxide powder is dissolved in nitric acid to form a uranyl nitrate stock solution, and pure water and a thickener are added to the uranyl nitrate stock solution and stirred to prepare a dropping stock solution. The thickener acts so that the dropped solution of the uranyl nitrate stock solution dropped into a spherical shape with its own surface tension during dropping. As such a thickener, a resin having a property of solidifying under an alkaline condition, for example, a polyvinyl alcohol resin, polyethylene glycol, or metroise can be used. The dripping stock solution prepared in this manner is cooled to a predetermined temperature and the viscosity is adjusted, and then dropped into ammonia water using a method of vibrating a small-diameter dropping nozzle.

滴液は、アンモニア水溶液表面に着水するまでの空間でアンモニアガスを吹き付けて表面をゲル化させることによって着水時の変形が防止される。硝酸ウラニルは、アンモニア水中でアンモニアと充分に反応させ、重ウラン酸アンモニウムの粒子となる。この粒子は、大気中で焙焼され三酸化ウラン粒子となり、更に還元焼結されて高密度のセラミック二酸化ウランの燃料核となる。   The droplet liquid is prevented from being deformed at the time of landing by spraying ammonia gas in a space until it reaches the surface of the aqueous ammonia solution to gel the surface. Uranyl nitrate is sufficiently reacted with ammonia in ammonia water to form particles of ammonium biuranate. These particles are roasted in the atmosphere to become uranium trioxide particles, and further reduced and sintered to become fuel nuclei of high-density ceramic uranium dioxide.

この燃料核は、流動床に装荷され、この流動床内で反応ガス(被覆ガス)が供給されて熱分解されて被覆が施される。第一層の低密度熱分解炭素は、約1400℃でアセチレン(C)を熱分解して被覆される。第二層及び第四層の高密度熱分解炭素は、約1400℃でプロピレン(C)を熱分解して被覆される。第三層のSiCは、約1600℃でメチルトリクロロシラン(CHSiCl)を熱分解して被覆される。 The fuel nuclei are loaded into a fluidized bed, and a reaction gas (coating gas) is supplied in the fluidized bed and thermally decomposed to be coated. The first layer of low density pyrolytic carbon is coated by pyrolyzing acetylene (C 2 H 2 ) at about 1400 ° C. The high density pyrolytic carbon of the second and fourth layers is coated by pyrolyzing propylene (C 3 H 6 ) at about 1400 ° C. The third layer of SiC is coated by pyrolyzing methyltrichlorosilane (CH 3 SiCl 3 ) at about 1600 ° C.

一般的なオーバーコート粒子は、被覆燃料粒子に黒鉛粉末と粘結剤とから成る黒鉛マトリックス材と共に、中空円筒形又は円筒形にプレス成型又はモールドして形成される。この燃料コンパクトは、マトリックス材中に含まれる粘結剤を除去したり、マトリックス材を黒鉛化したりするために、焼成される。   A general overcoat particle is formed by press molding or molding into a hollow cylindrical shape or a cylindrical shape together with a graphite matrix material composed of graphite powder and a binder on coated fuel particles. This fuel compact is fired in order to remove the binder contained in the matrix material or to graphitize the matrix material.

一方、この燃料コンパクトには1個単位でウラン燃料を識別するために、この識別表示を有するマーキングを施すことが必要となる。   On the other hand, in order to identify the uranium fuel in units of one, this fuel compact needs to be marked with this identification display.

従来から軽水炉用燃料ペレットのウラン濃縮度を識別するために、プレス金型の表面に刻印用の凹凸面を形成して燃料ペレットに刻印してマーキングを施す方法が試みられている(特許文献1参照)。   Conventionally, in order to identify the uranium enrichment of fuel pellets for light water reactors, an attempt has been made to form an uneven surface for stamping on the surface of a press die and to mark the fuel pellets by marking (Patent Document 1). reference).

しかし、軽水炉用燃料ペレットは、ウラン濃縮度を識別するのみであるので、問題を生ずることがないが、高温ガス炉用の燃料コンパクトや燃料ペブルベッドは、1個単位でウラン燃料を識別するため、その都度異なる刻印を有する金型と交換する必要があって金型の交換頻度が高まる上に、金型のコストが高くなり、金型表面の凹凸を利用して高温ガス炉用成型燃料にウラン燃料を識別するマーキング表示を施すことは実用的でない。   However, light water reactor fuel pellets only identify uranium enrichment, so there is no problem. However, fuel compacts and fuel pebble beds for high temperature gas reactors identify uranium fuel in units of one. In addition, it is necessary to replace with a mold having a different stamp each time, and the replacement frequency of the mold is increased, and the cost of the mold is increased. It is impractical to provide markings that identify uranium fuel.

特願平10−090458号公報Japanese Patent Application No. 10-090458

本発明が解決しようとする課題は、金型の交換を必要とすることなく、成型燃料にウラン燃料を識別するためのマーキング表示を経済的に施すことができる高温ガス炉用成型燃料のマーキング方法を提供することにある。   A problem to be solved by the present invention is a marking method for a molded fuel for a high temperature gas reactor that can economically provide a marking for identifying the uranium fuel on the molded fuel without requiring replacement of a mold. Is to provide.

本発明の課題解決手段は、高温ガス炉用の成型燃料の表面にインクジェット方式の印刷によってマーキング表示を施し、このマーキング表示は、マーキング表示が熱接触するように成型燃料が配置された熱処理トレイ上で熱処理されることを特徴とする高温ガス炉用成型燃料のマーキング方法を提供することにある。   The problem-solving means of the present invention provides a marking display on the surface of a molded fuel for a high-temperature gas furnace by ink-jet printing, and this marking display is on a heat treatment tray on which the molded fuel is arranged so that the marking display is in thermal contact. It is an object of the present invention to provide a marking method for a molded fuel for a high temperature gas reactor, characterized by being heat-treated in the above.

本発明の課題解決手段において、マーキング表示を熱処理する熱処理トレイは、黒鉛製であるのが好ましい。   In the problem-solving means of the present invention, the heat treatment tray for heat-treating the marking display is preferably made of graphite.

本発明によれば、マーキング表示は、金型を用いることなく、インクジェットによる印刷によって施されるので、1個単位でウラン燃料を識別するのに金型を変更することなく、マーキング表示を施すことができ、従って成型燃料を経済的に識別することができ、またインクは、印刷後、熱処理トレイ上で熱接触させて熱処理して乾燥固化されるので、マーキング表示が消失することがなく、燃料の識別を鮮明に行うことができる。   According to the present invention, since the marking display is performed by inkjet printing without using a mold, the marking display can be performed without changing the mold to identify uranium fuel in units of one unit. Therefore, the molded fuel can be identified economically, and after printing, the ink is brought into thermal contact with the heat treatment tray and heat-treated to be dried and solidified. Can be clearly identified.

本発明の実施の形態を図面を参照して詳細に述べると、図1は、本発明に係る高温ガス炉用燃料コンパクトのマーキング方法を工程順に示し、燃料コンパクト10は、既に述べたように、被覆燃料粒子と黒鉛マトリックス材とをプレス金型内に投入して温間プレスして製造される。   An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a marking method of a fuel compact for a HTGR according to the present invention in the order of steps. The coated fuel particles and the graphite matrix material are put into a press mold and manufactured by warm pressing.

このようにして燃料コンパクト10をプレス成型し、冷却した後、プレス金型から燃料コンパクト10を取り出し、インクジェット式印刷機12の如き無接触式印刷機を用いて燃料コンパクト10の端面にインクを用いてマーキング表示14を印刷する。   After the fuel compact 10 is press-molded and cooled in this manner, the fuel compact 10 is taken out from the press mold, and ink is used on the end face of the fuel compact 10 using a contactless printing machine such as an ink jet printer 12. The marking display 14 is printed.

次いで、この燃料コンパクト10を熱処理トレイ16上に配置してマーキング表示14を熱処理するが、この熱処理は、マーキング表示14を熱処置トレイ16に熱接触させて行われる。即ち、マーキング表示14が熱処理トレイ16の加熱されている底面16Bに接触させた状態で熱処理される。   Next, the fuel compact 10 is placed on the heat treatment tray 16 to heat-treat the marking display 14. This heat treatment is performed by bringing the marking display 14 into thermal contact with the heat treatment tray 16. That is, the marking display 14 is heat-treated while being in contact with the heated bottom surface 16 </ b> B of the heat treatment tray 16.

熱処理トレイ16は、黒鉛製であるのが好ましい。この熱処理によって、マーキング表示14のインクは、急速に乾燥し脱脂される。その後、熱処理トレイ16に乗せたまま、燃料コンパクト10を真空中で焼成してインクを黒鉛化する。   The heat treatment tray 16 is preferably made of graphite. By this heat treatment, the ink of the marking display 14 is rapidly dried and degreased. Thereafter, the fuel compact 10 is fired in a vacuum while being placed on the heat treatment tray 16 to graphitize the ink.

本発明のマーキング方法に用いられるインクは、燃料コンパクトとして用いられるのに不都合な成分を含まないものであることが要求され、特に、ホウ素の如き中性子を吸収する成分を含まないインクを選択して使用することが要求される。   The ink used in the marking method of the present invention is required to be free of components that are inconvenient for use as a fuel compact. In particular, an ink that does not include a component that absorbs neutrons such as boron is selected. It is required to use.

上記実施の形態では、燃料コンパクトにマーキングを施す場合について説明したが、ペブルベッド型の燃料にも本発明を同様にして適用することができる。   In the above embodiment, the case where marking is performed on the fuel compact has been described. However, the present invention can be similarly applied to a pebble bed type fuel.

本発明の具体例において、プレス金型によって成型された燃料コンパクト10は、外径が約26mm、高さが約39mmであり、この燃料コンパクトの一方の端面に5文字をインクジェット方式で印刷し、印刷後、黒鉛トレイを用いて約800℃でインクを乾燥脱脂後、真空中で約1800℃の雰囲気に配置してインクを焼成処理した。このようにして燃料コンパクト10に施されたマーキング表示14は、黒く鮮明に認識することができた。   In a specific example of the present invention, the fuel compact 10 molded by a press mold has an outer diameter of about 26 mm and a height of about 39 mm. Five characters are printed on one end surface of the fuel compact by an ink jet method, After printing, the ink was dried and degreased at about 800 ° C. using a graphite tray, and then placed in an atmosphere at about 1800 ° C. in a vacuum to fire the ink. In this way, the marking display 14 provided on the fuel compact 10 could be recognized clearly in black.

本発明によれば、マーキング表示インクジェット方式の印刷によって施されるので、金型を交換することなく、1個単位でウラン燃料を認識する場合のように、多数の表示を経済的に施すことができ、産業上の利用性が向上する。   According to the present invention, since marking display is performed by inkjet printing, a large number of displays can be economically performed as in the case of recognizing uranium fuel in units of one unit without replacing the mold. And industrial use is improved.

本発明に係る高温ガス炉用成型燃料(燃料コンパクト)のマーキング方法を工程順に示す概略図である。It is the schematic which shows the marking method of the shaping | molding fuel (fuel compact) for high temperature gas reactors which concerns on this invention in order of a process.

符号の説明Explanation of symbols

10 燃料コンパクト
12 インクジェットッ式印刷機
14 マーキング表示
16 熱処理トレイ
16B 底面











































10 Fuel Compact 12 Inkjet Printing Machine 14 Marking Display 16 Heat Treatment Tray 16B Bottom











































Claims (2)

高温ガス炉用成型燃料の表面にインクジェット方式の印刷によってマーキング表示を施し、前記マーキング表示は、前記マ-キング表示が熱接触するように前記成型燃料が配置された熱処理トレイ上で熱処理されることを特徴とする高温ガス炉用成型燃料のマーキング方法。 Marking display is performed on the surface of the molded fuel for the HTGR by inkjet printing, and the marking display is heat-treated on a heat treatment tray on which the molded fuel is arranged so that the marking display is in thermal contact with the marking display. A marking method for a molded fuel for a HTGR characterized by the above. 請求項1に記載の高温ガス炉用成型燃料のマーキング方法であって、前記熱処理トレイは、黒鉛製であることを特徴とする高温ガス炉用成型燃料のマーキング方法。







































2. The marking method for a high temperature gas reactor molding fuel according to claim 1, wherein the heat treatment tray is made of graphite.







































JP2004339815A 2004-11-25 2004-11-25 Marking method of molded fuel for HTGR Expired - Fee Related JP4358089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339815A JP4358089B2 (en) 2004-11-25 2004-11-25 Marking method of molded fuel for HTGR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339815A JP4358089B2 (en) 2004-11-25 2004-11-25 Marking method of molded fuel for HTGR

Publications (2)

Publication Number Publication Date
JP2006145509A true JP2006145509A (en) 2006-06-08
JP4358089B2 JP4358089B2 (en) 2009-11-04

Family

ID=36625361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339815A Expired - Fee Related JP4358089B2 (en) 2004-11-25 2004-11-25 Marking method of molded fuel for HTGR

Country Status (1)

Country Link
JP (1) JP4358089B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002334A1 (en) * 2011-06-30 2013-01-03 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Product having traceability displayed thereon and method for displaying traceability of product
JP2013011000A (en) * 2011-06-30 2013-01-17 Momentive Performance Materials Inc Pg-coated product on which traceability is displayed and method for producing the same
JP2013032579A (en) * 2011-06-30 2013-02-14 Momentive Performance Materials Inc Pbn-overcoated product indicated of traceability and method for indicating traceability to pbn product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002334A1 (en) * 2011-06-30 2013-01-03 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Product having traceability displayed thereon and method for displaying traceability of product
JP2013011000A (en) * 2011-06-30 2013-01-17 Momentive Performance Materials Inc Pg-coated product on which traceability is displayed and method for producing the same
JP2013032579A (en) * 2011-06-30 2013-02-14 Momentive Performance Materials Inc Pbn-overcoated product indicated of traceability and method for indicating traceability to pbn product
CN103748261A (en) * 2011-06-30 2014-04-23 迈图高新材料日本有限公司 Product having traceability displayed thereon and method for displaying traceability of product
KR20140053027A (en) * 2011-06-30 2014-05-07 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Product having traceability displayed thereon and method for displaying traceability of product
KR101867646B1 (en) * 2011-06-30 2018-06-14 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Product having traceability displayed thereon and method for displaying traceability of product

Also Published As

Publication number Publication date
JP4358089B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4358089B2 (en) Marking method of molded fuel for HTGR
Ganguly Sol-gel microsphere pelletization: A powder-free advanced process for fabrication of ceramic nuclear fuel pellets
JP2006200935A (en) Method of marking molded fuel for high temperature gas furnace
JP4697938B2 (en) Method for producing coated fuel particles for HTGR
JP2006300547A (en) Fuel for high-temperature gas-cooled reactor
JP2006064442A (en) Manufacturing device of hollow fuel compact for high-temperature gas furnace
JP2007127484A (en) Fuel assembly for high-temperature gas-cooled reactor, and manufacturing method therefor
JP4790257B2 (en) Method for producing molded fuel for HTGR
JP2006112838A (en) Method for manufacturing fuel compact for high-temperature gas-cooled reactor
JP2007003118A (en) Gas injection nozzle deposit-removing method for manufacturing device of coated fuel particle for high-temperature gas furnace and manufacturing method of coated fuel particle for high-temperature gas furnace
JP4417867B2 (en) Production equipment for coated fuel particles for HTGR
JP2006078401A (en) Pebble bed type nuclear fuel for high-temperature gas-cooled reactor and its manufacturing method
JP4409460B2 (en) Production equipment for coated fuel particles for HTGR
JP2010112822A (en) Method of manufacturing fuel compact for high-temperature gas-cooled reactor
JP4689573B2 (en) Fuel compact
JP2006322890A (en) Fuel compact and its manufacturing method
JP4522924B2 (en) Fuel compact
JP2006300762A (en) Fuel compact and its manufacturing method
JP4354903B2 (en) Production equipment for coated fuel particles for HTGR
JP2007147335A (en) Pebble-bed fuel and method for manufacturing same
JP4685707B2 (en) Fuel compact pre-firing device and fuel compact pre-firing method
JP4417879B2 (en) Production equipment for coated fuel particles for HTGR
JP2007218818A (en) Method of manufacturing fuel compact for high-temperature gas-cooled reactor
JP2851082B2 (en) Nuclear fuel assembly marking method
JP2006062886A (en) Method and apparatus for producing ammonium diuranate particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees