JP2006145056A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2006145056A
JP2006145056A JP2004331534A JP2004331534A JP2006145056A JP 2006145056 A JP2006145056 A JP 2006145056A JP 2004331534 A JP2004331534 A JP 2004331534A JP 2004331534 A JP2004331534 A JP 2004331534A JP 2006145056 A JP2006145056 A JP 2006145056A
Authority
JP
Japan
Prior art keywords
water
pipe
wall
heat exchanger
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004331534A
Other languages
Japanese (ja)
Other versions
JP4572662B2 (en
Inventor
Takumi Kida
琢己 木田
朋子 ▲はま▼川
Tomoko Hamakawa
Osao Kido
長生 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004331534A priority Critical patent/JP4572662B2/en
Publication of JP2006145056A publication Critical patent/JP2006145056A/en
Application granted granted Critical
Publication of JP4572662B2 publication Critical patent/JP4572662B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize high heat exchanging efficiency with a simple structure, to inhibit breakdown of a heat exchanger by deposition of mineral components such as calcium (Ca) in service water only at a high temperature side, and to prevent impairing of heat exchanging performance. <P>SOLUTION: High heat exchanging efficiency is achieved by allowing the water to flow inside of an inner pipe 2, allowing carbon dioxide to flow in a annular portion 6 between the inner pipe 2 and an outer pipe 4 in opposition to the water, comprising a complete double wall 3 and securing a sufficient contact area. As a cross-sectional area of a flow channel at an outflow side 2b of the inner pipe 2 in which the water flows, is enlarged in comparison with a cross-sectional area of a flow channel at an inflow side 2a, the flow of water is not sealed and the stop of heat exchange can be inhibited even when calcium in the water is deposited and attached to a pipe wall 2b of the inner pipe 2 at the outflow side 2b. Further as a temperature of the water is lowered at the inflow side 2a, the attachment of scale is not found even when an inner diameter of the inner pipe 2 is comparatively small, a heat transfer area is enlarged by a spiral fin 7, and the heat transfer rate is improved by stirring the water, the impairing of heat exchanging performance can be prevented in the whole heat exchanger 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は空調、冷凍、冷蔵、給湯等の機器、特にヒートポンプ式の給湯機などにおいて、水等の流体と冷媒等の2つの流体が熱交換するための熱交換器に関するものである。   The present invention relates to a heat exchanger for exchanging heat between a fluid such as water and two fluids such as a refrigerant in a device such as an air conditioner, a refrigerator, a refrigerator, and a hot water supply, particularly a heat pump type hot water heater.

従来、この種の熱交換器としては、軸線の直線部で、小径管と大径管とが隙間を介して同軸に配置され、小径管の軸線が蛇行状に曲折され、小径管に加熱用流体が流通すると共に大径管に被加熱用の水が流通する構成において、小径管と大径管との間の水の流路断面積が、水の流通する下流側が上流側より大に形成したものがある(例えば、特許文献1参照)。   Conventionally, in this type of heat exchanger, a small diameter pipe and a large diameter pipe are arranged coaxially with a gap at the straight line portion of the axis, and the axis of the small diameter pipe is bent in a meandering manner to heat the small diameter pipe. In a configuration in which fluid is circulated and water for heating is circulated through the large-diameter pipe, the cross-sectional area of the water channel between the small-diameter pipe and the large-diameter pipe is formed larger on the downstream side than the upstream side where the water circulates. (For example, refer to Patent Document 1).

図7は、特許文献1に記載された従来の二重管型熱交換器を示すものである。図8は、図7のII−II線矢視断面図である。   FIG. 7 shows a conventional double tube heat exchanger described in Patent Document 1. In FIG. 8 is a cross-sectional view taken along the line II-II in FIG.

図7、図8で示すように熱交換器100は蛇行状に曲折された小径管101と、小径管101の直線部に隙間を開けて同軸に被嵌された大径管102とを有する。大径管102の両端部は閉塞され、小径管101の外周に液密に固定されている。小径管101は、U字状に曲げたパイプと直線状のパイプとそれらの端部間を連結する短い連結用U字管112とを有する。次に、大径管102は夫々互いに水連結管108によって連結され、最も下流側に位置する大径管102のみの内直径が、他の大径管102の内直径よりも大に形成されている。そして最も上流側の大径管102に入口パイプ109が連通され、最も下流側の大径管102に出口パイプ110が連通されている。   As shown in FIGS. 7 and 8, the heat exchanger 100 includes a small-diameter tube 101 that is bent in a meandering manner, and a large-diameter tube 102 that is fitted coaxially with a gap in a straight portion of the small-diameter tube 101. Both ends of the large-diameter tube 102 are closed and fixed to the outer periphery of the small-diameter tube 101 in a liquid-tight manner. The small-diameter pipe 101 has a pipe bent into a U-shape, a straight pipe, and a short connection U-shaped pipe 112 that connects between the end portions thereof. Next, the large diameter pipes 102 are connected to each other by the water connection pipe 108, and the inner diameter of only the large diameter pipe 102 located on the most downstream side is formed larger than the inner diameters of the other large diameter pipes 102. Yes. An inlet pipe 109 is communicated with the most upstream large-diameter pipe 102, and an outlet pipe 110 is communicated with the most downstream large-diameter pipe 102.

以上のように構成された二重管型熱交換器について、以下その動作を説明する。   The operation of the double-tube heat exchanger configured as described above will be described below.

上流側の入口パイプ109から水が流入し、水連結管108を介して下流側の大径管102と小径管101との隙間を長手方向に流通し、最下流の大径管102の出口パイプ110から外部に導かれる。   Water flows in from the upstream inlet pipe 109, flows in the gap between the downstream large diameter pipe 102 and the small diameter pipe 101 in the longitudinal direction via the water connection pipe 108, and exits from the downstream downstream large diameter pipe 102. 110 to the outside.

また、小径管101には水の流通する最下流側から高温高圧のCO2ガス等からなる加熱用流体が流入し、水の流通する最も上流側からそれが流出する。そして加熱用流体と水との間に熱交換が行われる。このとき水は上流側から下流側に流通するに従って次第に高温になり、最下流の大径管2では一例として80℃程度に加熱される。すると、最下流側の大径管102では水酸化カルシウム等の溶解度が低下し、それが析出して大径管102内部に付着し易くなる。   In addition, a heating fluid made of high-temperature and high-pressure CO2 gas or the like flows into the small diameter pipe 101 from the most downstream side through which water flows, and flows out from the most upstream side through which water flows. Then, heat exchange is performed between the heating fluid and water. At this time, the water gradually increases in temperature as it flows from the upstream side to the downstream side, and is heated to about 80 ° C. in the most downstream large-diameter pipe 2 as an example. Then, the solubility of calcium hydroxide or the like decreases in the most downstream large-diameter tube 102, and it precipitates and easily adheres to the inside of the large-diameter tube 102.

しかしながら、最下流側の大径管102の直径は、それ以外の部分の直径よりも大に形成されているから、それらは内部を円滑に流通し目詰まりを起こすことが少ない。   However, since the diameter of the most downstream large-diameter pipe 102 is formed larger than the diameter of the other portions, they circulate smoothly through the inside and rarely cause clogging.

さらに大径管102の内直径自体が大に形成されているから、多少の水スケールの付着が内面に存在しても、目詰まりを起こすことがない。
特開2004−93037号公報
Furthermore, since the inner diameter itself of the large-diameter pipe 102 is formed large, clogging does not occur even if some water scale adheres to the inner surface.
JP 2004-93037 A

しかしながら、上記従来の構成では、水の下流側の大径管102の内直径を大きくすることで水の流速が低下し、加熱用流体が最も高温で加熱される水との温度差が大きく熱交換量の大きな水の下流側の大径管102で水と小径管101の熱伝達率が低下し、熱交換器100全体としての性能低下は避けられない。従って、所定の加熱能力を得るためには大径管102の管軸方向に延長することとなり、熱交換器100の容積、重量が増加するという課題を有していた。   However, in the above conventional configuration, increasing the inner diameter of the large-diameter pipe 102 on the downstream side of the water decreases the flow rate of the water, and the temperature difference between the heating fluid and the water heated at the highest temperature is large. The heat transfer coefficient between the water and the small-diameter pipe 101 is lowered in the large-diameter pipe 102 on the downstream side of the water with a large exchange amount, and the performance of the heat exchanger 100 as a whole is inevitably lowered. Therefore, in order to obtain a predetermined heating capacity, the large-diameter tube 102 is extended in the tube axis direction, and the volume and weight of the heat exchanger 100 are increased.

本発明は、上記従来の課題を解決するもので、流体Aと流体Bの間に安全性を確保する二重壁を備えた非常に簡易な構成で同時に高い熱交換率を実現すると共に、高温側での水のカルシウム(Ca)等のミネラル成分の析出による熱交換器の機能停止を抑制し、かつ、低温側での水の熱交換量を向上させ、全体として熱交換性能の低下を防止する熱交換器を提供することを目的とする。   The present invention solves the above-described conventional problems, and at the same time realizes a high heat exchange rate with a very simple configuration having a double wall that ensures safety between the fluid A and the fluid B, and at a high temperature. Suppresses the heat exchanger from shutting down due to the precipitation of mineral components such as calcium (Ca) in the water on the side, and improves the heat exchange amount of water on the low temperature side to prevent the overall decrease in heat exchange performance An object of the present invention is to provide a heat exchanger.

上記従来の課題を解決するために、本発明の熱交換器は、第1壁と、前記第1壁の外側に配置された第2壁が、相互に熱的に密着した二重壁を持つ内管と、前記内管とほぼ同軸で内部に前記内管を備えた外管とで構成し、前記内管の内部を流体Aが流動し前記内管と前記外管との間の環状部を流体Bが対向して流動し、前記内管の流出側の流路断面積が流入側の流路断面積より拡大し、前記内管の流入側の内面に突起を設けたものである。   In order to solve the above-described conventional problems, the heat exchanger of the present invention has a double wall in which the first wall and the second wall arranged outside the first wall are in thermal contact with each other. An inner tube and an outer tube that is substantially coaxial with the inner tube and includes the inner tube therein, and a fluid A flows inside the inner tube, and an annular portion between the inner tube and the outer tube. The fluid B flows oppositely, the flow passage sectional area on the outflow side of the inner tube is larger than the flow passage sectional area on the inflow side, and a protrusion is provided on the inner surface of the inflow side of the inner tube.

これによって、流体Aと流体Bの間に安全性を確保する二重壁を備えた非常に簡易な構成で流体Aの流路と流体Bの流路の間で十分な接触面積を確保して高い熱交換効率を得ると共に、流体Aとして水が流動する内管の流出部の流路断面積を拡大することにより、環状部を二酸化炭素等の冷媒が流体Bとして流動し水と熱交換して水が高温部となり、水(特に水道水)に含まれるカルシウムが析出し流出部の内管の管壁に付着しても、水の流動を封止することがない。また、水の流入側の内管の流入側の内面に突起を設けているので、流入側で低温となるため、比較的内径が小さくてもスケールの付着が無く大きな伝熱面積が確保でき、かつ、水を攪乱して熱伝達率を向上することができる。   This ensures a sufficient contact area between the flow path of the fluid A and the flow path of the fluid B with a very simple configuration having a double wall that ensures safety between the fluid A and the fluid B. While obtaining high heat exchange efficiency and enlarging the cross-sectional area of the outflow part of the inner pipe through which water flows as fluid A, a refrigerant such as carbon dioxide flows as fluid B in the annular part and exchanges heat with water. Even if water becomes a high temperature part and calcium contained in water (especially tap water) precipitates and adheres to the wall of the inner pipe of the outflow part, the flow of water is not sealed. In addition, since a protrusion is provided on the inner surface of the inflow side of the inner pipe on the inflow side of the water, since the temperature becomes low on the inflow side, there is no adhesion of scale even if the inner diameter is relatively small, and a large heat transfer area can be secured, In addition, the heat transfer rate can be improved by disturbing the water.

本発明の熱交換器は、非常に簡易な構造で安全性を確保し同時に高い熱交換効率を実現できると共に、水が流動する流出部の内管の管壁にカルシウムが析出し付着しても水の流動を封止することなく熱交換機能を停止することを抑制することができ、さらに流入側の熱交換量を向上させ、熱交換器全体として熱交換性能の低下を防止することができる。   The heat exchanger of the present invention can ensure safety with a very simple structure and realize high heat exchange efficiency at the same time, and even if calcium is deposited and adhered to the inner wall of the outflow part where water flows. It is possible to suppress the heat exchange function from being stopped without sealing the flow of water, further improve the heat exchange amount on the inflow side, and prevent the heat exchange performance from being lowered as a whole heat exchanger. .

請求項1に記載の発明は、第1壁と、前記第1壁の外側に配置された第2壁が、相互に熱的に密着した二重壁を持つ内管と、前記内管とほぼ同軸で内部に前記内管を備えた外管とで構成し、前記内管の内部を流体Aが流動し前記内管と前記外管との間の環状部を流体Bが対向して流動し、前記内管の流出側の流路断面積が流入側の流路断面積より拡大し、前記内管の流入側の内面に突起を設けることにより、流体Aと流体Bの間に安全性を確保する二重壁を備えた非常に簡易な構成で流体Aの流路と流体Bの流路の間で十分な接触面積を確保して高い熱交換効率を得ると共に、流体Aとして水が流動する内管の流出部の流路断面積を拡大することにより、環状部を二酸化炭素等の冷媒が流体Bとして流動し水と熱交換して水が高温部となり、水(特に水道水)に含まれるカルシウムが析出し流出部の内管の管壁に付着しても水の流動を封止させず、熱交換機能を停止することを抑制することができる。   According to the first aspect of the present invention, the first wall and the inner wall having a double wall in which the second wall disposed outside the first wall is in thermal contact with each other, The inner tube is coaxially configured with an inner tube, and the fluid A flows through the inner tube, and the fluid B flows through the annular portion between the inner tube and the outer tube. The cross-sectional area of the flow path on the outflow side of the inner pipe is larger than the cross-sectional area of the flow path on the inflow side, and a protrusion is provided on the inner surface of the inflow side of the inner pipe. With a very simple configuration with a double wall to ensure, a sufficient contact area is secured between the flow path of fluid A and the flow path of fluid B to obtain high heat exchange efficiency, and water flows as fluid A By enlarging the channel cross-sectional area of the outflow part of the inner pipe, a refrigerant such as carbon dioxide flows as fluid B in the annular part and exchanges heat with water, so that the water becomes a high temperature part, (Especially tap water) be attached to the tube wall of the inner tube of the calcium precipitates outlet portion included without sealed the flow of water, it can be suppressed to stop the heat exchange function.

また、水の流入側の内管の流入側の内面に突起を設けているので、流入側で低温となるため、比較的内径が小さくてもスケールの付着が無く大きな伝熱面積が確保でき、かつ、水を攪乱して熱伝達率を向上させ、熱交換器全体として熱交換性能の低下を防止することができる。   In addition, since a protrusion is provided on the inner surface of the inflow side of the inner pipe on the inflow side of the water, since the temperature becomes low on the inflow side, there is no adhesion of scale even if the inner diameter is relatively small, and a large heat transfer area can be secured, In addition, the heat transfer rate can be improved by disturbing water, and the heat exchanger performance as a whole can be prevented from deteriorating.

請求項2に記載の発明は、請求項1に記載の発明の突起を管軸方向に対して螺旋状に連続した複数のフィンとすることにより、流入側の伝熱面積を大きくすることができ、流入側の熱交換能力を向上することができる。また、螺旋状の複数のフィンは引き抜き、押し出し工法で容易に製作が可能である。   The invention according to claim 2 can increase the heat transfer area on the inflow side by making the protrusion of the invention according to claim 1 a plurality of fins spirally continuous with respect to the tube axis direction. The heat exchange capacity on the inflow side can be improved. Further, the plurality of spiral fins can be easily manufactured by drawing and extruding.

請求項3に記載の発明は、請求項1に記載の発明の突起を管軸方向に対して略平行に連続した複数のフィンであることにより、水の流動抵抗を低く抑えつつ、流入側の伝熱面積を大きくすることができ、流入側の熱交換能力を向上することができる。また、略平行の複数のフィンは最も容易な略平行な引き抜き、押し出し工法で製作が可能であり、製造コストも低く抑えることができる。   The invention according to claim 3 is a plurality of fins in which the protrusion of the invention according to claim 1 is continued substantially parallel to the tube axis direction, so that the flow resistance of water is kept low, while the inflow side is kept low. The heat transfer area can be increased, and the heat exchange capacity on the inflow side can be improved. The plurality of substantially parallel fins can be manufactured by the simplest substantially parallel drawing and extrusion method, and the manufacturing cost can be kept low.

請求項4に記載の発明は、請求項1に記載の発明の第1壁をコルゲート管とし、第2壁と熱的に密着して二重壁を持つ内管を形成することにより、流入側のコルゲート管の内面の管軸方向の凹凸によって壁厚を薄く均一に保ったままで、比較的内径が小さくてもスケールの付着が無く大きな伝熱面積が確保でき、かつ、水を攪乱して熱伝達率を向上させ、流入側の内管の重量の増加を抑えた上で熱交換能力を向上することができる。   According to a fourth aspect of the present invention, a corrugated pipe is used as the first wall of the first aspect of the invention, and an inner pipe having a double wall is formed in thermal contact with the second wall. The corrugated tube has an inner surface with a thin and uniform wall thickness, and even if the inner diameter is relatively small, there is no adhesion of scale and a large heat transfer area can be secured. The heat exchange capacity can be improved while improving the transfer rate and suppressing the increase in the weight of the inner pipe on the inflow side.

請求項5に記載の発明は、請求項4に記載の発明のコルゲート管の管軸方向の凹凸が断続的であることにより、内面の管軸方向の凹凸部により攪乱された流動状態が収まり始める毎に次の凹凸部により攪乱されるため、水の攪乱による流入側の熱交換能力の向上をさせつつ、コルゲート管による水の流動抵抗の上昇を極力低くすることができる。   In the fifth aspect of the present invention, the corrugated pipe according to the fourth aspect of the present invention has intermittent irregularities in the tube axis direction, and the flow state disturbed by the irregularities in the tube axis direction on the inner surface starts to settle. Every time, it is disturbed by the next uneven portion, so that it is possible to minimize the increase in the flow resistance of the water by the corrugated pipe while improving the heat exchange capacity on the inflow side due to the disturbance of the water.

請求項6に記載の発明は、請求項4に記載の発明の第1壁を螺旋状のコルゲート管とし、第2壁が前記螺旋状のコルゲート管の端末以外を被嵌することにより、内管のコルゲート管と第2壁の間に端末で解放された連通溝が形成され、仮に内管に亀裂等が生じても、連通溝から二酸化炭素等の冷媒が内管の両端から外に排出され、水に二酸化炭素等の冷媒が混入するのを防止することができる。   According to a sixth aspect of the present invention, the first wall according to the fourth aspect of the present invention is a spiral corrugated pipe, and the second wall is fitted into the inner pipe by fitting other than the end of the helical corrugated pipe. A communication groove released at the terminal is formed between the corrugated pipe and the second wall, and even if the inner pipe is cracked, refrigerant such as carbon dioxide is discharged from both ends of the inner pipe to the outside. It is possible to prevent the refrigerant such as carbon dioxide from being mixed into the water.

請求項7に記載の発明は、請求項1から6のいずれか一項に記載の発明の流体Aを水とし、流体Bを二酸化炭素としたことにより、ヒートポンプ給湯機用の水・冷媒熱交換器として使用することで高いヒートポンプ効率を得ることができる。   The invention according to claim 7 is the water / refrigerant heat exchange for a heat pump water heater by using the fluid A of the invention according to any one of claims 1 to 6 as water and the fluid B as carbon dioxide. High heat pump efficiency can be obtained by using as a vessel.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器の管軸方向の断面図である。図2は、図1のA−A線断面図である。図3は、図1のB−B線断面図である。図4は同実施の形態における他の熱交換器の管軸方向の断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view in the tube axis direction of the heat exchanger according to Embodiment 1 of the present invention. 2 is a cross-sectional view taken along line AA in FIG. 3 is a cross-sectional view taken along line BB in FIG. FIG. 4 is a cross-sectional view in the tube axis direction of another heat exchanger in the same embodiment.

図1から図3において、熱交換器本体1は、第1壁3aと第2壁3bが相互に熱的に密着した二重壁3を持つ銅製の内管2と、内管2とほぼ同軸で内部に内管2を備えた銅製の外管4で構成している。外管4の内面にはリブ5が設けられており先端5aが内管2の外面に接し、内管2と外管4の間に環状部6を有している。また、内管2の流出側2bおよびその外側の外管4bの流路断面積が、流入側2aおよびその外側の外管4aの流路断面積より拡大している。また、内管2の流入側2aの第1壁3aの内面に管軸方向に螺旋状のフィン7が形成されている。   1 to 3, the heat exchanger main body 1 includes a copper inner tube 2 having a double wall 3 in which a first wall 3 a and a second wall 3 b are in thermal contact with each other, and substantially coaxial with the inner tube 2. The outer tube 4 is made of copper with the inner tube 2 inside. A rib 5 is provided on the inner surface of the outer tube 4, the tip 5 a is in contact with the outer surface of the inner tube 2, and an annular portion 6 is provided between the inner tube 2 and the outer tube 4. Further, the flow passage cross-sectional area of the outflow side 2b of the inner pipe 2 and the outer pipe 4b outside thereof is larger than that of the inflow side 2a and the outer pipe 4a outside thereof. A spiral fin 7 is formed on the inner surface of the first wall 3a on the inflow side 2a of the inner tube 2 in the tube axis direction.

また、図4においては、内管2の流入側2aの第1壁3aの内面に管軸方向に略平行のフィン8が形成されている。   In FIG. 4, fins 8 that are substantially parallel to the tube axis direction are formed on the inner surface of the first wall 3 a on the inflow side 2 a of the inner tube 2.

以上のように構成された熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

まず、内管2の内部を水が流動し、内管2と外管4との間の環状部6を二酸化炭素が対向して流れ、第1壁3aと第2壁3bの二重壁3を介して水と二酸化炭素が熱交換する。   First, water flows inside the inner pipe 2, carbon dioxide flows through the annular portion 6 between the inner pipe 2 and the outer pipe 4, and the double wall 3 of the first wall 3a and the second wall 3b. Through this, water and carbon dioxide exchange heat.

ここで、水と二酸化炭素の間に安全性を確保する二重壁3を備え十分な接触面積を確保して高い熱交換効率を得る。また、水が流動する内管2の流出側2bの流路断面積を流入側2aの流路断面積より拡大することにより、二酸化炭素が環状部6を内管2の水と対向して流動し高温となり、水に含まれるカルシウムが析出し流出側2bの内管2の管壁2bに付着しても水の流動を封止させず、熱交換の停止することを抑制することができる。また、流入側2aでは水が低温となるため、内管2の内径が比較的小さくてもスケールの付着が無く、螺旋状のフィン7により伝熱面積を大きくし、かつ、水を攪乱して熱伝達率を向上させ、熱交換器1全体として熱交換性能の低下を防止することができる。   Here, the double wall 3 which ensures safety | security between water and a carbon dioxide is provided, sufficient contact area is ensured, and high heat exchange efficiency is obtained. Further, the flow channel cross-sectional area of the outflow side 2b of the inner pipe 2 through which water flows is expanded from the flow path cross-sectional area of the inflow side 2a, so that carbon dioxide flows through the annular portion 6 opposite to the water of the inner pipe 2. However, even if calcium contained in the water precipitates and adheres to the tube wall 2b of the inner tube 2 on the outflow side 2b, the flow of water is not sealed and the heat exchange can be suppressed from stopping. In addition, since the water becomes cold on the inflow side 2a, there is no adhesion of scale even if the inner diameter of the inner tube 2 is relatively small, the heat transfer area is increased by the spiral fins 7, and the water is disturbed. The heat transfer rate can be improved, and the heat exchanger 1 as a whole can be prevented from being deteriorated in heat exchange performance.

また、図4で示すように、内管2の流入側2aの第1壁3aの内面に管軸方向に略平行のフィン8を形成することにより、水の流動抵抗を低く抑えつつ、流入側2aの伝熱面積を大きくすることができ、流入側2aの熱交換能力を向上することができる。また、略平行の複数のフィン8は最も容易な略平行の引き抜き、押し出し工法で製作が可能であり、製造コストも低く抑えることができる。   Further, as shown in FIG. 4, by forming fins 8 substantially parallel to the pipe axis direction on the inner surface of the first wall 3a on the inflow side 2a of the inner pipe 2, the flow resistance of water is kept low while the inflow side is kept low. The heat transfer area of 2a can be increased, and the heat exchange capacity of the inflow side 2a can be improved. The plurality of substantially parallel fins 8 can be manufactured by the simplest substantially parallel drawing and extrusion method, and the manufacturing cost can be kept low.

尚、本発明の実施の形態1では、内管2、外管4を直管状のものとしたが、湾曲状及びコイル状としても同様な効果を得られる。   In the first embodiment of the present invention, the inner tube 2 and the outer tube 4 are straight pipes, but the same effect can be obtained by using a curved shape and a coil shape.

尚、本発明の実施の形態1では、内管2、外管4の材料は、通常は銅製だが、真ちゅう、SUS、耐食性を持った鉄、アルミ合金等でも同様な効果を得られる。   In Embodiment 1 of the present invention, the material of the inner tube 2 and the outer tube 4 is usually made of copper, but the same effect can be obtained with brass, SUS, corrosion-resistant iron, aluminum alloy, or the like.

尚、本発明の実施の形態1では、環状部6を流通する冷媒を二酸化炭素としたが、R410A等の高圧で作動する冷媒でも同様な効果を得られる。   In Embodiment 1 of the present invention, the refrigerant flowing through the annular portion 6 is carbon dioxide, but the same effect can be obtained with a refrigerant operating at a high pressure such as R410A.

(実施の形態2)
図5は、本発明の実施の形態2における熱交換器の管軸方向の断面図である。図6は同実施の形態における他の熱交換器の管軸方向の断面図である。
(Embodiment 2)
FIG. 5 is a cross-sectional view in the tube axis direction of the heat exchanger according to Embodiment 2 of the present invention. FIG. 6 is a cross-sectional view in the tube axis direction of another heat exchanger in the same embodiment.

なお、実施の形態1と同一構成については、同一符号を付して詳細な説明を省略する。   In addition, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図5において、内管2の流入側2aの内側の第1壁の内面が凹凸10を有する管軸方向に螺旋状のコルゲート管9であり、第2壁3bがコルゲート管9の両端末9a以外を被嵌し、かつ熱的に密着して内管2Xを形成している。ここで、コルゲート管9と第2壁3bの間には両端末9aが解放され、コルゲート管9と第2壁3bの間に連通空間11が形成される。   In FIG. 5, the inner surface of the first wall on the inner side of the inflow side 2 a of the inner tube 2 is a corrugated tube 9 spirally formed in the tube axis direction having irregularities 10, and the second wall 3 b is other than both terminals 9 a of the corrugated tube 9. And the inner tube 2X is formed in close contact with each other. Here, both terminals 9a are released between the corrugated tube 9 and the second wall 3b, and a communication space 11 is formed between the corrugated tube 9 and the second wall 3b.

図6において、内管2の流入側2aの内側の第1壁であるコルゲート管12の内面の管軸方向に断続的に凹凸13を有する。   In FIG. 6, irregularities 13 are intermittently provided in the tube axis direction of the inner surface of the corrugated tube 12, which is the first wall inside the inflow side 2 a of the inner tube 2.

以上のように構成された熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

図5で示すように、流入側2aでは水が低温となるため、内管2Xの内径が比較的小さくてもスケールの付着が無く、螺旋状のコルゲート管9の内面の凹凸10により、肉厚を薄く均一に保ったままで、大きな伝熱面積が確保でき、かつ水を攪乱して熱伝達率を向上させ、流入側2aの重量の増加を抑えた上で熱交換能力を向上することができる。さらに、仮に内管2Xに亀裂等が生じても、連通空間11から二酸化炭素等の冷媒が内管2Xの両端から外に排出され、水に二酸化炭素等の冷媒が混入するのを防止することができる。   As shown in FIG. 5, since the water becomes low on the inflow side 2 a, there is no adhesion of scale even if the inner diameter of the inner tube 2 </ b> X is relatively small, and the thickness is increased by the unevenness 10 on the inner surface of the spiral corrugated tube 9. A large heat transfer area can be secured while maintaining a thin and uniform temperature, and the heat transfer rate can be improved by disturbing water, and the heat exchange capacity can be improved while suppressing an increase in the weight of the inflow side 2a. . Furthermore, even if a crack or the like occurs in the inner pipe 2X, a refrigerant such as carbon dioxide is discharged from both ends of the inner pipe 2X from the communication space 11 to prevent the refrigerant such as carbon dioxide from being mixed into water. Can do.

また、図6で示すように、内管2の管軸方向に断続的に設けられた内面の凹凸13により、管軸方向の凹凸13により攪乱された流動状態が収まり始める毎に,次の凹凸13により攪乱されるため、水の攪乱による流入側2aの熱伝達率の向上をさせつつ、コルゲート管12による水の流動抵抗の上昇を極力低くすることができる。   Further, as shown in FIG. 6, every time the flow state disturbed by the unevenness 13 in the tube axis direction starts to settle due to the unevenness 13 on the inner surface provided intermittently in the tube axis direction of the inner tube 2, the next unevenness Therefore, the increase in the flow resistance of the water due to the corrugated pipe 12 can be made as low as possible while improving the heat transfer coefficient of the inflow side 2a due to the disturbance of the water.

以上のように、本発明にかかる熱交換器は、非常に簡易な構造で同時に高い熱交換効率を実現できると共に、水が流動する流出側の内管の管壁にカルシウムが析出し付着しても、水の流動を封止することなく、熱交換機能を停止することを抑制することができ、さらにスケールの付着しない流入側で熱伝達率を向上させ、熱交換器全体として熱伝達率の低下を極力抑制が可能となるので、ヒートポンプ給湯器や家庭用、業務用の空気調和機、燃料電池等の用途にも適用できる。   As described above, the heat exchanger according to the present invention can achieve high heat exchange efficiency at the same time with a very simple structure, and calcium is deposited and adhered to the inner wall of the outflow side where water flows. However, it is possible to suppress the heat exchange function from being stopped without sealing the flow of water, and to further improve the heat transfer coefficient on the inflow side where the scale does not adhere. Since the reduction can be suppressed as much as possible, it can also be applied to uses such as heat pump water heaters, home and commercial air conditioners, and fuel cells.

本発明の実施の形態1における熱交換器の管軸方向の断面図Sectional drawing of the pipe-axis direction of the heat exchanger in Embodiment 1 of this invention 図1のA−A線断面図AA line sectional view of FIG. 図1のB−B線断面図BB sectional view of FIG. 同実施の形態における他の熱交換器の管軸方向の断面図Sectional drawing of the pipe-axis direction of the other heat exchanger in the embodiment 本発明の実施の形態2における熱交換器の管軸方向の断面図Sectional drawing of the pipe-axis direction of the heat exchanger in Embodiment 2 of this invention 同実施の形態における他の熱交換器の管軸方向の断面図Sectional drawing of the pipe-axis direction of the other heat exchanger in the embodiment 従来の熱交換器の一部破断断面図Partially cutaway sectional view of a conventional heat exchanger 図7のII−II線矢視断面図Sectional view taken along line II-II in FIG.

符号の説明Explanation of symbols

1 熱交換器本体
2 内管
2a 流入側
2b 流出側
3 二重壁
3a 第1壁
3b 第2壁
4、4a、4b 外管
6 環状部
7 螺旋状のフィン
8 略平行のフィン
9 螺旋状のコルゲート管
9a 端末
12 コルゲート管
13 凹凸
DESCRIPTION OF SYMBOLS 1 Heat exchanger main body 2 Inner pipe | tube 2a Inflow side 2b Outflow side 3 Double wall 3a 1st wall 3b 2nd wall 4, 4a, 4b Outer tube 6 Annular part 7 Spiral fin 8 Substantially parallel fin 9 Spiral shape Corrugated tube 9a Terminal 12 Corrugated tube 13 Concavity and convexity

Claims (7)

第1壁と、前記第1壁の外側に配置された第2壁が、相互に熱的に密着した二重壁を持つ内管と、前記内管とほぼ同軸で内部に前記内管を備えた外管とで構成し、前記内管の内部を流体Aが流動し前記内管と前記外管との間の環状部を流体Bが対向して流動し、前記内管の流出側の流路断面積が流入側の流路断面積より拡大し、前記第1壁の流入側の内面に突起を設けたことを特徴とした熱交換器。   An inner tube having a double wall in which the first wall and the second wall arranged outside the first wall are in thermal contact with each other, and the inner tube being substantially coaxial with the inner tube. An outer pipe, fluid A flows in the inner pipe, fluid B flows in an annular portion between the inner pipe and the outer pipe, and a flow on the outflow side of the inner pipe. A heat exchanger characterized in that a passage cross-sectional area is larger than a flow passage cross-sectional area on an inflow side, and a protrusion is provided on an inner surface on the inflow side of the first wall. 前記突起を管軸方向に対して螺旋状に連続した複数のフィンとしたことを特徴とした請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the protrusions are a plurality of fins that are spirally continuous with respect to the tube axis direction. 前記突起を管軸方向に対して略平行に連続した複数のフィンとしたことを特徴とした請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the protrusions are a plurality of fins that are substantially parallel to the tube axis direction. 第1壁をコルゲート管としたことを特徴とした請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the first wall is a corrugated pipe. コルゲート管の管軸方向の凹凸が断続的であることを特徴とした請求項4に記載の熱交換器。   The heat exchanger according to claim 4, wherein the corrugated tube has irregularities in the tube axis direction intermittently. 第1壁を螺旋状のコルゲート管とし、第2壁が前記螺旋状のコルゲート管の端末以外を被嵌したことを特徴とした請求項4に記載の熱交換器。   The heat exchanger according to claim 4, wherein the first wall is a spiral corrugated pipe, and the second wall is fitted except for the end of the spiral corrugated pipe. 流体Aを水とし、流体Bを二酸化炭素としたことを特徴とした請求項1から6のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 6, wherein the fluid A is water and the fluid B is carbon dioxide.
JP2004331534A 2004-11-16 2004-11-16 Heat exchanger Expired - Fee Related JP4572662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331534A JP4572662B2 (en) 2004-11-16 2004-11-16 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331534A JP4572662B2 (en) 2004-11-16 2004-11-16 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2006145056A true JP2006145056A (en) 2006-06-08
JP4572662B2 JP4572662B2 (en) 2010-11-04

Family

ID=36624954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331534A Expired - Fee Related JP4572662B2 (en) 2004-11-16 2004-11-16 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4572662B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116096A (en) * 2006-11-02 2008-05-22 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2009270755A (en) * 2008-05-07 2009-11-19 Sumitomo Light Metal Ind Ltd Heat-transfer pipe for heat exchanger and heat exchanger using the same
JP2010032183A (en) * 2008-07-31 2010-02-12 Panasonic Corp Heat exchanger
JP2010038429A (en) * 2008-08-04 2010-02-18 Panasonic Corp Heat exchanger
JP2010078241A (en) * 2008-09-26 2010-04-08 Panasonic Corp Heat exchanger
JP2010249472A (en) * 2009-04-20 2010-11-04 Panasonic Corp Heat exchanger and heat pump water heater using the same
JP2010255857A (en) * 2009-04-21 2010-11-11 Panasonic Corp Heat exchanger and heat pump water heater using the same
JP2010255856A (en) * 2009-04-21 2010-11-11 Panasonic Corp Heat exchanger and heat pump water heater using the same
JP2012247180A (en) * 2012-08-10 2012-12-13 Hitachi Appliances Inc Heat exchanger
CN104374219A (en) * 2014-10-29 2015-02-25 无锡金顶石油管材配件制造有限公司 Petroleum pipeline heat exchanging device
CN110285695A (en) * 2019-06-19 2019-09-27 武汉方特工业设备技术有限公司 Telescopic channel heat exchanger
JP2020008196A (en) * 2018-07-05 2020-01-16 株式会社ニチリン Double-pipe heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590175U (en) * 1991-05-17 1993-12-07 株式会社日本アルミ Double tube heat exchanger
JPH0665760U (en) * 1993-01-27 1994-09-16 株式会社三浦研究所 Water pipe shape of heat exchanger for supercooled water
JPH1019418A (en) * 1996-07-03 1998-01-23 Toshiba Corp Refrigerator with deep freezer
JPH1054617A (en) * 1996-08-07 1998-02-24 Toshiba Corp Air conditioner
JP2001289583A (en) * 2000-04-10 2001-10-19 Usui Internatl Ind Co Ltd Egr gas cooler
JP2004061012A (en) * 2002-07-30 2004-02-26 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump water heater using it
JP2004093037A (en) * 2002-08-30 2004-03-25 Toyo Radiator Co Ltd Double-pipe heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590175U (en) * 1991-05-17 1993-12-07 株式会社日本アルミ Double tube heat exchanger
JPH0665760U (en) * 1993-01-27 1994-09-16 株式会社三浦研究所 Water pipe shape of heat exchanger for supercooled water
JPH1019418A (en) * 1996-07-03 1998-01-23 Toshiba Corp Refrigerator with deep freezer
JPH1054617A (en) * 1996-08-07 1998-02-24 Toshiba Corp Air conditioner
JP2001289583A (en) * 2000-04-10 2001-10-19 Usui Internatl Ind Co Ltd Egr gas cooler
JP2004061012A (en) * 2002-07-30 2004-02-26 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump water heater using it
JP2004093037A (en) * 2002-08-30 2004-03-25 Toyo Radiator Co Ltd Double-pipe heat exchanger

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116096A (en) * 2006-11-02 2008-05-22 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2009270755A (en) * 2008-05-07 2009-11-19 Sumitomo Light Metal Ind Ltd Heat-transfer pipe for heat exchanger and heat exchanger using the same
JP2010032183A (en) * 2008-07-31 2010-02-12 Panasonic Corp Heat exchanger
JP2010038429A (en) * 2008-08-04 2010-02-18 Panasonic Corp Heat exchanger
JP2010078241A (en) * 2008-09-26 2010-04-08 Panasonic Corp Heat exchanger
JP2010249472A (en) * 2009-04-20 2010-11-04 Panasonic Corp Heat exchanger and heat pump water heater using the same
JP2010255857A (en) * 2009-04-21 2010-11-11 Panasonic Corp Heat exchanger and heat pump water heater using the same
JP2010255856A (en) * 2009-04-21 2010-11-11 Panasonic Corp Heat exchanger and heat pump water heater using the same
JP2012247180A (en) * 2012-08-10 2012-12-13 Hitachi Appliances Inc Heat exchanger
CN104374219A (en) * 2014-10-29 2015-02-25 无锡金顶石油管材配件制造有限公司 Petroleum pipeline heat exchanging device
JP2020008196A (en) * 2018-07-05 2020-01-16 株式会社ニチリン Double-pipe heat exchanger
JP7109065B2 (en) 2018-07-05 2022-07-29 株式会社ニチリン Double tube heat exchanger
CN110285695A (en) * 2019-06-19 2019-09-27 武汉方特工业设备技术有限公司 Telescopic channel heat exchanger
CN110285695B (en) * 2019-06-19 2024-03-12 武汉方特工业设备技术有限公司 Sleeve type channel heat exchanger

Also Published As

Publication number Publication date
JP4572662B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4736533B2 (en) Heat exchanger
JP4572662B2 (en) Heat exchanger
JP2002228370A (en) Heat exchanger
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2009216309A (en) Heat exchanger
JP2004286438A (en) Heat exchanger
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP2006057998A (en) Heat exchanger
WO2005026638A1 (en) Heat exchanger
JP2006162165A (en) Heat exchanger
JP2005069620A (en) Heat exchanger
JP2006207936A (en) Heat exchanger
JP2009264644A (en) Heat exchanger
KR101942572B1 (en) Fluid mixing apparatus for heat exchange pipe
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2008267631A (en) Heat exchanger
JP2005009832A (en) Double pipe type heat exchanger
JP2004340455A (en) Heat exchanger
JP2007218461A (en) Double tube type heat exchanger
JP2006234355A (en) Heat exchanger
JP2018066482A (en) Heat exchanger and water heater including the same
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP2008249163A (en) Heat exchanger for supplying hot water
JP2006317094A (en) Heat exchanger
JP2003343995A (en) Heat transfer tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071024

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071113

RD01 Notification of change of attorney

Effective date: 20091120

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Effective date: 20100528

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130827

LAPS Cancellation because of no payment of annual fees