JP2006140745A - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP2006140745A
JP2006140745A JP2004328276A JP2004328276A JP2006140745A JP 2006140745 A JP2006140745 A JP 2006140745A JP 2004328276 A JP2004328276 A JP 2004328276A JP 2004328276 A JP2004328276 A JP 2004328276A JP 2006140745 A JP2006140745 A JP 2006140745A
Authority
JP
Japan
Prior art keywords
film
sio
electrode
frequency
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004328276A
Other languages
Japanese (ja)
Inventor
Akinori Yamada
明法 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2004328276A priority Critical patent/JP2006140745A/en
Publication of JP2006140745A publication Critical patent/JP2006140745A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a means for relatively shifting an SSBW generated in an SH type surface acoustic wave device to a frequency separated from main vibration. <P>SOLUTION: In the SH type surface acoustic wave device constituted of arranging at least one IDT electrode on an ST cut quartz substrate and sticking a SiO<SB>2</SB>film so as to cover electrode digits constituting the IDT electrode, a required frequency difference ΔF is determined on the basis of the the film thickness (h) of the SiO<SB>2</SB>film, h=(ΔF-ΔF<SB>0</SB>)/0.91±0.2 when it is defined that the frequency of the SH type surface acoustic wave device is f1, the frequency of an SSBW excited on the substrate is f2 and a frequency difference is ΔF=(f2-f1)/f1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、SH型弾性表面波を利用した弾性表面波デバイスに関し、特にSTカット水晶基板上をZ’軸方向に伝搬するSH型弾性表面波を用いて構成した縦結合二重モードSAWフィルタにおいて、通過域近傍の高域に発生するスプリアスを改善したフィルタに関する。   The present invention relates to a surface acoustic wave device using an SH type surface acoustic wave, and particularly to a longitudinally coupled double mode SAW filter configured using an SH type surface acoustic wave propagating on an ST cut quartz substrate in the Z′-axis direction. The present invention relates to a filter that improves spurious generated in a high band near the pass band.

近年、弾性表面波デバイスは通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話機等に多く用いられている。
STカット水晶基板上をX軸方向に伝搬する弾性表面波(レイリー波)を用いて構成した狭帯域の共振器型フィルタが以前から使用されていた。図4は1次モードと2次モードとを用いた横結合型二重モードSAWフィルタの構成を示す平面図であって、STカット水晶基板11の主表面上に2つのIDT電極12、13をこれらが励起する弾性表面波の伝搬方向と直交する方向に近接配置すると共に、併置したIDT電極12、13の両側にグレーティング反射器(以下、反射器と称す)14a、14bを配設して、横結合二重モードSAWフィルタを構成する。
In recent years, surface acoustic wave devices have been widely used in the communication field, and are often used particularly for cellular phones because they have excellent characteristics such as high performance, small size, and mass productivity.
A narrow-band resonator type filter constructed using a surface acoustic wave (Rayleigh wave) propagating in the X-axis direction on an ST-cut quartz substrate has been used for some time. FIG. 4 is a plan view showing a configuration of a laterally coupled double mode SAW filter using a primary mode and a secondary mode, and two IDT electrodes 12 and 13 are formed on the main surface of an ST-cut quartz substrate 11. The grating reflectors (hereinafter referred to as reflectors) 14a and 14b are disposed on both sides of the IDT electrodes 12 and 13 disposed side by side in the direction orthogonal to the propagation direction of the surface acoustic wave excited by these, A laterally coupled double mode SAW filter is constructed.

IDT電極12、13はそれぞれ互いに間挿し合う複数本の電極指を有する一対の櫛形電極により形成され、IDT電極12の一方の櫛形電極は入力端子IN1に接続すると共に、他方の櫛形電極は入力端子IN2に接続する。さらに、IDT電極13の一方の櫛形電極は出力端子OUT1に接続すると共に、他方の櫛形電極はOUT2に接続して横結合二重モードSAWフィルタを構成する。   The IDT electrodes 12 and 13 are each formed by a pair of comb electrodes having a plurality of electrode fingers interleaved with each other, and one comb electrode of the IDT electrode 12 is connected to the input terminal IN1, and the other comb electrode is an input terminal. Connect to IN2. Further, one comb electrode of the IDT electrode 13 is connected to the output terminal OUT1, and the other comb electrode is connected to OUT2 to constitute a laterally coupled double mode SAW filter.

IDT電極12、13で励起された弾性表面波は反射器14a、14bの間で音響結合が生じ、その内IDT電極パターンにより表面波の伝搬方向と直交する方向に、振動変位分布が対称な1次モード(共振周波数Fr1)と、反対称な2次モード(共振周波数Fr2)とが強勢に励振され、適当な終端を施すことにより横結合型二重モードSAWフィルタとして動作し、その帯域幅は(Fr2−Fr1)に比例することがよく知られている。   The surface acoustic waves excited by the IDT electrodes 12 and 13 are acoustically coupled between the reflectors 14a and 14b, and the vibration displacement distribution is symmetric 1 in the direction perpendicular to the propagation direction of the surface waves due to the IDT electrode pattern. The secondary mode (resonant frequency Fr1) and the antisymmetric secondary mode (resonant frequency Fr2) are vigorously excited, and operate as a laterally coupled double mode SAW filter by applying appropriate terminations. It is well known that it is proportional to (Fr2-Fr1).

しかし、STカット水晶基板に励起されるレイリー波を用いて構成したSAWデバイスの電気機械結合係数は小さく、例えばSAWフィルタを構成すると帯域幅が制限されるという問題と、反射係数が小さいため反射器の本数を多く必要とするという問題があった。この問題を解決するため、特開2002−330052号公報にはオイラー角(0°,110°〜150°,90°±2°)のSTカット90°X軸伝搬の水晶基板(回転角では20〜60°回転Y板)を用いたSH波型弾性表面波デバイスが開示されている。励振されるSH波型弾性表面波の伝搬速度、電気機械結合係数k、電極指1本当りの反射率、周波数温度係数(TCF)は、電極材料(金(Au)、アルミニウム(Al)、タングステン(W)、タンタル(Ta))と規格化膜厚(H/λ)とに依存し、総合的にみて電極材料に金(Au)を用いた場合が望ましいとしている。金(Au)を用いた場合は伝搬速度も小さく、小型化が図られること、電気機械結合係数kも大きく、かつ電気抵抗が小さく、ロスが少ないあこと、反射係数がAl電極によるX伝搬レイリー波の表面波に比べて30倍以上になるため、反射器の本数が少なくできること、周波数温度係数(TFC)がほぼ−60〜+60ppm/℃の特性が得られること等が記されている。 However, the electromechanical coupling coefficient of the SAW device configured using Rayleigh waves excited on the ST-cut quartz substrate is small. For example, the bandwidth is limited when the SAW filter is configured, and the reflection coefficient is small. There was a problem of requiring a large number of. In order to solve this problem, Japanese Patent Application Laid-Open No. 2002-330052 discloses an ST-cut 90 ° X-axis propagation quartz substrate with Euler angles (0 °, 110 ° to 150 °, 90 ° ± 2 °) (rotation angle is 20 °). An SH wave type surface acoustic wave device using ˜60 ° rotated Y plate) is disclosed. The propagation speed of the excited SH wave type surface acoustic wave, the electromechanical coupling coefficient k 2 , the reflectance per electrode finger, and the frequency temperature coefficient (TCF) are determined by the electrode materials (gold (Au), aluminum (Al), Depending on tungsten (W), tantalum (Ta)) and the normalized film thickness (H / λ), it is preferable to use gold (Au) as an electrode material in a comprehensive manner. When using gold (Au) smaller propagation velocity, the size reduction is achieved, the electromechanical coupling coefficient k 2 is large, and the electrical resistance is small, the loss is small Oh that, the reflection coefficient is X propagation by Al electrodes It is described that the number of reflectors can be reduced and that the frequency temperature coefficient (TFC) has a characteristic of approximately −60 to +60 ppm / ° C. because it is 30 times or more compared to the Rayleigh wave surface wave.

図5は上記公報に開示されている縦結合共振子フィルタの構成を示す平面図で、オイラー角(0°,110°〜150°,90°±2°)、STカット90°X軸伝搬の水晶基板(回転角では20〜60°回転Y板)21上にSH波を励振する2つのIDT電極22、23を近接して配置し、これらの両側にSH波を反射する2つの反射器24a、24bを配設して縦結合共振子フィルタ(縦結合二重モードSAWフィルタ)を構成している。電極パターンには金を主とした電極材料を用い、その規格化膜厚(H/λ)を0.009、IDT電極22、23の対数をそれぞれ10対、反射器24a、24bの本数をそれぞれ10本とした例が記されている。   FIG. 5 is a plan view showing the configuration of the longitudinally coupled resonator filter disclosed in the above publication. Euler angles (0 °, 110 ° to 150 °, 90 ° ± 2 °), ST cut 90 ° X-axis propagation Two IDT electrodes 22 and 23 for exciting SH waves are arranged close to each other on a quartz substrate (rotation angle 20 to 60 ° Y plate) 21 and two reflectors 24a for reflecting the SH waves on both sides thereof. , 24b are arranged to constitute a longitudinally coupled resonator filter (longitudinal coupled double mode SAW filter). The electrode pattern is made of an electrode material mainly made of gold, the normalized film thickness (H / λ) is 0.009, the logarithm of IDT electrodes 22 and 23 is 10 pairs, and the number of reflectors 24a and 24b is respectively An example with 10 lines is shown.

図6は、図5に示した電極パターンを用い、IDT電極22、23の対数をそれぞれ70対、反射器24a、24bの本数をそれぞれ360本、ライン占有率(ライン幅LとスペースS和に対するライン幅の比)を50%、交差幅を100λ(λは波長)、電極はアルミニウムを主成分とし、その規格化膜厚(H/λ)を2.2%に設定した場合のSH波型縦結合二重モードSAWフィルタのフィルタ特性である。図6に示すフィルタ特性から明らかなように、通過域近傍の高域側に大きなスプリアスが発生し、通過域近傍の減衰特性を劣化させている。
このスプリアスの原因は横波に起因するSSBWであり、該SSBWは基板表面付近を直接伝達するバルク波であるため、基板表面の物理的な条件によってその伝搬速度は変化されない。つまり、IDT電極の膜厚を厚くすると、SH型弾性表面波の伝搬速度は低下するが、SSBWの伝搬速度は変化せず、フィルタを構成した場合、その中心周波数に対してSSBWの周波数は相対的に高周波側に移動するようにみえる。
6 uses the electrode pattern shown in FIG. 5, the number of IDT electrodes 22 and 23 is 70, the number of reflectors 24a and 24b is 360, and the line occupancy ratio (with respect to the line width L and the space S sum). SH wave type when the ratio of the line width is 50%, the crossing width is 100λ (λ is the wavelength), the electrode is mainly composed of aluminum, and the normalized film thickness (H / λ) is set to 2.2%. It is a filter characteristic of a longitudinally coupled double mode SAW filter. As is apparent from the filter characteristics shown in FIG. 6, a large spurious is generated on the high frequency side near the pass band, and the attenuation characteristic near the pass band is deteriorated.
The cause of this spurious is the SSBW caused by the transverse wave. Since the SSBW is a bulk wave that directly transmits near the substrate surface, its propagation speed is not changed depending on the physical conditions of the substrate surface. In other words, when the IDT electrode is made thicker, the propagation speed of the SH type surface acoustic wave decreases, but the propagation speed of the SSBW does not change. When a filter is configured, the frequency of the SSBW is relative to the center frequency. Seems to move to the high frequency side.

特開平9−107268号公報に36°YカットX伝搬LiTaO基板上にラダー型弾性表面波フィルタを形成し、電極上の一部、あるいは電極全体に波長の0.5から4%のSiO膜を付着することにより、通過域内に発生するスプリアスを減衰域に遠ざける手法が開示されている。
特開平9−107268号公報 特開2002−330052号公報
In JP-A-9-107268, a ladder-type surface acoustic wave filter is formed on a 36 ° Y-cut X-propagating LiTaO 3 substrate, and SiO 2 having a wavelength of 0.5 to 4% of a part of the electrode or the entire electrode is formed. A technique is disclosed in which a spurious generated in the passband is moved away from the attenuation band by attaching a film.
JP-A-9-107268 JP 2002-330052 A

しかしながら、電極を厚くすると例えば特開2002−330052号公報より明らかなように、SH波型弾性表面波の伝搬速度は低下し、SSBWとの周波数間隔は広がるものの電気機械結合係数kが劣化するという問題が生ずる。また、圧電基板上に付着する電極の膜厚が厚くなると、IDT電極等を形成する際にオーバーエッチング等で電極指を所定の通りに形成することが難しいという問題があり、特に2.5GHz、5GHzというような高周波数において問題となえる。
特開平9−107268号公報にIDT電極上にSiO膜を付着することにより、通過域内のスプリアスを減衰域に遠ざけた例が開示されているが、このスプリアスはインハーモニックオーバートンに起因するものであり、SSBWとは波動のモードが本質的に異なる。
However, when the thickness of the electrodes, for example, JP-As apparent from 2002-330052 and JP-propagation velocity of the SH wave type surface acoustic wave is reduced, the frequency interval between the SSBW is degraded electromechanical coupling coefficient k 2 of which extends The problem arises. Further, when the film thickness of the electrode attached on the piezoelectric substrate is increased, there is a problem that it is difficult to form the electrode fingers as predetermined by over-etching or the like when forming the IDT electrode or the like, particularly 2.5 GHz, It can be a problem at high frequencies such as 5 GHz.
Japanese Patent Application Laid-Open No. 9-107268 discloses an example in which the spurious in the pass band is moved away from the attenuation band by attaching a SiO 2 film on the IDT electrode. This spurious is caused by inharmonic overton. The wave mode is essentially different from SSBW.

本発明に係る弾性表面波デバイスの請求項1の発明は、オイラー角(0°,110°〜150°,90°±2°)の水晶基板上に少なくともの1つのIDT電極を配置すると共に、少なくとも前記IDT電極を構成する電極指を覆うようにSiO膜を付着して構成したSH型弾性表面波デバイスであって、 前記基板上に励起されるSH型弾性表面波の周波数をf1、SSBWの周波数をf2とし、周波数差ΔF(%)を(f2−f1)/f1とし、前記SiO膜をhと定義したとき、h={(ΔF−ΔF)/0.91}±0.2(ただしΔFはSiO膜を付着しないときのΔF)を満足したSH型弾性表面波デバイスを構成する。
請求項2の発明は、オイラー角(0°,110°〜150°,90°±2°)の水晶基板上に2つのIDT電極を配置すると共に、該IDT電極の両側にグレーティング反射器を配設し、少なくとも前記IDT電極を構成する電極指を覆うようにSiO膜を付着して構成したSH型縦結合二重モードSAWフィルタであって、SH型縦結合二重モードSAWフィルタの中心周波数をf1、前記基板上に励起されるSSBWの周波数をf2とし、周波数差ΔF(%)を(f2−f1)/f1とし、前記SiO膜をhと定義したとき、h={(ΔF−ΔF)/0.91}±0.2(ただしΔFはSiO膜を付着しないときのΔF)を満足したSH型縦結合二重モードSAWフィルタを構成する。
請求項3の発明は、前記IDT電極及びグレーティング反射器の電極材料をアルミニウムを主成分とした金属で構成したことを特徴とする請求項1に記載のSH型弾性表面波デバイスである。
請求項4の発明は、前記IDT電極及びグレーティング反射器の電極材料をアルミニウムを主成分とした金属で構成したことを特徴とする請求項2に記載のSH型縦結合二重モードSAWフィルタである。
According to the first aspect of the surface acoustic wave device of the present invention, at least one IDT electrode is disposed on a quartz substrate having an Euler angle (0 °, 110 ° to 150 °, 90 ° ± 2 °), and An SH type surface acoustic wave device formed by adhering an SiO 2 film so as to cover at least the electrode fingers constituting the IDT electrode, wherein the frequency of the SH type surface acoustic wave excited on the substrate is f1, SSBW Is defined as f2, the frequency difference ΔF (%) is defined as (f2−f1) / f1, and the SiO 2 film is defined as h, h = {(ΔF−ΔF 0 ) /0.91} ± 0. 2 (where ΔF 0 is ΔF when no SiO 2 film is attached) constitutes an SH type surface acoustic wave device.
In the invention of claim 2, two IDT electrodes are arranged on a quartz substrate with Euler angles (0 °, 110 ° to 150 °, 90 ° ± 2 °), and grating reflectors are arranged on both sides of the IDT electrode. An SH type longitudinally coupled double mode SAW filter having an SiO 2 film attached to cover at least the electrode fingers constituting the IDT electrode, the center frequency of the SH type longitudinally coupled double mode SAW filter Is f1, the frequency of the SSBW excited on the substrate is f2, the frequency difference ΔF (%) is (f2−f1) / f1, and the SiO 2 film is defined as h, h = {(ΔF− An SH type longitudinally coupled double mode SAW filter that satisfies ΔF 0 ) /0.91} ± 0.2 (where ΔF 0 is ΔF when no SiO 2 film is deposited) is formed.
The invention according to claim 3 is the SH type surface acoustic wave device according to claim 1, wherein the electrode material of the IDT electrode and the grating reflector is made of a metal mainly composed of aluminum.
The invention of claim 4 is the SH type longitudinally coupled double mode SAW filter according to claim 2, wherein the electrode material of the IDT electrode and the grating reflector is made of a metal mainly composed of aluminum. .

本発明の弾性表面波デバイスは、式h={(ΔF−ΔF)/0.91}±0.2を満足するようにSiO膜厚を設定するので、SSBWに起因するスプリアスを通過帯域から遠ざけることができるという利点がある。 In the surface acoustic wave device of the present invention, the SiO 2 film thickness is set so as to satisfy the equation h = {(ΔF−ΔF 0 ) /0.91} ± 0.2, so that the spurious attributed to SSBW passes through the pass band. There is an advantage that it can be kept away from.

図1は本発明に係るSH型弾性表面波を用いた縦結合二重モードSAWフィルタの実施の形態を示す平面図であって、オイラー角(0°,126°,90°)のSTカット水晶基板1の主表面上にSH型弾性表面波の伝搬方向(Z’軸)に沿って2つのIDT電極2、3を近接配置すると共に、該IDT電極2、3の両側に反射器4a、4bを配設して縦結合二重モードSAWフィルタを形成する。IDT電極2、3はそれぞれ互いに間挿し合う複数本の電極指を有する一対の櫛形電極により形成され、IDT電極2の一方の櫛形電極は入力端子INに接続すると共に、他方の櫛形電極は接地する。さらに、IDT電極3の一方の櫛形電極は出力端子OUTに接続すると共に、他方の櫛形電極は接地する。そして、該IDT電極2、3及び反射器4a、4bの全面を覆うようにSiO膜を付着して、SH波型縦結合二重モードSAWフィルタを構成する。 FIG. 1 is a plan view showing an embodiment of a longitudinally coupled double mode SAW filter using SH type surface acoustic waves according to the present invention, and is an ST cut crystal having Euler angles (0 °, 126 °, 90 °). Two IDT electrodes 2 and 3 are disposed close to each other along the propagation direction (Z ′ axis) of the SH type surface acoustic wave on the main surface of the substrate 1, and reflectors 4 a and 4 b are provided on both sides of the IDT electrodes 2 and 3. To form a longitudinally coupled double mode SAW filter. The IDT electrodes 2 and 3 are each formed by a pair of comb electrodes having a plurality of electrode fingers interleaved with each other, and one comb electrode of the IDT electrode 2 is connected to the input terminal IN and the other comb electrode is grounded. . Further, one comb electrode of the IDT electrode 3 is connected to the output terminal OUT, and the other comb electrode is grounded. Then, an SiO 2 film is attached so as to cover the entire surfaces of the IDT electrodes 2 and 3 and the reflectors 4a and 4b, thereby forming an SH wave type longitudinally coupled double mode SAW filter.

図1に示す電極パターンを用い、IDT電極2、3の対数をそれぞれ70対、反射器4a、4bの本数をそれぞれ360本、ライン占有率(ライン幅LとスペースS和に対するライン幅の比)を50%、交差幅を100λ(λは波長)、電極にはアルミニウムを主成分とした合金を用い、その膜厚Hを2.2%λとし、該電極パターン上に膜厚hのSiO膜を付着して、SH波型縦結合二重モードSAWフィルタを構成した。ここで、電極材料にアルミニウムを用いたのは、膜厚Hに対する周波数の変化率が他の金属に比べて小さいこと、金等に比べて伝搬速度が大きく高周波のデバイスに適しているからである。 1, 70 pairs of IDT electrodes 2 and 3 respectively, 360 pieces of reflectors 4a and 4b, line occupation ratio (ratio of line width to line width L and space S sum) 50%, intersection width is 100λ (λ is a wavelength), an alloy containing aluminum as a main component is used for the electrode, its film thickness H is 2.2% λ, and SiO 2 having a film thickness h on the electrode pattern. A film was attached to form an SH wave type longitudinally coupled double mode SAW filter. Here, the reason why aluminum was used as the electrode material is that the rate of change in frequency with respect to the film thickness H is small compared to other metals, and because the propagation speed is large compared to gold or the like, it is suitable for high-frequency devices. .

ここで、フィルタの中心周波数をf1、SSBWの周波数をf2とし、その差(f2−f1)をf1で除したものを周波数差ΔF(%)と定義する。図2はSiO膜の膜厚hを横軸に、ΔF(%)を縦軸にした場合の図で、図2から周波数差ΔF(%)は、SiO膜厚h(%λ)に対し1次式で近似できることが分かる。
この例では、電極膜厚を2.2%λに設定したので、SiO膜を付着する前の周波数差ΔF(%)は約1.4%であるが、電極膜厚が異なる場合、あるいは電極材料が異なる場合の周波数差ΔF(%)はこの値とは異なる。そこで、SiO膜を付着する前の周波数差をΔF(%)とし、所望の周波数差ΔF(%)を実現するためのSiO膜厚をh(%λ)とすると、膜厚h(%λ)は次式で表せる。
h={(ΔF−ΔF)/0.91}±0.2 (1)
ここで、式(1)の最後の項の±0.2は、SiO膜の膜質、IDT電極の電極材料等によるバラツキを考慮した定数項である。
Here, the center frequency of the filter is f1, the frequency of the SSBW is f2, and the difference (f2-f1) divided by f1 is defined as the frequency difference ΔF (%). FIG. 2 is a diagram when the film thickness h of the SiO 2 film is on the horizontal axis and ΔF (%) is on the vertical axis. From FIG. 2, the frequency difference ΔF (%) is the SiO 2 film thickness h (% λ). On the other hand, it can be seen that it can be approximated by a linear expression.
In this example, since the electrode film thickness is set to 2.2% λ, the frequency difference ΔF (%) before the SiO 2 film is deposited is about 1.4%. The frequency difference ΔF (%) when the electrode materials are different is different from this value. Therefore, if the frequency difference before depositing the SiO 2 film is ΔF 0 (%), and the SiO 2 film thickness for realizing the desired frequency difference ΔF (%) is h (% λ), the film thickness h ( % Λ) can be expressed by the following equation.
h = {(ΔF−ΔF 0 ) /0.91} ± 0.2 (1)
Here, ± 0.2 in the last term of the equation (1) is a constant term considering variations due to the film quality of the SiO 2 film, the electrode material of the IDT electrode, and the like.

図3は、図1に示す電極パターンを用い、IDT電極2、3の対数をそれぞれ70対、反射器4a、4bの本数をそれぞれ360本、ライン占有率(ライン幅LとスペースS和に対するライン幅の比)を50%、交差幅を100λ(λは波長)、電極にはアルミニウムを主成分とした合金を用い、その膜厚Hを2.2%λとし、該電極パターン上に1.25%λのSiO膜を付着した場合のフィルタ特性である。SSBWの周波数は、SiO膜がない場合にはフィルタの中心周波数より35MHz程度高域に存在するが、1.25%λのSiO膜を付着すると60MHz程度の高域に相対的に移動することが分かる。スプリアスが高域側に移動することにより、要求される規格を満たしたSH波型縦結合二重モードSAWフィルタが実現できる。 3 uses the electrode pattern shown in FIG. 1, 70 pairs of IDT electrodes 2 and 3 respectively, 360 pieces of reflectors 4a and 4b, and line occupancy ratio (line to line width L and space S sum). (Width ratio) is 50%, the crossing width is 100λ (λ is a wavelength), an alloy mainly composed of aluminum is used for the electrode, and its film thickness H is 2.2% λ. This is a filter characteristic when a 25% λ SiO 2 film is adhered. The frequency of the SSBW exists in a high region of about 35 MHz from the center frequency of the filter when there is no SiO 2 film, but moves relatively to a high region of about 60 MHz when a 1.25% λ SiO 2 film is deposited. I understand that. By moving the spurious toward the high frequency side, an SH wave type longitudinally coupled double mode SAW filter satisfying the required standard can be realized.

なお、上述したようにIDT電極の電極膜を厚くして、SSBWの周波数をフィルタの中心周波数から相対的に遠ざける手法では電気機械結合係数kは小さくなる欠点があるが、SiO膜を付着したときの電気機械結合係数kをシミュレーションにより求めてみると、SiO膜の厚さが厚くなってもkが大きくなることが確認できた。 As described above, the method of increasing the thickness of the electrode film of the IDT electrode and moving the SSBW frequency relatively away from the center frequency of the filter has a disadvantage that the electromechanical coupling coefficient k 2 is reduced, but the SiO 2 film is attached. If the try seeking electromechanical coupling coefficient k 2 by simulation of time, it was confirmed that k 2 even if the thickness of the SiO 2 film becomes thicker increases.

本発明に係るSH波型縦結合二重モードSAWフィルの構成を示した概略平面図である。It is the schematic plan view which showed the structure of the SH wave type | mold longitudinally coupled double mode SAW fill based on this invention. SiO膜厚と周波数差ΔF(%)との関係を示す図である。Is a diagram showing the relationship between SiO 2 film thickness and the frequency difference [Delta] F (%). SH波型縦結合二重モードSAWフィルタのフィルタ特性を示す図である。It is a figure which shows the filter characteristic of SH wave type | mold longitudinally coupled double mode SAW filter. 横結合二重モードSAWフィルタの構成を示す平面図である。It is a top view which shows the structure of a lateral coupling double mode SAW filter. SH波型縦結合二重モードSAWフィルタの構成を示す平面図である。It is a top view which shows the structure of SH wave type | mold vertical coupling double mode SAW filter. SH波型縦結合二重モードSAWフィルタのフィルタ特性を示す図である。It is a figure which shows the filter characteristic of SH wave type | mold longitudinally coupled double mode SAW filter.

符号の説明Explanation of symbols

1 圧電基板
2、3 IDT電極
4a、4b グレーティング反射器
5 SiO


1 Piezoelectric substrate 2, 3 IDT electrode
4a, 4b Grating reflector 5 SiO 2 film


Claims (4)

オイラー角(0°,110°〜150°,90°±2°)の水晶基板上に少なくともの1つのIDT電極を配置すると共に、少なくとも前記IDT電極を構成する電極指を覆うようにSiO膜を付着して構成したSH型弾性表面波デバイスであって、
前記基板上に励起されるSH型弾性表面波の周波数をf1、SSBWの周波数をf2とし、周波数差ΔF(%)を(f2−f1)/f1とし、前記SiO膜の膜厚をhと定義したとき、h={(ΔF−ΔF)/0.91}±0.2(ただしΔFはSiO膜を付着しないときのΔF)を満足していることを特徴とするSH型弾性表面波デバイス。
At least one IDT electrode is disposed on a quartz substrate having Euler angles (0 °, 110 ° to 150 °, 90 ° ± 2 °), and at least an SiO 2 film is formed so as to cover electrode fingers constituting the IDT electrode. SH type surface acoustic wave device constructed by attaching
The frequency of the SH type surface acoustic wave excited on the substrate is f1, the frequency of the SSBW is f2, the frequency difference ΔF (%) is (f2−f1) / f1, and the film thickness of the SiO 2 film is h. When defined, SH type elasticity characterized by satisfying h = {(ΔF−ΔF 0 ) /0.91} ± 0.2 (where ΔF 0 is ΔF when no SiO 2 film is deposited) Surface wave device.
オイラー角(0°,110°〜150°,90°±2°)の水晶基板上に2つのIDT電極を配置すると共に、該IDT電極の両側にグレーティング反射器を配設し、少なくとも前記IDT電極を構成する電極指を覆うようにSiO膜を付着して構成したSH型縦結合二重モードSAWフィルタであって、
SH型縦結合二重モードSAWフィルタの中心周波数をf1、前記基板上に励起されるSSBWの周波数をf2とし、周波数差ΔF(%)を(f2−f1)/f1とし、前記SiO膜の膜厚をhと定義したとき、h={(ΔF−ΔF)/0.91}±0.2(ただしΔFはSiO膜を付着しないときのΔF)を満足していることを特徴とするSH型縦結合二重モードSAWフィルタ。
Two IDT electrodes are disposed on a quartz substrate having Euler angles (0 °, 110 ° to 150 °, 90 ° ± 2 °), and grating reflectors are disposed on both sides of the IDT electrode, and at least the IDT electrode An SH type longitudinally coupled double mode SAW filter configured by adhering a SiO 2 film so as to cover the electrode fingers constituting
The center frequency of the SH type longitudinally coupled double mode SAW filter is f1, the frequency of the SSBW excited on the substrate is f2, the frequency difference ΔF (%) is (f2−f1) / f1, and the SiO 2 film When the film thickness is defined as h, h = {(ΔF−ΔF 0 ) /0.91} ± 0.2 (where ΔF 0 is ΔF when no SiO 2 film is deposited) is satisfied SH type vertically coupled double mode SAW filter.
前記IDT電極及びグレーティング反射器の電極材料をアルミニウムを主成分とした金属で構成したことを特徴とする請求項1に記載のSH型弾性表面波デバイス。 2. The SH type surface acoustic wave device according to claim 1, wherein an electrode material of the IDT electrode and the grating reflector is made of a metal mainly composed of aluminum. 前記IDT電極及びグレーティング反射器の電極材料をアルミニウムを主成分とした金属で構成したことを特徴とする請求項2に記載のSH型縦結合二重モードSAWフィルタ。






3. The SH type longitudinally coupled double mode SAW filter according to claim 2, wherein the electrode material of the IDT electrode and the grating reflector is made of a metal mainly composed of aluminum.






JP2004328276A 2004-11-11 2004-11-11 Surface acoustic wave device Pending JP2006140745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004328276A JP2006140745A (en) 2004-11-11 2004-11-11 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004328276A JP2006140745A (en) 2004-11-11 2004-11-11 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2006140745A true JP2006140745A (en) 2006-06-01

Family

ID=36621235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328276A Pending JP2006140745A (en) 2004-11-11 2004-11-11 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2006140745A (en)

Similar Documents

Publication Publication Date Title
JP6882929B2 (en) Elastic wave resonators, filters and multiplexers
JP6494447B2 (en) Elastic wave device
JP7292100B2 (en) Surface acoustic wave devices, filter circuits and electronic components
JP3897229B2 (en) Surface wave filter
JP3301399B2 (en) Surface acoustic wave device
US20140285287A1 (en) Acoustic wave device
JP4631972B2 (en) Elastic wave filter device
US10461718B2 (en) Acoustic wave resonator, filter, and multiplexer
JP2007202087A (en) Lamb wave type high frequency device
JP2008072316A (en) Elastic wave device, resonator and filter
JPWO2005099089A1 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2001298348A (en) Surface acoustic wave filter
WO2011007690A1 (en) Surface acoustic wave device
WO2019131530A1 (en) Acoustic wave filter
JP5083469B2 (en) Surface acoustic wave device
JPWO2018092511A1 (en) Surface acoustic wave filter and multiplexer
JP2001077662A (en) Surface wave device and communication device
CN113872562A (en) Surface acoustic wave device
JP5810113B2 (en) Elastic wave resonator and elastic wave filter and antenna duplexer using the same
JPWO2005011117A1 (en) 1-port surface acoustic wave resonator and surface acoustic wave filter
JP5716050B2 (en) Elastic wave element
JP7493306B2 (en) Elastic Wave Device
JP7080671B2 (en) Surface acoustic wave device
JPWO2005036744A1 (en) Boundary acoustic wave device
JP6465441B2 (en) Multiplexer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403