JP2006140064A - Time-of-flight mass spectrometer - Google Patents

Time-of-flight mass spectrometer Download PDF

Info

Publication number
JP2006140064A
JP2006140064A JP2004329547A JP2004329547A JP2006140064A JP 2006140064 A JP2006140064 A JP 2006140064A JP 2004329547 A JP2004329547 A JP 2004329547A JP 2004329547 A JP2004329547 A JP 2004329547A JP 2006140064 A JP2006140064 A JP 2006140064A
Authority
JP
Japan
Prior art keywords
flight
vacuum chamber
ion
time
mass spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004329547A
Other languages
Japanese (ja)
Other versions
JP4407486B2 (en
Inventor
Kazuhisa Sato
和久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004329547A priority Critical patent/JP4407486B2/en
Publication of JP2006140064A publication Critical patent/JP2006140064A/en
Application granted granted Critical
Publication of JP4407486B2 publication Critical patent/JP4407486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a time-of-flight mass spectrometer capable of improving the reproducibility of mass spectrometry by stabilizing the temperature in vacuum by reducing radiant heat transmitted to an ion optical system through a vacuum chamber resulting from a slight temperature change in a thermostat. <P>SOLUTION: Inside the vacuum chamber 10 placed in the thermostat 16, a flight tube 20 is held by a holding member 21 made of a low thermal conductivity material. An ion accelerator 12 and an ion detector 13 (and also a reflectron 14 in the case of a reciprocating type) are fixed to the flight tube 20 and an outer wall of a flight separation section 10b of the vacuum chamber 10 is covered with a heat insulator 27. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、飛行時間型質量分析装置に関する。   The present invention relates to a time-of-flight mass spectrometer.

従来の飛行時間型質量分析装置の構造及び作用を図3により説明する。真空チャンバ30内の一方の端にイオン源31、イオン加速器32とイオン検出器33が、他方の端にリフレクトロン(イオン反射器)34が設けられている。イオン源としては、MALDI(Matrix Assisted Laser Desorption/Ionization)等の試料イオン化部又はLCMSなどのイオン導入部が使用される。真空チャンバ30には、高真空を達成可能なターボ分子ポンプ等の真空ポンプ35が接続されている。   The structure and operation of a conventional time-of-flight mass spectrometer will be described with reference to FIG. An ion source 31, an ion accelerator 32 and an ion detector 33 are provided at one end in the vacuum chamber 30, and a reflectron (ion reflector) 34 is provided at the other end. As the ion source, a sample ionization unit such as MALDI (Matrix Assisted Laser Desorption / Ionization) or an ion introduction unit such as LCMS is used. A vacuum pump 35 such as a turbo molecular pump capable of achieving a high vacuum is connected to the vacuum chamber 30.

イオン源31で生成されたイオンは、イオン加速器32において所定の加速電圧により運動エネルギが与えられ、リフレクトロン34に向けて飛行空間37を飛行する。イオンはリフレクトロン34における傾斜電界により反射され、飛行空間37を戻って、イオン検出器33において検出される。イオンが飛行空間37を往復するのに要する時間はイオンの質量数(m/z、ただしzは電荷)に依存するため、イオン検出器33におけるイオン検出量を連続的に測定することにより、イオン源31において生成されたイオンの質量スペクトルが得られる。なお、イオン加速器とイオン検出器とを両端に配置し、イオンが飛行空間を一方向にのみ飛行した後に検出を行う一方向型のものもある。   Ions generated by the ion source 31 are given kinetic energy by a predetermined acceleration voltage in the ion accelerator 32 and fly in the flight space 37 toward the reflectron 34. The ions are reflected by the gradient electric field in the reflectron 34, return to the flight space 37, and detected by the ion detector 33. Since the time required for ions to reciprocate in the flight space 37 depends on the mass number of ions (m / z, where z is an electric charge), the ion detection amount in the ion detector 33 is continuously measured, so that A mass spectrum of the ions generated in the source 31 is obtained. There is a one-way type in which an ion accelerator and an ion detector are arranged at both ends, and detection is performed after ions fly in only one direction in the flight space.

このような装置では、同じエネルギを与えられても、イオンの飛行時間は当然飛行距離に応じて変化する。従って、イオン加速器32、飛行空間37、リフレクトロン34、イオン検出器33等を含むイオン光学系の位置関係、特に飛行空間37の長さが変化すると、同一質量数のイオンであってもイオン検出器33に到達する時間がシフトし、測定されるスペクトルの質量数軸がずれる。そこで、真空チャンバ30の全体を断熱材38で被覆された恒温槽36に収容し、測定時にイオン光学系の温度が一定となるように制御が行われる。   In such an apparatus, even if the same energy is given, the flight time of ions naturally changes according to the flight distance. Therefore, if the positional relationship of the ion optical system including the ion accelerator 32, the flight space 37, the reflectron 34, the ion detector 33, and the like, particularly the length of the flight space 37 changes, even ions having the same mass number are detected. The time to reach the instrument 33 is shifted and the mass number axis of the measured spectrum is shifted. Therefore, the entire vacuum chamber 30 is housed in a thermostatic chamber 36 covered with a heat insulating material 38, and control is performed so that the temperature of the ion optical system becomes constant during measurement.

高性能の飛行時間型質量分析装置に要求される時間安定性は、通常、20ppm程度であるが、飛行空間37の長さの変化による飛行時間のズレをこれ以下にしようとすると、真空チャンバ30を低熱膨張率の材料(通常、ステンレス鋼が使用される)で作製しても、その温度変化の幅を1℃程度としなければならない。一方、市販されている飛行時間型質量分析装置には、イオン飛行空間37が約1mになるものもあるため、それを内包する真空チャンバ30の全体を収容する恒温槽36は相当大きなものとならざるをえない。そのような大きな恒温槽36を1℃以下の許容幅で制御するためには、恒温槽36の熱容量を相当大きいものにし、更に、高精度の温度制御装置を設けなければならない。   The time stability required for a high-performance time-of-flight mass spectrometer is normally about 20 ppm. However, if the time-of-flight deviation due to the change in the length of the flight space 37 is to be reduced below this, the vacuum chamber 30 Even if it is made of a material with a low coefficient of thermal expansion (usually stainless steel is used), the temperature change must be about 1 ° C. On the other hand, some commercially available time-of-flight mass spectrometers have an ion flight space 37 of about 1 m, so that the thermostatic chamber 36 that accommodates the entire vacuum chamber 30 that contains the ion flight space 37 is considerably large. I cannot help it. In order to control such a large thermostatic chamber 36 with an allowable width of 1 ° C. or less, it is necessary to make the thermal capacity of the thermostatic chamber 36 considerably large and to provide a highly accurate temperature control device.

そこで、このような問題を解決するために。図4に示すように、真空チャンバ30内に飛行空間37を構成する管状部品(フライトチューブ)40を設け、該フライトチューブ40の一端にリフレクトロン34を、他端にイオン加速器32とイオン検出器33を固定し、該フライトチューブ40を熱伝導率の低い材料41で真空チャンバ30内に保持することによって、イオン光学系の熱膨張による質量スペクトルの変化を低減することのできる飛行時間型質量分析装置が開発されている(特許文献1)。イオン加速器32とイオン検出器33とは共にフライトチューブ40に固定されているため、両者間のイオン飛行空間37の長さ(イオンの飛行距離)はフライトチューブ40の長さに依存する。このフライトチューブ40は、上記のように低熱伝導率材料から成る保持部材41を介して真空チャンバ30の内部に保持されているため、真空チャンバ30からの空気による伝熱の影響を殆ど受けず、保持部材41を介しての熱伝導の影響も殆ど受けないため、真空チャンバ30を囲う恒温槽36の温度変動幅が多少大きくても、真空チャンバ30の内部のフライトチューブ40の温度変動を抑えることができる。   So, to solve such problems. As shown in FIG. 4, a tubular part (flight tube) 40 constituting a flight space 37 is provided in a vacuum chamber 30, a reflectron 34 is provided at one end of the flight tube 40, and an ion accelerator 32 and an ion detector are provided at the other end. 33 is fixed, and the flight tube 40 is held in the vacuum chamber 30 with a material 41 having a low thermal conductivity, whereby a change in mass spectrum due to thermal expansion of the ion optical system can be reduced. An apparatus has been developed (Patent Document 1). Since both the ion accelerator 32 and the ion detector 33 are fixed to the flight tube 40, the length of the ion flight space 37 between them (the flight distance of ions) depends on the length of the flight tube 40. Since the flight tube 40 is held inside the vacuum chamber 30 through the holding member 41 made of a low thermal conductivity material as described above, it is hardly affected by heat transfer from the air from the vacuum chamber 30. Since it is hardly affected by the heat conduction through the holding member 41, even if the temperature fluctuation range of the thermostatic chamber 36 surrounding the vacuum chamber 30 is somewhat large, the temperature fluctuation of the flight tube 40 inside the vacuum chamber 30 is suppressed. Can do.

特開2003-151488号公報Japanese Patent Laid-Open No. 2003-151488

しかし、上記のような飛行時間型質量分析装置においては、熱伝導及び対流による熱の伝播を抑えられるものの、恒温槽36内に設けられた温度調節用ヒータ42のon/offの切り替えなどによる恒温槽36内の微小な温度変化が真空チャンバ30を介して輻射熱としてイオン光学系に伝わり、安定した質量スペクトルが得られない場合があった。
そこで、本発明が解決しようとする課題は、恒温槽内の微小な温度変化による真空チャンバを介したイオン光学系への輻射熱を軽減し、真空内の温度を安定させて質量分析の再現性を向上させることのできる飛行時間型質量分析装置を提供することである。
However, in the time-of-flight mass spectrometer as described above, although the propagation of heat due to heat conduction and convection can be suppressed, the constant temperature by switching on / off of the temperature adjusting heater 42 provided in the constant temperature bath 36 is used. In some cases, a minute temperature change in the tank 36 is transmitted to the ion optical system as radiant heat through the vacuum chamber 30 and a stable mass spectrum cannot be obtained.
Therefore, the problem to be solved by the present invention is to reduce the radiant heat to the ion optical system through the vacuum chamber due to a minute temperature change in the thermostat, stabilize the temperature in the vacuum, and improve the reproducibility of mass spectrometry. It is to provide a time-of-flight mass spectrometer that can be improved.

上記課題を解決するために成された本発明に係る飛行時間型質量分析装置は、ヒータを有する温度調節手段を備えた恒温槽と、該恒温槽内に保持され、内包するイオン飛行空間を挟んで少なくともイオン加速器とイオン検出器とが設けられた真空チャンバとを備えた飛行時間型質量分析装置において、前記真空チャンバの外壁を断熱材で被覆したことを特徴とする。   A time-of-flight mass spectrometer according to the present invention, which has been made to solve the above-described problems, sandwiches a thermostat bath provided with temperature control means having a heater, and an ion flight space that is held in and contained in the thermostat bath. In the time-of-flight mass spectrometer equipped with a vacuum chamber provided with at least an ion accelerator and an ion detector, the outer wall of the vacuum chamber is covered with a heat insulating material.

また、本発明に係る質量分析装置は、ヒータを有する温度調節手段を備えた恒温槽と、該恒温槽内に保持される真空チャンバと、上記真空チャンバの内部に、低熱伝導率材料から成る保持部材を介して保持され、内包するイオン飛行空間を挟んで少なくともイオン加速器とイオン検出器とが固定されたフライトチューブとを備えた飛行時間型質量分析装置において、前記真空チャンバの外壁を断熱材で被覆したことを特徴とするものであってもよい。   In addition, the mass spectrometer according to the present invention includes a thermostat equipped with a temperature control means having a heater, a vacuum chamber held in the thermostat, and a holding made of a low thermal conductivity material inside the vacuum chamber. A time-of-flight mass spectrometer having a flight tube in which at least an ion accelerator and an ion detector are fixed, sandwiching an ion flight space that is held through a member and having an ion flight space interposed therebetween, the outer wall of the vacuum chamber is made of a heat insulating material. It may be characterized by being coated.

なお、上記断熱材で真空チャンバ外壁の全体を覆うと、温度の安定性を高くすることができる反面、質量分析開始前に本発明の飛行時間型質量分析装置を所定の操業温度(質量分析を行うときの温度)まで加熱する際に多くの時間が必要となる。そのため、ヒータのon/offによる恒温槽内の微小な温度変化が真空チャンバ内に伝達されることを抑えつつ、装置始動時に必要な加熱時間が長くなるのを防ぐため、上記断熱材は上記ヒータ近傍の真空チャンバ外壁の一部領域のみに設けることが望ましい。また、一般的に真空チャンバは、図3及び図4に示すように、イオン加速器32及びイオン検出器33が設けられる加速/検出部(但し、上述の一方向型の場合は、加速部と検出部は別個に設けられる)30aと、該イオン加速器32とイオン検出器33との間の飛行空間37を内包する飛行分離部30bとで構成されるが、一般的に恒温槽36内のスペースの関係から温度調節用のヒータ42は前記飛行分離部30bに近い領域に設けられることが多い。従って、この場合には上記断熱材を真空チャンバ30の飛行分離部30bの外壁のみに設けることが望ましい。   In addition, if the entire outer wall of the vacuum chamber is covered with the above heat insulating material, the stability of temperature can be increased. It takes a lot of time to heat up to the temperature when performing. Therefore, in order to prevent a minute heating time required at the time of starting the apparatus from being prolonged while suppressing a minute temperature change in the thermostatic chamber due to the heater on / off being transmitted to the vacuum chamber, the heat insulating material is used for the heater. It is desirable to provide it only in a partial region of the vacuum chamber outer wall in the vicinity. In general, as shown in FIGS. 3 and 4, the vacuum chamber includes an acceleration / detection unit provided with an ion accelerator 32 and an ion detector 33 (however, in the case of the above-described one-way type, the acceleration unit and the detection unit are detected. 30a and a flight separation unit 30b that includes a flight space 37 between the ion accelerator 32 and the ion detector 33. Generally, the space in the thermostat 36 is For this reason, the temperature adjusting heater 42 is often provided in a region close to the flight separation unit 30b. Therefore, in this case, it is desirable to provide the heat insulating material only on the outer wall of the flight separation unit 30 b of the vacuum chamber 30.

なお、上記「イオン飛行空間を挟んで少なくともイオン加速器とイオン検出器とが固定された真空チャンバ(又はフライトチューブ)」には、真空チャンバ又はフライトチューブの一端にイオン加速器、他端にイオン検出器が設けられている一方向型のものの他、真空チャンバ又はフライトチューブの一端にイオン加速器とイオン検出器が設けられ、他端にイオン反射器が設けられている往復型のものを含む。更に、複数のイオン反射器を介してイオンが飛行空間を往復する多重往復型のものをも含む。   In the above-mentioned “vacuum chamber (or flight tube) in which at least the ion accelerator and the ion detector are fixed across the ion flight space”, the ion accelerator is provided at one end of the vacuum chamber or the flight tube, and the ion detector is provided at the other end. In addition to the one-way type in which a vacuum chamber or a flight tube is provided, an ion accelerator and an ion detector are provided at one end and an ion reflector is provided at the other end. Further, a multiple reciprocating type in which ions reciprocate in the flight space via a plurality of ion reflectors is also included.

上記のように、真空チャンバ外壁を断熱材で被覆することによって、恒温槽の微小な温度変化が真空チャンバに伝わるのを防止し、これにより真空チャンバからの輻射熱によるイオン光学系の温度変化を防ぐことができる。このため、イオン加速部とイオン検出器の間の距離は非常に安定したものとなり、質量分析の再現性の精度を高めることができる。   As described above, the outer wall of the vacuum chamber is covered with a heat insulating material to prevent a minute temperature change of the thermostat from being transmitted to the vacuum chamber, thereby preventing a temperature change of the ion optical system due to radiant heat from the vacuum chamber. be able to. For this reason, the distance between the ion accelerator and the ion detector becomes very stable, and the accuracy of reproducibility of mass spectrometry can be improved.

以下、本発明を実施するための最良の形態について、実施例を用いて説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to examples.

[実施例]
図1に本発明の一実施例である往復型飛行時間型質量分析装置の概略構成図を示す。本実施例においては、真空チャンバ10内に保持されたフライトチューブ20の一端にイオン加速器12及びイオン検出器13が、該フライトチューブ20の他端にリフレクトロン14が設けられている。フライトチューブ20を保持する保持部材21は、低熱伝導率材料(例えばセラミックや樹脂等)で作製されている。なお、イオン源(図示せず)はフライトチューブ20に固定してもよいし、フライトチューブ20とは独立に真空チャンバ10に固定してもよい。
[Example]
FIG. 1 shows a schematic configuration diagram of a reciprocating time-of-flight mass spectrometer which is an embodiment of the present invention. In this embodiment, an ion accelerator 12 and an ion detector 13 are provided at one end of a flight tube 20 held in the vacuum chamber 10, and a reflectron 14 is provided at the other end of the flight tube 20. The holding member 21 that holds the flight tube 20 is made of a low thermal conductivity material (for example, ceramic or resin). The ion source (not shown) may be fixed to the flight tube 20 or may be fixed to the vacuum chamber 10 independently of the flight tube 20.

真空チャンバ10は断熱材18で覆われた恒温槽16に収容されており、恒温槽16にはヒータ22、ファン23及び温度センサ24等から成る温度調節装置が設けられている。該真空チャンバ10は飛行分離部10bの外壁部分を断熱材27によって被覆されている。真空チャンバ10に設けられた真空ポンプ15及び恒温槽16に設けられた上記温度調節装置は、コンピュータを備えた操作制御部25により制御されている。また、これとは別に、イオン加速器12及びイオン検出器13(それに、図示しないイオン源)に接続され、試料の質量分析を行うための測定制御部26も設けられている。   The vacuum chamber 10 is housed in a thermostatic chamber 16 covered with a heat insulating material 18, and the thermostatic chamber 16 is provided with a temperature adjusting device including a heater 22, a fan 23, a temperature sensor 24, and the like. In the vacuum chamber 10, the outer wall portion of the flight separation unit 10 b is covered with a heat insulating material 27. The vacuum pump 15 provided in the vacuum chamber 10 and the temperature adjusting device provided in the thermostat 16 are controlled by an operation control unit 25 including a computer. Separately from this, a measurement control unit 26 is also provided, which is connected to the ion accelerator 12 and the ion detector 13 (and an ion source not shown) and performs mass analysis of the sample.

本実施例の飛行時間型質量分析装置は上記のように、外部温度の変化がフライトチューブ20に伝わりにくい構成となっているため、装置始動時にフライトチューブ20の温度を上げようとする際には、これが逆に昇温時間を長引かせる原因となる。そこで、本実施例の質量分析装置では、操作制御部25によって始動時にはまず恒温槽16の加熱を開始し、所定時間が経過した後に真空チャンバ10内の真空引きを開始するように制御を行うことが望ましい。これにより、装置始動時には恒温槽16の熱は真空チャンバ10から空気の対流を伴う伝導によりフライトチューブ20に与えられ、フライトチューブ20は比較的速やかに所定温度まで上昇することができるようになる。この「所定時間」としては、真空チャンバ10の真空引きが完了する時点とフライトチューブ20が所定の操業温度(通常、室温よりも5〜10℃高い値に設定しておく)に到達する時点がほぼ同時となるような時間に設定しておくことが望ましいが、フライトチューブ20が操業温度に到達したと考えられる時間の後でもよい。或いは、時間で決定するのではなく、恒温槽16、真空チャンバ10又はフライトチューブ20が、それぞれ所定の温度(前記操業温度又はそれに近い温度)になった時点で真空引きを開始するようにしてもよい。   As described above, the time-of-flight mass spectrometer of the present embodiment has a configuration in which changes in the external temperature are not easily transmitted to the flight tube 20. On the contrary, this causes the temperature raising time to be prolonged. Therefore, in the mass spectrometer of the present embodiment, the operation control unit 25 controls to start heating the thermostatic chamber 16 at the start, and to start evacuation in the vacuum chamber 10 after a predetermined time has elapsed. Is desirable. Thereby, the heat of the thermostatic chamber 16 is given to the flight tube 20 from the vacuum chamber 10 by conduction accompanied by air convection when the apparatus is started, and the flight tube 20 can rise to a predetermined temperature relatively quickly. The “predetermined time” includes a time point when the evacuation of the vacuum chamber 10 is completed and a time point when the flight tube 20 reaches a predetermined operation temperature (usually set to a value 5 to 10 ° C. higher than room temperature). Although it is desirable to set the time so that it is almost the same time, it may be after the time when the flight tube 20 is considered to have reached the operating temperature. Alternatively, instead of determining by time, evacuation may be started when the thermostatic chamber 16, the vacuum chamber 10 or the flight tube 20 reaches a predetermined temperature (the operation temperature or a temperature close thereto). Good.

その後、温度センサ24によって検出される恒温槽16内の温度が上記操業温度に達すると共に、真空計(図示略)によって検出される真空チャンバ10内の真空度が所定の値に達した時点で、測定制御部26の制御による試料の質量分析が開始される。分析中は操作制御部25によって恒温槽16内の温度制御が行われるが、このときには低熱伝達率材料から成る保持部材21及び真空によって伝導及び対流による真空チャンバ10からフライトチューブ20への熱の伝達が抑えられるのに加えて、真空チャンバ10外壁に設けられた断熱材27によって恒温槽16内の微小な温度変化による真空チャンバ10の熱変動が抑制され、輻射熱による真空チャンバ10からフライトチューブ20への熱の伝達を抑えることもできる。従って恒温槽16の温度変動は非常に長い時定数でしかフライトチューブ20の温度変動に影響を及ぼさない。これにより、フライトチューブ20の温度変動幅を従来よりも抑えることができ、安定した質量スペクトルを得ることができるようになる。   Thereafter, when the temperature in the thermostatic chamber 16 detected by the temperature sensor 24 reaches the above operating temperature, and the degree of vacuum in the vacuum chamber 10 detected by a vacuum gauge (not shown) reaches a predetermined value, Mass analysis of the sample is started under the control of the measurement control unit 26. During the analysis, the operation controller 25 controls the temperature in the thermostatic chamber 16. At this time, heat is transferred from the vacuum chamber 10 to the flight tube 20 by conduction and convection by the holding member 21 made of a low heat transfer coefficient material and by vacuum. In addition, the heat insulating material 27 provided on the outer wall of the vacuum chamber 10 suppresses thermal fluctuations in the vacuum chamber 10 due to minute temperature changes in the thermostatic bath 16, and the vacuum chamber 10 to the flight tube 20 due to radiant heat. It is also possible to suppress the heat transfer. Therefore, the temperature fluctuation of the thermostatic chamber 16 affects the temperature fluctuation of the flight tube 20 only with a very long time constant. Thereby, the temperature fluctuation range of the flight tube 20 can be suppressed more than before, and a stable mass spectrum can be obtained.

以上、本発明の一実施例である往復型飛行時間型質量分析装置を用いて本発明を実施するための最良の形態について説明したが、本発明はこれに限定されるものではなく、本発明の範囲内で種々の変更が許容される。例えば、上記実施例では真空チャンバの内部にフライトチューブを設けた飛行時間型質量分析装置に本発明を適用した例について説明したが、図2に示すように、フライトチューブを設けず、真空チャンバ10にイオン加速器12、イオン検出器13、及びリフレクトロン14を固定したタイプの飛行時間型質量分析装置に本発明を適用してもよい。また、上記実施例では往復型のもので説明を行ったが、もちろん、リフレクトロンの位置にイオン検出器を置いた一方向型でも、本発明は全く同様に適用することができる。   As described above, the best mode for carrying out the present invention using the reciprocating time-of-flight mass spectrometer which is an embodiment of the present invention has been described. However, the present invention is not limited to this, and the present invention is not limited thereto. Within the range, various changes are allowed. For example, in the above embodiment, an example in which the present invention is applied to a time-of-flight mass spectrometer having a flight tube inside a vacuum chamber has been described. However, as shown in FIG. The present invention may be applied to a time-of-flight mass spectrometer of the type in which the ion accelerator 12, the ion detector 13, and the reflectron 14 are fixed. In the above-described embodiment, the reciprocating type has been described. Of course, the present invention can be applied to a unidirectional type in which an ion detector is placed at the position of the reflectron.

本発明の一実施例である往復型飛行時間型質量分析装置の概略構成図。1 is a schematic configuration diagram of a reciprocating time-of-flight mass spectrometer that is an embodiment of the present invention. 本発明の飛行時間型質量分析装置の別の例を示す概略構成図。The schematic block diagram which shows another example of the time-of-flight mass spectrometer of this invention. 従来の往復型飛行時間型質量分析装置の概略構成図。1 is a schematic configuration diagram of a conventional reciprocating time-of-flight mass spectrometer. フライトチューブを備えた従来の往復型飛行時間型質量分析装置の概略構成図。1 is a schematic configuration diagram of a conventional reciprocating time-of-flight mass spectrometer equipped with a flight tube.

符号の説明Explanation of symbols

10、30…真空チャンバ
10b、30b…飛行分離部
11…イオン源
12、32…イオン加速器
13、33…イオン検出器
14、34…リフレクトロン
15、35…真空ポンプ
16、36…恒温槽
17、37…イオン飛行空間
18、38、27…断熱材
20、40…フライトチューブ
21、41…保持部材
22、42…ヒータ
23、43…ファン
24、44…温度センサ
25、45…操作制御部
26、46…測定制御部
DESCRIPTION OF SYMBOLS 10, 30 ... Vacuum chamber 10b, 30b ... Flight separation part 11 ... Ion source 12, 32 ... Ion accelerator 13, 33 ... Ion detector 14, 34 ... Reflectron 15, 35 ... Vacuum pump 16, 36 ... Constant temperature bath 17, 37 ... Ion flight space 18, 38, 27 ... Insulation material 20, 40 ... Flight tube 21, 41 ... Holding member 22, 42 ... Heater 23, 43 ... Fan 24, 44 ... Temperature sensor 25, 45 ... Operation control unit 26, 46. Measurement control unit

Claims (5)

ヒータを有する温度調節手段を備えた恒温槽と、該恒温槽内に保持され、内包するイオン飛行空間を挟んで少なくともイオン加速器とイオン検出器とが設けられた真空チャンバとを備えた飛行時間型質量分析装置において、
前記真空チャンバの外壁を断熱材で被覆したことを特徴とする飛行時間型質量分析装置。
A time-of-flight type comprising a thermostat equipped with a temperature control means having a heater, and a vacuum chamber provided with at least an ion accelerator and an ion detector sandwiching an ion flight space contained in the thermostat and enclosing it In the mass spectrometer,
A time-of-flight mass spectrometer characterized in that an outer wall of the vacuum chamber is covered with a heat insulating material.
ヒータを有する温度調節手段を備えた恒温槽と、該恒温槽内に保持される真空チャンバと、上記真空チャンバの内部に、低熱伝導率材料から成る保持部材を介して保持され、内包するイオン飛行空間を挟んで少なくともイオン加速器とイオン検出器とが固定されたフライトチューブとを備えた飛行時間型質量分析装置において、
前記真空チャンバの外壁を断熱材で被覆したことを特徴とする飛行時間型質量分析装置。
A thermostat equipped with a temperature control means having a heater, a vacuum chamber held in the thermostat, and ion flight held and contained in the vacuum chamber via a holding member made of a low thermal conductivity material In a time-of-flight mass spectrometer equipped with a flight tube in which at least an ion accelerator and an ion detector are fixed across a space,
A time-of-flight mass spectrometer characterized in that an outer wall of the vacuum chamber is covered with a heat insulating material.
上記断熱材を上記ヒータ近傍の真空チャンバ外壁の一部領域のみに設けたことを特徴とする請求項1又は2に記載の飛行時間型質量分析装置。   The time-of-flight mass spectrometer according to claim 1 or 2, wherein the heat insulating material is provided only in a partial region of the outer wall of the vacuum chamber near the heater. 上記断熱材を真空チャンバの飛行分離部の外壁のみに設けたことを特徴とする請求項1〜3のいずれかに記載の飛行時間型質量分析装置。   The time-of-flight mass spectrometer according to any one of claims 1 to 3, wherein the heat insulating material is provided only on the outer wall of the flight separation unit of the vacuum chamber. 上記イオン加速器とイオン検出器とが装置内の一方の端に設けられ、他方の端にイオン反射器が設けられた往復型の飛行時間型質量分析装置であることを特徴とする請求項1〜4のいずれかに記載の飛行時間型質量分析装置。
2. The reciprocating time-of-flight mass spectrometer in which the ion accelerator and the ion detector are provided at one end in the apparatus and an ion reflector is provided at the other end. 5. A time-of-flight mass spectrometer according to any one of 4 above.
JP2004329547A 2004-11-12 2004-11-12 Time-of-flight mass spectrometer Active JP4407486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329547A JP4407486B2 (en) 2004-11-12 2004-11-12 Time-of-flight mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329547A JP4407486B2 (en) 2004-11-12 2004-11-12 Time-of-flight mass spectrometer

Publications (2)

Publication Number Publication Date
JP2006140064A true JP2006140064A (en) 2006-06-01
JP4407486B2 JP4407486B2 (en) 2010-02-03

Family

ID=36620752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329547A Active JP4407486B2 (en) 2004-11-12 2004-11-12 Time-of-flight mass spectrometer

Country Status (1)

Country Link
JP (1) JP4407486B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135192A (en) * 2006-11-27 2008-06-12 Jeol Ltd Time-of-flight mass spectroscope
JP2008157671A (en) * 2006-12-21 2008-07-10 Shimadzu Corp Apparatus for estimating temperature, and time-of-flight mass spectrometer
WO2008146440A1 (en) * 2007-05-30 2008-12-04 Shimadzu Corporation Time-of-flight mass spectrometer
WO2009081444A1 (en) * 2007-12-20 2009-07-02 Shimadzu Corporation Mass spectrometer
WO2014014279A1 (en) * 2012-07-17 2014-01-23 서울대학교 산학협력단 Method for improving mass spectrum reproducibility and quantitative analysis method using same
WO2014194172A2 (en) 2013-05-31 2014-12-04 Perkinelmer Health Sciences, Inc. Time of flight tubes and methods of using them
CN105977127A (en) * 2016-07-06 2016-09-28 安图实验仪器(郑州)有限公司 Ion source vacuum interconnection self-locking system adapted to time-of-flight mass spectrometer
WO2019111290A1 (en) * 2017-12-04 2019-06-13 株式会社島津製作所 Time-of-flight type mass spectrometry device
WO2019224948A1 (en) * 2018-05-23 2019-11-28 株式会社島津製作所 Time-of-flight mass spectrometer
CN112088420A (en) * 2018-05-14 2020-12-15 株式会社岛津制作所 Time-of-flight mass spectrometer
US20220262615A1 (en) * 2018-05-28 2022-08-18 Shimadzu Corporation Analytical device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135192A (en) * 2006-11-27 2008-06-12 Jeol Ltd Time-of-flight mass spectroscope
JP2008157671A (en) * 2006-12-21 2008-07-10 Shimadzu Corp Apparatus for estimating temperature, and time-of-flight mass spectrometer
WO2008146440A1 (en) * 2007-05-30 2008-12-04 Shimadzu Corporation Time-of-flight mass spectrometer
US8013293B2 (en) 2007-05-30 2011-09-06 Shimadzu Corporation Time-of-flight mass spectrometer
JP4816794B2 (en) * 2007-05-30 2011-11-16 株式会社島津製作所 Time-of-flight mass spectrometer
WO2009081444A1 (en) * 2007-12-20 2009-07-02 Shimadzu Corporation Mass spectrometer
JP4894929B2 (en) * 2007-12-20 2012-03-14 株式会社島津製作所 Mass spectrometer
WO2014014279A1 (en) * 2012-07-17 2014-01-23 서울대학교 산학협력단 Method for improving mass spectrum reproducibility and quantitative analysis method using same
US9646810B2 (en) 2012-07-17 2017-05-09 Snu R&Db Foundation Method for improving mass spectrum reproducibility and quantitative analysis method using same
JP2015528116A (en) * 2012-07-17 2015-09-24 ソウル大学校産学協力団Snu R&Db Foundation Method for improving reproducibility of mass spectrum and quantitative analysis method using the same
EP2876434A4 (en) * 2012-07-17 2016-05-04 Snu R&Db Foundation Method for improving mass spectrum reproducibility and quantitative analysis method using same
EP3005402A4 (en) * 2013-05-31 2017-03-22 PerkinElmer Health Sciences, Inc. Time of flight tubes and methods of using them
WO2014194172A2 (en) 2013-05-31 2014-12-04 Perkinelmer Health Sciences, Inc. Time of flight tubes and methods of using them
US9899202B2 (en) 2013-05-31 2018-02-20 Perkinelmer Health Sciences, Inc. Time of flight tubes and methods of using them
CN105977127A (en) * 2016-07-06 2016-09-28 安图实验仪器(郑州)有限公司 Ion source vacuum interconnection self-locking system adapted to time-of-flight mass spectrometer
JPWO2019111290A1 (en) * 2017-12-04 2020-07-02 株式会社島津製作所 Time-of-flight mass spectrometer
CN111344833A (en) * 2017-12-04 2020-06-26 株式会社岛津制作所 Time-of-flight mass spectrometer
WO2019111290A1 (en) * 2017-12-04 2019-06-13 株式会社島津製作所 Time-of-flight type mass spectrometry device
CN111344833B (en) * 2017-12-04 2022-09-02 株式会社岛津制作所 Time-of-flight mass spectrometer
CN112088420A (en) * 2018-05-14 2020-12-15 株式会社岛津制作所 Time-of-flight mass spectrometer
EP3796364A4 (en) * 2018-05-14 2021-12-22 Shimadzu Corporation Time-of-flight mass spectrometer
US11257666B2 (en) 2018-05-14 2022-02-22 Shimadzu Corporation Time-of-flight mass spectrometer
WO2019224948A1 (en) * 2018-05-23 2019-11-28 株式会社島津製作所 Time-of-flight mass spectrometer
JPWO2019224948A1 (en) * 2018-05-23 2021-05-13 株式会社島津製作所 Time-of-flight mass spectrometer
US20220262615A1 (en) * 2018-05-28 2022-08-18 Shimadzu Corporation Analytical device

Also Published As

Publication number Publication date
JP4407486B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4407486B2 (en) Time-of-flight mass spectrometer
JP4816794B2 (en) Time-of-flight mass spectrometer
WO2019224948A1 (en) Time-of-flight mass spectrometer
JP3659216B2 (en) Time-of-flight mass spectrometer
GB2329066A (en) Time-of-flight mass spectrometers with constant flight path length
JP6658763B2 (en) Measurement error correction method due to temperature displacement of measurement device and mass spectrometer using the method
JP3473280B2 (en) Gas chromatograph mass spectrometer
US11361956B2 (en) Time-of-flight mass spectrometer
JP4935341B2 (en) Time-of-flight mass spectrometer
US20190295832A1 (en) Member for use in mass spectrometer
JP4222005B2 (en) Analyzer with temperature control system
JP6536313B2 (en) Mass spectrometer components
JP4894929B2 (en) Mass spectrometer
JPH03285246A (en) Quadrupole mass spectrometric device
GB2608365A (en) Improvements relating to Time-of-Flight mass analysers
JP5055157B2 (en) Mass spectrometer
US11257666B2 (en) Time-of-flight mass spectrometer
WO2019220552A1 (en) Gas chromatograph mass spectrometer
JP2001357816A (en) Mass spectrometer
JP2019007927A (en) Gas chromatograph mass spectrometer
GB2622309A (en) Improvements relating to time-of-flight mass analysers
JP6213986B2 (en) Absolute light intensity measuring device and measuring method
JPS61101943A (en) Evaporating furnace for solid sample
JPH05180816A (en) Injector
JPH0479387A (en) Apparatus for generating metallic vapor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R151 Written notification of patent or utility model registration

Ref document number: 4407486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4