JP2006137653A - Hexagonal magnetoplumbite-type ferrite and electromagnetic wave absorber using the same - Google Patents

Hexagonal magnetoplumbite-type ferrite and electromagnetic wave absorber using the same Download PDF

Info

Publication number
JP2006137653A
JP2006137653A JP2004331170A JP2004331170A JP2006137653A JP 2006137653 A JP2006137653 A JP 2006137653A JP 2004331170 A JP2004331170 A JP 2004331170A JP 2004331170 A JP2004331170 A JP 2004331170A JP 2006137653 A JP2006137653 A JP 2006137653A
Authority
JP
Japan
Prior art keywords
radio wave
thickness
hexagonal ferrite
type hexagonal
wave absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004331170A
Other languages
Japanese (ja)
Other versions
JP4599575B2 (en
Inventor
Naoyuki Hashimoto
尚行 橋本
Shinichi Suenaga
真一 末永
Isao Shigematsu
功 重松
Zen Tsuboi
禅 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Nippon Bengara Kogyo Co Ltd
Original Assignee
Nippon Bengara Kogyo Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Bengara Kogyo Co Ltd, Dowa Mining Co Ltd filed Critical Nippon Bengara Kogyo Co Ltd
Priority to JP2004331170A priority Critical patent/JP4599575B2/en
Publication of JP2006137653A publication Critical patent/JP2006137653A/en
Application granted granted Critical
Publication of JP4599575B2 publication Critical patent/JP4599575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compounds Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hexagonal magnetoplumbite-type ferrite which can give electromagnetic wave absorbers exhibiting the property that their matching frequencies vary little with fluctuation of thickness when it is used for an electromagnetic wave absorber. <P>SOLUTION: The hexagonal magnetoplumbite-type ferrite is represented by the compositional formula: AFe<SB>(12-x)</SB>(B1<SB>0.5</SB>B2<SB>0.5</SB>)<SB>x</SB>O<SB>19</SB>(wherein A is at least either of Ba and Sr; B1 is at least either of Ti and Zr; and B2 is a divalent metallic element, provided that B2 comprises two or more members selected from among Co, Mn, Cu, Mg, Zn, and Ni). A desirable example is one containing at least Zn as B2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、GHz帯域用の電波吸収体に適したマグネトプランバイト型六方晶フェライト、およびそれを用いた電波吸収体に関する。   The present invention relates to a magnetoplumbite type hexagonal ferrite suitable for a radio wave absorber for the GHz band, and a radio wave absorber using the same.

近年、情報通信技術の高度化に伴い、GHz帯域の電波が種々の用途で使用されるようになってきた。例えば、携帯電話、無線LAN、衛生放送、高度道路交通システム、ノンストップ自動料金徴収システム(ETC)、自動車走行支援システム(AHS)などが挙げられる。このように高周波域での電波利用形態が多様化すると、電子部品同士の干渉による故障、誤動作、機能不全などが懸念され、その対策が重要となってくる。その1つとして、電波吸収体を用いて不要な電波を吸収し、電波の反射および侵入を防ぐ方法が有効である。昨今、GHz帯域用の電波吸収体は需要が増大しつつある。   In recent years, with the advancement of information communication technology, radio waves in the GHz band have been used for various purposes. For example, a mobile phone, wireless LAN, sanitary broadcasting, intelligent road traffic system, non-stop automatic toll collection system (ETC), automobile driving support system (AHS), and the like can be mentioned. Thus, when radio wave usage forms in a high frequency range are diversified, there is a concern about failure, malfunction, malfunction or the like due to interference between electronic components, and countermeasures are important. As one of them, a method of absorbing unnecessary radio waves using a radio wave absorber and preventing reflection and intrusion of radio waves is effective. Recently, the demand for radio wave absorbers for the GHz band is increasing.

従来、高周波帯域用の電波吸収体には、主としてフェライト等の酸化物系磁性材料が多く用いられている。フェライトの中でも、MHz帯域では主としてスピネル系のものが使用されるが、GHz以上の高周波帯域において優れた特性を発揮するものとしてマグネトプランバイト型六方晶フェライトが有望視されており、例えばFe3+の一部を4価の陽イオンと2価の陽イオンで置換したマグネトプランバイト型六方晶フェライトが知られている(特許文献1、非特許文献1)。 Conventionally, oxide-based magnetic materials such as ferrite are often used for radio wave absorbers for high frequency bands. Among ferrites, spinel type is mainly used in the MHz band, but magnetoplumbite type hexagonal ferrite is promising as a material that exhibits excellent characteristics in a high frequency band of GHz or higher. For example, Fe 3+ There is known a magnetoplumbite type hexagonal ferrite in which a part of is substituted with a tetravalent cation and a divalent cation (Patent Document 1, Non-Patent Document 1).

特開平11−354972号公報JP 11-354972 A 日本応用磁気学会誌、22、297−300(1998)Journal of Japan Society of Applied Magnetics, 22, 297-300 (1998)

フェライトを用いた電波吸収体は「インピーダンス整合型」であり、材料定数が定まると整合周波数と整合厚さが決定される。発明者らは、Fe3+の一部を置換したタイプのマグネトプランバイト型六方晶フェライトを用いた電波吸収体について、電波吸収特性を種々調査してきた。その結果、この種の電波吸収体の場合、厚さによる整合周波数の変化が大きいことが明らかになった。すなわち、シート厚さが変動すると整合周波数が大きく変化してしまうため、厚さの微妙な違いによって目的周波数領域の電波が的確に吸収できないといった問題が生じやすい。つまり、工業生産において安定した品質を得るためには、厚さについて高い寸法精度が要求され、これは生産コストを増大させる一因となる。 A radio wave absorber using ferrite is an “impedance matching type”, and when a material constant is determined, a matching frequency and a matching thickness are determined. The inventors have investigated various radio wave absorption characteristics of a radio wave absorber using a magnetoplumbite type hexagonal ferrite in which a part of Fe 3+ is substituted. As a result, in the case of this type of wave absorber, it became clear that the change of the matching frequency with the thickness is large. That is, when the sheet thickness varies, the matching frequency changes greatly, and a problem that radio waves in the target frequency region cannot be accurately absorbed due to a subtle difference in thickness tends to occur. That is, in order to obtain stable quality in industrial production, high dimensional accuracy is required for the thickness, which contributes to an increase in production cost.

本発明はこのような問題に鑑み、電波吸収体に使用したとき、その厚さが変動しても整合周波数が変化しにくい性質を発揮するマグネトプランバイト型六方晶フェライトを開発し提供しようというものである。   In view of these problems, the present invention intends to develop and provide a magnetoplumbite type hexagonal ferrite that exhibits the property that the matching frequency hardly changes even when the thickness of the absorber is changed. It is.

上記目的は、組成式AFe(12-x)(B10.5B20.5)x19で表され、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種、B2は2価金属元素であり、B2としてCo、Mn、Cu、Mg、Zn、Niのうち2種以上を含有するマグネトプランバイト型六方晶フェライトによって達成される。上記B2として少なくともZnを含有し、特にCoとZn、あるいはMnとZnを含有するものが好適な対象となる。 The object is represented by the composition formula AFe (12-x) (B1 0.5 B2 0.5 ) x O 19 , A is one or two of Ba and Sr, B1 is one or two of Ti and Zr, B2 Is a divalent metal element, and is achieved by a magnetoplumbite type hexagonal ferrite containing two or more of Co, Mn, Cu, Mg, Zn, Ni as B2. B2 contains at least Zn, particularly those containing Co and Zn, or Mn and Zn.

具体的には、例えば以下のi)ii)に示すものが挙げられる。
i) 組成式AFe(12-x)(B10.5(Co(1-y)Zny)0.5)x19で表され、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種であり、xは1.8〜3.0、yは0.2〜0.8であるマグネトプランバイト型六方晶フェライト。
ii) 組成式AFe(12-x)(B10.5(Mn(1-y)Zny)0.5)x19で表され、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種であり、xは3.6〜4.8、yは0.5±0.1であるマグネトプランバイト型六方晶フェライト。
Specific examples include the following i) ii).
i) represented by the composition formula AFe (12-x) (B1 0.5 (Co (1-y) Zn y ) 0.5 ) x O 19 , A is one or two of Ba and Sr, B1 is Ti and Zr Magnetoplumbite type hexagonal ferrite, which is one or two, x is 1.8 to 3.0, and y is 0.2 to 0.8.
ii) represented by the composition formula AFe (12-x) (B1 0.5 (Mn (1-y) Zn y ) 0.5 ) x O 19 , A is one or two of Ba and Sr, B1 is Ti and Zr Magnetoplumbite type hexagonal ferrite, which is one or two, x is 3.6 to 4.8, and y is 0.5 ± 0.1.

また本発明では、上記のマグネトプランバイト型六方晶フェライトの粉末を用いた電波吸収体が提供される。   The present invention also provides a radio wave absorber using the above-described magnetoplumbite type hexagonal ferrite powder.

本発明によれば、マグネトプランバイト型六方晶フェライトにおいて、電波吸収体の厚さ変動による整合周波数の変化を小さく抑えたものが提供可能になった。この改良されたマグネトプランバイト型六方晶フェライトを用いると、電波吸収体の製造において、従来ほど厳格な厚さの寸法精度を要求しなくても、所定周波数領域に対する優れた電波吸収性能を安定して得ることができる。また、厚さが変動しやすい塗料や射出成形品においても、整合周波数を所望の周波数領域に合致させることが容易になる。したがって本発明は、マグネトプランバイト型六方晶フェライトを用いた電波吸収体の工業生産コスト低減により、その普及に寄与し、ひいてはGHz帯域の電波障害防止に貢献するものである。   According to the present invention, it is possible to provide magnetoplumbite type hexagonal ferrite in which a change in matching frequency due to a thickness variation of a radio wave absorber is suppressed to be small. Using this improved magnetoplumbite-type hexagonal ferrite, stable radio wave absorption performance in a specified frequency range can be stabilized without requiring strict dimensional accuracy as in the conventional manufacturing of radio wave absorbers. Can be obtained. In addition, it becomes easy to match the matching frequency to a desired frequency region even in a paint or injection molded product whose thickness is likely to fluctuate. Therefore, the present invention contributes to the spread of the radio wave absorber using magnetoplumbite type hexagonal ferrite by reducing the industrial production cost, and further contributes to prevention of radio wave interference in the GHz band.

本発明では、Fe3+の一部を他の元素で置換したマグネトプランバイト型六方晶フェライトのうち、以下の組成式で表されるものを対象とする。
AFe(12-x)(B10.5B20.5)x19
ここで、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種、B2は2価金属元素である。
ただし本発明では、上記組成式のB2元素として、Co、Mn、Cu、Mg、Zn、Niのうち2種以上を含有させる。このとき、電波吸収体の厚さ変動による整合周波数の変化を顕著に減少させることができるのである。その理由は現時点で不明な点も多いが、多種元素を複合添加することで結晶歪が小さくなり、結晶構造上安定してくることによって、その歪に起因する周波数変動がより小さく抑えられることが考えられる。
In the present invention, among the magnetoplumbite type hexagonal ferrites in which part of Fe 3+ is substituted with another element, the one represented by the following composition formula is used.
AFe (12-x) (B1 0.5 B2 0.5 ) x O 19
Here, A is one or two of Ba and Sr, B1 is one or two of Ti and Zr, and B2 is a divalent metal element.
However, in the present invention, two or more of Co, Mn, Cu, Mg, Zn and Ni are contained as the B2 element in the composition formula. At this time, the change of the matching frequency due to the thickness variation of the radio wave absorber can be remarkably reduced. The reason for this is not clear at this point, but the addition of multiple elements reduces the crystal strain and stabilizes the crystal structure, which can reduce the frequency fluctuations caused by the strain. Conceivable.

その実用的な組成を例示すると、例えばB2元素としてCoとZnを複合添加した組成式BaFe(12-x)(Ti0.5(Co(1-y)Zny)0.5)x19で表されるものが挙げられる。検討の結果、CoとZnのモル比については少なくとも上記yが0.2〜0.8の範囲で厚さによる整合周波数の変化が顕著に減少する効果が得られる。yは0.3〜0.8の範囲とすることが好ましく、0.4〜0.8の範囲で特に大きな効果が得られる。置換量xにより吸収周波数領域をコントロールすることができ、例えばxは1.8〜3.0の範囲とすることができる。 An example of its practical composition is represented by the composition formula BaFe (12-x) (Ti 0.5 (Co (1-y) Zn y ) 0.5 ) x O 19 in which Co and Zn are added as B2 elements. Things. As a result of the study, the molar ratio of Co and Zn has an effect that the change of the matching frequency due to the thickness is remarkably reduced at least when y is in the range of 0.2 to 0.8. y is preferably in the range of 0.3 to 0.8, and a particularly large effect is obtained in the range of 0.4 to 0.8. The absorption frequency region can be controlled by the substitution amount x. For example, x can be in the range of 1.8 to 3.0.

別の実用的な組成を例示すると、例えばB2元素としてMnとZnを複合添加した組成式BaFe(12-x)(Ti0.5(Mn(1-y)Zny)0.5)x19で表されるものが挙げられる。検討の結果、少なくともMnとZnのモル比が1:1付近(上記yが0.5±0.1)において、厚さによる整合周波数の変化が顕著に減少する効果が得られる。この場合、xは例えば3.6〜4.8の範囲とすることができる。 Another practical composition is exemplified by the composition formula BaFe (12-x) (Ti 0.5 (Mn (1-y) Zn y ) 0.5 ) x O 19 in which Mn and Zn are added as B2 elements. Can be mentioned. As a result of the study, at least when the molar ratio of Mn to Zn is around 1: 1 (the above y is 0.5 ± 0.1), the effect of significantly reducing the change in the matching frequency due to the thickness is obtained. In this case, x can be in the range of 3.6 to 4.8, for example.

本発明のマグネトプランバイト型六方晶フェライトは、一般的なソフトフェライトの製造方法に準じて製造することができる。例えば、原料として酸化物や炭酸塩の粉体を用い、これらを所定のフェライト組成となるように秤量し、混合、造粒したのち、焼成することにより所定組成のマグネトプランバイト型六方晶フェライトが得られる。これを粉砕して粉末とすればよい。   The magnetoplumbite type hexagonal ferrite of the present invention can be manufactured according to a general soft ferrite manufacturing method. For example, oxide or carbonate powder is used as a raw material, and these are weighed so as to have a predetermined ferrite composition, mixed, granulated, and then fired to obtain magnetoplumbite type hexagonal ferrite of a predetermined composition. can get. This may be pulverized into powder.

得られたマグネトプランバイト型六方晶フェライトの粉末は、高分子基材とともに混練することにより電波吸収体素材(混練物)が得られる。混練物中におけるマグネトプランバイト型六方晶フェライト粉末の配合量は60質量%以上とすることが好ましい。ただし95質量%を超えると高分子基材との混練が難しくなる。マグネトプランバイト型六方晶フェライト粉末の混合割合は80〜95質量%とすることがより好ましく、85〜95質量%が一層好ましい。   The obtained magnetoplumbite type hexagonal ferrite powder is kneaded with a polymer base material to obtain a radio wave absorber material (kneaded product). The blending amount of magnetoplumbite type hexagonal ferrite powder in the kneaded product is preferably 60% by mass or more. However, if it exceeds 95% by mass, kneading with the polymer substrate becomes difficult. The mixing ratio of the magnetoplumbite type hexagonal ferrite powder is more preferably 80 to 95% by mass, and still more preferably 85 to 95% by mass.

高分子基材としては、使用環境に応じて、耐熱性、難燃性、耐久性、機械的強度、電気的特性を満足する各種のものが使用できる。例えば、樹脂(ナイロン等)、ゲル(シリコーンゲル等)、熱可塑性エラストマー、ゴムなどから適切なものを選択すれば良い。また2種以上の高分子化合物をブレンドして基材としてもよい。   As the polymer substrate, various materials satisfying heat resistance, flame retardancy, durability, mechanical strength, and electrical characteristics can be used depending on the use environment. For example, an appropriate material may be selected from resin (nylon or the like), gel (silicone gel or the like), thermoplastic elastomer, rubber or the like. Two or more polymer compounds may be blended to form a base material.

高分子基材との相溶性や分散性を改善するために、マグネトプランバイト型六方晶フェライト粉末には予めシランカップリング剤、チタネートカップリング剤等による表面処理を施すことができる。また、マグネトプランバイト型六方晶フェライト粉末と高分子化合物との混合に際し、可塑剤、補強剤、耐熱向上剤、熱伝導性充填剤、粘着剤などの各種添加剤を添加することができる。   In order to improve the compatibility and dispersibility with the polymer substrate, the magnetoplumbite type hexagonal ferrite powder can be subjected to surface treatment with a silane coupling agent, a titanate coupling agent or the like in advance. In addition, when the magnetoplumbite type hexagonal ferrite powder and the polymer compound are mixed, various additives such as a plasticizer, a reinforcing agent, a heat resistance improver, a heat conductive filler, and an adhesive can be added.

上記電波吸収体素材(混練物)を圧延により所定のシート厚に成形することで電波吸収体が得られる。また、本発明のマグネトプランバイト型六方晶フェライトを用いると電波吸収体の厚さ寸法精度の許容量が緩和されるので、圧延の代わりに射出成形を施すこともできる。マグネトプランバイト型六方晶フェライト粉末を直接塗料中に分散させて、基体表面に塗布することにより、塗膜としての電波吸収体を形成することもできる。   A radio wave absorber can be obtained by forming the above radio wave absorber material (kneaded material) into a predetermined sheet thickness by rolling. Further, when the magnetoplumbite type hexagonal ferrite of the present invention is used, the allowable amount of thickness dimensional accuracy of the radio wave absorber is relaxed, and therefore, injection molding can be performed instead of rolling. The electromagnetic wave absorber as a coating film can also be formed by dispersing the magnetoplumbite type hexagonal ferrite powder directly in the paint and applying it to the surface of the substrate.

〔実施例1〕
原料粉として、α−Fe23、BaCO3、TiO2、Co34およびZnOを用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12-x)(Ti0.5(Co0.5Zn0.5)0.5)x19、x=2.4
秤量後の原料粉をハイスピードミキサーで混合し、更に振動ミルにより乾式法で混合強化した。得られた混合粉をペレット状に造粒成形し、この成形体をローラーハース型電気炉に装入し、大気中1250℃で2時間保持することにより焼成した。得られた焼成品をハンマーミルで粗粉砕して粒径1mm以下とした後、更にボールミルを用いて乾式法で微粉砕して平均粒径10μm以下とした。
X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。
[Example 1]
Α-Fe 2 O 3 , BaCO 3 , TiO 2 , Co 3 O 4 and ZnO were used as raw material powders, and these were weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-x) (Ti 0.5 (Co 0.5 Zn 0.5 ) 0.5 ) x O 19 , x = 2.4
The raw material powder after weighing was mixed with a high speed mixer, and further mixed and strengthened by a dry method using a vibration mill. The obtained mixed powder was granulated and formed into pellets, and the formed body was placed in a roller hearth type electric furnace and fired by holding at 1250 ° C. in the atmosphere for 2 hours. The obtained fired product was coarsely pulverized with a hammer mill to a particle size of 1 mm or less, and further pulverized by a dry method using a ball mill to an average particle size of 10 μm or less.
As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite.

上記微粉砕品の含有量が85質量%となるように、当該粉末と合成ゴム(JSR(日本合成ゴム)製、N215SL)を混練して電波吸収体素材(混練物)を作製した。この電波吸収体素材を圧延ロールにより厚さ2mmに圧延し、電波吸収体シートを得た。このシートを後述の電波吸収特性の測定に供した。   The powder and synthetic rubber (JSR (Nippon Synthetic Rubber), N215SL) were kneaded so that the content of the finely pulverized product was 85% by mass to prepare a radio wave absorber material (kneaded material). The radio wave absorber material was rolled to a thickness of 2 mm with a rolling roll to obtain a radio wave absorber sheet. This sheet was subjected to the measurement of the radio wave absorption characteristics described later.

〔実施例2〕
実施例1と同じ原料粉を用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12-x)(Ti0.5(Co0.67Zn0.33)0.5)x19、x=2.2
その後、実施例1と同様のプロセスを経て平均粒径10μm以下の微粉砕粉末を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。この微粉砕品を用いて実施例1と同様の方法で厚さ2mmのシートとし、後述の電波吸収特性の測定に供した。
[Example 2]
The same raw material powder as in Example 1 was used and weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-x) (Ti 0.5 (Co 0.67 Zn 0.33 ) 0.5 ) x O 19 , x = 2.2
Thereafter, a finely pulverized powder having an average particle size of 10 μm or less was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this finely pulverized product, a sheet having a thickness of 2 mm was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

〔実施例3〕
実施例1と同じ原料粉を用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12-x)(Ti0.5(Co0.25Zn0.75)0.5)x19、x=2.4
その後、実施例1と同様のプロセスを経て平均粒径10μm以下の微粉砕粉末を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。この微粉砕品を用いて実施例1と同様の方法で厚さ2mmのシートとし、後述の電波吸収特性の測定に供した。
Example 3
The same raw material powder as in Example 1 was used and weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-x) (Ti 0.5 (Co 0.25 Zn 0.75 ) 0.5 ) x O 19 , x = 2.4
Thereafter, a finely pulverized powder having an average particle size of 10 μm or less was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this finely pulverized product, a sheet having a thickness of 2 mm was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

〔比較例1〕
原料粉として、α−Fe23、BaCO3、TiO2およびCo34を用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12-x)(Ti0.5Co0.5)x19、x=1.8
その後、実施例1と同様のプロセスを経て平均粒径10μm以下の微粉砕粉末を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。この微粉砕品を用いて実施例1と同様の方法で厚さ2mmのシートとし、後述の電波吸収特性の測定に供した。
[Comparative Example 1]
As raw material powder, α-Fe 2 O 3 , BaCO 3 , TiO 2 and Co 3 O 4 were used and weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-x) (Ti 0.5 Co 0.5 ) x O 19 , x = 1.8
Thereafter, a finely pulverized powder having an average particle size of 10 μm or less was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this finely pulverized product, a sheet having a thickness of 2 mm was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

〔比較例2〕
原料粉として、α−Fe23、BaCO3、TiO2およびZnOを用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12-x)(Ti0.5Zn0.5)x19、x=2.4
その後、実施例1と同様のプロセスを経て平均粒径10μm以下の微粉砕粉末を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。この微粉砕品を用いて実施例1と同様の方法で厚さ2mmのシートとし、後述の電波吸収特性の測定に供した。
しかし、この組成のものは目的範囲で電波吸収性能を発現しなかった。
[Comparative Example 2]
Α-Fe 2 O 3 , BaCO 3 , TiO 2 and ZnO were used as raw material powders, and these were weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-x) (Ti 0.5 Zn 0.5 ) x O 19 , x = 2.4
Thereafter, a finely pulverized powder having an average particle size of 10 μm or less was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this finely pulverized product, a sheet having a thickness of 2 mm was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.
However, this composition did not exhibit radio wave absorption performance in the target range.

〔実施例4〕
原料粉として、α−Fe23、BaCO3、TiO2、MnO2およびZnOを用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12-x)(Ti0.5(Mn0.5Zn0.5)0.5)x19、x=4.0
その後、実施例1と同様のプロセスを経て平均粒径10μm以下の微粉砕粉末を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。この微粉砕品を用いて実施例1と同様の方法で厚さ2mmのシートとし、後述の電波吸収特性の測定に供した。
Example 4
Α-Fe 2 O 3 , BaCO 3 , TiO 2 , MnO 2 and ZnO were used as raw material powders, and these were weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-x) (Ti 0.5 (Mn 0.5 Zn 0.5 ) 0.5 ) x O 19 , x = 4.0
Thereafter, a finely pulverized powder having an average particle size of 10 μm or less was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this finely pulverized product, a sheet having a thickness of 2 mm was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

〔比較例3〕
原料粉として、α−Fe23、BaCO3、TiO2およびMnO2を用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12-x)(Ti0.5Mn0.5)x19、x=4.0
その後、実施例1と同様のプロセスを経て平均粒径10μm以下の微粉砕粉末を得た。ただし、焼成温度は1250℃とした。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。この微粉砕品を用いて実施例1と同様の方法で厚さ2mmのシートとし、後述の電波吸収特性の測定に供した。
[Comparative Example 3]
Α-Fe 2 O 3 , BaCO 3 , TiO 2 and MnO 2 were used as raw material powders, and these were weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-x) (Ti 0.5 Mn 0.5 ) x O 19 , x = 4.0
Thereafter, a finely pulverized powder having an average particle size of 10 μm or less was obtained through the same process as in Example 1. However, the firing temperature was 1250 ° C. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this finely pulverized product, a sheet having a thickness of 2 mm was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

〔電波吸収特性の評価〕
得られた電波吸収体シートについてSパラメーター法により電波吸収特性を調べた。シートから切り出した小片を外径7mm、内径3mmの円筒状測定ピースに成形し、これをφ7mm×φ3.04mmの同軸管に挿入し、同軸管の端をショートホルダーで短絡し、ネットワークアナライザー(ヒュレットパッカード社製、HP8720D)を用いて1〜20GHzにおける反射量(S11)を測定した。試料を挿入した場合の反射量から、試料を挿入しない場合の反射量を引いた値を吸収量(反射減衰量)と定義し、これにより電波吸収特性を評価した。測定されたSパラメーターから、1〜4mmの種々の厚さのシートにおける電波吸収特性をシミュレートした。
[Evaluation of radio wave absorption characteristics]
The obtained radio wave absorber sheet was examined for radio wave absorption characteristics by the S parameter method. A small piece cut out from the sheet is formed into a cylindrical measuring piece having an outer diameter of 7 mm and an inner diameter of 3 mm, which is inserted into a φ7 mm × φ3.04 mm coaxial tube, and the end of the coaxial tube is short-circuited with a short holder. The amount of reflection (S11) at 1 to 20 GHz was measured using a HP 8720D manufactured by Ret Packard. A value obtained by subtracting the reflection amount when the sample was not inserted from the reflection amount when the sample was inserted was defined as an absorption amount (reflection attenuation amount), and thereby the radio wave absorption characteristics were evaluated. From the measured S-parameters, radio wave absorption characteristics of sheets having various thicknesses of 1 to 4 mm were simulated.

このシミュレート結果を基に、目標周波数付近におけるシート厚さと整合周波数の関係調べ、電波吸収体の厚さ変動による整合周波数の変化の程度を評価した。その評価手法を以下に説明する。   Based on the simulation results, the relationship between the sheet thickness near the target frequency and the matching frequency was investigated, and the degree of change in the matching frequency due to the thickness variation of the wave absorber was evaluated. The evaluation method will be described below.

図1に、実施例1および比較例1の各シート厚さにおける周波数と吸収量の関係(シミュレート結果)を例示する。これらの例は概ね12GHz前後の周波数を目標としたものである。図1に示される各シート厚さの曲線のうち、約−15dB以下の吸収量が得られるシート厚さの曲線を選択し、その頂点(図1における下向きの頂点)の周波数と吸収量を読み取る。各頂点のプロットを結ぶと図2のようになる。図2のプロットを、頂点の周波数とシート厚さの関係に直してプロットすると、図3(実施例1)および図4(比較例1)のように、整合周波数とシート厚さの関係は概ね直線状の関係になる。そこで最小二乗法により各プロットの並びを直線で近似する。図3、図4中、「線形」と記載したものがこの近似直線である。この近似直線の傾きの絶対値が大きいほど、電波吸収体厚さの変動に対する整合周波数の変化量が小さくなり、所定の周波数領域に適用可能な厚さの許容範囲が拡大することになる。   FIG. 1 illustrates the relationship between the frequency and the amount of absorption (simulation results) in each sheet thickness of Example 1 and Comparative Example 1. These examples are targeted for frequencies around 12 GHz. From the sheet thickness curves shown in FIG. 1, a sheet thickness curve that provides an absorption amount of about −15 dB or less is selected, and the frequency and absorption amount at the apex (downward apex in FIG. 1) are read. . The plots of the vertices are connected as shown in FIG. When the plot of FIG. 2 is plotted by revising the relationship between the peak frequency and the sheet thickness, the relationship between the matching frequency and the sheet thickness is almost as shown in FIG. 3 (Example 1) and FIG. 4 (Comparative Example 1). It becomes a linear relationship. Therefore, the arrangement of each plot is approximated by a straight line by the least square method. In FIG. 3 and FIG. 4, what is described as “linear” is this approximate straight line. As the absolute value of the slope of the approximate line increases, the amount of change in the matching frequency with respect to fluctuations in the thickness of the radio wave absorber is reduced, and the allowable range of thickness applicable to a predetermined frequency region is expanded.

他の実施例、比較例についても上記と同様の手法により、電波吸収体の厚さ変動による整合周波数の変化の程度を評価した。各実施例、比較例についての整合周波数とシート厚さの関係を図3〜図8に示した。ただし、比較例2では電波吸収特性が確認できなかったため評価不能であった。   For other examples and comparative examples, the degree of change in the matching frequency due to the thickness variation of the radio wave absorber was evaluated by the same method as described above. The relationship between the matching frequency and the sheet thickness for each example and comparative example is shown in FIGS. However, in Comparative Example 2, since the radio wave absorption characteristics could not be confirmed, the evaluation was impossible.

図3(実施例1)、図4(比較例1)、図5(実施例2)、図6(実施例3)から判るように、比較例1のグラフの傾きの絶対値は0.1202であるのに対し、実施例1、実施例2および実施例3のグラフの傾きの絶対値はそれぞれ0.8452、0.4268および0.7726と大きかった。すなわち、2価の金属元素としてCoとZnを複合添加した実施例1〜3のマグネトプランバイト型六方晶フェライトは、Co単独添加の比較例1ものと比べ、電波吸収体の厚さ変動による整合周波数の変化の程度が顕著に小さくなっていることがわかる。   As can be seen from FIG. 3 (Example 1), FIG. 4 (Comparative Example 1), FIG. 5 (Example 2), and FIG. 6 (Example 3), the absolute value of the slope of the graph of Comparative Example 1 is 0.1022. On the other hand, the absolute values of the slopes of the graphs of Example 1, Example 2 and Example 3 were as large as 0.8852, 0.4268 and 0.7726, respectively. That is, the magnetoplumbite type hexagonal ferrites of Examples 1 to 3 in which Co and Zn are added together as a divalent metal element are matched by the variation in the thickness of the radio wave absorber as compared with Comparative Example 1 in which only Co is added. It can be seen that the degree of frequency change is significantly reduced.

また、図7(実施例5)、図8(比較例3)は概ね15GHz前後の周波数を目標としたものであるが、これらの図から判るように、比較例3のグラフの傾きの絶対値は0.0910であるのに対し、実施例5では0.3749と大きかった。すなわち、2価の金属元素としてMnとZnを複合添加した実施例5のマグネトプランバイト型六方晶フェライトは、Mn単独添加の比較例3ものと比べ、電波吸収体の厚さ変動による整合周波数の変化の程度が顕著に小さくなっていることがわかる。   Further, FIG. 7 (Example 5) and FIG. 8 (Comparative Example 3) are aimed at a frequency of approximately 15 GHz. As can be seen from these figures, the absolute value of the slope of the graph of Comparative Example 3 is shown. Was 0.0910, whereas in Example 5, it was as large as 0.3749. That is, the magnetoplumbite type hexagonal ferrite of Example 5 in which Mn and Zn are added together as a divalent metal element has a matching frequency due to the fluctuation of the thickness of the radio wave absorber as compared with Comparative Example 3 in which Mn alone is added. It can be seen that the degree of change is significantly reduced.

図9は、実施例1〜3および比較例1、2について、Zn/(Co+Zn)のモル比を表すyの値と、近似直線の傾きの絶対値の関係をプロットしたものである。y=1(比較例2)では目標の周波数領域(12GHz付近)で電波吸収特性を示さなかったため、傾き=0(最も悪い評価)として表示してある。図9から、2価の金属元素を複合添加することにより「電波吸収体の厚さ変動による整合周波数の変化の程度が小さくなる効果」が得られることが判る。   FIG. 9 is a plot of the relationship between the value of y representing the molar ratio of Zn / (Co + Zn) and the absolute value of the slope of the approximate line for Examples 1 to 3 and Comparative Examples 1 and 2. Since y = 1 (Comparative Example 2) did not show radio wave absorption characteristics in the target frequency region (near 12 GHz), it is displayed as slope = 0 (worst evaluation). From FIG. 9, it can be seen that the “effect of reducing the degree of change in the matching frequency due to the thickness variation of the radio wave absorber” can be obtained by adding the divalent metal element in combination.

実施例1および比較例1の各シート厚さにおける周波数と吸収量の関係(シミュレート結果)を例示したグラフ。The graph which illustrated the relationship (simulation result) of the frequency and absorption amount in each sheet thickness of Example 1 and Comparative Example 1. 図1に示される各シート厚さの曲線の頂点(下向きの頂点)における周波数と吸収量をプロットして結んだグラフ。The graph which plotted and tied the frequency and absorption amount in the vertex (downward vertex) of each sheet thickness curve shown by FIG. 実施例1のシートにおける整合周波数とシート厚さの関係およびその近似直線を示したグラフ。3 is a graph showing a relationship between a matching frequency and a sheet thickness in the sheet of Example 1 and an approximate straight line thereof. 比較例1のシートにおける整合周波数とシート厚さの関係およびその近似直線を示したグラフ。The graph which showed the relationship between the matching frequency in the sheet | seat of the comparative example 1, and sheet | seat thickness, and its approximate line. 実施例2のシートにおける整合周波数とシート厚さの関係およびその近似直線を示したグラフ。The graph which showed the relationship between the matching frequency in the sheet | seat of Example 2, and sheet | seat thickness, and its approximate line. 実施例3のシートにおける整合周波数とシート厚さの関係およびその近似直線を示したグラフ。10 is a graph showing the relationship between the matching frequency and the sheet thickness and the approximate straight line in the sheet of Example 3. 実施例5のシートにおける整合周波数とシート厚さの関係およびその近似直線を示したグラフ。10 is a graph showing the relationship between the matching frequency and the sheet thickness and the approximate straight line in the sheet of Example 5. 比較例3のシートにおける整合周波数とシート厚さの関係およびその近似直線を示したグラフ。The graph which showed the relationship between the matching frequency in the sheet | seat of the comparative example 3, and sheet | seat thickness, and its approximate line. 図9は、実施例1〜3および比較例1、2について、Zn/(Co+Zn)のモル比を表すyの値と、近似直線の傾きの絶対値の関係をプロットしたグラフ。FIG. 9 is a graph plotting the relationship between the value of y representing the molar ratio of Zn / (Co + Zn) and the absolute value of the slope of the approximate line for Examples 1 to 3 and Comparative Examples 1 and 2.

Claims (7)

組成式AFe(12-x)(B10.5B20.5)x19で表され、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種、B2は2価金属元素であり、B2としてCo、Mn、Cu、Mg、Zn、Niのうち2種以上を含有するマグネトプランバイト型六方晶フェライト。 It is represented by the composition formula AFe (12-x) (B1 0.5 B2 0.5 ) x O 19 , A is one or two of Ba and Sr, B1 is one or two of Ti and Zr, and B2 is a divalent metal. Magnetoplumbite type hexagonal ferrite which is an element and contains two or more of Co, Mn, Cu, Mg, Zn, Ni as B2. B2として少なくともZnを含有する請求項1に記載のマグネトプランバイト型六方晶フェライト。   2. The magnetoplumbite type hexagonal ferrite according to claim 1, which contains at least Zn as B2. B2として少なくともCoとZnを含有する請求項1に記載のマグネトプランバイト型六方晶フェライト。   2. The magnetoplumbite type hexagonal ferrite according to claim 1, containing at least Co and Zn as B2. B2として少なくともMnとZnを含有する請求項1に記載のマグネトプランバイト型六方晶フェライト。   2. The magnetoplumbite type hexagonal ferrite according to claim 1, which contains at least Mn and Zn as B2. 組成式AFe(12-x)(B10.5(Co(1-y)Zny)0.5)x19で表され、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種であり、xは1.8〜3.0、yは0.2〜0.8であるマグネトプランバイト型六方晶フェライト。 It is represented by the composition formula AFe (12-x) (B1 0.5 (Co (1-y) Zn y ) 0.5 ) x O 19 , A is one or two of Ba and Sr, B1 is one of Ti and Zr Or magnetoplumbite-type hexagonal ferrite, which is two types, x is 1.8 to 3.0, and y is 0.2 to 0.8. 組成式AFe(12-x)(B10.5(Mn(1-y)Zny)0.5)x19で表され、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種であり、xは3.6〜4.8、yは0.5±0.1であるマグネトプランバイト型六方晶フェライト。 Compositional formula AFe (12-x) (B1 0.5 (Mn (1-y) Zn y ) 0.5 ) x O 19 , A is one or two of Ba and Sr, B1 is one of Ti and Zr Or magnetoplumbite type hexagonal ferrite, which are two types, x is 3.6 to 4.8, and y is 0.5 ± 0.1. 請求項1〜6のいずれかに記載のマグネトプランバイト型六方晶フェライトの粉末を用いた電波吸収体。   A radio wave absorber using the magnetoplumbite-type hexagonal ferrite powder according to any one of claims 1 to 6.
JP2004331170A 2004-11-15 2004-11-15 Magnetoplumbite type hexagonal ferrite and electromagnetic wave absorber using the same Active JP4599575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331170A JP4599575B2 (en) 2004-11-15 2004-11-15 Magnetoplumbite type hexagonal ferrite and electromagnetic wave absorber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331170A JP4599575B2 (en) 2004-11-15 2004-11-15 Magnetoplumbite type hexagonal ferrite and electromagnetic wave absorber using the same

Publications (2)

Publication Number Publication Date
JP2006137653A true JP2006137653A (en) 2006-06-01
JP4599575B2 JP4599575B2 (en) 2010-12-15

Family

ID=36618704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331170A Active JP4599575B2 (en) 2004-11-15 2004-11-15 Magnetoplumbite type hexagonal ferrite and electromagnetic wave absorber using the same

Country Status (1)

Country Link
JP (1) JP4599575B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169378A (en) * 2006-12-12 2008-07-24 Asahi Kasei Chemicals Corp Resin composition
US8263224B2 (en) 2006-11-29 2012-09-11 Asahi Kasei Chemicals Corporation Resin composition
JP2013115089A (en) * 2011-11-25 2013-06-10 Tdk Corp Magnetic oxide sintered compact, and antenna and radio communication device, both using the same
JP2014192344A (en) * 2013-03-27 2014-10-06 Tdk Corp Magnetic oxide sintered body and high-frequency magnetic component using the same
JP2016086112A (en) * 2014-10-28 2016-05-19 Tdk株式会社 Hexagonal ferrite composite magnetic material, and high-frequency magnetic part arranged by use thereof
CN109574083A (en) * 2018-12-04 2019-04-05 浙江安特磁材有限公司 A kind of rubber ferromagnetic oxide powder and preparation method thereof, magnetic product and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354972A (en) * 1998-06-10 1999-12-24 Tdk Corp Radio wave absorber
JP2003146739A (en) * 2001-08-27 2003-05-21 Murata Mfg Co Ltd Magnetic material for high frequency and high frequency circuit element using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354972A (en) * 1998-06-10 1999-12-24 Tdk Corp Radio wave absorber
JP2003146739A (en) * 2001-08-27 2003-05-21 Murata Mfg Co Ltd Magnetic material for high frequency and high frequency circuit element using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263224B2 (en) 2006-11-29 2012-09-11 Asahi Kasei Chemicals Corporation Resin composition
JP2008169378A (en) * 2006-12-12 2008-07-24 Asahi Kasei Chemicals Corp Resin composition
JP2013115089A (en) * 2011-11-25 2013-06-10 Tdk Corp Magnetic oxide sintered compact, and antenna and radio communication device, both using the same
JP2014192344A (en) * 2013-03-27 2014-10-06 Tdk Corp Magnetic oxide sintered body and high-frequency magnetic component using the same
JP2016086112A (en) * 2014-10-28 2016-05-19 Tdk株式会社 Hexagonal ferrite composite magnetic material, and high-frequency magnetic part arranged by use thereof
CN109574083A (en) * 2018-12-04 2019-04-05 浙江安特磁材有限公司 A kind of rubber ferromagnetic oxide powder and preparation method thereof, magnetic product and application

Also Published As

Publication number Publication date
JP4599575B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4674380B2 (en) Magnetic powder for radio wave absorber, manufacturing method, and radio wave absorber
US9338932B2 (en) Magnetoplumbite-type hexagonal ferrite
US20220006174A1 (en) Modified ni-zn ferrites for radiofrequency applications
US9123460B2 (en) Ferrite composition for high frequency bead and chip bead comprising the same
JPH11354972A (en) Radio wave absorber
JP5097971B2 (en) Manufacturing method of magnetic powder for electromagnetic wave absorber
US6146545A (en) Radio wave absorbent
KR20160033037A (en) Ferrite composition for radio wave absorber and radio wave absorber
JP2010260766A (en) Magnetoplumbite-type hexagonal ferrite and radiowave absorber using the same
JP2004247603A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP4599575B2 (en) Magnetoplumbite type hexagonal ferrite and electromagnetic wave absorber using the same
JP4512919B2 (en) Electromagnetic wave absorbing material for high frequency band using iron oxide containing waste
JP5391414B2 (en) Magnetic powder for electromagnetic wave absorber
JP7292795B2 (en) Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same
JP4279393B2 (en) Plate-like soft magnetic ferrite particle powder and soft magnetic ferrite particle composite using the same
JP7196345B2 (en) Magnetoplumbite-type hexagonal ferrite magnetic powder, method for producing the same, radio wave absorber, and method for producing the same
JP4639384B2 (en) Method for producing magnetic powder for radio wave absorber and radio wave absorber
JP2004247602A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP5282318B2 (en) Solid solution Y-type hexagonal ferrite material, molded body using the material, electromagnetic wave absorber, and antenna
JP3462517B2 (en) Microwave dielectric porcelain composition
JP3378685B2 (en) Microwave dielectric porcelain composition
JP2005347485A (en) Ferrite radio wave absorbing material and its manufacturing method
JP2015030630A (en) Z-type hexagonal ferrite
JP2000331816A (en) Hexagonal system z type barium ferrite and its manufacture
JP2012216865A (en) Magnetic powder for radio wave absorber and radio wave absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4599575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250