JP2006136171A - Counter measure device taking measures against momentary voltage drop - Google Patents

Counter measure device taking measures against momentary voltage drop Download PDF

Info

Publication number
JP2006136171A
JP2006136171A JP2004325031A JP2004325031A JP2006136171A JP 2006136171 A JP2006136171 A JP 2006136171A JP 2004325031 A JP2004325031 A JP 2004325031A JP 2004325031 A JP2004325031 A JP 2004325031A JP 2006136171 A JP2006136171 A JP 2006136171A
Authority
JP
Japan
Prior art keywords
voltage drop
reactor
load
power
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004325031A
Other languages
Japanese (ja)
Inventor
Toshie Miura
敏栄 三浦
Naoya Eguchi
直也 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004325031A priority Critical patent/JP2006136171A/en
Publication of JP2006136171A publication Critical patent/JP2006136171A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correct declines in the power factor and voltage of a load system caused by a reactor which constitutes a device for taking countermeasures against a momentary voltage drop and is installed between a power system and its load system. <P>SOLUTION: The device 20 for taking countermeasures against the momentary voltage drop is constituted of a switch 21, a reactor 22, a matching transformer 23, a series inverter 24 or the like. When the power system 1 is normal, ac voltages having antiphases to those of both-end voltages (Vr) of the reactor 22 are generated as both-end voltages (Vinv) of a secondary coil of the matching transformer 23 by the matching transformer 23 and the series inverter 24 by which the both-end voltages (Vr) are offset, and then when load equipment 2 is a pure resistance load, a power factor as viewed from the power system 1 is set to be almost 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、商用電源などの電力系統とその負荷系統との間に設置される瞬時電圧降下対策装置に関する。   The present invention relates to an instantaneous voltage drop countermeasure device installed between a power system such as a commercial power supply and its load system.

近年、パワーエレクトロニクス機器,コンピュータ機器,電子機器など、その電源としての電力系統の電圧変動の影響を受け易い負荷機器が増大していることから、前記電力系統が特に高圧系統の場合、その負荷系統には自家発電設備などのバックアップ電源を設置し、さらに、前記電力系統と負荷系統との間に、この電力系統の停電や電圧低下時に該電力系統から負荷系統を切り離す瞬時電圧降下対策装置が設けられている。   In recent years, load devices, such as power electronics devices, computer devices, electronic devices, and the like, which are easily affected by voltage fluctuations of the power system as a power source thereof have increased. Therefore, when the power system is a high voltage system, the load system In addition, a backup power source such as a private power generation facility is installed, and an instantaneous voltage drop countermeasure device is provided between the power system and the load system to disconnect the load system from the power system in the event of a power failure or voltage drop. It has been.

図5は、この種の瞬時電圧低下対策装置の従来例を示す回路構成図であり、下記非特許文献1に記載されている回路と同様構成のものである。   FIG. 5 is a circuit configuration diagram showing a conventional example of this type of instantaneous voltage drop countermeasure device, which has the same configuration as the circuit described in Non-Patent Document 1 below.

すなわち図5において、1は商用電源などの電力系統、10は電力系統1と負荷機器2,自家発電設備3などからなる負荷系統との間に挿設された瞬時電圧降下対策装置であり、この瞬時電圧降下対策装置10には電力系統1側の遮断器11と、リアクトル12と、サイリスタスイッチ(以下、サイリスタSWとも称する)13と、前記負荷系統側の遮断器14と、補助変圧器15と、補助変圧器15で検知した電力系統1の電圧値に基づいてサイリスタSW13の動作を制御するサイリスタSW制御回路16とを備えている。
特開2000−287458号公報(第5頁,図1など)。 菅原他,「サイリスタスイッチによる瞬時停電対策装置」,産業電力電気応用研究会資料,IEA−01−6,2001年3月16日,社団法人電気学会。
That is, in FIG. 5, 1 is an electric power system such as a commercial power source, 10 is an instantaneous voltage drop countermeasure device inserted between the electric power system 1 and a load system consisting of the load device 2 and the private power generation facility 3, etc. The instantaneous voltage drop countermeasure device 10 includes a breaker 11 on the power system 1 side, a reactor 12, a thyristor switch (hereinafter also referred to as a thyristor SW) 13, a breaker 14 on the load system side, an auxiliary transformer 15, And a thyristor SW control circuit 16 for controlling the operation of the thyristor SW 13 based on the voltage value of the power system 1 detected by the auxiliary transformer 15.
Japanese Patent Laid-Open No. 2000-287458 (page 5, FIG. 1, etc.). Sugawara et al., “Instantaneous power failure countermeasure device using thyristor switch”, Industrial Electric Power Application Study Group, IEA-01-6, March 16, 2001, Institute of Electrical Engineers of Japan.

図5に示した従来の瞬時電圧低下対策装置の動作とその問題点とを、図6に示したその動作波形図を参照しつつ、以下に説明する。   The operation and problems of the conventional instantaneous voltage drop countermeasure device shown in FIG. 5 will be described below with reference to the operation waveform diagram shown in FIG.

先ず、図6に示す時刻t0 直前までは電力系統1の電圧Vsが健全なため、閉路している遮断器11,リアクトル12,サイリスタSW制御回路16からのオン指令信号により導通状態にあるサイリスタSW13,閉路している遮断器14それぞれを介して電力系統1から負荷機器2に電流Isが流れている。 First, since the voltage Vs of the power system 1 is healthy until just before time t 0 shown in FIG. 6, the thyristor is in a conductive state by an ON command signal from the closed circuit breaker 11, reactor 12, and thyristor SW control circuit 16. A current Is flows from the power system 1 to the load device 2 through the SW 13 and the closed circuit breaker 14.

次に時刻t0 で、電力系統1が何らかの要因で停電状態に陥ると、この時から電力系統1の電圧Vsが零の状態となるが、リアクトル12に蓄えられているエネルギーによりリアクトル12の両端電圧Vrが時刻t0 より図示のように変化し、この電圧Vrにより数ミリ秒程度の期間は負荷機器2の両端電圧Vloadをほぼ正常な状態に維持するための電流Isが流れ続ける。 Next, when the power system 1 falls into a power failure state for some reason at time t 0 , the voltage Vs of the power system 1 becomes zero from this time, but both ends of the reactor 12 are caused by the energy stored in the reactor 12. The voltage Vr changes as shown in the figure from time t 0 , and the current Is for maintaining the voltage Vload across the load device 2 in a substantially normal state continues to flow for a period of several milliseconds due to the voltage Vr.

また、上述の電圧Vsが零の状態は補助変圧器15を介したサイリスタSW制御回路16が検知し、サイリスタSW13へオフ指令信号を送出することにより、時刻t1 で電流Isが零となって、サイリスタSW13が遮断状態になり、この遮断状態になったサイリスタSW13により、以後は電力系統1が負荷機器2,自家発電設備3などからなる負荷系統から切り離され、自家発電設備3より負荷機器2に電力が供給される状態となる。 Further, the voltage Vs is zero state of the above-detected thyristor SW control circuit 16 via an auxiliary transformer 15, by sending an OFF command signal to the thyristor SW13, current Is at time t 1 becomes zero Then, the thyristor SW13 enters a cut-off state, and the thyristor SW13 in the cut-off state thereafter disconnects the power system 1 from the load system including the load equipment 2, the private power generation equipment 3, and the like, and the load equipment 2 from the private power generation equipment 3 In this state, power is supplied to.

この瞬時電圧低下対策装置10において、サイリスタSW13は電力系統1の電圧Vsの半サイクル以内の高速遮断が行えるので、遮断器11,遮断器14が閉路状態から、電力系統1の停電状態に陥った時点直後に発せられる遮断指令により開路状態に移行するのに時間が要しても、この時間が前記負荷系統に影響を与えることはない。   In this instantaneous voltage drop countermeasure 10, the thyristor SW 13 can perform high-speed interruption within the half cycle of the voltage Vs of the power system 1, so that the circuit breaker 11 and the circuit breaker 14 have fallen from the closed state to the power system 1 power failure. Even if it takes time to shift to the open circuit state by the shut-off command issued immediately after this time, this time does not affect the load system.

図5に示した瞬時電圧降下対策装置10において、上述の動作を行うために、例えば、リアクトル12のパーセントインピーダンス(%Z)を30%に設定し、負荷機器2を純抵抗負荷とすると、図6に示すように、電力系統1の電圧Vsが定格電圧(100%),電流Isが定格電流(100%)のときにはリアクトル12の両端電圧Vsが30%となり、このときの電圧Vsと電流Isとの位相差が17°(電気角)となり、従って、電力系統1から見た力率は約0.96、負荷機器2の両端電圧Vloadは96%となり、その結果、電力系統1が健全時におけるリアクトル12に起因した電力系統1から見た力率低下と負荷機器2の両端電圧の低下とを招くという問題点があった。   In the instantaneous voltage drop countermeasure device 10 shown in FIG. 5, in order to perform the above-described operation, for example, when the percent impedance (% Z) of the reactor 12 is set to 30% and the load device 2 is a pure resistance load, FIG. 6, when the voltage Vs of the power system 1 is the rated voltage (100%) and the current Is is the rated current (100%), the voltage Vs across the reactor 12 is 30%. At this time, the voltage Vs and the current Is Therefore, the power factor viewed from the power system 1 is about 0.96, and the voltage Vload across the load device 2 is 96%. As a result, when the power system 1 is healthy There is a problem in that the power factor viewed from the power system 1 due to the reactor 12 and the voltage across the load device 2 are decreased.

上記問題点を解消するために、例えば、上記特許文献1に開示されている回路例では、図5におけるリアクトル12の代わりに直列インバータを備え、この直列インバータにより電力系統1の電圧低下を補償するようにしているが、この直列インバータは負荷機器への有効電力の一部を分担することからをその出力容量が大きくなり、さらに、広い出力電圧範囲で高速応答が要求され、その結果、この瞬時電圧降下対策装置の大型化と価格上昇とを招くという新たな問題点があった。   In order to solve the above problems, for example, in the circuit example disclosed in Patent Document 1, a series inverter is provided instead of the reactor 12 in FIG. 5, and the voltage drop of the power system 1 is compensated by this series inverter. However, since this series inverter shares a part of the active power to the load equipment, its output capacity increases, and further, a high-speed response is required in a wide output voltage range. There was a new problem that the voltage drop countermeasure device was increased in size and increased in price.

この発明の目的は上記問題点を解消した瞬時電圧降下対策装置を提供することにある。   An object of the present invention is to provide an instantaneous voltage drop countermeasure device that solves the above problems.

この第1の発明の瞬時電圧降下対策装置にはスイッチとリアクトルと整合変圧器と直列インバータとを備え、商用電源などの電力系統とその負荷系統との間に、前記スイッチとリアクトルと整合変圧器の二次巻線とをそれぞれ直列接続してなる回路の両端を接続し、前記整合変圧器の一次巻線間に前記直列インバータの交流出力端を接続し、前記電力系統が健全時には、前記直列インバータから前記整合変圧器の二次巻線間に前記リアクトルの両端電圧とは逆位相の交流電圧を発生させることを特徴とする。   The instantaneous voltage drop countermeasure device according to the first aspect of the present invention includes a switch, a reactor, a matching transformer, and a series inverter, and the switch, the reactor, and the matching transformer between a power system such as a commercial power source and the load system. Are connected in series with each other, and the AC output terminal of the series inverter is connected between the primary windings of the matching transformer, and when the power system is healthy, the series An AC voltage having a phase opposite to the voltage across the reactor is generated between the inverter and the secondary winding of the matching transformer.

また第2の発明は前記第1の発明の瞬時電圧降下対策装置において、前記直列インバータの直流電源側に並列インバータを付加し、前記並列インバータの交流出力側は、直接または昇圧変圧器を介して前記負荷系統側に接続したことを特徴とする。   According to a second aspect of the invention, in the instantaneous voltage drop countermeasure device of the first aspect, a parallel inverter is added to the DC power supply side of the series inverter, and the AC output side of the parallel inverter is directly or via a step-up transformer. It is connected to the load system side.

この発明の瞬時電圧降下対策装置によれば、前記直列インバータと整合変圧器とにより前記リアクトルに起因した電力系統から見た力率の低下と負荷系統への電圧低下が解消されるので、安定した好適な電力を負荷系統に供給することができる。   According to the instantaneous voltage drop countermeasure device of the present invention, the series inverter and the matching transformer eliminate the power factor reduction and the voltage drop to the load system as seen from the power system caused by the reactor, so that the stable Suitable power can be supplied to the load system.

図1はこの発明の第1の実施の形態を示す瞬時電圧降下対策装置の回路構成図であり、この図において、図5に示した従来例回路構成と同一機能を有するものには同一符号を付している。   FIG. 1 is a circuit configuration diagram of an instantaneous voltage drop countermeasure device showing a first embodiment of the present invention. In this figure, components having the same functions as those of the conventional circuit configuration shown in FIG. It is attached.

すなわち図1に示した瞬時電圧降下対策装置20には、例えばサイリスタSWなど高速遮断機能を有するスイッチ21と、リアクトル12と同一仕様で製作されるリアクトル22と、整合変圧器23と、直列インバータ24と、蓄電池設備など直列インバータ24への直流電源25と、補助変圧器26,27とを備えている。   That is, the instantaneous voltage drop countermeasure device 20 shown in FIG. 1 includes a switch 21 having a high-speed cutoff function such as a thyristor SW, a reactor 22 manufactured with the same specifications as the reactor 12, a matching transformer 23, and a series inverter 24. And a DC power source 25 for the series inverter 24 such as a storage battery facility, and auxiliary transformers 26 and 27.

この瞬時電圧降下対策装置20の動作を、図2に示すその動作波形図を参照しつつ、以下に説明する。   The operation of the instantaneous voltage drop countermeasure device 20 will be described below with reference to the operation waveform diagram shown in FIG.

先ず、図2に示す時刻t0 直前までは電力系統1の電圧Vsが健全なため、閉路しているスイッチ21,リアクトル22,整合変圧器23の二次巻線それぞれを介して電力系統1から負荷機器2に電流Isが流れている。 First, since the voltage Vs of the power system 1 is sound until just before time t 0 shown in FIG. 2, the power system 1 is connected via the closed windings of the switch 21, the reactor 22, and the matching transformer 23. A current Is flows through the load device 2.

このとき、リアクトル22の両端電圧Vrは補助変圧器26と補助変圧器27とを介して直列インバータ24が検知し、この電圧Vrと逆位相でその振幅がほぼ等しい電圧を直列インバータ24から整合変圧器23の二次巻線間にVinvとして発生させることにより、例えば負荷機器2が純抵抗負荷の場合に、電力系統1の電圧Vsと電流Isとの位相差をほぼ0°、すなわち、電力系統1から見た力率をほぼ1にすることができ、さらに、前記電圧Vsと負荷機器2の両端電圧Vloadとをほぼ等しくすることができる。   At this time, the voltage Vr at both ends of the reactor 22 is detected by the series inverter 24 via the auxiliary transformer 26 and the auxiliary transformer 27, and a voltage whose phase is opposite to that of the voltage Vr and whose amplitude is approximately equal is matched from the series inverter 24. For example, when the load device 2 is a pure resistance load, the phase difference between the voltage Vs and the current Is of the power system 1 is approximately 0 °, that is, the power system. The power factor viewed from 1 can be made substantially 1, and the voltage Vs and the voltage Vload across the load device 2 can be made substantially equal.

次に時刻t0 で、電力系統1が何らかの要因で停電状態に陥ると、補助変圧器26を介して直列インバータ24がこの状態を検知して、直列インバータ24の変換動作を速やかに停止させてその出力電圧を零にし、また、この時から電力系統1の電圧Vsも零の状態となるが、リアクトル22に蓄えられているエネルギーによりリアクトル22の両端電圧Vrが時刻t0 より図示のように変化し、この電圧Vrにより数ミリ秒程度の期間は負荷機器2の両端電圧Vloadをほぼ正常な状態に維持するための電流Isが流れ続ける。 Next, when the power system 1 falls into a power failure state for some reason at time t 0 , the series inverter 24 detects this state via the auxiliary transformer 26 and promptly stops the conversion operation of the series inverter 24. The output voltage is set to zero and the voltage Vs of the power system 1 is also zero from this time, but the voltage Vr across the reactor 22 is changed from the time t 0 as shown in the figure by the energy stored in the reactor 22. Due to this voltage Vr, the current Is for maintaining the voltage Vload across the load device 2 in a substantially normal state continues to flow for a period of about several milliseconds.

上述の電圧Vsが零の状態は図示しないスイッチ21の操作回路もこれを検知し、スイッチ21へ釈放信号を送出することにより、時刻t2 で電流Isが零となって、スイッチ21が遮断状態になり、この遮断状態になったスイッチ21により、以後は電力系統1が負荷機器2,自家発電設備3などからなる負荷系統から切り離され、自家発電設備3より負荷機器2に電力が供給される状態となる。 Voltage Vs is zero states described above detects this also operating circuit of the switch 21 (not shown), by sending a release signal to the switch 21, current Is becomes zero at time t 2, the switch 21 is disconnected state After that, the switch 21 in the cut-off state disconnects the power system 1 from the load system including the load device 2, the private power generation facility 3, and the like, and power is supplied from the private power generation facility 3 to the load device 2. It becomes a state.

なお、図1に示した直列インバータ24は上述の動作に加えて、負荷機器2が無効電力成分を取る場合の該無効電力成分を相殺する成分を発生させる動作も可能である。   In addition to the above-described operation, the series inverter 24 shown in FIG. 1 can also perform an operation for generating a component that cancels out the reactive power component when the load device 2 takes the reactive power component.

図3はこの発明の第2の実施の形態を示す瞬時電圧降下対策装置の回路構成図であり、この図において、図1に示した瞬時電圧降下対策装置20と同一機能を有するものには同一符号を付している。   FIG. 3 is a circuit configuration diagram of the instantaneous voltage drop countermeasure device showing the second embodiment of the present invention. In FIG. 3, the same function as that of the instantaneous voltage drop countermeasure device 20 shown in FIG. The code | symbol is attached | subjected.

すなわち図3に示した瞬時電圧降下対策装置30には、図1に示した瞬時電圧降下対策装置20の構成要素それぞれの他に、並列インバータ31が付加されている。   That is, the instantaneous voltage drop countermeasure device 30 shown in FIG. 3 includes a parallel inverter 31 in addition to the components of the instantaneous voltage drop countermeasure device 20 shown in FIG.

この並列インバータ31は直列インバータ24の変換動作の際の損失分の補給動作,直流電源25への充電動作の他に、前記負荷系統を電力系統1から切り離したときのバックアップ電源としても利用できることから、自家発電設備3を省略することも可能である。   This parallel inverter 31 can be used as a backup power source when the load system is disconnected from the power system 1 in addition to the replenishment operation for the loss during the conversion operation of the series inverter 24 and the charging operation to the DC power source 25. The private power generation facility 3 can be omitted.

図4はこの発明の実施例として、図3に示した瞬時電圧降下対策装置30の詳細回路構成図である。なお、この図において、図3に示した補助変圧器26,27はその図示を省略している。   FIG. 4 is a detailed circuit configuration diagram of the instantaneous voltage drop countermeasure device 30 shown in FIG. 3 as an embodiment of the present invention. In this figure, the auxiliary transformers 26 and 27 shown in FIG. 3 are not shown.

この瞬時電圧降下対策装置30においては、直列インバータ24はIGBT(絶縁ゲートバイポーラトランジスタ)とダイオードの逆並列回路を三相ブリッジ接続してなるインバータ主回路24aとこの主回路の変換動作を制御する直列INV(インバータ)制御回路24bとから構成され、同様に、並列インバータ31はIGBTとダイオードの逆並列回路を三相ブリッジ接続してなるインバータ主回路31aとこの主回路の変換動作を制御する並列INV(インバータ)制御回路31bとから構成され、さらに、並列インバータ31が出力する交流電圧を昇圧して前記負荷系統側に接続するための昇圧変圧器32が設けられている。   In this instantaneous voltage drop countermeasure device 30, the series inverter 24 is an inverter main circuit 24 a formed by connecting a reverse parallel circuit of an IGBT (insulated gate bipolar transistor) and a diode in a three-phase bridge connection, and a series for controlling the conversion operation of this main circuit. Similarly, the parallel inverter 31 is composed of an inverter main circuit 31a formed by connecting a reverse-parallel circuit of an IGBT and a diode in a three-phase bridge connection and a parallel INV for controlling the conversion operation of the main circuit. An (inverter) control circuit 31b is provided, and a step-up transformer 32 is provided for boosting the AC voltage output from the parallel inverter 31 and connecting it to the load system side.

この発明の第1の実施の形態を示す瞬時電圧降下対策装置の回路構成図1 is a circuit configuration diagram of an instantaneous voltage drop countermeasure device showing a first embodiment of the present invention. 図1の動作を説明する波形図Waveform diagram explaining the operation of FIG. この発明の第2の実施の形態を示す瞬時電圧降下対策装置の回路構成図The circuit block diagram of the instantaneous voltage drop countermeasure device which shows 2nd Embodiment of this invention この発明の実施例を示す瞬時電圧降下対策装置の回路構成図Circuit diagram of an instantaneous voltage drop countermeasure device showing an embodiment of the present invention 従来例を示す瞬時電圧降下対策装置の回路構成図Circuit diagram of instantaneous voltage drop countermeasure device showing conventional example 図5の動作を説明する波形図Waveform diagram explaining the operation of FIG.

符号の説明Explanation of symbols

1…電力系統、2…負荷機器、3…自家発電設備、10…瞬時電圧降下対策装置、11…遮断器、12…リアクトル、13…サイリスタスイッチ、14…遮断器、15…補助変圧器、16…サイリスタSW制御回路、20,30…瞬時電圧低下対策装置、21…スイッチ、22…リアクトル、23…整合変圧器、24…直列インバータ、25…直流電源、26,27…補助変圧器、31…並列インバータ、32…昇圧変圧器。

DESCRIPTION OF SYMBOLS 1 ... Electric power system, 2 ... Load apparatus, 3 ... Private power generation equipment, 10 ... Instantaneous voltage drop countermeasure apparatus, 11 ... Circuit breaker, 12 ... Reactor, 13 ... Thyristor switch, 14 ... Circuit breaker, 15 ... Auxiliary transformer, 16 ... Thyristor SW control circuit, 20, 30 ... Instantaneous voltage drop countermeasure device, 21 ... Switch, 22 ... Reactor, 23 ... Matching transformer, 24 ... Series inverter, 25 ... DC power supply, 26, 27 ... Auxiliary transformer, 31 ... Parallel inverter, 32 ... step-up transformer.

Claims (2)

スイッチとリアクトルと整合変圧器と直列インバータとを備え、
商用電源などの電力系統とその負荷系統との間に、前記スイッチとリアクトルと整合変圧器の二次巻線とをそれぞれ直列接続してなる回路の両端を接続し、
前記整合変圧器の一次巻線間に前記直列インバータの交流出力端を接続し、
前記電力系統が健全時には、前記直列インバータから前記整合変圧器の二次巻線間に前記リアクトルの両端電圧とは逆位相の交流電圧を発生させることを特徴とする瞬時電圧降下対策装置。
A switch, a reactor, a matching transformer, and a series inverter;
Between the power system such as a commercial power source and its load system, connect both ends of the circuit formed by connecting the switch, the reactor, and the secondary winding of the matching transformer in series,
Connecting the AC output terminal of the series inverter between the primary windings of the matching transformer;
When the power system is healthy, an instantaneous voltage drop countermeasure device that generates an alternating voltage opposite in phase to the voltage across the reactor between the series inverter and the secondary winding of the matching transformer.
請求項1に記載の瞬時電圧降下対策装置において、
前記直列インバータの直流電源側に並列インバータを付加し、
前記並列インバータの交流出力側は、直接または昇圧変圧器を介して前記負荷系統側に接続したことを特徴とする瞬時電圧降下対策装置。

In the instantaneous voltage drop countermeasure device according to claim 1,
Add a parallel inverter to the DC power supply side of the series inverter,
The AC output side of the parallel inverter is connected to the load system side directly or via a step-up transformer.

JP2004325031A 2004-11-09 2004-11-09 Counter measure device taking measures against momentary voltage drop Pending JP2006136171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325031A JP2006136171A (en) 2004-11-09 2004-11-09 Counter measure device taking measures against momentary voltage drop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325031A JP2006136171A (en) 2004-11-09 2004-11-09 Counter measure device taking measures against momentary voltage drop

Publications (1)

Publication Number Publication Date
JP2006136171A true JP2006136171A (en) 2006-05-25

Family

ID=36729173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325031A Pending JP2006136171A (en) 2004-11-09 2004-11-09 Counter measure device taking measures against momentary voltage drop

Country Status (1)

Country Link
JP (1) JP2006136171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318930A (en) * 2006-05-26 2007-12-06 Yanmar Co Ltd Interconnection power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318930A (en) * 2006-05-26 2007-12-06 Yanmar Co Ltd Interconnection power generation system

Similar Documents

Publication Publication Date Title
JP6190059B2 (en) Uninterruptible power system
Engelen et al. The feasibility of small-scale residential DC distribution systems
CN101540249B (en) Creepage breaker
WO2017175535A1 (en) Ground fault detection device, method for controlling same, and control program
JP4272208B2 (en) Power converter
JP6288773B2 (en) Power converter
US9479011B2 (en) Method and system for a dual conversion uninterruptible power supply
Ahn et al. Robust design of a solid-state pulsed power modulator based on modular stacking structure
JP2008048474A (en) Uninterruptible switching device
JP2007282442A (en) Ac/dc conversion circuit
JP6662551B2 (en) Power converter
JP4859932B2 (en) Control device and control method for power conversion system having instantaneous voltage drop / power failure countermeasure function
JP2006136171A (en) Counter measure device taking measures against momentary voltage drop
CN111049410B (en) Control method of electric energy conversion device and electric energy conversion system
JPH08331748A (en) Circuit breaker
JP5225170B2 (en) Protection control device
JP5166730B2 (en) Three-phase earth leakage breaker
JP3208369U (en) Delta-less harmonic cancellation device
JP2005094829A (en) Uninterruptible power supply apparatus
JP2007259564A (en) Distributed power supply system
JP2008111667A (en) Electromagnetic contactor for adjustment
WO2019039410A1 (en) Control device for 3-terminal static dc transformer
JP6444204B2 (en) Power converter
JP2008161004A (en) Uninterruptible power unit
JP2018133990A (en) Delta-less harmonic cancellation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421