JP2006134900A - Bonding method and bonder - Google Patents

Bonding method and bonder Download PDF

Info

Publication number
JP2006134900A
JP2006134900A JP2002346111A JP2002346111A JP2006134900A JP 2006134900 A JP2006134900 A JP 2006134900A JP 2002346111 A JP2002346111 A JP 2002346111A JP 2002346111 A JP2002346111 A JP 2002346111A JP 2006134900 A JP2006134900 A JP 2006134900A
Authority
JP
Japan
Prior art keywords
joining
vacuum
bonding
cleaning
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002346111A
Other languages
Japanese (ja)
Inventor
Akira Yamauchi
朗 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2002346111A priority Critical patent/JP2006134900A/en
Priority to PCT/JP2003/015179 priority patent/WO2004049428A1/en
Priority to AU2003284474A priority patent/AU2003284474A1/en
Publication of JP2006134900A publication Critical patent/JP2006134900A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7501Means for cleaning, e.g. brushes, for hydro blasting, for ultrasonic cleaning, for dry ice blasting, using gas-flow, by etching, by applying flux or plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/751Means for controlling the bonding environment, e.g. valves, vacuum pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding method and a bonder capable of normal temperature bonding easily by bringing the portions to be bonded surely into clean state suitable for bonding before being bonded. <P>SOLUTION: When articles each having a bonding portion on the surface of a substrate are bonded to each other, the bonding portions are bonded after the surface thereof is cleaned with energy wave under reduced pressure. Subsequently, they are cleaned under a predetermined degree of vacuum suitable for cleaning and then the degree of vacuum is raised furthermore before the bonding portions are bonded. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、チップやウエハー、各種回路基板等の、基材の表面に接合部を有する被接合物同士を接合する接合方法および装置に関し、とくに、プラズマ等のエネルギー波により表面を洗浄した後接合部同士を接合するようにした接合方法および装置に関する。
【0002】
【従来の技術】
金属接合部を有する被接合物同士を接合する方法として、シリコンウエハーの接合面同士を接合するに際し、接合に先立って室温の真空中で不活性ガスイオンビームまたは不活性ガス高速原子ビームを照射してスパッタエッチングする、シリコンウエハーの接合法が開示されている(たとえば、特許文献1参照)。この接合法では、シリコンウエハーの接合面における酸化物や有機物等が上記のビームで飛ばされて活性化された原子で表面が形成され、その表面同士が、原子間の高い結合力によって接合される。したがって、この方法では、基本的に、接合のための加熱を不要化でき、活性化された表面同士を単に接触させるだけで、常温またはそれに近い低温での接合が可能になる。
【0003】
また、上記のようなエネルギー波によるエッチングにより接合面を表面活性化するに際し、エネルギー波として、表面洗浄効果、取り扱い易さ等の面から、プラズマが好適であることも知られている(たとえば、特許文献2参照)。さらに一般に、プラズマを容易に発生させ、発生するプラズマの強度等を容易に制御できるようにするためには、減圧下で(つまり、真空度をたかめて)、反応ガス、たとえばArガスを供給し、そのガス雰囲気でプラズマを発生させることが好ましいことも知られている。
【0004】
【特許文献1】
特許第2791429号公報(特許請求の範囲)
【特許文献2】
特開2002−64266号公報(特許請求の範囲)
【0005】
【発明が解決しようとする課題】
ところが、上記のように、反応ガス(たとえばArガス)を供給し、そのガス雰囲気でプラズマ等のエネルギー波を発生させて被接合物の接合表面を洗浄するだけでは、洗浄時に反応ガス成分が接合表面に残ったり、また、真空度が低い場合には浮遊している不純物が再付着したりするおそれがあるという問題が残されている。接合表面に反応ガス成分が比較的多量に残されたまま、あるいは、不純物が付着したまま、接合に入ると、良好な接合が難しくなるばかりか、接合のために高温加熱や高圧圧着が要求され、簡単な形態での常温接合等は困難になる。
【0006】
そこで本発明の課題は、上記のような不都合の発生を防止し、接合前には接合部同士を確実に接合に適した清浄な状態にし、容易に常温接合までを可能とすることのできる接合方法および装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る接合方法は、基材の表面に接合部を有する被接合物同士を接合するに際し、減圧下で前記接合部の表面をエネルギー波により洗浄した後接合部同士を接合する接合方法であって、洗浄に適した所定の真空度にて洗浄を行った後、さらに真空度を高めてから接合部同士を接合することを特徴とする方法からなる。
【0008】
すなわち、洗浄後に、接合部周りの雰囲気を吸引して真空度を高めることにより、残留していた反応ガス成分や不純物が取り除かれるので、より清浄な状態で、エネルギー波洗浄により表面が活性化された接合部同士を接合することができるようになり、良好な接合がより容易に行われる。
【0009】
また、本発明に係る接合方法は、基材の表面に接合部を有する被接合物同士を接合するに際し、減圧下で前記接合部の表面をエネルギー波により洗浄した後接合部同士を接合する接合方法であって、洗浄中に真空度を高めていくことを特徴とする方法からなる。
【0010】
すなわち、接合部の表面を洗浄しながら吸引により真空度を高めていくので、洗浄中に反応ガス成分そのものや浮遊していた不純物が吸引により取り除かれ、より清浄な状態で、エネルギー波洗浄により表面が活性化された接合部同士を接合することができるようになり、良好な接合がより容易に行われる。また、場合によっては、冷却した後接合すれば、接合における熱膨張の影響は防げる。上記各方法において、基材の表面の接合部は、金属からなることが、つまり金属接合部であることが好ましい。
【0011】
これら本発明に係る接合方法においては、上記洗浄後接合までの間に接合部を加熱することもできる。このように加熱を併用すれば、表面に吸着されていたあるいは表面に入り込んでいた反応ガス成分が表面から飛び出しやすくなり、表面をより清浄な活性化された状態にすることが可能になる。また、場合によっては、冷却した後接合すれば、接合における熱膨張の影響は防げる。
【0012】
上記エネルギー波としては、取り扱いやすさや強度制御の行いやすさの点から、プラズマを用いることが好ましい。中でも、広い真空度範囲で発生可能なRFプラズマを用いることが好ましい。
【0013】
とくにこのようにエネルギー波としてプラズマを用いる場合には、プラズマが良好に発生できる真空度の範囲が存在し、つまり、洗浄に適した真空度の範囲が存在し、一般に、その範囲よりも真空度を高めると、プラズマは消失してしまう。したがって、真空度の制御は、このような特性を考慮して行わなければならない。たとえば、洗浄時の真空度を1.3Paよりも高い圧力とし、洗浄後接合までの間に真空度を1.3Paよりも低い圧力として真空度を高めるようにすることができ、このような制御はとくにプラズマにより洗浄を行う場合に好ましい。なお、本文中でいう真空度1.3Pa以下とは、圧力を高める方向であり、真空度を高めるとは、圧力を低くする方向を指す。
【0014】
また、洗浄前に真空度を一旦1.3Paよりも低い圧力として雰囲気中の不純物を極力低減させた後に、不活性ガスを導入して、洗浄に最適な真空度まで戻し、たとえば、不活性ガスを導入することにより真空度が1.3Paよりも高い圧力となるように増圧した状態にて洗浄することもできる。洗浄後には、上記同様、真空度をを1.3Paよりも低い圧力として真空度を高めるようにすればよい。
【0015】
また、前記洗浄中に真空度を高めていく方法においては、真空度を高めすぎると、それまで発生していたエネルギー波(たとえば、プラズマ)が発生しなくなり、洗浄が中途半端になるおそれがあるので、このようなおそれを除去し、所定の洗浄が終了するまで確実にエネルギー波発生状態に維持するために、洗浄中に真空度を高めつつ、上下両電極をプラズマのカソード・アース電極としておけば、接合部同士間の距離を縮めていくようにすることもできる。接合部同士間の距離が縮まる程、エネルギー波は発生しやすくなるので、その分エネルギー波発生状態に維持しつつ真空度を高めることが可能になり、所定の洗浄が終了するまでエネルギー波発生状態を維持することが可能になる。プラズマ電極の構成は、上下どちらかの電極をカソード・アースとして切り替えることにより両面洗浄する方法と、チャンバ壁をアースとして上下どちらかの電極をカソードとして切り替えて両面洗浄する方法とがある。
【0016】
上記エネルギー波による洗浄では、接合部の接合される全表面で1nm以上の深さにエッチングすることが好ましい。このような深さ以上にエッチング可能なエネルギーのエネルギー波で洗浄することにより、接合部同士を常温接合する場合においても、接合に必要な表面性状を得ることが可能になる。
【0017】
本発明に係る接合方法は、とくに、表面が金、銅、Al、In、Snのいずれかにより構成されている接合部同士を接合する場合に好適である。たとえば、互いに接合される接合部の組み合わせとして、金、銅、Al、In、Snのいずれかの同種金属同士、あるいは任意の2つの異種金属同士、あるいは、一方を金とし他方を銅、Al、In、Snのいずれかとする組み合わせとすることができる。中でも、金同士の接合の場合、常温でも確実に接合できるようになる。ただし、金同士の接合以外の場合でも(たとえば、金/銅、金/アルミニウム等の接合等)、常温あるいはそれに近い低温での接合を可能とすることができる。また、少なくとも一方の金属接合部を特定の金属、たとえば金で構成する場合、金属接合部を形成する電極等の全体を金で構成することもできるが、表面だけを金で構成することもできる。表面を金で構成するための形態はとくに限定されず、金めっきの形態や金薄膜をスパッタリングや蒸着等により形成した形態を採用すればよい。
【0018】
上記接合部同士の接合に際し、表面同士が良好に密着できるように、少なくとも一方の接合部の表面硬度がビッカース硬度Hvで120以下、さらに好ましくはアニーリングにより硬度を100以下に下げたものがよい。たとえば、表面硬度Hvを30〜70の範囲内(たとえば、平均Hvを50)とすることが好ましい。このような低硬度としておくことで、接合荷重印加時に接合部の表面が適当に変形し、より密接な接合が可能となる。
【0019】
本発明に係る接合装置は、基材の表面に接合部を有する被接合物の前記接合部の表面を、チャンバ内において減圧下でエネルギー波により洗浄した後、接合部同士を接合する接合装置において、前記チャンバに、洗浄時にはチャンバ内をエネルギー波による洗浄に適した真空度に制御し、洗浄後接合前にはチャンバ内の真空度をさらに高めるように制御可能な真空度制御手段を接続したことを特徴とするものからなる。
【0020】
また、本発明に係る接合装置は、基材の表面に接合部を有する被接合物の前記接合部の表面を、チャンバ内において減圧下でエネルギー波により洗浄した後、接合部同士を接合する接合装置において、前記チャンバに、洗浄中にチャンバ内の真空度を高めていくように制御可能な真空度制御手段を接続したことを特徴とするものからなる。これら各装置において、基材の表面の接合部は、金属からなることが、つまり金属接合部であることが好ましい。
【0021】
このような本発明に係る接合装置においては、接合前に洗浄された接合部を加熱する手段(たとえば、接合手段に内蔵されたヒータ)を有することが好ましい。
【0022】
エネルギー波により洗浄する手段としてはプラズマ発生手段からなることが好ましく、中でも、RFプラズマ発生手段からなることが好ましい。
【0023】
また、真空度制御のためには、前記チャンバに、流量制御弁を備えた吸引路が接続されていることが好ましい。一つの吸引路に流量制御弁を設けて吸引流量を制御し、チャンバ内の真空度を制御することも可能であるが、流量制御弁は一般に高価であるので、極力小型の安価な流量制御弁を用いて所定の制御を行うことができるようにすることが好ましい、このためには、たとえば、前記チャンバに、吸引路が接続されており、該吸引路が流量制御弁を備えた吸引路(流量制御用)と流量制御弁を備えていない吸引路(大量吸引用)とに切換弁を介して分岐されている構造を採用し、該流量制御弁に比較的小型の安価なものを使用するようにすることが可能である。
【0024】
また、前述の如く、真空度制御手段により洗浄中にチャンバ内の真空度が高められていく形態とする場合には、接合部同士間の距離を縮めていく手段を有することが好ましく、これによって前述の如く、所定の洗浄が終了するまでエネルギー波の発生状態を維持することが可能になる。
【0025】
また、前記エネルギー波により洗浄する手段としては、接合部の接合される全表面で1nm以上の深さのエッチングが可能なエネルギー以上のエネルギー波を発生させる手段からなることが好ましい。
【0026】
また、接合される両接合部の表面金属種の組み合わせは、前述したように、金、銅、Al、In、Snのいずれかの同種金属同士、あるいは任意の2つの異種金属同士、あるいは、一方を金とし他方を銅、Al、In、Snのいずれかとする組み合わせとすることができる。中でも、金同士の組み合わせとする場合、接合が最も容易になる。
【0027】
また、少なくとも一方の接合部の表面硬度がビッカース硬度Hvで120以下、好ましくは100以下とされていることが好ましい。
【0028】
なお、本発明では、基本的に所定の洗浄を行った後、接合までの間に、真空度を高めることとしているが、必要に応じて、接合前に雰囲気をArガスや窒素ガスに置換してもよい。たとえば、接合部が金からなる場合のように、雰囲気の真空度が多少高められても問題が生じない場合には、このような形態を採ることが可能となる。
【0029】
上記のような本発明に係る接合方法および装置においては、エネルギー波による所定の洗浄後あるいは洗浄中に、真空度がさらに高められるので、接合表面に残っていた反応ガス成分や、浮遊していた不純物の大半が除去され、清浄な状態にて、表面活性化された接合部同士が良好に接合されることになる。
【0030】
【発明の実施の形態】
以下に、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の一実施態様に係る接合装置1を示している。本実施態様においては、互いに接合される被接合物として、一方はチップ2で他方は基板3である場合を例示している。チップ2上には電極を構成する複数の金属接合部4(図1には2つ示してある)が設けられており、基板3には対応する電極を構成する金属接合部5が設けられている。チップ2は一方の被接合物保持手段としてのチップ保持手段6に保持されており、基板3は他方の被接合物保持手段としての基板保持手段7に保持されている。本実施態様では、チップ保持手段6はZ方向(上下方向)に位置調整できるようになっており、基板保持手段7はX、Y方向(水平方向)および/または回転方向(θ方向)に位置調整できるようになっている。
【0031】
上記のような基板保持手段7は、一般には、平行移動および/または回転可能に装着されるが、必要に応じて、それらと昇降(Z方向移動)とを組み合わせた態様に装着してもよい。また、チップ保持手段6側についても、昇降動作のみならず、平行移動および/または回転動作を行うことができる装置形態であってもよい。
【0032】
なお、上記において、チップ2とは、たとえば、ICチップ、半導体チップ、光素子、表面実装部品、ウエハーなど、種類や大きさに関係なく、基板3と接合させる側の全てのものをいう。また、基板3とは、たとえば、樹脂基板、ガラス基板、フィルム基板、チップ、ウエハーなど、種類や大きさに関係なく、チップ2と接合される側の全てのものをいう。
【0033】
本実施態様では、チップ保持手段6において直接チップ2を保持する部分、および、基板保持手段7において直接基板3を保持する部分は、電極ツール8、9に構成されており、それぞれプラズマ発生用電極として機能可能に構成されている。本実施態様では、これら電極ツール8、9の一方にRFプラズマ発生用電源10が接続されており、他方は接地されている。RFプラズマ発生用電源10から、減圧条件下にて所定の高周波電圧が印加されることにより、電極ツール8、9間でチップ2の金属接合部4の表面および基板3の金属接合部5の表面に洗浄用のプラズマ11を照射することができるようになっている。
【0034】
RFプラズマで洗浄するに際し、本実施態様では、装置全体を囲むのではなく、対向配置されたチップ2と基板3、およびその周囲を局部的に囲むローカルチャンバ12が設けられている。チャンバ12内には、ガス供給手段13としてのポンプあるいは流量調整可能なマスフローコントローラにより、不活性ガス、たとえばArガスが供給される。そして、チャンバ12内を減圧するが、このとき真空度制御手段として、チャンバ12に接続された吸引路14が設けられている。この吸引路14に直接流量制御弁を設けてチャンバ12内の真空度を制御することも可能であるが、本実施態様では、切換弁15を介して吸引路14が流量制御弁16を備えた吸引路17と流量制御弁を備えていない吸引路18とに分岐されており、各吸引路17、18にそれぞれ吸引ポンプ19、20が設けられている。すなわち、大流量を吸引するときには吸引路18を用い、その後に小流量を吸引して所定の真空度に制御するときには吸引路17を用いることにより、比較的高価な流量制御弁16として小型かつ安価なものを採用することが可能になる。
【0035】
このような真空度制御手段を用いてチャンバ12内が所定の真空度に制御されるが、RFプラズマで洗浄する場合の真空度としては、1.3Pa以下、たとえば、1.3×102 Pa〜1.3Pa程度に制御され、洗浄後接合までの間に真空度を1.3Paよりも低い圧力として真空度を高めるよう制御される。洗浄時にあまり真空度を高めると、プラズマを発生させずらくなるので、上記真空度程度に制御して、プラズマを良好に発生させて良好なエッチング洗浄を行うことに重点を置く。プラズマ洗浄においては、接合表面の表面異物層を除去し十分に表面活性化するために、金属接合部の接合される全表面で1nm以上エッチングできるようにプラズマ強度、時間を設定することが好ましい。
【0036】
洗浄時には真空度をそれほど高めないので、多かれ少なかれ、反応ガス(この場合、Arガス)21が洗浄表面に残留したり雰囲気中に残留し、また、洗浄により飛ばされた不純物22が浮遊している。そこで、所定の洗浄後には、上述の真空度制御手段を用いてチャンバ12内の真空度をさらに高め、たとえば1.3Paよりも低い圧力として真空度を高める。吸引路14から、洗浄表面に残留していた反応ガス21や浮遊していた不純物22が排出、除去されるので、金属接合部の洗浄表面が、清浄で、かつ良好に表面活性化された状態に保たれ、後述の接合に供される。
【0037】
このとき、プラズマ洗浄中に、チャンバ12内の真空度を高めていくこともできる。ただし、この場合、真空度があるレベルよりも高くなると、プラズマを発生させずらくなるので、それを回避するためには、プラズマ電極8、9間の距離を縮めて、高真空度になってもプラズマが立つようにすればよい。チャンバ12にはベローズ等の伸縮自在のシール手段23が設けられているので、たとえばチップ保持手段6を下降させることによりプラズマ電極8、9間の距離を縮めながら、チャンバ12内に対するシール性を確保し、チャンバ12内の真空度を徐々に高めていくことが可能である。
【0038】
ここで真空度を高めるとは、圧力を低くする方向を指す。また、プラズマ電極の構成は、前述したように、上下どちらかの電極をカソード・アースとして切り替えることにより両面洗浄する方法と、チャンバ壁をアースとして上下どちらかの電極をカソードとして切り替えて両面洗浄する方法とがある。
【0039】
また、上記いずれの方法においても、所定の洗浄が終了した後、接合に入るまでの間に、なお若干の表面付着反応ガスや再付着した不純物等が残留している可能性がある。このような残留反応ガスや付着不純物をさらに除去するためには、金属接合部を加熱することが有効である。たとえば図1に示すように、チップ保持手段6や基板保持手段7にヒータ24、25を内蔵しておけば、ヒータ24、25による加熱により、残留反応ガスや付着不純物を飛ばすことが可能になり、それを吸引除去することにより、接合前に一層清浄な望ましい接合表面状態とすることができる。
【0040】
上記のように所定の洗浄が行われ、洗浄後にチャンバ12内が所定の真空度に高められた状態にて、接合が行われる。本実施態様では、接合前にまず両被接合物の相対位置が所定の精度に入るようにアライメントが行われ、その後に接合される。
【0041】
アライメントは、たとえば図2に示すように、認識手段26として、たとえば下方に挿入される赤外線カメラを用いて、基板3側およびチップ2側に付された認識マークを読み取り、両者の相対位置が所定の精度範囲内に納まるよう、基板保持手段7側の位置を制御することによって行われる。このアライメント時には、チップ2および基板3、さらにはそれらの保持手段6、7の温度は低下されているので、熱膨張に伴う精度悪化の問題は回避され、高精度のアライメントが可能になる。
【0042】
なお、認識マークの読み取りのために上記のように下方に赤外線カメラを配置する場合には、たとえば基板保持手段7側の基板保持部の背面側に赤外線を透過可能な部材(たとえば、バックアップガラス)をマーク読み取り範囲にわたって設けておき、その範囲を基板保持手段7の位置調整手段が遮らないように構成しておくことで、下方から基板3側およびチップ2側に付された両認識マークを読み取ることが可能となる。
【0043】
上記アライメント後に、たとえば図3に示すように、チップ保持手段6とともにチップ2が下降され、その電極4が基板3の電極5に圧着されて両者が接合される。このとき、接合面、つまり、チップ2の電極4の表面と基板3の電極5の表面は、前記プラズマ洗浄および洗浄後の高真空度制御により、極めて清浄な表面活性化された状態に保たれているので、敢えて特別な加熱を行う必要はなく、常温あるいはそれに近い低温にて、両接合面が原子レベルで強固に接合される。
【0044】
なお、本実施態様ではチップと基板を示したが、電極のないチップ同士やウエハー同士の接合にも本発明は適用でき、上下被接合物が金属以外の半導体やガラス、セラミック等の異種材料である場合もある。また、アライメントマークが無い場合には、外形でアライメントする場合もある。
【0045】
また、上記実施態様では剛体のチャンバ12と弾性体のシール手段23により実質的に密閉された、真空度制御用のローカルチャンバを形成するようにしたが、このローカルチャンバの形成構造は特に限定されない。たとえば図4に示すような構成を採用することもできる。
【0046】
図4に示す接合装置においては、図1に示した態様と同様に、電極ツール8、9間でチップ2の金属接合部4の表面および基板3の金属接合部5の表面に電極を切り替えることにより洗浄用のプラズマを照射することができるようになっている。チップ保持手段6および基板保持手段7には、ヒーターが内蔵されて少なくとも一方の電極ツールを介して被接合物を加熱可能となっており、かつ、静電チャック手段を備え少なくとも一方の被接合物を静電気的に保持することができるようになっている。ヒーターおよび静電チャック手段については図示を省略してある。図4における30aは基板保持手段7側に内蔵された静電チャック用の電極端子、31aはプラズマ電極用の端子、32aはヒーター用の端子をそれぞれ示しており、電極コネクター33aを介して給電されるようになっている。パターンとしては、表層から静電チャック、プラズマ電極、ヒーターとなっていることが好ましい。同様に、30bはチップ保持手段6側に内蔵された静電チャック用の電極端子、31bはプラズマ電極用の端子、32bはヒーター用の端子、33bは給電用の電極コネクターを、それぞれ示している。
【0047】
本実施態様では、両被接合物2、3の周囲には、一方の被接合物保持手段(本実施態様では基板保持手段7)に当接するまで移動して内部に両被接合物2、3を閉じ込める局部的な密閉空間を持つローカルチャンバ構造(図4に2点鎖線にてローカルチャンバ34を示す。)を形成することが可能で、かつ、上記当接状態にて、前記被接合物保持手段(本実施態様ではチップ保持手段6)の移動に追従してローカルチャンバ34の容積を縮小する方向(本実施態様では下降方向への移動)に移動可能な可動壁35が設けられている。この可動壁35は、筒状の剛体壁構造に構成されており、可動壁上昇ポート36、可動壁下降ポート37および内部シール機構38を備えたシリンダ手段39により、図1の上下方向に移動可能となっている。可動壁35の先端部には、弾性変形可能なシール材40が設けられており、上記当接状態にて、ローカルチャンバ34内部を外部に対してより確実にシール、密閉することができるようになっている。
【0048】
基板保持手段7側には、上記のように形成されるローカルチャンバ34に対し、該ローカルチャンバ34内を減圧して所定の真空状態にする真空吸引手段としての真空ポンプ41が接続されている。ローカルチャンバ34内の空気あるいはガスは、吸引路42を通して真空ポンプ41により吸引される。また、この吸引路42とは別に、あるいはこの吸引路42と兼用させて、基板保持手段7側にはアルゴンガス(Arガス)などの特定の不活性ガスをローカルチャンバ34内に供給するガス供給路43が設けられている。そして、上記吸引路42に対して、図1に示したのと同様の真空度制御手段が接続され、本発明に係る真空度制御を行うことができるようになっている。このような可動壁35を備えたローカルチャンバ構成においても本発明を実施でき、前述の実施態様と同様の作用、効果が得られる。
【0049】
【発明の効果】
以上説明したように、本発明に係る接合方法および装置によれば、エネルギー波による接合表面洗浄時には洗浄に最適な真空度に制御し、洗浄後あるいは洗浄中にに真空度を高めて、より清浄な良好に表面活性化された状態の接合部を接合工程に供することができるようにしたので、一層良好な接合状態を得ることができるようになり、常温あるいはそれに近い温度での接合までを可能とすることができる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る接合装置の概略構成図である。
【図2】図1の接合装置におけるアライメント工程を示す概略構成図である。
【図3】図1の装置における接合工程を示す概略構成図である。
【図4】本発明の別の実施態様に係る接合装置の概略構成図である。
【符号の説明】
1 接合装置
2 チップ
3 基板
4 チップの電極(金属接合部)
5 基板の電極(金属接合部)
6 チップ保持手段
7 基板保持手段
8、9 電極ツール
10 プラズマ発生用電源
11 プラズマ
12 チャンバ
13 ガス供給手段
14 吸引路
15 切換弁
16 流量制御弁
17、18 吸引路
19、20 吸引ポンプ
21 反応ガス
22 不純物
23 シール手段
24、25 ヒータ
26 認識手段
30a、30b 静電チャック用の電極端子
31a、31b プラズマ電極用の端子
32a、32b ヒーター用の端子
33a、33b 電極コネクター
34 ローカルチャンバ
35 可動壁
36 可動壁上昇ポート
37 可動壁下降ポート
38 内部シール機構
39 シリンダ手段
40 シール材
41 真空ポンプ
42 吸引路
43 ガス供給路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bonding method and apparatus for bonding objects to be bonded, such as chips, wafers, various circuit boards, etc., having a bonding portion on the surface of a base material, and in particular, bonding after cleaning the surface with an energy wave such as plasma. The present invention relates to a joining method and apparatus that join parts together.
[0002]
[Prior art]
As a method for bonding objects to be bonded having metal bonding portions, when bonding the bonding surfaces of silicon wafers, an inert gas ion beam or an inert gas fast atom beam is irradiated in a vacuum at room temperature prior to bonding. A silicon wafer bonding method in which sputter etching is performed is disclosed (see, for example, Patent Document 1). In this bonding method, oxides, organic substances, and the like on the bonding surface of the silicon wafer are formed by atoms activated by being blown by the beam, and the surfaces are bonded to each other by a high bonding force between the atoms. . Therefore, this method basically eliminates the need for heating for bonding, and enables bonding at a room temperature or a temperature close thereto by simply bringing the activated surfaces into contact with each other.
[0003]
It is also known that when energizing the bonding surface by etching with energy waves as described above, plasma is preferable as the energy wave from the viewpoint of surface cleaning effect, ease of handling, etc. (for example, Patent Document 2). More generally, in order to easily generate plasma and to easily control the intensity of generated plasma, etc., a reactive gas, for example, Ar gas, is supplied under reduced pressure (ie, increasing the degree of vacuum). It is also known that it is preferable to generate plasma in the gas atmosphere.
[0004]
[Patent Document 1]
Japanese Patent No. 2794429 (Claims)
[Patent Document 2]
JP 2002-64266 A (Claims)
[0005]
[Problems to be solved by the invention]
However, as described above, a reactive gas component is bonded at the time of cleaning only by supplying a reactive gas (for example, Ar gas) and generating an energy wave such as plasma in the gas atmosphere to clean the bonding surface of the object to be bonded. There remains a problem that it may remain on the surface or there may be reattachment of floating impurities when the degree of vacuum is low. When a relatively large amount of reactive gas components are left on the bonding surface or when impurities are attached, it is difficult to achieve good bonding when entering the bonding, and high-temperature heating and high-pressure pressure bonding are required for bonding. Therefore, room temperature bonding in a simple form becomes difficult.
[0006]
Therefore, an object of the present invention is to prevent the above inconveniences from occurring, to ensure that the bonded portions are in a clean state suitable for bonding before bonding, and can easily achieve room temperature bonding. It is to provide a method and apparatus.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the bonding method according to the present invention is a method in which the surfaces of the joints are washed with energy waves under reduced pressure when joining the objects having the joints on the surfaces of the substrates. This is a joining method for joining parts, and after washing at a predetermined degree of vacuum suitable for washing, the degree of vacuum is further increased and the joining parts are joined.
[0008]
That is, after cleaning, the atmosphere around the joint is sucked to increase the degree of vacuum, so that the remaining reactive gas components and impurities are removed, so the surface is activated by energy wave cleaning in a cleaner state. The joined portions can be joined to each other, and good joining can be performed more easily.
[0009]
Further, the bonding method according to the present invention is a method of bonding the bonded portions after cleaning the surfaces of the bonded portions with energy waves under reduced pressure when bonding the objects having the bonded portions to the surfaces of the base materials. A method characterized in that the degree of vacuum is increased during cleaning.
[0010]
That is, the degree of vacuum is increased by suction while cleaning the surface of the joint, so that the reaction gas component itself and suspended impurities are removed by suction during cleaning, and the surface is cleaned by energy wave cleaning in a cleaner state. It becomes possible to join the activated joints to each other, and good joining can be performed more easily. Moreover, depending on the case, if it joins after cooling, the influence of the thermal expansion in joining can be prevented. In each of the above methods, it is preferable that the joint portion on the surface of the substrate is made of metal, that is, a metal joint portion.
[0011]
In these joining methods according to the present invention, the joined portion can be heated before the washing and joining. When heating is used in this way, the reactive gas components adsorbed on the surface or entering the surface are easily ejected from the surface, and the surface can be brought into a cleaner and activated state. Moreover, depending on the case, if it joins after cooling, the influence of the thermal expansion in joining can be prevented.
[0012]
As the energy wave, it is preferable to use plasma from the viewpoint of ease of handling and ease of intensity control. Among them, it is preferable to use RF plasma that can be generated in a wide vacuum range.
[0013]
In particular, when plasma is used as an energy wave in this way, there is a range of vacuum levels where plasma can be generated satisfactorily, that is, there is a range of vacuum levels suitable for cleaning. When the value is increased, the plasma disappears. Therefore, the degree of vacuum must be controlled in consideration of such characteristics. For example, the degree of vacuum at the time of cleaning can be increased to a pressure higher than 1.3 Pa, and the degree of vacuum can be increased to a pressure lower than 1.3 Pa before bonding after cleaning, such control. Is particularly preferred when cleaning with plasma. In addition, the degree of vacuum of 1.3 Pa or less in the text is a direction in which the pressure is increased, and increasing the degree of vacuum indicates a direction in which the pressure is decreased.
[0014]
In addition, after the degree of vacuum is set to a pressure lower than 1.3 Pa before cleaning to reduce impurities in the atmosphere as much as possible, an inert gas is introduced to return the vacuum to an optimum level for cleaning. For example, the inert gas It is possible to perform cleaning in a state where the pressure is increased so that the degree of vacuum is higher than 1.3 Pa by introducing. After washing, the degree of vacuum may be increased by setting the degree of vacuum to a pressure lower than 1.3 Pa, as described above.
[0015]
Further, in the method of increasing the degree of vacuum during the cleaning, if the degree of vacuum is increased too much, energy waves (for example, plasma) that have been generated until then are not generated, and there is a possibility that the cleaning becomes halfway. Therefore, in order to eliminate such fears and ensure that the energy wave is generated until the predetermined cleaning is completed, the upper and lower electrodes can be used as the cathode and ground electrodes of the plasma while increasing the degree of vacuum during the cleaning. For example, the distance between the joints can be reduced. As the distance between the joints decreases, energy waves are more likely to be generated, so it is possible to increase the degree of vacuum while maintaining the energy wave generation state, and the energy wave generation state until the predetermined cleaning is completed. Can be maintained. The plasma electrode has two methods of cleaning both sides by switching one of the upper and lower electrodes as a cathode / ground, and another method cleaning both surfaces by switching the chamber wall as a ground and either the upper or lower electrode as a cathode.
[0016]
In the cleaning by the energy wave, it is preferable that etching is performed to a depth of 1 nm or more on the entire surface to which the joint is joined. By cleaning with an energy wave of energy that can be etched to such a depth or more, surface properties necessary for bonding can be obtained even when the bonding portions are bonded at room temperature.
[0017]
The joining method according to the present invention is particularly suitable for joining joints whose surfaces are made of any of gold, copper, Al, In, and Sn. For example, as a combination of joints to be joined together, the same kind of metal of gold, copper, Al, In, Sn, or any two different kinds of metals, or one of them as gold and the other as copper, Al, It can be a combination of either In or Sn. In particular, in the case of bonding between gold, bonding can be reliably performed even at room temperature. However, even in cases other than the bonding of gold (for example, bonding of gold / copper, gold / aluminum, etc.), bonding at room temperature or a temperature close thereto can be made possible. Further, when at least one of the metal joints is made of a specific metal, for example, gold, the entire electrodes and the like forming the metal joint can be made of gold, but only the surface can be made of gold. . The form for configuring the surface with gold is not particularly limited, and a form of gold plating or a form in which a gold thin film is formed by sputtering or vapor deposition may be employed.
[0018]
At the time of joining the joint parts, it is preferable that the surface hardness of at least one joint part is 120 or less in terms of Vickers hardness Hv, more preferably 100 degrees or less by annealing. For example, the surface hardness Hv is preferably in the range of 30 to 70 (for example, the average Hv is 50). By setting it as such low hardness, the surface of a junction part deform | transforms suitably at the time of joining load application, and a closer joint becomes possible.
[0019]
The bonding apparatus according to the present invention is a bonding apparatus for bonding the bonded portions to each other after cleaning the surface of the bonded portion having the bonded portion on the surface of the base material with an energy wave under reduced pressure in the chamber. The chamber is controlled to a vacuum level suitable for cleaning by energy waves at the time of cleaning, and connected to vacuum control means that can be controlled to further increase the vacuum level before bonding after cleaning. It consists of what is characterized by.
[0020]
In addition, the bonding apparatus according to the present invention is a bonding apparatus in which the surfaces of the bonded portions of the objects to be bonded having the bonding portions on the surface of the base material are cleaned with energy waves under reduced pressure in the chamber, and then bonded to each other. In the apparatus, the chamber is connected to vacuum degree control means that can be controlled so as to increase the degree of vacuum in the chamber during cleaning. In each of these apparatuses, the bonding portion on the surface of the base material is preferably made of metal, that is, a metal bonding portion.
[0021]
In such a joining apparatus according to the present invention, it is preferable to have means (for example, a heater built in the joining means) for heating the joint that has been cleaned before joining.
[0022]
The means for cleaning with energy waves is preferably composed of plasma generating means, and more preferably RF plasma generating means.
[0023]
In order to control the degree of vacuum, it is preferable that a suction path provided with a flow rate control valve is connected to the chamber. Although it is possible to control the suction flow rate by providing a flow rate control valve in one suction path and control the degree of vacuum in the chamber, the flow rate control valve is generally expensive. In order to achieve this, for example, a suction path is connected to the chamber, and the suction path includes a flow rate control valve. Adopting a structure that branches to a suction passage (for mass flow control) and a suction path (for mass suction) via a switching valve, and using a relatively small and inexpensive flow control valve It is possible to do so.
[0024]
Further, as described above, in the case where the vacuum degree in the chamber is increased during the cleaning by the vacuum degree control means, it is preferable to have a means for reducing the distance between the joints. As described above, it is possible to maintain the energy wave generation state until the predetermined cleaning is completed.
[0025]
Further, the means for cleaning with the energy wave preferably includes a means for generating an energy wave with energy higher than that capable of etching at a depth of 1 nm or more on the entire surface to which the bonding portion is bonded.
[0026]
In addition, as described above, the combination of the surface metal species of both joints to be joined is the same metal of gold, copper, Al, In, Sn, or any two different metals, or one of them. Is gold and the other is copper, Al, In, or Sn. Especially, when it is set as the combination of gold | metal | money, joining becomes the easiest.
[0027]
Further, it is preferable that the surface hardness of at least one joint is 120 or less, preferably 100 or less in terms of Vickers hardness Hv.
[0028]
In the present invention, the degree of vacuum is basically increased after performing predetermined cleaning and before joining. If necessary, the atmosphere is replaced with Ar gas or nitrogen gas before joining. May be. For example, such a form can be adopted when there is no problem even if the degree of vacuum of the atmosphere is slightly increased, as in the case where the joint is made of gold.
[0029]
In the above-described bonding method and apparatus according to the present invention, the degree of vacuum is further increased after predetermined cleaning with energy waves or during cleaning. Most of the impurities are removed, and the surface-activated joints are satisfactorily joined together in a clean state.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a joining apparatus 1 according to an embodiment of the present invention. In this embodiment, the case where one is the chip 2 and the other is the substrate 3 is illustrated as an object to be bonded to each other. A plurality of metal joints 4 (two are shown in FIG. 1) constituting the electrodes are provided on the chip 2, and metal joints 5 constituting the corresponding electrodes are provided on the substrate 3. Yes. The chip 2 is held by a chip holding means 6 as one bonded object holding means, and the substrate 3 is held by a substrate holding means 7 as the other bonded object holding means. In this embodiment, the position of the chip holding means 6 can be adjusted in the Z direction (vertical direction), and the substrate holding means 7 is positioned in the X, Y direction (horizontal direction) and / or the rotation direction (θ direction). It can be adjusted.
[0031]
The substrate holding means 7 as described above is generally mounted so as to be able to translate and / or rotate. However, if necessary, the substrate holding means 7 may be mounted in a combination of lifting and lowering (moving in the Z direction). . Also, the chip holding means 6 side may be in the form of an apparatus capable of performing not only the lifting and lowering operation but also the parallel movement and / or rotation operation.
[0032]
In the above description, the chip 2 refers to all of the IC chip, semiconductor chip, optical element, surface mount component, wafer, and the like on the side to be bonded to the substrate 3 regardless of the type and size. Further, the substrate 3 refers to, for example, a resin substrate, a glass substrate, a film substrate, a chip, a wafer, or the like on the side bonded to the chip 2 regardless of the type or size.
[0033]
In the present embodiment, the portion for directly holding the chip 2 in the chip holding means 6 and the portion for directly holding the substrate 3 in the substrate holding means 7 are constituted by the electrode tools 8 and 9, respectively, It is configured to be able to function as. In this embodiment, the RF plasma generating power source 10 is connected to one of the electrode tools 8 and 9, and the other is grounded. By applying a predetermined high-frequency voltage from the RF plasma generating power source 10 under a reduced pressure condition, the surface of the metal joint 4 of the chip 2 and the surface of the metal joint 5 of the substrate 3 between the electrode tools 8 and 9. Can be irradiated with plasma 11 for cleaning.
[0034]
In cleaning with RF plasma, in this embodiment, the chip 2 and the substrate 3 arranged opposite to each other and the local chamber 12 surrounding the periphery thereof are provided instead of surrounding the entire apparatus. An inert gas such as Ar gas is supplied into the chamber 12 by a pump as the gas supply means 13 or a mass flow controller capable of adjusting the flow rate. The inside of the chamber 12 is depressurized. At this time, a suction path 14 connected to the chamber 12 is provided as a degree of vacuum control means. Although it is possible to directly control the degree of vacuum in the chamber 12 by providing a flow rate control valve in the suction path 14, in this embodiment, the suction path 14 includes the flow rate control valve 16 via the switching valve 15. The suction path 17 branches to a suction path 18 that is not provided with a flow rate control valve, and suction pumps 19 and 20 are provided in the suction paths 17 and 18, respectively. That is, the suction path 18 is used when a large flow rate is sucked, and the suction path 17 is used when a small flow rate is sucked and controlled to a predetermined degree of vacuum thereafter, so that the relatively expensive flow control valve 16 is small and inexpensive. It becomes possible to adopt something.
[0035]
Although the inside of the chamber 12 is controlled to a predetermined degree of vacuum using such a degree of vacuum control means, the degree of vacuum when cleaning with RF plasma is 1.3 Pa or less, for example, 1.3 × 10 2 Pa. It is controlled to about ~ 1.3 Pa, and the degree of vacuum is controlled to be a pressure lower than 1.3 Pa between cleaning and bonding, and the degree of vacuum is controlled to be increased. If the degree of vacuum is increased too much during cleaning, it is difficult to generate plasma. Therefore, emphasis is placed on controlling the degree of vacuum so as to generate plasma and performing good etching cleaning. In the plasma cleaning, it is preferable to set the plasma intensity and the time so that the entire surface to be bonded of the metal bonding portion can be etched by 1 nm or more in order to remove the surface foreign material layer on the bonding surface and sufficiently activate the surface.
[0036]
Since the degree of vacuum is not so high at the time of cleaning, the reaction gas (in this case, Ar gas) 21 remains on the cleaning surface or in the atmosphere more or less, and the impurities 22 that have been blown off by the cleaning are floating. . Therefore, after predetermined cleaning, the degree of vacuum in the chamber 12 is further increased using the above-described degree of vacuum control means, and the degree of vacuum is increased to a pressure lower than 1.3 Pa, for example. Since the reactive gas 21 remaining on the cleaning surface and the suspended impurities 22 are discharged and removed from the suction path 14, the cleaning surface of the metal joint is clean and well surface activated. And is used for joining described later.
[0037]
At this time, the degree of vacuum in the chamber 12 can be increased during the plasma cleaning. However, in this case, if the degree of vacuum becomes higher than a certain level, it becomes difficult to generate plasma. To avoid this, the distance between the plasma electrodes 8 and 9 is reduced to increase the degree of vacuum. However, plasma should be set up. Since the chamber 12 is provided with a stretchable sealing means 23 such as a bellows, for example, by lowering the chip holding means 6, the distance between the plasma electrodes 8, 9 is reduced, and the sealing performance within the chamber 12 is ensured. In addition, the degree of vacuum in the chamber 12 can be gradually increased.
[0038]
Here, increasing the degree of vacuum refers to the direction of decreasing the pressure. In addition, as described above, the structure of the plasma electrode is such that both the upper and lower electrodes are switched as cathode / ground, and both surfaces are cleaned, and the chamber wall is grounded and either the upper and lower electrodes are switched as cathode, and both surfaces are cleaned. There is a method.
[0039]
In any of the above methods, there is a possibility that some surface-adhered reaction gas, re-adhered impurities, and the like remain after the predetermined cleaning is completed and before joining is started. In order to further remove such residual reaction gas and adhering impurities, it is effective to heat the metal joint. For example, as shown in FIG. 1, if the heaters 24 and 25 are built in the chip holding means 6 and the substrate holding means 7, it becomes possible to remove residual reaction gas and adhering impurities by heating with the heaters 24 and 25. By removing it by suction, it is possible to obtain a desirable bonded surface state that is cleaner before bonding.
[0040]
Predetermined cleaning is performed as described above, and bonding is performed in a state where the inside of the chamber 12 is raised to a predetermined degree of vacuum after cleaning. In this embodiment, alignment is first performed so that the relative positions of both objects to be joined are within a predetermined accuracy before joining, and then joined.
[0041]
For example, as shown in FIG. 2, the alignment is performed by reading the recognition marks attached to the substrate 3 side and the chip 2 side using, for example, an infrared camera inserted below as the recognition means 26, and the relative positions of the two are predetermined. This is done by controlling the position on the substrate holding means 7 side so as to be within the accuracy range of (1). At the time of this alignment, the temperature of the chip 2 and the substrate 3, and also the holding means 6 and 7 thereof are lowered, so that the problem of accuracy deterioration due to thermal expansion is avoided, and high-precision alignment becomes possible.
[0042]
When the infrared camera is disposed below for reading the recognition mark, for example, a member that can transmit infrared rays to the back side of the substrate holding part on the substrate holding means 7 side (for example, backup glass) Is provided over the mark reading range, and the range is configured so that the position adjusting means of the substrate holding means 7 does not block, thereby reading both recognition marks attached to the substrate 3 side and the chip 2 side from below. It becomes possible.
[0043]
After the alignment, for example, as shown in FIG. 3, the chip 2 is lowered together with the chip holding means 6, and the electrode 4 is pressure-bonded to the electrode 5 of the substrate 3 to join them together. At this time, the bonding surface, that is, the surface of the electrode 4 of the chip 2 and the surface of the electrode 5 of the substrate 3 are kept in an extremely clean surface activated state by the plasma cleaning and the high vacuum control after the cleaning. Therefore, it is not necessary to dare to perform special heating, and both bonding surfaces are firmly bonded at the atomic level at room temperature or a temperature close thereto.
[0044]
In this embodiment, the chip and the substrate are shown. However, the present invention can also be applied to bonding between chips without electrodes or between wafers, and the upper and lower workpieces are made of different materials such as semiconductors other than metals, glass, ceramics, and the like. There can be. Further, when there is no alignment mark, alignment may be performed with an outer shape.
[0045]
In the above embodiment, the local chamber for controlling the degree of vacuum, which is substantially sealed by the rigid chamber 12 and the elastic sealing means 23, is formed. However, the formation structure of the local chamber is not particularly limited. . For example, a configuration as shown in FIG. 4 may be employed.
[0046]
In the joining apparatus shown in FIG. 4, the electrodes are switched between the surface of the metal joint 4 of the chip 2 and the surface of the metal joint 5 of the substrate 3 between the electrode tools 8 and 9, as in the embodiment shown in FIG. 1. By this, cleaning plasma can be irradiated. The chip holding means 6 and the substrate holding means 7 have a built-in heater so that the object to be bonded can be heated via at least one electrode tool, and at least one object to be bonded is provided with an electrostatic chuck means. Can be held electrostatically. The heater and electrostatic chuck means are not shown. In FIG. 4, 30a is an electrode terminal for an electrostatic chuck built in the substrate holding means 7 side, 31a is a terminal for a plasma electrode, 32a is a terminal for a heater, and is supplied with power through an electrode connector 33a. It has become so. The pattern is preferably an electrostatic chuck, a plasma electrode, or a heater from the surface layer. Similarly, 30b denotes an electrostatic chuck electrode terminal built in the chip holding means 6, 31b denotes a plasma electrode terminal, 32b denotes a heater terminal, and 33b denotes a power supply electrode connector. .
[0047]
In this embodiment, the workpieces 2 and 3 are moved around the workpieces 2 and 3 until they come into contact with one of the workpiece holding means (substrate holding means 7 in this embodiment) and are moved inside. It is possible to form a local chamber structure (a local chamber 34 is shown by a two-dot chain line in FIG. 4) having a local sealed space for confining the substrate, and hold the object to be joined in the contact state. A movable wall 35 is provided that can move in the direction of reducing the volume of the local chamber 34 (moving in the downward direction in this embodiment) following the movement of the means (chip holding means 6 in this embodiment). The movable wall 35 has a cylindrical rigid wall structure, and can be moved in the vertical direction of FIG. 1 by a cylinder means 39 having a movable wall raising port 36, a movable wall lowering port 37, and an internal seal mechanism 38. It has become. An elastically deformable sealing material 40 is provided at the tip of the movable wall 35 so that the inside of the local chamber 34 can be more reliably sealed and sealed with respect to the outside in the contact state. It has become.
[0048]
Connected to the substrate holding means 7 side is a vacuum pump 41 as a vacuum suction means for reducing the pressure in the local chamber 34 to a predetermined vacuum state with respect to the local chamber 34 formed as described above. Air or gas in the local chamber 34 is sucked by the vacuum pump 41 through the suction path 42. Further, a gas supply for supplying a specific inert gas such as argon gas (Ar gas) into the local chamber 34 on the side of the substrate holding means 7 separately from or in combination with the suction path 42. A path 43 is provided. And the vacuum degree control means similar to that shown in FIG. 1 is connected to the suction passage 42 so that the vacuum degree control according to the present invention can be performed. The present invention can also be implemented in a local chamber configuration including such a movable wall 35, and the same operations and effects as those of the above-described embodiment can be obtained.
[0049]
【The invention's effect】
As described above, according to the bonding method and apparatus according to the present invention, when cleaning the bonding surface with energy waves, the degree of vacuum is controlled to be optimal for cleaning, and the degree of vacuum is increased after cleaning or during cleaning, thereby making the cleaning cleaner. It is now possible to use a well-surface-activated joint for the joining process, so that a better joint state can be obtained, and bonding up to or near room temperature is possible. It can be.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a bonding apparatus according to an embodiment of the present invention.
2 is a schematic configuration diagram showing an alignment process in the bonding apparatus of FIG. 1; FIG.
FIG. 3 is a schematic configuration diagram showing a bonding process in the apparatus of FIG. 1;
FIG. 4 is a schematic configuration diagram of a joining apparatus according to another embodiment of the present invention.
[Explanation of symbols]
1 Bonding Device 2 Chip 3 Substrate 4 Chip Electrode (Metal Joint)
5 Substrate electrodes (metal joints)
6 Chip holding means 7 Substrate holding means 8 and 9 Electrode tool 10 Plasma generating power supply 11 Plasma 12 Chamber 13 Gas supply means 14 Suction passage 15 Switching valve 16 Flow control valves 17 and 18 Suction passages 19 and 20 Suction pump 21 Reaction gas 22 Impurity 23 Sealing means 24, 25 Heater 26 Recognizing means 30a, 30b Electrode chuck electrode terminals 31a, 31b Plasma electrode terminals 32a, 32b Heater terminals 33a, 33b Electrode connector 34 Local chamber 35 Movable wall 36 Movable wall Ascending port 37 Movable wall descending port 38 Internal seal mechanism 39 Cylinder means 40 Sealing material 41 Vacuum pump 42 Suction passage 43 Gas supply passage

Claims (24)

基材の表面に接合部を有する被接合物同士を接合するに際し、減圧下で前記接合部の表面をエネルギー波により洗浄した後接合部同士を接合する接合方法であって、洗浄に適した所定の真空度にて洗浄を行った後、さらに真空度を高めてから接合部同士を接合することを特徴とする接合方法。  A joining method for joining the joined parts after washing the surfaces of the joined parts with an energy wave under reduced pressure when joining the objects having the joined parts on the surface of the base material. After joining at the degree of vacuum, the joining part is joined after raising the degree of vacuum further. 基材の表面に接合部を有する被接合物同士を接合するに際し、減圧下で前記接合部の表面をエネルギー波により洗浄した後接合部同士を接合する接合方法であって、洗浄中に真空度を高めていくことを特徴とする接合方法。  When joining objects to be joined having joints on the surface of a base material, the joining method is to join the joints after washing the surfaces of the joints with energy waves under reduced pressure, and the degree of vacuum during washing A bonding method characterized by increasing the strength. 前記接合部が金属である、請求項1または2の接合方法。  The joining method according to claim 1 or 2, wherein the joining portion is a metal. 前記洗浄後接合までの間に加熱する、請求項1〜3のいずれかに記載の接合方法。  The joining method according to any one of claims 1 to 3, wherein heating is performed between the washing and joining. 前記エネルギー波としてプラズマを用いる、請求項1〜4のいずれかに記載の接合方法。  The joining method according to claim 1, wherein plasma is used as the energy wave. 前記エネルギー波としてRFプラズマを用いる、請求項5の接合方法。  The bonding method according to claim 5, wherein RF energy is used as the energy wave. 前記洗浄時の真空度を1.3Paよりも高い圧力とし、洗浄後接合までの間に真空度を1.3Paよりも低い圧力とする、請求項1〜6のいずれかに記載の接合方法。  The joining method according to any one of claims 1 to 6, wherein the degree of vacuum at the time of cleaning is set to a pressure higher than 1.3 Pa, and the degree of vacuum is set to a pressure lower than 1.3 Pa before joining after cleaning. 前記洗浄前に真空度を1.3Paよりも低い圧力とした後、不活性ガスを導入することにより真空度が1.3Paよりも高い圧力となるように増圧して洗浄する、請求項1〜7のいずれかに記載の接合方法。  Before the cleaning, the degree of vacuum is set to a pressure lower than 1.3 Pa, and then the cleaning is performed by increasing the pressure so that the degree of vacuum is higher than 1.3 Pa by introducing an inert gas. 8. The joining method according to any one of 7 above. 前記洗浄中に真空度を高めつつ、接合部同士間の距離を縮めていく、請求項2〜8のいずれかに記載の接合方法。  The joining method according to claim 2, wherein the distance between the joints is reduced while increasing the degree of vacuum during the cleaning. 前記エネルギー波による洗浄により、前記接合部の接合される全表面で1nm以上の深さにエッチングする、請求項1〜9のいずれかに記載の接合方法。  The bonding method according to claim 1, wherein etching is performed to a depth of 1 nm or more on the entire surface to which the bonding portion is bonded by cleaning with the energy wave. 表面が金、銅、Al、In、Snのいずれかにより構成されている接合部同士を接合する、請求項1〜10のいずれかに記載の接合方法。  The joining method according to any one of claims 1 to 10, wherein the surfaces are joined to each other at a joining portion composed of any one of gold, copper, Al, In, and Sn. 少なくとも一方の接合部の表面硬度をビッカース硬度Hvで120以下にする、請求項1〜11のいずれかに記載の接合方法。  The joining method according to any one of claims 1 to 11, wherein the surface hardness of at least one joining portion is set to 120 or less in terms of Vickers hardness Hv. 基材の表面に接合部を有する被接合物の前記接合部の表面を、チャンバ内において減圧下でエネルギー波により洗浄した後、接合部同士を接合する接合装置において、前記チャンバに、洗浄時にはチャンバ内をエネルギー波による洗浄に適した真空度に制御し、洗浄後接合前にはチャンバ内の真空度をさらに高めるように制御可能な真空度制御手段を接続したことを特徴とする接合装置。  In a bonding apparatus for bonding the bonding portions to each other after cleaning the surface of the bonding portion of the workpiece having the bonding portion on the surface of the base material with an energy wave under reduced pressure in the chamber, A bonding apparatus characterized in that the inside is controlled to a degree of vacuum suitable for cleaning with energy waves, and a vacuum degree control means that can be controlled to further increase the degree of vacuum in the chamber before bonding after cleaning is connected. 基材の表面に接合部を有する被接合物の前記接合部の表面を、チャンバ内において減圧下でエネルギー波により洗浄した後、接合部同士を接合する接合装置において、前記チャンバに、洗浄中にチャンバ内の真空度を高めていくように制御可能な真空度制御手段を接続したことを特徴とする接合装置。  In the bonding apparatus for bonding the bonded portions to each other after cleaning the surface of the bonded portion having the bonded portion on the surface of the base material with an energy wave in the chamber under reduced pressure, the chamber is being cleaned. A bonding apparatus comprising a vacuum degree control means that can be controlled to increase the degree of vacuum in the chamber. 前記接合部が金属である、請求項13または14の接合装置。  The joining device according to claim 13 or 14, wherein the joining portion is a metal. 接合前に洗浄された接合部を加熱する手段を有する、請求項13〜15のいずれかに記載の接合装置。  The joining device according to any one of claims 13 to 15, further comprising means for heating the joint that has been cleaned before joining. 前記エネルギー波により洗浄する手段がプラズマ発生手段からなる、請求項13〜16のいずれかに記載の接合装置。  The joining apparatus according to any one of claims 13 to 16, wherein the means for cleaning with the energy wave comprises plasma generating means. 前記エネルギー波により洗浄する手段がRFプラズマ発生手段からなる、請求項17の接合装置。  18. The bonding apparatus according to claim 17, wherein the means for cleaning with the energy wave comprises RF plasma generating means. 前記チャンバに、流量制御弁を備えた吸引路が接続されている、請求項13〜18のいずれかに記載の接合装置。  The joining device according to claim 13, wherein a suction path including a flow control valve is connected to the chamber. 前記チャンバに、吸引路が接続されており、該吸引路が流量制御弁を備えた吸引路と流量制御弁を備えていない吸引路とに切換弁を介して分岐されている、請求項13〜18のいずれかに記載の接合装置。  A suction path is connected to the chamber, and the suction path is branched via a switching valve into a suction path having a flow rate control valve and a suction path not having a flow rate control valve. The bonding apparatus according to any one of 18. 前記真空度制御手段により洗浄中にチャンバ内の真空度が高められていく際に、接合部同士間の距離を縮めていく手段を有する、請求項14〜20のいずれかに記載の接合装置。  The joining apparatus according to any one of claims 14 to 20, further comprising means for reducing a distance between joint portions when the degree of vacuum in the chamber is increased during cleaning by the degree of vacuum control means. 前記エネルギー波により洗浄する手段が、前記接合部の接合される全表面で1nm以上の深さのエッチングが可能なエネルギー以上のエネルギー波を発生させる手段からなる、請求項13〜21のいずれかに記載の接合装置。  The means for cleaning with the energy wave comprises a means for generating an energy wave with energy higher than that capable of etching at a depth of 1 nm or more on the entire surface to which the bonding portion is bonded. The joining apparatus as described. 接合される両接合部の表面が金、銅、Al、In、Snのいずれかにより構成されている、請求項13〜22のいずれかに記載の接合装置。  The joining device according to any one of claims 13 to 22, wherein surfaces of both joint portions to be joined are made of any one of gold, copper, Al, In, and Sn. 少なくとも一方の接合部の表面硬度がビッカース硬度Hvで120以下とされている、請求項13〜23のいずれかに記載の接合装置。  The joining device according to any one of claims 13 to 23, wherein the surface hardness of at least one joining portion is 120 or less in terms of Vickers hardness Hv.
JP2002346111A 2002-11-28 2002-11-28 Bonding method and bonder Pending JP2006134900A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002346111A JP2006134900A (en) 2002-11-28 2002-11-28 Bonding method and bonder
PCT/JP2003/015179 WO2004049428A1 (en) 2002-11-28 2003-11-27 Method and device for joining
AU2003284474A AU2003284474A1 (en) 2002-11-28 2003-11-27 Method and device for joining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346111A JP2006134900A (en) 2002-11-28 2002-11-28 Bonding method and bonder

Publications (1)

Publication Number Publication Date
JP2006134900A true JP2006134900A (en) 2006-05-25

Family

ID=32376043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346111A Pending JP2006134900A (en) 2002-11-28 2002-11-28 Bonding method and bonder

Country Status (3)

Country Link
JP (1) JP2006134900A (en)
AU (1) AU2003284474A1 (en)
WO (1) WO2004049428A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229006A (en) * 2004-02-16 2005-08-25 Bondotekku:Kk Individual aligning method and apparatus thereof
JP2008004722A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Electrode connecting method and part mounting device
WO2009087796A1 (en) 2008-01-09 2009-07-16 Mitsubishi Heavy Industries, Ltd. Cold jointing apparatus, and cold jointing method
EP2091071A1 (en) * 2008-02-15 2009-08-19 S.O.I.T.E.C. Silicon on Insulator Technologies Process for bonding two substrates
JP2009277823A (en) * 2008-05-14 2009-11-26 Panasonic Corp Component mounting method and component mounting line
JP2010277754A (en) * 2009-05-27 2010-12-09 Micro Denshi Kk Connection method and connection device of electric component
KR101792683B1 (en) 2010-07-22 2017-11-20 소이텍 A method and apparatus for bonding together two wafers by molecular adhesion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101085A (en) * 1986-10-16 1988-05-06 Fuji Electric Co Ltd Diffused joining method
JP2519273B2 (en) * 1987-12-04 1996-07-31 株式会社日立製作所 Ultra high vacuum bonding equipment
JPH0230385A (en) * 1988-07-15 1990-01-31 Mitsubishi Electric Corp Solid phase joining method for metallic lead
JP2000138260A (en) * 1998-10-30 2000-05-16 Sony Corp Manufacture of semiconductor device
JP2000208429A (en) * 1999-01-18 2000-07-28 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus and method for discharging gas in treatment chamber
JP4669600B2 (en) * 2000-08-18 2011-04-13 東レエンジニアリング株式会社 Mounting device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681241B2 (en) * 2004-02-16 2011-05-11 ボンドテック株式会社 Alignment method, joining method and joining apparatus using this method
JP2005229006A (en) * 2004-02-16 2005-08-25 Bondotekku:Kk Individual aligning method and apparatus thereof
JP2008004722A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Electrode connecting method and part mounting device
US8449712B2 (en) 2006-06-22 2013-05-28 Panasonic Corporation Electrode bonding method and part mounting apparatus
JP4697066B2 (en) * 2006-06-22 2011-06-08 パナソニック株式会社 Electrode bonding method and component mounting apparatus
WO2009087796A1 (en) 2008-01-09 2009-07-16 Mitsubishi Heavy Industries, Ltd. Cold jointing apparatus, and cold jointing method
US8985175B2 (en) 2008-01-09 2015-03-24 Mitsubishi Heavy Industries, Ltd. Room temperature bonding machine and room temperature bonding method
EP2091071A1 (en) * 2008-02-15 2009-08-19 S.O.I.T.E.C. Silicon on Insulator Technologies Process for bonding two substrates
WO2009101495A1 (en) * 2008-02-15 2009-08-20 S.O.I.Tec Silicon On Insulator Technologies Processing for bonding two substrates
US8999090B2 (en) 2008-02-15 2015-04-07 Soitec Process for bonding two substrates
JP2009277823A (en) * 2008-05-14 2009-11-26 Panasonic Corp Component mounting method and component mounting line
JP2010277754A (en) * 2009-05-27 2010-12-09 Micro Denshi Kk Connection method and connection device of electric component
KR101792683B1 (en) 2010-07-22 2017-11-20 소이텍 A method and apparatus for bonding together two wafers by molecular adhesion

Also Published As

Publication number Publication date
AU2003284474A1 (en) 2004-06-18
WO2004049428A1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4133333B2 (en) Method of processing object and processing apparatus thereof
US7279358B2 (en) Mounting method and mounting device
JP5702796B2 (en) Substrate processing apparatus and method
KR20100127200A (en) Loading table structure and processing device
WO2005071735A1 (en) Joining method and device produced by this method and joining unit
US20070227033A1 (en) Substrate transferring apparatus, substrate processing apparatus, and substrate processing method
JP2005294800A (en) Joining method, device created thereby, surface activating device and joining device provided therewith
JP2004119430A (en) Bonding device and method
WO2003001858A1 (en) Method and device for installation
JP2006134900A (en) Bonding method and bonder
JP2002064266A (en) Mounting apparatus
JP2001351892A (en) Method and device for mounting
JP2006134899A (en) Bonding method and bonder
JP2004006707A (en) Packaging method and packaging apparatus
JP2004071611A (en) Device and method of mounting electronic part
JP3773201B2 (en) Delivery method and apparatus for workpieces
WO2004030079A1 (en) Connection method and connection device
JP3970732B2 (en) Joining method and apparatus
JP7460095B2 (en) Bonding method, bonding device, and bonding system
JP7268931B2 (en) Bonding method, substrate bonding apparatus, and substrate bonding system
JP2004273941A (en) Junction method and device
WO2004028732A1 (en) Connection method and connection device
JP4306533B2 (en) Electronic component mounting equipment
JP2004119701A (en) Method and device for joining
JP2003318220A (en) Method and device for mounting