JP2006132850A - Cooling unit and its manufacturing method - Google Patents

Cooling unit and its manufacturing method Download PDF

Info

Publication number
JP2006132850A
JP2006132850A JP2004322925A JP2004322925A JP2006132850A JP 2006132850 A JP2006132850 A JP 2006132850A JP 2004322925 A JP2004322925 A JP 2004322925A JP 2004322925 A JP2004322925 A JP 2004322925A JP 2006132850 A JP2006132850 A JP 2006132850A
Authority
JP
Japan
Prior art keywords
tube
flat
flat tube
wall plate
cooling unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004322925A
Other languages
Japanese (ja)
Inventor
Yasuaki Hashimoto
康明 橋本
Shoichiro Usui
正一郎 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2004322925A priority Critical patent/JP2006132850A/en
Publication of JP2006132850A publication Critical patent/JP2006132850A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling unit having excellent cooling performance with high heat absorbing efficiency from a radiating external wall plate. <P>SOLUTION: The cooling unit is composed of the radiating external wall plate directly mounted to a high temperature outer surface wall of a high temperature heating body, and a bent metallic flat tube uniformly stuck to a flat surface or curved surface of the radiating external wall plate and having a flatness buckling ratio of 3% or less and a flatness ratio of 40-50%. The high temperature outer surface wall of the high temperature heating body is cooled by allowing a heat medium fluid to flow through the metal flat tube. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エンジン搭載用ECUやCPU等の高温発熱体の冷却に使用される冷却ユニットとその製造方法に関する。   The present invention relates to a cooling unit used for cooling a high-temperature heating element such as an engine-mounted ECU or CPU, and a method for manufacturing the same.

従来、エンジン搭載用ECUやCPU等の高温発熱体の冷却手段としては、フィン等による大気への放熱、または高温壁面に冷却水配管をろう付や溶接によって取付けて吸熱する方法等が知られている(特許文献1、2等参照)。このうち、冷却水配管を用いる方法の場合、円管そのままでは、放熱外壁板の壁面との接触面積が小さく、放熱外壁板からの円管への放熱効率が良くないので、壁からの熱を効率よく吸収するために前記冷却水配管(吸熱管)に偏平管を用いる方法が採られている。
図13はその偏平管を用いた吸熱管を例示したもので、円管を管厚haの偏平管21に形成し、該偏平管の長さ方向の所定位置において、長径の延長上に屈曲中心Cを設定し、この屈曲中心Cを中心にして当該偏平管21を屈曲半径RでU字形に曲げ加工したもので、このU字形の偏平吸熱管を放熱外壁板22に固着させて吸熱する方法が行なわれている。
特開2003−283172号公報 特開2003−133774号公報
Conventionally, as a means for cooling a high-temperature heating element such as an engine-mounted ECU or CPU, heat dissipation to the atmosphere by fins or the like, or a method of absorbing heat by attaching a cooling water pipe to a high-temperature wall surface by brazing or welding is known. (See Patent Documents 1 and 2). Of these, in the case of the method using the cooling water pipe, since the contact area with the wall surface of the heat radiating outer wall plate is small and the heat radiating efficiency from the heat radiating outer wall plate to the circular tube is not good, the heat from the wall is reduced. In order to absorb efficiently, a method using a flat pipe for the cooling water pipe (heat absorption pipe) is adopted.
FIG. 13 shows an example of an endothermic tube using the flat tube. A circular tube is formed in the flat tube 21 having a tube thickness ha, and a bending center is formed on the extension of the long diameter at a predetermined position in the length direction of the flat tube. C is set, and the flat tube 21 is bent into a U shape with a bending radius R around the bending center C, and the U-shaped flat heat absorption tube is fixed to the heat radiating outer wall plate 22 to absorb heat. Has been done.
JP 2003-283172 A JP 2003-133774 A

しかし、偏平管を単にU字形に屈曲加工して形成した従来のU字形吸熱管は、図13、図14に示すように、偏平管21の屈曲中心C寄りの内側が大きく挫屈し、該偏平管21の屈曲部分21−1では、元の偏平管から大きく挫屈変形した異形管となり、この変形によって屈曲部分21−1での放熱外壁板22への密着接触が妨げられ、また、この屈曲部分21−1では冷却水の流路が狭まって冷却効果が低下するという問題があった。   However, in the conventional U-shaped endothermic tube formed by simply bending the flat tube into a U-shape, as shown in FIGS. 13 and 14, the inside of the flat tube 21 near the bending center C is greatly bent, and the flat tube 21 The bent portion 21-1 of the tube 21 is a deformed tube greatly deformed from the original flat tube, and the deformation prevents the close contact with the heat radiating outer wall plate 22 at the bent portion 21-1, and the bent portion 21-1. In the part 21-1, there was a problem that the cooling water flow path narrowed and the cooling effect was lowered.

本発明は、前記したようなこの種の冷却配管(吸熱管)を備えた冷却ユニットの現状に鑑みてなされたものであり、簡単な構成で、放熱外壁板に堅固に密着配設され、放熱外壁板からの熱吸収効率が高く、冷却性能の優れた冷却ユニットとその製造方法を提供することを目的とするものである。   The present invention has been made in view of the current state of a cooling unit having such a type of cooling pipe (endothermic pipe) as described above, and has a simple structure and is firmly and closely disposed on a heat radiating outer wall plate. An object of the present invention is to provide a cooling unit having a high heat absorption efficiency from an outer wall plate and excellent in cooling performance, and a manufacturing method thereof.

本発明に係る冷却ユニットは、高温発熱体の高温外面壁に直接取付けられる放熱外壁板と、該放熱外壁板の平坦面または曲面に均一に固着配置された、下記式1で定義される偏平挫屈率Pfが3%以下の曲げ加工された金属製偏平管とで構成され、前記金属製偏平管に熱媒体流体を流通させることによって前記高温発熱体の高温外面壁を冷却する構造となしたことを特徴とするものである。   The cooling unit according to the present invention includes a heat radiating outer wall plate directly attached to a high temperature outer surface wall of a high temperature heating element, and a flat plate defined by the following formula 1 that is uniformly fixed to a flat surface or a curved surface of the heat radiating outer wall plate. It is composed of a bent metal flat tube having a refractive index Pf of 3% or less, and a heat medium fluid is circulated through the metal flat tube to cool the high temperature outer wall of the high temperature heating element. It is characterized by this.

[式1]
Pf=[(H−h)/H]×100(%)
H:偏平管の外径最大厚さ(mm)
h:偏平管の外径最小厚さ(mm)
[Formula 1]
Pf = [(H−h) / H] × 100 (%)
H: Maximum outer diameter of flat tube (mm)
h: Minimum outer diameter of flat tube (mm)

また、前記金属製偏平管は、下記式2で定義される偏平率Prが40〜50%の偏平管で構成されていることを特徴とするものである。   Further, the metal flat tube is characterized in that it is formed of a flat tube having a flatness ratio Pr defined by the following formula 2 of 40 to 50%.

[式2]
Pr=[r/R]×100(%)
R:真円素管の外径(mm)
r:真円素管外径の押圧加工量(mm)
[Formula 2]
Pr = [r / R] × 100 (%)
R: Outer diameter of true round tube (mm)
r: processing amount of outer diameter of round tube (mm)

さらに、前記金属製偏平管は、1本の当該偏平管を同一平面上または同一曲面上でU字形または蛇行状あるいは渦巻状に屈曲させて放熱外壁板の平坦面または曲面に均一に固着することを特徴とするものである。また、前記放熱外壁板および金属製偏平管は、スチール、ステンレス鋼、銅、アルミニウムおよびこれらの基合金製であることを特徴とするものである。   Further, the metal flat tube is uniformly fixed to the flat surface or curved surface of the heat radiating outer wall plate by bending one flat tube on the same plane or the same curved surface into a U shape, a meandering shape or a spiral shape. It is characterized by. The heat radiating outer wall plate and the metal flat tube are made of steel, stainless steel, copper, aluminum, or a base alloy thereof.

また、本発明に係る冷却ユニットの製造方法は、高温発熱体の高温外面壁に直接取付けられる放熱外壁板の壁面と、該放熱外壁板の平坦面または曲面に均一に固着配置された、前記式1で定義される偏平挫屈率Pfが3%以下の曲げ加工された金属製偏平管とで構成され、前記金属製偏平管に熱媒体流体を流通させることによって前記高温発熱体の高温外面壁を冷却する構造となした冷却ユニットの製造方法であって、1本の金属製丸管を同一平面上または同一曲面上でU字形または蛇行状あるいは渦巻状に曲げ加工し、次いで当該金属製丸管を偏平挫屈率が3%以下になるようにプレス加工により押圧偏平化し、しかる後前記金属製偏平管を前記放熱外壁板に均一に接するように配置して固着することを特徴とし、また、1本の金属製丸管を同一平面上または同一曲面上でU字形または蛇行状あるいは渦巻状に曲げ加工し、次いで当該金属製丸管を前記放熱外壁板の壁面全体に均一に接するように配置して固着し、しかる後前記放熱外壁板の壁面領域内の金属製丸管を前記偏平挫屈率Pfが3%以下になるようにプレス加工により押圧偏平化することを特徴とするものである。   Further, the method for manufacturing a cooling unit according to the present invention includes the above-described formula, wherein the cooling unit is uniformly fixed and disposed on the wall surface of the heat radiating outer wall plate directly attached to the high temperature outer surface wall of the high temperature heating element and the flat surface or curved surface of the heat radiating outer wall plate. 1. A high-temperature outer surface wall of the high-temperature heating element by flowing a heat medium fluid through the metal flat tube, which is formed by bending a flat metal bending tube having a flat bending rate Pf defined by 1 of 3% or less. A cooling unit manufacturing method having a structure for cooling a metal, wherein one metal round tube is bent into a U-shape, a meandering shape or a spiral shape on the same plane or the same curved surface, and then the metal round The tube is pressed and flattened by pressing so that the flat buckling rate is 3% or less, and then the metal flat tube is arranged and fixed so as to be in uniform contact with the heat radiating outer wall plate, and One metal round tube Bending into a U-shape, a meandering shape or a spiral shape on the same plane or the same curved surface, and then arranging and fixing the metal round tube so as to be in uniform contact with the entire wall surface of the heat radiating outer wall plate; The metal round tube in the wall surface region of the heat radiating outer wall plate is pressed and flattened by pressing so that the flat buckling rate Pf is 3% or less.

本発明方法における金属製偏平管も前記と同様、真円素管を前記式2で定義される偏平率Prが40〜50%となるようにプレス加工して偏平化することを特徴とし、また、前記放熱外壁板および金属製偏平管の材質も前記と同様、スチール、ステンレス鋼、銅、アルミニウムおよびこれらの基合金であることを特徴とするものである。   Similarly to the above, the metal flat tube in the method of the present invention is flattened by pressing a round tube so that the flatness Pr defined by the formula 2 is 40 to 50%. The material of the heat radiating outer wall plate and the metal flat tube is steel, stainless steel, copper, aluminum, and a base alloy thereof as described above.

本発明において、金属製偏平管の偏平挫屈率Pfを3%以下としたのは、3%を超えるとこの変形によって屈曲部分での放熱外壁板への密着接触が妨げられる上、この屈曲部分では冷却水の流路が狭まって冷却効果が低下するためである。   In the present invention, the flat buckling rate Pf of the metal flat tube is set to 3% or less. If the flat buckling rate Pf exceeds 3%, this deformation hinders the close contact with the heat radiating outer wall plate at the bent portion, and this bent portion. This is because the cooling water flow path is narrowed and the cooling effect is reduced.

また、金属製偏平管の偏平率Prを40〜50%としたのは、40%未満では管路流量に対する放熱表面積が不足し流体を十分に冷却する効果が低下し、他方、50%を超えると当該偏平管の平坦面の中央部にできるへこみ(凹部)量が大きくなり発熱面との隙間にろう材等が十分に充填されず伝熱効果が低下するためである。   Moreover, the flatness ratio Pr of the metal flat tube is set to 40 to 50% because if less than 40%, the heat radiation surface area with respect to the pipe flow rate is insufficient, and the effect of sufficiently cooling the fluid is reduced, and on the other hand, it exceeds 50%. This is because the amount of dents (concave portions) that can be formed at the center of the flat surface of the flat tube is increased, and the brazing material or the like is not sufficiently filled in the gap between the heat generating surface and the heat transfer effect is reduced.

なお、本発明における放熱外壁板と金属製偏平管の接合手段としては、炉中ろう付け、ろう付け、溶接、あるいは接着剤等による接着等の方法を用いるのが一般的である。   In addition, as a joining means of the heat radiating outer wall plate and the metal flat tube in the present invention, a method such as brazing in a furnace, brazing, welding, or adhesion using an adhesive is generally used.

本発明の冷却ユニットは、高温発熱体の高温外面壁に直接取付けられる放熱外壁板と、該放熱外壁板の平坦面または曲面に均一に固着配置された、偏平挫屈率Pfが3%以下の曲げ加工された金属製偏平管とで構成されているため、前記金属製偏平管に熱媒体流体を流通させることにより、高温外面壁からの熱を効率的に吸収放出することが可能になり、発熱部の冷却を効果的に行なうことが可能になる。また、本発明の冷却ユニット製造方法によれば、曲げ加工工程、偏平化工程、一体化工程の三つの工程の組み合わせで冷却性能の優れた冷却ユニットを製造することができるので、高品質の冷却ユニットを低コストで製造することができる。   The cooling unit of the present invention includes a heat radiating outer wall plate directly attached to a high temperature outer surface wall of a high temperature heating element, and a flat buckling rate Pf that is uniformly fixed to a flat surface or a curved surface of the heat radiating outer wall plate and having a flat buckling ratio Pf of 3% or less. Since it is composed of a bent metal flat tube, it is possible to efficiently absorb and release heat from the high-temperature outer surface wall by circulating a heat medium fluid through the metal flat tube, It becomes possible to effectively cool the heat generating portion. In addition, according to the cooling unit manufacturing method of the present invention, a cooling unit with excellent cooling performance can be manufactured by a combination of three processes of a bending process, a flattening process, and an integration process. Units can be manufactured at low cost.

図1は本発明に係る金属製偏平管(冷却管)押圧形成工程の説明図、図2は図1に示す押圧形成工程で形成された偏平管の断面形状と放熱外壁板への固着態様を示す説明図、図3は本発明における偏平挫屈率Pfの説明図で、(a)はU字形管の場合、(b)は直管の場合をそれぞれ示す。図4は本発明に係るU字形金属製偏平管(冷却管)の加工工程の一例を示す説明図、図5は同じく蛇行状の金属製偏平管(冷却管)の加工工程の一例を示す説明図、図6は本発明に係る金属製偏平管(冷却管)の押圧形成手段の第1実施例を示す説明図、図7は同じく第2実施例を示す説明図、図8は同じく第3実施例を示す説明図、図9は本発明に係る冷却ユニットの第1実施例を示す平面図、図10は同じく冷却ユニットの第2実施例を示す平面図、図11は同じく冷却ユニットの第3実施例を示す平面図、図12は本発明の冷却ユニット製造方法の他の実施例を示す工程図である。   FIG. 1 is an explanatory view of a metal flat tube (cooling tube) press forming step according to the present invention, and FIG. 2 shows a cross-sectional shape of the flat tube formed in the press forming step shown in FIG. FIG. 3 and FIG. 3 are explanatory views of the flat buckling rate Pf in the present invention, where (a) shows the case of a U-shaped tube and (b) shows the case of a straight tube. FIG. 4 is an explanatory view showing an example of a processing step for a U-shaped metal flat tube (cooling tube) according to the present invention, and FIG. 5 is an explanatory view showing an example of a processing step for a serpentine metal flat tube (cooling tube). FIG. 6 is an explanatory view showing a first embodiment of the press forming means of the metal flat tube (cooling pipe) according to the present invention, FIG. 7 is an explanatory view showing the second embodiment, and FIG. FIG. 9 is a plan view showing a first embodiment of a cooling unit according to the present invention, FIG. 10 is a plan view showing a second embodiment of the cooling unit, and FIG. 11 is a plan view of the cooling unit. FIG. 12 is a plan view showing another embodiment of the method for manufacturing a cooling unit according to the present invention.

本発明に係る冷却ユニットの製造方法は、所定外径の金属製のスチール製の円管を高温発熱体の高温外面壁に直接取付けられる放熱外壁板の形状に対応して屈曲形成し、該屈曲配管を押圧偏平化することによって冷却配管(偏平管)を形成する冷却配管押圧形成工程を備えている。
図1はその金属製偏平管(冷却管)押圧形成工程の説明図で、10は素管(円管)、11は冷却配管(偏平管)、12は放熱外壁板である。すなわち、冷却配管11の原管として使用される真円素管10を偏平率Prが40〜50%となるように押圧偏平化することによって冷却配管(偏平管)11を形成する。
ここで、図1(a)は真円素管外径の押圧加工量(mm)rが40%の偏平管の断面、同図(b)は真円素管外径の押圧加工量(mm)rが50%の偏平管の断面をそれぞれ示したものである。すなわち、真円素管外径の押圧加工量(mm)rが大きいと(図1a)、押圧で形成される冷却配管11の高さ方向の(R−r)は減少して偏平化が進み、前記式2で定義した偏平率Prは大きくなる。この偏平率Prが大きいほど、放熱外壁板12との対接面積が広くなり、吸熱効率は向上するが、冷却配管11の管内流路が狭まり、冷却配管11内に充分な熱媒体流体を流すことができず冷却効果が低下する。このため、本発明では、素管外径の40〜50%の偏平率Prでプレス加工により押圧偏平化することとした。
The method for manufacturing a cooling unit according to the present invention includes a metal steel circular tube having a predetermined outer diameter that is bent to correspond to the shape of a heat radiating outer wall plate that is directly attached to a high temperature outer wall of a high temperature heating element. A cooling pipe press forming step of forming a cooling pipe (flat pipe) by pressing and flattening the pipe is provided.
FIG. 1 is an explanatory view of the metal flat tube (cooling tube) press forming step, 10 is an elementary tube (circular tube), 11 is a cooling pipe (flat tube), and 12 is a heat radiating outer wall plate. That is, the cooling pipe (flat pipe) 11 is formed by pressing and flattening the round pipe 10 used as the original pipe of the cooling pipe 11 so that the flatness Pr is 40 to 50%.
Here, FIG. 1 (a) is a cross section of a flat tube with a round tube outer diameter pressing amount (mm) r of 40%, and FIG. 1 (b) is a true tube outer diameter pressing processing amount (mm). ) Each shows a cross section of a flat tube with 50% r. In other words, when the pressing amount (mm) r of the outer diameter of the true circular tube is large (FIG. 1a), (Rr) in the height direction of the cooling pipe 11 formed by pressing decreases and flattening proceeds. , The flatness ratio Pr defined by the equation 2 is increased. The larger the flatness ratio Pr, the larger the contact area with the heat radiating outer wall plate 12, and the heat absorption efficiency is improved. However, the flow path in the cooling pipe 11 is narrowed, and a sufficient heat medium fluid is allowed to flow in the cooling pipe 11. The cooling effect is reduced. For this reason, in the present invention, pressing flattening is performed by pressing at a flatness ratio Pr of 40 to 50% of the outer diameter of the raw tube.

しかるに、上記冷却配管押圧形成工程で形成される冷却配管11の上面と下面の中央位置には、それぞれ押圧偏平化によって、浅くなだらかな凹部11−1が形成される。この場合、前記凹部11−1の深さ△hは、図2に示すように放熱外壁板12との固着性の関係より、0.3mm以下が好ましい。すなわち、0.3mmを超えると例えばろう付けや接着剤等によって冷却配管11を放熱外壁板12に固着する際に、ろう材や接着剤16が凹部11−1内に充分に充填できず、固着が不完全となり、冷却配管11の浮き上がりを起こすおそれがある上、伝熱面積が減少したり、熱伝導性が悪くなるためである。   However, shallow and gentle concave portions 11-1 are formed at the center positions of the upper surface and the lower surface of the cooling pipe 11 formed in the cooling pipe press forming step by pressing flattening. In this case, the depth [Delta] h of the recess 11-1 is preferably 0.3 mm or less, as shown in FIG. That is, when it exceeds 0.3 mm, for example, when the cooling pipe 11 is fixed to the heat radiating outer wall plate 12 by brazing or an adhesive, the brazing material or the adhesive 16 cannot be sufficiently filled in the concave portion 11-1. This is because there is a possibility that the cooling pipe 11 may be lifted and the heat transfer area is reduced or the thermal conductivity is deteriorated.

そこで、前記真円素管(例えば素管外径10mmの場合)の押圧偏平化により生じる前記凹部11−1の深さ△hを0.3mm以下に抑えるための条件として、本発明では前記式1で定義される偏平挫屈率Pfを3%以下に設定したのである。この偏平挫屈率Pfの変化を調べるために、図2に示す偏平管を用いたU字形管を使用し、図3(a)に示すように当該U字形管の直管部の偏平挫屈率Pfの変化を調べた結果を表1に示す。この測定試験では、同一の押圧条件下で形成した3本のU字形管(真円形素管外径:10mm、肉厚0.7mm、偏平率50%、屈曲半径R20mm)を被測定管とし、各U字形管の屈曲中心Cのラインから5mm(L1の位置)、20mm(L2の位置)、30mm(L3の位置)の各位置における偏平挫屈率Pfを調べた。なお比較のため、図3(b)に示す直管(偏平管)の偏平挫屈率Pfを表2に示す。
表2のデータより明らかなごとく、図3(b)に示す直管(偏平管)の場合は、L1〜L3の各位置での偏平挫屈率Pfにはあまり差は認められず、偏平挫屈率Pfの平均値は全領域でほぼ3%前後の均等値となっているのに対し、図3(a)に示すU字形管の場合は、偏平挫屈率Pfの平均値はL1の位置で1.36%、L2の位置で1.52%、L3の位置で2.88%と、3%以下にとどまっており、かつ屈曲中心Cに近いほど小さく、屈曲中心Cから20mmまでは、偏平挫屈率Pfは直管の場合の1/2程度と低く、30mmで直管の場合の値にやや近付く傾向にあるが、屈曲中心Cから5mm〜30mmの間では、直管の場合よりも偏平挫屈率Pfは小さい。これは、U字形管の場合は、屈曲部と直管部とから構成されているため、直管のみの場合のように押圧力が直接的に管自体に挫屈変形を与えないためと考えられる なお、冷却配管11に形成される凹部11−1の深さをさらに浅くするためには、冷却配管11の原管として使用される真円素管10に管内圧を印加した状態で押圧偏平化する方法を採用することができる。
Therefore, in the present invention, as a condition for suppressing the depth Δh of the concave portion 11-1 caused by pressing flattening of the true circular pipe (for example, in the case of the outer diameter of the raw pipe of 10 mm), the above formula is used. The flat buckling rate Pf defined by 1 is set to 3% or less. In order to investigate the change in the flat buckling rate Pf, a U-shaped tube using the flat tube shown in FIG. 2 is used, and the flat buckling of the straight tube portion of the U-shaped tube as shown in FIG. Table 1 shows the results of examining the change in the rate Pf. In this measurement test, three U-shaped tubes (outer diameter of a true circular element tube: 10 mm, thickness 0.7 mm, flatness 50%, bending radius R20 mm) formed under the same pressing conditions were used as measured tubes. The flat buckling rate Pf at each position of 5 mm (position L1), 20 mm (position L2), and 30 mm (position L3) from the line of the bending center C of each U-shaped tube was examined. For comparison, Table 2 shows the flat buckling rate Pf of the straight pipe (flat pipe) shown in FIG.
As is apparent from the data in Table 2, in the case of the straight pipe (flat tube) shown in FIG. 3B, there is not much difference in the flat buckling rate Pf at each position of L1 to L3. In the case of the U-shaped tube shown in FIG. 3A, the average value of the flattening rate Pf is L1 while the average value of the bending rate Pf is an equal value of about 3% in all regions. 1.36% at the position, 1.52% at the position of L2, 2.88% at the position of L3, staying at 3% or less, and smaller as it is closer to the bending center C. From the bending center C to 20 mm The flat buckling ratio Pf is as low as about 1/2 of that of a straight pipe and tends to be slightly closer to the value of a straight pipe at 30 mm, but between 5 mm and 30 mm from the bending center C, The flat buckling rate Pf is smaller than that. This is because, in the case of a U-shaped tube, it is composed of a bent portion and a straight tube portion, so that the pressing force does not directly deform the tube itself as in the case of only a straight tube. In order to further reduce the depth of the concave portion 11-1 formed in the cooling pipe 11, press flattening in a state where the internal pressure is applied to the true circular pipe 10 used as the original pipe of the cooling pipe 11. Can be adopted.

Figure 2006132850
Figure 2006132850

Figure 2006132850
Figure 2006132850

次に、本発明に係る冷却ユニットの具体的な製造方法を、図4〜図11に基づいて説明する。
図4に示す冷却配管(偏平管)11Aは、まず基準平面上で円管(素管)10AをU字形に屈曲した後、そのU字形管を冷却配管押圧形成工程において偏平率40〜50%で押圧加工して偏平管とする。この成形工程において、基準平面上で円管(素管)10AをU字形に屈曲した祭、該U字形素管の直管部に、θ=2〜3度のオーバーベンド部が存在するが、押圧偏平化によって冷却配管(偏平管)11Aに形成される際に、オーバーベンド部に内側より戻り力が加えられてオーバーベンドが消失するので、U字形素管にオーバーベンド部が存在しても問題はない。
Next, a specific method for manufacturing the cooling unit according to the present invention will be described with reference to FIGS.
In the cooling pipe (flat tube) 11A shown in FIG. 4, first, a circular pipe (element tube) 10A is bent into a U shape on a reference plane, and then the flatness is 40 to 50% in the cooling pipe press forming step. To make a flat tube. In this molding process, there is an overbend part of θ = 2 to 3 degrees in the straight pipe part of the U-shaped element pipe, which is a festival in which the circular pipe (element pipe) 10A is bent in a U-shape on the reference plane. When the cooling pipe (flat pipe) 11A is formed by pressing flattening, a return force is applied to the overbend part from the inside and the overbend disappears, so even if the overbend part exists in the U-shaped element pipe No problem.

また、図5に示す蛇行状の冷却配管(偏平管)11Bの場合も前記と同様、基準平面上で円管(素管)10Bを蛇行状に屈曲した後、その蛇行状管を冷却配管押圧形成工程において偏平率40〜50%で押圧加工して偏平管とする。この形成工程において、基準平面上で円管(素管)10Bを蛇行状に屈曲した際に当該蛇行状素管の直管部に生じたθ=2〜3度のオーバーベンド部は、前記と同様、押圧偏平化によってオーバーベンド部に内側より戻り力が加えられてオーバーベンドが消失する。   In the case of the meandering cooling pipe (flat tube) 11B shown in FIG. 5, the circular pipe (element tube) 10B is bent in a meandering manner on the reference plane, and then the meandering pipe is pressed against the cooling pipe. In the forming step, a flat tube is formed by pressing at a flatness ratio of 40 to 50%. In this forming process, when the circular pipe (element tube) 10B is bent in a meandering manner on the reference plane, the overbend portion of θ = 2 to 3 degrees generated in the straight pipe portion of the meandering element tube is as described above. Similarly, a return force is applied to the overbend portion from the inside due to the flattening of the pressure, and the overbend disappears.

また、冷却配管押圧形成手段としては、図6〜図8に示す方法を採用することができる。すなわち、図6に示す蛇行状の冷却配管(偏平管)11Bを例にとり説明すると、平面冷却配管を形成する場合は、図6に示すように、上下一対の平面型13A、13Bを用い、下型13Bの上面に蛇行状の円管(素管)10Bを載置した状態で上型13Aにてプレス加工を施して、偏平挫屈率3%以下、偏平率40〜50%の平面冷却配管(偏平管)11Bを成形する。また、曲面冷却配管を形成する場合は、図7に示すように、上下一対の曲面型14A、14Bを用い、前記図6と同様にプレス加工を施して、偏平挫屈率3%以下、偏平率40〜50%の曲面冷却配管(偏平管)11Bを成形する方法と、図8に示すように、上面が平面の下型15Bの上に円管(素管)10Bを載置した状態で曲面押圧治具15Aを所定の押圧力で押圧しながら回転させて転動させることにより偏平挫屈率3%以下、偏平率40〜50%の曲面冷却配管(偏平管)11Bを成形する方法を用いることができる。冷却配管11Aの場合も前記同様にして成形することができる。   Moreover, as a cooling pipe press formation means, the method shown in FIGS. 6-8 is employable. That is, the meandering cooling pipe (flat pipe) 11B shown in FIG. 6 will be described as an example. When forming a flat cooling pipe, a pair of upper and lower flat molds 13A and 13B are used as shown in FIG. A flat cooling pipe having a flat buckling ratio of 3% or less and a flattening ratio of 40 to 50% by pressing the upper mold 13A with a meandering circular pipe (element pipe) 10B placed on the upper surface of the mold 13B. (Flat tube) 11B is formed. In the case of forming a curved cooling pipe, as shown in FIG. 7, a pair of upper and lower curved molds 14A and 14B are used and pressed in the same manner as in FIG. With a method of forming the curved surface cooling pipe (flat tube) 11B having a rate of 40 to 50% and a state where the circular pipe (element tube) 10B is placed on the lower mold 15B whose upper surface is flat as shown in FIG. A method of forming a curved surface cooling pipe (flat tube) 11B having a flat buckling ratio of 3% or less and a flattening ratio of 40 to 50% by rotating and rolling the curved surface pressing jig 15A with a predetermined pressing force. Can be used. The cooling pipe 11A can be molded in the same manner as described above.

このようにして成形された冷却配管11A、11Bは、次の固着工程において放熱外壁板と一体化され、冷却ユニットが製造される。図9は蛇行状の冷却配管(偏平管)11Bを用いた冷却ユニットを例示したもので、蛇行状の冷却配管11Bを放熱外壁板12Bに相重ねた状態で例えばろう付けにより相互に固着し、または熱電導性シリコンゴムシート等の接着材により相互に接着して、冷却ユニットを製造する。   The cooling pipes 11A and 11B thus molded are integrated with the heat radiating outer wall plate in the next fixing step, and a cooling unit is manufactured. FIG. 9 illustrates a cooling unit using a meandering cooling pipe (flat pipe) 11B, and the meandering cooling pipe 11B is fixed to each other, for example, by brazing in a state where the meandering cooling pipe 11B is stacked on the heat radiation outer wall plate 12B. Alternatively, the cooling unit is manufactured by adhering each other with an adhesive such as a thermoconductive silicon rubber sheet.

冷却ユニットとしては、図10に示すように、渦巻状の冷却配管11Cを放熱外壁板12Cに相重ねた状態でろう付け等によりにより相互に固着して構成したものもある。また、図11に示すように、蛇行管部の一部に拡管部11B´を形成した蛇行状の冷却配管(偏平管)11Bを用いた冷却ユニットを製造することも可能である。この冷却ユニットの場合は、拡管部11B´の部分を放熱外壁板の高温領域(例えばLSI等が取着された部分の背面)に位置させることにより冷却ユニットの冷却効果をさらに高めることが可能になる。   As shown in FIG. 10, there is a cooling unit in which a spiral cooling pipe 11C is fixed to each other by brazing or the like in a state where it is overlapped with a heat radiating outer wall plate 12C. Moreover, as shown in FIG. 11, it is also possible to manufacture a cooling unit using a meandering cooling pipe (flat tube) 11B in which a pipe expanding part 11B ′ is formed in a part of the meandering pipe part. In the case of this cooling unit, the cooling effect of the cooling unit can be further enhanced by positioning the expanded portion 11B ′ in the high temperature region of the heat radiating outer wall plate (for example, the back surface of the portion where the LSI or the like is attached). Become.

上記図4〜図11に示す冷却ユニットの製造方法は、丸管→曲げ加工→偏平化→固着の順で製造する方法を例示したものであるが、冷却ユニットの製造方法としては、金属製丸管を同一平面上または同一曲面上でU字形または蛇行状あるいは渦巻状に曲げ加工した後、当該金属製丸管を放熱外壁板の壁面全体に均一に接するように配置して固着し、しかる後曲げ加工管のままの丸管の前記放熱外壁板の壁面領域内に相当する部分を偏平挫屈率が3%以下になるようにプレス加工により押圧偏平化する方法(丸管→曲げ加工→固着→偏平化)を採用してもよい。 図12はその製造方法の一実施例を示したもので、例えば基準平面上で円管(素管)10AをU字形に屈曲した後、そのU字形管を放熱外壁板12Aに相重ねた状態で例えばろう付けにより相互に固着し、しかる後、前記放熱外壁板12Aの壁面領域内のU字形管10Aをプレス加工により押圧偏平化して、偏平挫屈率が3%以下、偏平率40〜50%の冷却配管(偏平管)11Aからなる冷却ユニットを製造する。なお、前記放熱外壁板12Aの壁面領域内のU字形管10Aをプレス加工により押圧偏平化する場合は、前記と同様、高温発熱体の高温外面壁の形状(平面あるいは曲面等)に合わせて偏平加工を施すことはいうまでもない。   The manufacturing method of the cooling unit shown in FIGS. 4 to 11 exemplifies a method of manufacturing in the order of round tube → bending process → flattening → adhesion. After the tube is bent into a U shape, meandering shape or spiral shape on the same plane or the same curved surface, the metal round tube is arranged and fixed so as to be in uniform contact with the entire wall surface of the heat radiating outer wall plate, and thereafter A method of pressing and flattening a portion corresponding to the wall area of the heat-dissipating outer wall plate of the round tube as a bent tube by pressing so that the flat buckling rate is 3% or less (round tube → bending processing → adhering (→ flattening) may be adopted. FIG. 12 shows an embodiment of the manufacturing method. For example, after a circular tube (element tube) 10A is bent into a U-shape on a reference plane, the U-shaped tube is stacked on the heat radiating outer wall plate 12A. For example, the U-shaped tube 10A in the wall surface region of the heat radiating outer wall plate 12A is pressed and flattened by press working so that the flat buckling rate is 3% or less and the flat rate is 40 to 50. % Cooling pipe (flat tube) 11A is manufactured. In the case where the U-shaped tube 10A in the wall surface region of the heat radiating outer wall plate 12A is pressed and flattened by pressing, the flattening is performed in accordance with the shape of the high-temperature outer wall of the high-temperature heating element (planar or curved surface) as described above. Needless to say, it is processed.

本発明の冷却ユニットは、エンジン搭載用ECUやCPU等の高温発熱体のみならず、各種高温発熱体の冷却にも十分に適用可能である。   The cooling unit of the present invention is sufficiently applicable not only to cooling high-temperature heating elements such as engine-mounted ECUs and CPUs but also to various high-temperature heating elements.

本発明に係る金属製偏平管(冷却管)押圧形成工程の説明図である。It is explanatory drawing of the metal flat tube (cooling tube) press formation process which concerns on this invention. 図1に示す押圧形成工程で形成された偏平管の断面形状と放熱外壁板への固着態様を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the flat tube formed at the press formation process shown in FIG. 1, and the adhering aspect to a thermal radiation outer wall board. 本発明における偏平挫屈率Pfの説明図で、(a)はU字形管の場合、(b)は直管の場合をそれぞれ示す。It is explanatory drawing of the flat buckling rate Pf in this invention, (a) shows the case of a U-shaped pipe, (b) shows the case of a straight pipe, respectively. 本発明に係るU字形金属製偏平管(冷却管)の加工工程の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing process of the U-shaped metal flat pipe (cooling pipe) which concerns on this invention. 同じく蛇行状の金属製偏平管(冷却管)の加工工程の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing process of a meandering metal flat tube (cooling pipe). 本発明に係る金属製偏平管(冷却管)の押圧形成手段の第1実施例を示す説明図である。It is explanatory drawing which shows 1st Example of the press formation means of the metal flat pipe (cooling pipe) which concerns on this invention. 同じく第2実施例を示す説明図である。It is explanatory drawing which similarly shows 2nd Example. 同じく第3実施例を示す説明図である。It is explanatory drawing which similarly shows 3rd Example. 本発明に係る冷却ユニットの第1実施例を示す平面図である。It is a top view which shows 1st Example of the cooling unit which concerns on this invention. 同じく冷却ユニットの第2実施例を示す平面図である。It is a top view which similarly shows 2nd Example of a cooling unit. 同じく冷却ユニットの第3実施例を示す平面図である。It is a top view which similarly shows 3rd Example of a cooling unit. 本発明の冷却ユニットの製造方法の他の実施例を示す工程図である。It is process drawing which shows the other Example of the manufacturing method of the cooling unit of this invention. 従来の冷却配管の一例を示す斜視図である。It is a perspective view which shows an example of the conventional cooling piping. 図13のイーイ線上の拡大断面図である。It is an expanded sectional view on the easy line of FIG.

符号の説明Explanation of symbols

10、10A、10B 素管(円管)
11、11A、11B、11C 冷却配管(偏平管)
11−1 凹部
11B´ 拡管部
12、12A、12B 放熱外壁板
13A、15A 下型
13B 上型
14A、14B 曲面型
15B 曲面押圧治具
10, 10A, 10B Tube (round tube)
11, 11A, 11B, 11C Cooling piping (flat tube)
11-1 Concave portion 11B 'Expanded portion 12, 12A, 12B Heat radiation outer wall plates 13A, 15A Lower die 13B Upper die 14A, 14B Curved die 15B Curved pressing jig

Claims (8)

高温発熱体の高温外面壁に直接取付けられる放熱外壁板と、該放熱外壁板の平坦面または曲面に均一に固着配置された、下記式で定義される偏平挫屈率Pfが3%以下の曲げ加工された金属製偏平管とで構成され、前記金属製偏平管に熱媒体流体を流通させることによって前記高温発熱体の高温外面壁を冷却する構造となした冷却ユニット。

Pf=[(H−h)/H]×100(%)
H:偏平管の外径最大厚さ(mm)
h:偏平管の外径最小厚さ(mm)
A heat-dissipating outer wall plate that is directly attached to the high-temperature outer surface wall of the high-temperature heating element, and a bend with a flat buckling rate Pf defined by the following formula of 3% or less, which is uniformly fixed to the flat or curved surface of the heat-dissipating outer wall plate A cooling unit comprising a processed metal flat tube and configured to cool a high temperature outer surface wall of the high temperature heating element by circulating a heat medium fluid through the metal flat tube.
Record
Pf = [(H−h) / H] × 100 (%)
H: Maximum outer diameter of flat tube (mm)
h: Minimum outer diameter of flat tube (mm)
前記金属製偏平管は、下記式で定義される偏平率Prが40〜50%の偏平管で構成されていることを特徴とする請求項1に記載の冷却ユニット。

Pr=[r/R]×100(%)
R:真円素管の外径(mm)
r:真円素管外径の押圧加工量(mm)
2. The cooling unit according to claim 1, wherein the metal flat tube is a flat tube having a flatness ratio Pr defined by the following formula of 40 to 50%.
Record
Pr = [r / R] × 100 (%)
R: Outer diameter of true round tube (mm)
r: processing amount of outer diameter of round tube (mm)
前記金属製偏平管は、1本の当該偏平管を同一平面上または同一曲面上でU字形または蛇行状あるいは渦巻状に屈曲させて放熱外壁板の平坦面または曲面に均一に固着することを特徴とする請求項1または2に記載の冷却ユニット。   The metal flat tube is characterized in that one flat tube is bent in a U shape, a meandering shape or a spiral shape on the same plane or the same curved surface, and is fixed firmly to the flat surface or curved surface of the heat radiating outer wall plate. The cooling unit according to claim 1 or 2. 前記放熱外壁板および金属製偏平管は、スチール、ステンレス鋼、銅、アルミニウムおよびこれらの基合金製であることを特徴とする請求項1〜3のいずれか1項に記載の冷却ユニット。   The cooling unit according to any one of claims 1 to 3, wherein the heat radiating outer wall plate and the metal flat tube are made of steel, stainless steel, copper, aluminum, and a base alloy thereof. 高温発熱体の高温外面壁に直接取付けられる放熱外壁板の壁面と、該放熱外壁板の平坦面または曲面に均一に固着配置された、下記式で定義される偏平挫屈率Pfが3%以下の曲げ加工された金属製偏平管とで構成され、前記金属製偏平管に熱媒体流体を流通させることによって前記高温発熱体の高温外面壁を冷却する構造となした冷却ユニットの製造方法であって、1本の金属製丸管を同一平面上または同一曲面上でU字形または蛇行状あるいは渦巻状に曲げ加工し、次いで当該金属製丸管を偏平挫屈率が3%以下になるようにプレス加工により押圧偏平化し、しかる後前記金属製偏平管を前記放熱外壁板に均一に接するように配置して固着することを特徴とする冷却ユニットの製造方法。

Pf=[(H−h)/H]×100(%)
H:偏平管の外径最大厚さ(mm)
h:偏平管の外径最小厚さ(mm)
The flat buckling rate Pf defined by the following formula is 3% or less, which is uniformly fixed to the wall surface of the heat radiating outer wall plate directly attached to the high temperature outer surface wall of the high temperature heating element and the flat surface or curved surface of the heat radiating outer wall plate. A cooling unit having a structure in which a high temperature outer wall of the high temperature heating element is cooled by circulating a heat medium fluid through the metal flat tube. Then, one metal round tube is bent into a U shape, a meandering shape or a spiral shape on the same plane or the same curved surface, and then the flattening rate of the metal round tube is 3% or less. A method of manufacturing a cooling unit, comprising pressing and flattening by pressing, and thereafter fixing the metal flat tube so as to be in uniform contact with the heat radiating outer wall plate.
Record
Pf = [(H−h) / H] × 100 (%)
H: Maximum outer diameter of flat tube (mm)
h: Minimum outer diameter of flat tube (mm)
高温発熱体の高温外面壁に直接取付けられる放熱外壁板の壁面と、該放熱外壁板の平坦面または曲面に均一に固着配置された、下記式で定義される偏平挫屈率Pfが3%以下の曲げ加工された金属製偏平管とで構成され、前記金属製偏平管に熱媒体流体を流通させることによって前記高温発熱体の高温外面壁を冷却する構造となした冷却ユニットの製造方法であって、1本の金属製丸管を同一平面上または同一曲面上でU字形または蛇行状あるいは渦巻状に曲げ加工し、次いで当該金属製丸管を前記放熱外壁板の壁面全体に均一に接するように配置して固着し、しかる後前記放熱外壁板の壁面領域内の金属製丸管を偏平挫屈率Pfが3%以下になるようにプレス加工により押圧偏平化することを特徴とする冷却ユニットの製造方法。

Pf=[(H−h)/H]×100(%)
H:偏平管の外径最大厚さ(mm)
h:偏平管の外径最小厚さ(mm)
The flat buckling rate Pf defined by the following formula is 3% or less, which is uniformly fixed to the wall surface of the heat radiating outer wall plate directly attached to the high temperature outer surface wall of the high temperature heating element and the flat surface or curved surface of the heat radiating outer wall plate. A cooling unit having a structure in which a high temperature outer wall of the high temperature heating element is cooled by circulating a heat medium fluid through the metal flat tube. One metal round tube is bent into a U shape, a meandering shape or a spiral shape on the same plane or the same curved surface, and then the metal round tube is uniformly contacted with the entire wall surface of the heat radiating outer wall plate. The cooling unit is characterized in that the metal round tube in the wall surface region of the heat radiating outer wall plate is pressed and flattened by pressing so that the flat buckling rate Pf is 3% or less. Manufacturing method.
Record
Pf = [(H−h) / H] × 100 (%)
H: Maximum outer diameter of flat tube (mm)
h: Minimum outer diameter of flat tube (mm)
前記金属製偏平管は、下記式で定義される偏平率Prが40〜50%となるようにプレス加工により押圧して形成することを特徴とする請求項5または6に記載の冷却ユニットの製造方法。

Pr=[r/R]×100(%)
R:真円素管の外径(mm)
r:真円素管外径の押圧加工量(mm)
The cooling unit according to claim 5 or 6, wherein the metallic flat tube is formed by pressing so that a flatness ratio Pr defined by the following formula is 40 to 50%. Method.
Record
Pr = [r / R] × 100 (%)
R: Outer diameter of true round tube (mm)
r: processing amount of outer diameter of round tube (mm)
前記放熱外壁板および金属製偏平管は、スチール、ステンレス鋼、銅、アルミニウムおよびこれらの基合金製であることを特徴とする請求項5〜7のいずれか1項に記載の冷却ユニットの製造方法。
The method for manufacturing a cooling unit according to any one of claims 5 to 7, wherein the heat radiating outer wall plate and the metal flat tube are made of steel, stainless steel, copper, aluminum, or a base alloy thereof. .
JP2004322925A 2004-11-05 2004-11-05 Cooling unit and its manufacturing method Pending JP2006132850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004322925A JP2006132850A (en) 2004-11-05 2004-11-05 Cooling unit and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004322925A JP2006132850A (en) 2004-11-05 2004-11-05 Cooling unit and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006132850A true JP2006132850A (en) 2006-05-25

Family

ID=36726544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004322925A Pending JP2006132850A (en) 2004-11-05 2004-11-05 Cooling unit and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006132850A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006033226B4 (en) * 2005-10-25 2009-08-13 Verigy (Singapore) Pte. Ltd. Cooling arrangement for cooling an electrical and electronic circuit structure
JP2011009266A (en) * 2009-06-23 2011-01-13 Sansha Electric Mfg Co Ltd Heat sink and method for manufacturing the same
CN102290390A (en) * 2010-05-10 2011-12-21 富士通株式会社 Radiator and electronic device having the same
JP2014034061A (en) * 2012-08-09 2014-02-24 Modine Manufacturing Co Tube for heat exchanger, tube assembly of heat exchanger and method for manufacturing the same
CN105526741A (en) * 2016-02-03 2016-04-27 合肥长城制冷科技有限公司 Novel tube-in-sheet evaporator
CN107166854A (en) * 2016-03-07 2017-09-15 东芝生活电器株式会社 Refrigerator
CN112139320A (en) * 2020-09-10 2020-12-29 中国航发贵州黎阳航空动力有限公司 Spiral catheter processing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190695A (en) * 1982-04-28 1983-11-07 Nippon Alum Mfg Co Ltd:The Pipe-on-sheet type heat exchanger
JPS62127135A (en) * 1985-11-26 1987-06-09 Rinnai Corp Manufacture of heat exchanger
JPH0228965U (en) * 1988-08-01 1990-02-23
JPH03142026A (en) * 1989-10-27 1991-06-17 Nippon Alum Mfg Co Ltd Pipe on sheet type heat exchanger and manufacture thereof
JPH074872A (en) * 1993-06-11 1995-01-10 Matsushita Electric Ind Co Ltd Heat exchanger and its manufacturing method
JP2000176579A (en) * 1998-12-21 2000-06-27 Mitsubishi Heavy Ind Ltd Flat heat transfer tube working method for heat exchanger
JP2001208490A (en) * 2000-01-28 2001-08-03 Hitachi Cable Ltd Flat heat pipe and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190695A (en) * 1982-04-28 1983-11-07 Nippon Alum Mfg Co Ltd:The Pipe-on-sheet type heat exchanger
JPS62127135A (en) * 1985-11-26 1987-06-09 Rinnai Corp Manufacture of heat exchanger
JPH0228965U (en) * 1988-08-01 1990-02-23
JPH03142026A (en) * 1989-10-27 1991-06-17 Nippon Alum Mfg Co Ltd Pipe on sheet type heat exchanger and manufacture thereof
JPH074872A (en) * 1993-06-11 1995-01-10 Matsushita Electric Ind Co Ltd Heat exchanger and its manufacturing method
JP2000176579A (en) * 1998-12-21 2000-06-27 Mitsubishi Heavy Ind Ltd Flat heat transfer tube working method for heat exchanger
JP2001208490A (en) * 2000-01-28 2001-08-03 Hitachi Cable Ltd Flat heat pipe and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006033226B4 (en) * 2005-10-25 2009-08-13 Verigy (Singapore) Pte. Ltd. Cooling arrangement for cooling an electrical and electronic circuit structure
JP2011009266A (en) * 2009-06-23 2011-01-13 Sansha Electric Mfg Co Ltd Heat sink and method for manufacturing the same
CN102290390A (en) * 2010-05-10 2011-12-21 富士通株式会社 Radiator and electronic device having the same
US9921002B2 (en) 2010-05-10 2018-03-20 Fujitsu Limited Radiator and electronic device having the same
JP2014034061A (en) * 2012-08-09 2014-02-24 Modine Manufacturing Co Tube for heat exchanger, tube assembly of heat exchanger and method for manufacturing the same
CN105526741A (en) * 2016-02-03 2016-04-27 合肥长城制冷科技有限公司 Novel tube-in-sheet evaporator
CN107166854A (en) * 2016-03-07 2017-09-15 东芝生活电器株式会社 Refrigerator
CN107166854B (en) * 2016-03-07 2019-12-03 东芝生活电器株式会社 Refrigerator
CN112139320A (en) * 2020-09-10 2020-12-29 中国航发贵州黎阳航空动力有限公司 Spiral catheter processing method

Similar Documents

Publication Publication Date Title
JP3146158U (en) Heat dissipation module
TWI593932B (en) Heat pipe
JPH11510962A (en) Liquid-cooled heat sink for cooling electronic components
TW200528012A (en) Heat pipe
CN103575140A (en) Compact type aluminum heat exchanger with welding pipe for power electronic equipment and battery cooling
JP4027353B2 (en) Cooling structure
CN109822000B (en) Plate type heat pipe processing method
US6260610B1 (en) Convoluted fin heat sinks with base topography for thermal enhancement
JP2010129774A (en) Method for manufacturing integrated pin-fin heat sink
TWI413887B (en) Heat pipe structure
JP2008241227A (en) Pressure-bonded heat pipe
JP2006132850A (en) Cooling unit and its manufacturing method
JP4925597B2 (en) Heat pipe for heat pipe and heat pipe
JP2002026201A (en) Radiator
KR20120072887A (en) A complex pipe for transferring heat, heat exchanging system and heat exchanger using the same
US7290598B2 (en) Heat exchange device
JP2001311593A (en) Heat exchanger
JP4494879B2 (en) Heat sink using carbon graphite
JP2008212980A (en) Coil of long length sheet having special-shaped cross section and formed body using the same
US20130000122A1 (en) Heat pipe manufacturing method
KR100898505B1 (en) Cooling apparatus for computer chip and manufacturing method thereof
JP2015530552A (en) Small aluminum heat exchanger with welded tube for power electronics and battery cooling
JP2008051375A (en) Method of manufacturing heat exchanger
TWI305132B (en)
US8220151B2 (en) Heat pipe and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071101

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090901

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A131 Notification of reasons for refusal

Effective date: 20110106

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110517