JP2006132738A - Transmission - Google Patents

Transmission Download PDF

Info

Publication number
JP2006132738A
JP2006132738A JP2004325142A JP2004325142A JP2006132738A JP 2006132738 A JP2006132738 A JP 2006132738A JP 2004325142 A JP2004325142 A JP 2004325142A JP 2004325142 A JP2004325142 A JP 2004325142A JP 2006132738 A JP2006132738 A JP 2006132738A
Authority
JP
Japan
Prior art keywords
roller
speed
driven roller
support bearing
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004325142A
Other languages
Japanese (ja)
Inventor
Ken Yamamoto
建 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004325142A priority Critical patent/JP2006132738A/en
Publication of JP2006132738A publication Critical patent/JP2006132738A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission preventing roller partial wear and the deterioration of maximum transmission torque caused by the bending of a driven roller shaft even if a low side gear ratio wherein transmission torque becomes large is selected. <P>SOLUTION: Three driving rollers 11, 12 and 13 with different roller diameters are set as driving rollers 1, and three driven rollers 21, 22 and 23 with different roller diameters are set as driven rollers 2. The driven rollers 21, 22 and 23 are set on an eccentric driven roller shaft 24 with both ends arranged in a first support bearing 3 and a second support bearing 4, and a plurality of roller pairs set with different gear ratios can be changed over. Of the plurality of roller pairs, no other roller pair is arranged between a first gear roller pair 11 and 21 with the largest gear ratio, and the first support bearing 3 close to the first gear roller pair 11 and 12, and no other roller pair is arranged between a second gear roller pair 12 and 22 with the second largest gear ratio, and the second support bearing 4 close to the second gear roller pair 12 and 22. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、駆動ローラと従動ローラとによる摩擦伝動ローラを用いた変速装置の技術分野に属する。   The present invention belongs to a technical field of a transmission using a friction transmission roller including a driving roller and a driven roller.

従来の駆動ローラと従動ローラを用いた変速装置は、1速ローラ対と2速ローラ対と3速ローラ対を順に配列した構造としている(例えば、特許文献1参照)。
特開昭61−286652号公報
A conventional speed change device using a driving roller and a driven roller has a structure in which a first speed roller pair, a second speed roller pair, and a third speed roller pair are arranged in order (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 61-286552

しかしながら、従来の変速装置にあっては、変速比がロー側であるほど伝達トルクが大きく、それに応じて押し付け力が大きくなるため、従動ローラ軸を支持する支持軸受けからローラ荷重点までの距離が最も長くなる2速選択時、従動ローラ軸に作用する曲げ応力が大きくなってしまい、従動ローラ軸の曲げに伴いローラ偏摩耗や最大伝達トルクの低下を招く、という問題があった。   However, in the conventional transmission, the transmission torque increases as the gear ratio becomes lower, and the pressing force increases accordingly. Therefore, the distance from the support bearing that supports the driven roller shaft to the roller load point increases. When the 2nd speed which is the longest is selected, the bending stress acting on the driven roller shaft becomes large, and there is a problem in that the roller uneven wear and the maximum transmission torque are reduced due to the bending of the driven roller shaft.

本発明は、上記問題に着目してなされたもので、伝達トルクが大きくなるロー側の変速比選択時であっても、従動ローラ軸の曲げによるローラ偏摩耗や最大伝達トルクの低下を防止することができる変速装置を提供することを目的とする。   The present invention has been made paying attention to the above-described problem, and prevents even when the low-side gear ratio in which the transmission torque becomes large is selected, the roller partial wear and the decrease in the maximum transmission torque due to the bending of the driven roller shaft. An object of the present invention is to provide a transmission that can perform the above operation.

上記目的を達成するため、本発明の変速装置では、回転自在に支持された駆動ローラと従動ローラとを押圧接触させ、その接触部に生じる摩擦力によって、一方のローラから他方のローラに動力を伝達させる摩擦伝動ローラにおいて、
前記駆動ローラとしてローラ径の異なる3個以上の複数の駆動ローラを設定し、前記従動ローラとしてローラ径の異なる3個以上の複数の従動ローラを設定し、
前記複数の従動ローラは、両端に支持軸受けを配置した従動ローラ軸上に設定すると共に、変速比を異ならせて設定した複数のローラ対を切り替え可能に構成し、
前記複数のローラ対のうち、最も減速比の大きいローラ対と、該ローラ対に近い支持軸受けとの間に他のローラ対を配置しないと共に、2番目に減速比の大きいローラ対と、該ローラ対に近い支持軸受けとの間に他のローラ対を配置しないことを特徴とする。
In order to achieve the above object, in the transmission of the present invention, the drive roller and the driven roller that are rotatably supported are brought into pressure contact, and the frictional force generated at the contact portion causes power from one roller to the other roller. In the friction transmission roller to be transmitted,
Setting three or more driving rollers with different roller diameters as the driving roller, and setting three or more driven rollers with different roller diameters as the driven roller,
The plurality of driven rollers are configured on a driven roller shaft having support bearings disposed at both ends, and are configured to be able to switch a plurality of roller pairs set with different gear ratios,
Among the plurality of roller pairs, no other roller pair is disposed between a roller pair having the largest reduction ratio and a support bearing close to the roller pair, and a roller pair having the second largest reduction ratio, and the roller No other roller pair is arranged between the support bearings close to the pair.

よって、本発明の変速装置にあっては、例えば、複数のローラ対として、最も減速比の大きいローラ対(以下、「1速ローラ対」)と、2番目に減速比の大きいローラ対(以下、「2速ローラ対」)と、最も減速比が小さいローラ対(以下、「3速ローラ対」)と、を有する場合、従動ローラ軸上には、支持軸受け・1速従動ローラ・3速従動ローラ・2速従動ローラ・支持軸受け、という設定となる。
したがって、1速選択時と2速選択時には、従動ローラ軸を支持する支持軸受けからローラ荷重点までの距離が最も短くなるため、伝達トルク及び押し付け力が大きくなるにもかかわらず、従動ローラ軸に作用する曲げ応力(=押し付け力×支持スパン)が小さく抑えられる。なお、3速選択時には、従動ローラ軸を支持する支持軸受けからローラ荷重点までの距離が最も長くなるものの、1速選択時や2速選択時に比べ、伝達トルクも押し付け力も小さくなるため、従動ローラ軸に作用する曲げ応力は小さく抑えられる。
この結果、伝達トルクが大きくなるロー側の変速比選択時であっても、従動ローラ軸の曲げによるローラ偏摩耗や最大伝達トルクの低下を防止することができる。
Therefore, in the transmission of the present invention, for example, as a plurality of roller pairs, a roller pair having the largest reduction ratio (hereinafter referred to as “first-speed roller pair”) and a roller pair having the second largest reduction ratio (hereinafter referred to as “low-speed ratio pair”). , “Two-speed roller pair”) and a roller pair having the smallest reduction ratio (hereinafter referred to as “three-speed roller pair”), a support bearing, a first-speed driven roller, and a three-speed on the driven roller shaft The setting is driven roller, 2-speed driven roller, and support bearing.
Therefore, when the first speed is selected and the second speed is selected, the distance from the support bearing that supports the driven roller shaft to the roller load point is the shortest. The acting bending stress (= pressing force × support span) can be kept small. When the 3rd speed is selected, the distance from the support bearing supporting the driven roller shaft to the roller load point is the longest, but the transmission torque and the pressing force are smaller than when the 1st speed or the 2nd speed is selected. The bending stress acting on the shaft is kept small.
As a result, even when the low-side transmission gear ratio at which the transmission torque becomes large is selected, it is possible to prevent roller uneven wear and a decrease in the maximum transmission torque due to bending of the driven roller shaft.

以下、本発明の変速装置を実施するための最良の形態を、図面に示す実施例1及び実施例2に基づいて説明する。   Hereinafter, the best mode for carrying out the transmission of the present invention will be described based on Example 1 and Example 2 shown in the drawings.

まず、構成を説明する。
図1は実施例1における3速の変速装置を示す全体図、図2は実施例1の変速装置における押し付け力発生部を示す側面図である。実施例1の変速装置は、回転自在に支持された駆動ローラ1と従動ローラ2とを押圧接触させ、その接触部に生じる摩擦力によって、上記2個のローラ1,2のうち、一方のローラ1または2から他方のローラ2または1に動力を伝達する摩擦伝動ローラを構成する。
First, the configuration will be described.
FIG. 1 is an overall view showing a three-speed transmission in the first embodiment, and FIG. 2 is a side view showing a pressing force generator in the transmission of the first embodiment. In the transmission of the first embodiment, the driving roller 1 and the driven roller 2 that are rotatably supported are brought into press contact with each other, and one of the two rollers 1 and 2 is caused by a frictional force generated at the contact portion. A friction transmission roller that transmits power from 1 or 2 to the other roller 2 or 1 is configured.

前記駆動ローラ1は、1速用駆動ローラ11と、2速用駆動ローラ12と、3速用駆動ローラ13と、駆動ローラ支持軸部17,18と、を一体形成して構成されている。ローラ径は、1速用駆動ローラ11<2速用駆動ローラ12<3速用駆動ローラ13であり、前記駆動ローラ支持軸部17,18の間に、図1の左から1速用駆動ローラ11、3速用駆動ローラ13、2速用駆動ローラ12、が配列される。   The driving roller 1 is configured by integrally forming a first speed driving roller 11, a second speed driving roller 12, a third speed driving roller 13, and driving roller support shaft portions 17 and 18. The roller diameter is 1-speed drive roller 11 <2-speed drive roller 12 <3-speed drive roller 13, and the 1-speed drive roller from the left in FIG. 11, third-speed drive roller 13 and second-speed drive roller 12 are arranged.

前記従動ローラ2は、1速用従動ローラ21と、2速用従動ローラ22と、3速用従動ローラ23と、偏心従動ローラ軸24と、により構成されている。ローラ径は、1速用従動ローラ21>2速用従動ローラ22>3速用従動ローラ23であり、前記偏心従動ローラ軸24上に、図1の左から1速用従動ローラ21、3速用従動ローラ23、2速用従動ローラ22、が配列される。   The driven roller 2 includes a first speed driven roller 21, a second speed driven roller 22, a third speed driven roller 23, and an eccentric driven roller shaft 24. The roller diameter is 1-speed driven roller 21> 2-speed driven roller 22> 3-speed driven roller 23. On the eccentric driven roller shaft 24, the 1-speed driven roller 21, 3rd speed from the left in FIG. The driven roller 23 for the second speed and the driven roller 22 for the second speed are arranged.

前記3個の従動ローラ21,22,23は、両端に第1支持軸受け3と第2支持軸受け4を配置した偏心従動ローラ軸24上に設定すると共に、変速比を異ならせて設定した三対のローラ対を切り替え可能に構成している。   The three driven rollers 21, 22, and 23 are set on an eccentric driven roller shaft 24 in which the first support bearing 3 and the second support bearing 4 are arranged at both ends, and the three pairs are set with different speed ratios. These roller pairs are configured to be switchable.

前記三対のローラ対のうち、1速用駆動ローラ11と1速用従動ローラ21による最も減速比の大きい1速ローラ対11,21と、該1速ローラ対11,21に近い第1支持軸受け3との間に他のローラ対を配置しないと共に、2速用駆動ローラ12と2速用従動ローラ22による2番目に減速比の大きい2速ローラ対12,22と、該2速ローラ対12,22に近い第2支持軸受け4との間に他のローラ対を配置しない構成としている。すなわち、前記三対のローラ対のうち、減速比が大きい1速ローラ対11,21と2速ローラ対12,22を、両支持軸受け3,4に近い位置に配置し、増速比を持つ3速ローラ対13,23を1速ローラ対11,21と2速ローラ対12,22との間の位置に配置している。   Of the three roller pairs, the first speed roller pair 11, 21 having the largest reduction ratio by the first speed driving roller 11 and the first speed driven roller 21, and the first support close to the first speed roller pair 11, 21 No other roller pair is disposed between the bearing 3 and the second-speed roller pair 12, 22 having the second largest reduction ratio by the second-speed drive roller 12 and the second-speed driven roller 22, and the second-speed roller pair. No other roller pair is arranged between the second support bearing 4 and 12 and 22. That is, among the three pairs of rollers, the first speed roller pair 11 and 21 and the second speed roller pair 12 and 22 having a large reduction ratio are arranged at positions close to both the support bearings 3 and 4 and have a speed increasing ratio. Three-speed roller pairs 13 and 23 are arranged between the first-speed roller pairs 11 and 21 and the second-speed roller pairs 12 and 22.

前記三対のローラ対は、図2に示すように、前記駆動ローラ支持軸部17,18に駆動ローラ支持軸受け5,6を設定し、該駆動ローラ支持軸受け5,6に、変速装置ケース7に設定したカム8を当接することで、ローラ対間に押し付け力を付与している。
前記カム8は、図2に示すように、駆動ローラ1と従動ローラ2との接触点における接線に対し角度θを持ったカム斜面8aを有し、該カム斜面8aを駆動ローラ支持軸受け5,6のカムフォロア5a,6aに当接することでローラ対を押圧接触させている。なお、駆動ローラ支持軸受け5,6は、外輪としてのカムフォロア5a,6aと、転動体としてのニードル5b,6bと、を有して構成されている。
As shown in FIG. 2, the three pairs of rollers have drive roller support bearings 5 and 6 set on the drive roller support shaft portions 17 and 18, and a transmission case 7 is provided on the drive roller support bearings 5 and 6. A pressing force is applied between the pair of rollers by abutting the cam 8 set to.
As shown in FIG. 2, the cam 8 has a cam inclined surface 8a having an angle θ with respect to a tangent at the contact point between the driving roller 1 and the driven roller 2, and the cam inclined surface 8a is connected to the driving roller support bearing 5, The roller pair is pressed and brought into contact with the six cam followers 5a and 6a. The drive roller support bearings 5 and 6 have cam followers 5a and 6a as outer rings and needles 5b and 6b as rolling elements.

前記3個の従動ローラ21,22,23は、両端に第1支持軸受け3と第2支持軸受け4とを配置した偏心従動ローラ軸24上にボール等を介して回転可能に設定すると共に、前記偏心従動ローラ軸24を回動させるサーボモータ9(変速アクチュエータ)を偏心従動ローラ軸24の一端部に設けている。変速指令時には、前記サーボモータ9による偏心従動ローラ軸24の回動により、変速前の変速位置に対応する従動ローラ回転軸21a,22a,23aのうち1つの軸を駆動ローラ回転軸1aから離し、変速後の変速位置に対応する従動ローラ回転軸21a,22a,23aのうち1つの軸を駆動ローラ回転軸1aに近づけ、変速比を異ならせて設定した三対のローラ対を切り替え可能に構成している。なお、偏心従動ローラ軸24の第1支持軸受け3と第2支持軸受け4の軸受け中心軸となる従動ローラ回転軸2aは、従動ローラ回転軸22aと一致させている。   The three driven rollers 21, 22, 23 are set to be rotatable via a ball or the like on an eccentric driven roller shaft 24 in which the first support bearing 3 and the second support bearing 4 are arranged at both ends. A servo motor 9 (transmission actuator) that rotates the eccentric driven roller shaft 24 is provided at one end of the eccentric driven roller shaft 24. At the time of a shift command, the rotation of the eccentric driven roller shaft 24 by the servo motor 9 separates one of the driven roller rotation shafts 21a, 22a, 23a corresponding to the shift position before the shift from the drive roller rotation shaft 1a, One of the driven roller rotary shafts 21a, 22a, 23a corresponding to the shift position after the shift is brought close to the drive roller rotary shaft 1a, and three roller pairs set with different gear ratios can be switched. ing. The driven roller rotating shaft 2a, which is the bearing central axis of the first supporting bearing 3 and the second supporting bearing 4 of the eccentric driven roller shaft 24, is made to coincide with the driven roller rotating shaft 22a.

前記複数のローラ対は、1速ローラ対11,21と2速ローラ対12,22と3速ローラ対13,23であり、前記従動ローラ2の両端の支持軸受けを、第1支持軸受け3と第2支持軸受け4としたとき、前記第1支持軸受け3と第2支持軸受け4との間に、第1支持軸受け3から順に、1速用従動ローラ21と3速用従動ローラ23と2速用従動ローラ22とを並べて配置し、前記1速用従動ローラ21と3速用従動ローラ23と2速用従動ローラ22とは、第1連結部31と第2連結部32により、径方向は互いに移動可能で、かつ、回転方向は一体に連結している。なお、変速装置への駆動入力は、前記駆動ローラ支持軸部17,18の何れか一方からなされ、変速装置からの出力は、前記2速用従動ローラ22から径方向あるいは軸方向になされる。   The plurality of roller pairs are a first speed roller pair 11, 21, a second speed roller pair 12, 22, and a third speed roller pair 13, 23, and the support bearings at both ends of the driven roller 2 are connected to the first support bearing 3. When the second support bearing 4 is used, the first-speed driven roller 21, the third-speed driven roller 23, and the second-speed are arranged between the first support bearing 3 and the second support bearing 4 in order from the first support bearing 3. The first-speed driven roller 21, the third-speed driven roller 23, and the second-speed driven roller 22 are arranged in a radial direction by a first connecting portion 31 and a second connecting portion 32. They are movable with respect to each other and are connected together in the direction of rotation. The drive input to the transmission is made from either one of the drive roller support shafts 17 and 18, and the output from the transmission is made from the second speed driven roller 22 in the radial direction or the axial direction.

次に、作用を説明する。   Next, the operation will be described.

[動力伝達作用]
例えば、特開2001−173743号公報等に記載される摩擦伝動ローラは、ローラの軸支持部をネジ等によって相対的に締め上げ、軸間距離を近づけることでローラに押し付け力を与えている。しかしながら、この摩擦伝動ローラでは、伝達するトルクによらず押し付け力は一定となる。ところが、動力伝達部における摩擦係数は運転条件によって大きく変化するものではないので、最大伝達トルクに合わせて押し付け力を設定すれば、低トルク域では過剰な押し付け力を与えることになり、ローラおよび支持軸受の寿命低下や、動力伝達効率の悪化を招く。
[Power transmission action]
For example, a friction transmission roller described in Japanese Patent Application Laid-Open No. 2001-173743 or the like applies a pressing force to the roller by relatively tightening the shaft support portion of the roller with a screw or the like and reducing the distance between the shafts. However, with this friction transmission roller, the pressing force is constant regardless of the transmitted torque. However, since the friction coefficient in the power transmission part does not change greatly depending on the operating conditions, if the pressing force is set according to the maximum transmission torque, an excessive pressing force is applied in the low torque range, and the roller and support This will cause a reduction in bearing life and power transmission efficiency.

また、特開平8-277896号公報では、伝達トルクに合わせた最小限の押し付け力に制御できるよう、エアシリンダによって押し付け力を与えている。この従来例ではエアシリンダの圧力はオン/オフ制御としているが、運転条件に合わせて任意の圧力に制御すれば、伝達トルクに対して最小限の押し付け力を与えることができる。しかしながら、この摩擦伝動ローラでは、エア圧力を発生するために動力損失が発生し、また、シリンダ本体やポンプ、制御装置が必要になるためコストが増加する。   In Japanese Patent Application Laid-Open No. 8-277896, a pressing force is applied by an air cylinder so that the pressing force can be controlled to a minimum according to the transmission torque. In this conventional example, the pressure of the air cylinder is on / off controlled. However, if the pressure is controlled to an arbitrary pressure according to the operating conditions, a minimum pressing force can be applied to the transmission torque. However, in this friction transmission roller, power loss occurs because air pressure is generated, and the cost increases because a cylinder body, a pump, and a control device are required.

さらに、特開2002-349654号公報では、駆動ローラと従動ローラの間にくさびローラを設け、それぞれの接触点における接線の方向に角度を持たせることで、伝達トルクに比例した押し付け力を自動的に発生する構造としている。しかしながら、この摩擦伝動ローラでは、動力伝達部が2ヶ所あるため動力損失が2倍になる。さらに、くさびローラとその支持部が追加されるため部品点数が多くコストが増加する、という問題があった。伝達トルクの方向が変わる場合は、さらに、くさびローラの反対側に第2くさびローラを設ける必要がある。   Further, in Japanese Patent Laid-Open No. 2002-349654, a wedge roller is provided between the driving roller and the driven roller, and an angle is given to the direction of the tangent at each contact point, so that the pressing force proportional to the transmission torque is automatically applied. It has a structure that occurs in However, in this friction transmission roller, since there are two power transmission portions, the power loss is doubled. Further, since the wedge roller and its supporting portion are added, there is a problem that the number of parts is large and the cost is increased. When the direction of the transmission torque changes, it is further necessary to provide a second wedge roller on the opposite side of the wedge roller.

また、複数のローラ対を用いて変速装置を構成したものとして、特開昭61-286652号公報がある。この例では、一方のローラを軸受を介してケースに固定し、他方を偏心軸で支持し、偏心軸自体は軸受を介してケースで支持し、偏心軸を回転させることで各ローラ対の軸間距離を変化させ、最も軸間距離の小さいローラ対が動力を伝達する構成としている。押し付け力を与える装置は持っておらず、ローラの径よりも軸間距離を小さく設定し、弾性変形によって押し付け力を発生させる。一般に変速装置は、変速を行う際、クラッチ等で動力を切断した状態で経路の切り替えを行うため、変速ショックを生じるが、この例であればクラッチを用いることなく変速できる。しかしながら、この摩擦伝動ローラでは、偏心軸の位相角に誤差が生じた場合、軸間距離が広がってしまうが、これに追従する機構をもたないため、押し付け力が低下して伝達トルクが下がる、という問題があった。   Japanese Patent Application Laid-Open No. 61-286665 discloses a transmission device that uses a plurality of roller pairs. In this example, one roller is fixed to the case via a bearing, the other is supported by an eccentric shaft, the eccentric shaft itself is supported by the case via a bearing, and the shaft of each roller pair is rotated by rotating the eccentric shaft. The distance between the rollers is changed, and the roller pair with the shortest distance between the axes transmits power. There is no device for applying a pressing force, the distance between the axes is set smaller than the diameter of the roller, and the pressing force is generated by elastic deformation. In general, when a speed change is performed, a speed change shock is generated because the speed change shock is generated because the path is switched in a state where power is disconnected by a clutch or the like. In this example, the speed change can be performed without using a clutch. However, in this friction transmission roller, if an error occurs in the phase angle of the eccentric shaft, the distance between the shafts increases, but since there is no mechanism to follow this, the pressing force is reduced and the transmission torque is reduced. There was a problem.

これに対し、実施例1の変速装置では、図2に示すように、例えば、2速選択時において、2速用駆動ローラ12から2速用従動ローラ22にトルクが伝達されると、2速用駆動ローラ12には伝達トルクの反力が働く。この伝達トルクの反力は、転がり軸受である第2支持軸受け6のカムフォロワ6aとカム8のカム斜面8aの当接部で支持されるが、当接部においては接触面に垂直な力しか発生できないので、大きな法線力を生じ、水平方向成分が伝達トルクの反力と釣り合う。この法線力の垂直方向成分が押し付け力となり一対の2速ローラ12,22の接触部に働くことになる。   On the other hand, in the transmission of the first embodiment, as shown in FIG. 2, for example, when torque is transmitted from the second-speed drive roller 12 to the second-speed driven roller 22 when the second-speed is selected, the second-speed A reaction force of the transmission torque acts on the drive roller 12. The reaction force of this transmission torque is supported by the contact portion between the cam follower 6a of the second support bearing 6 that is a rolling bearing and the cam inclined surface 8a of the cam 8, but only a force perpendicular to the contact surface is generated at the contact portion. Since this is not possible, a large normal force is generated, and the horizontal component is balanced with the reaction force of the transmission torque. The vertical component of the normal force acts as a pressing force and acts on the contact portion between the pair of second speed rollers 12 and 22.

このときカムフォロワ6aとカム斜面8aに生じる法線力の水平方向成分と垂直方向成分の比、つまり、伝達トルクと押し付け力の比は、当接部におけるカム斜面8aの角度θに等しく、このカム斜面8aの角度θは一定である。したがって、伝達トルクに比例した押し付け力を動力伝達部に加えることができる。   At this time, the ratio between the horizontal component and the vertical component of the normal force generated in the cam follower 6a and the cam slope 8a, that is, the ratio of the transmission torque and the pressing force is equal to the angle θ of the cam slope 8a at the contact portion. The angle θ of the slope 8a is constant. Therefore, a pressing force proportional to the transmission torque can be applied to the power transmission unit.

なお、カムフォロワ6aとカム斜面8aの当接部における摩擦力が大きいと、法線力が小さくても伝達トルクと釣り合うため(摩擦力およびカム斜面8aからの力の合計が伝達トルクと釣り合っていれば良い)、十分な押し付け力が得られないが、実施例1では当部位を、第2支持軸受け6により転がり接触させているため、摩擦力はきわめて小さく、十分な押し付け力を得ることができる。   Note that if the frictional force at the contact portion between the cam follower 6a and the cam slope 8a is large, even if the normal force is small, it balances with the transmission torque (the sum of the frictional force and the force from the cam slope 8a is balanced with the transmission torque. However, in Example 1, since this part is in rolling contact with the second support bearing 6, the frictional force is extremely small, and a sufficient pressing force can be obtained. .

[変速作用]
まず、図3に示すように、複数のローラ対は、実施例1と同様に、1速ローラ対と2速ローラ対と3速ローラ対であるが、従動ローラの両端の第1支持軸受けと第2支持軸受けとの間に、第1支持軸受けから順に、1速用従動ローラと2速用従動ローラと3速用従動ローラとを並べて配置した例での変速作用を説明する。
[Shifting action]
First, as shown in FIG. 3, the plurality of roller pairs are a first-speed roller pair, a second-speed roller pair, and a third-speed roller pair, as in the first embodiment, but the first support bearings at both ends of the driven roller. A speed change operation in an example in which a first-speed driven roller, a second-speed driven roller, and a third-speed driven roller are arranged in order from the first support bearing to the second support bearing will be described.

減速比大の1速時には、図4に示すように、所定の伝達トルクに対して押し付け力が高く、かつ、伝達トルクの変化に対する押し付け力の変化勾配も大きくなる。減速比中の2速時には、図4に示すように、所定の伝達トルクに対して押し付け力が1速時よりも低く、かつ、伝達トルクの変化に対する押し付け力の変化勾配も1速時よりも小さくなる。減速比小の3速時には、図4に示すように、所定の伝達トルクに対して押し付け力が1,2速時よりも低く、かつ、伝達トルクの変化に対する押し付け力の変化勾配も1,2速時よりも小さくなる。   At the first speed with a large reduction ratio, as shown in FIG. 4, the pressing force is high with respect to a predetermined transmission torque, and the change gradient of the pressing force with respect to the change in the transmission torque is also large. At the second speed in the reduction ratio, as shown in FIG. 4, the pressing force with respect to a predetermined transmission torque is lower than that at the first speed, and the change gradient of the pressing force with respect to the change in the transmission torque is also higher than that at the first speed. Get smaller. At the third speed with a small reduction ratio, as shown in FIG. 4, the pressing force with respect to a predetermined transmission torque is lower than that at the first and second speeds, and the change gradient of the pressing force with respect to the change in the transmission torque is also 1,2. It becomes smaller than the speed.

よって、図3に示す変速装置にあっては、1速選択時と3速選択時には、従動ローラ軸を支持する支持軸受けからローラ荷重点までの距離がL1,L1と短くなるため、1速ローラ荷重のように押し付け力が大きくなっても、従動ローラ軸に作用する曲げ応力(=押し付け力×支持スパン)が小さく抑えられる。   Therefore, in the transmission shown in FIG. 3, when the 1st speed is selected and the 3rd speed is selected, the distance from the support bearing supporting the driven roller shaft to the roller load point is as short as L1 and L1, so that the 1st speed roller Even if the pressing force increases as in the load, the bending stress (= pressing force × support span) acting on the driven roller shaft can be kept small.

しかしながら、2速選択時には、従動ローラ軸を支持する支持軸受けからローラ荷重点までの距離がL2(>L1)と長くなるため、1速選択時や3速選択時に比べ、従動ローラ軸に作用する曲げ応力が大きくなる。
この結果、伝達トルクが大きくなるロー側の2速選択時、従動ローラ軸の曲げによる2速ローラ対に偏摩耗を生じたり、従動ローラ軸の曲げにより押し付け力が低下することで、最大伝達トルクの低下をも招く。
However, when the 2nd speed is selected, the distance from the support bearing that supports the driven roller shaft to the roller load point is as long as L2 (> L1). Therefore, it acts on the driven roller shaft compared to the 1st speed selection or the 3rd speed selection. Bending stress increases.
As a result, when the low-side 2nd speed is selected where the transmission torque is increased, the maximum transmission torque can be reduced by causing uneven wear on the 2nd-speed roller pair due to bending of the driven roller shaft, or by reducing the pressing force due to bending of the driven roller shaft. It also causes a decrease in

これに対し、実施例1の変速装置にあっては、複数のローラ対として、図1に示すように、最も減速比の大きい1速ローラ対11,21と、2番目に減速比の大きい2速ローラ対12,22と、最も減速比が小さい3速ローラ対13,23と、を備え、偏心従動ローラ軸24上には、第1支持軸受け3・1速従動ローラ21・3速従動ローラ23・2速従動ローラ22・第2支持軸受け4、という順に並んだ設定となる。   On the other hand, in the transmission of the first embodiment, as shown in FIG. 1, as the plurality of roller pairs, the first-speed roller pair 11 and 21 having the largest reduction ratio and the second largest reduction ratio 2 A pair of speed rollers 12, 22 and a pair of third speed rollers 13, 23 having the smallest reduction ratio, and on the eccentric driven roller shaft 24, the first support bearing 3, the first speed driven roller 21, and the third speed driven roller The settings are arranged in the order of 23. 2nd speed driven roller 22 and 2nd support bearing 4.

そして、1速時には、図6に示すように、所定の伝達トルクに対して押し付け力が高く、かつ、伝達トルクの変化に対する押し付け力の変化勾配も大きくなる。2速時には、図6に示すように、所定の伝達トルクに対して押し付け力が1速時よりも低く、かつ、伝達トルクの変化に対する押し付け力の変化勾配も1速時よりも小さくなる。3速時には、図6に示すように、所定の伝達トルクに対して押し付け力が1,2速時よりも低く、かつ、伝達トルクの変化に対する押し付け力の変化勾配も1,2速時よりも小さくなる。   At the first speed, as shown in FIG. 6, the pressing force is high with respect to the predetermined transmission torque, and the change gradient of the pressing force with respect to the change in the transmission torque is also large. At the second speed, as shown in FIG. 6, the pressing force with respect to the predetermined transmission torque is lower than that at the first speed, and the change gradient of the pressing force with respect to the change in the transmission torque is also smaller than that at the first speed. At the third speed, as shown in FIG. 6, the pressing force with respect to a predetermined transmission torque is lower than that at the first and second speeds, and the change gradient of the pressing force with respect to the change in the transmission torque is also lower than at the first and second speeds. Get smaller.

したがって、1速選択時と2速選択時には、図7に示すように、偏心従動ローラ軸24を支持する両支持軸受け3,4からローラ荷重点までの距離がL1と短くなるため、伝達トルク及び押し付け力が大きくなるにもかかわらず、偏心従動ローラ軸24に作用する曲げ応力(=押し付け力×支持スパン)が小さく抑えられる。
また、3速選択時には、偏心従動ローラ軸24を支持する両支持軸受け3,4からローラ荷重点までの距離がL2(>L1)と長くなるものの、1速選択時や2速選択時に比べ、伝達トルクも押し付け力(=3速ローラ荷重)も小さくなるため、偏心従動ローラ軸24に作用する曲げ応力は小さく抑えられる。
Therefore, when the 1st speed is selected and the 2nd speed is selected, as shown in FIG. 7, the distance from the support bearings 3 and 4 supporting the eccentric driven roller shaft 24 to the roller load point is reduced to L1, so that the transmission torque and Despite the increase in the pressing force, the bending stress (= pressing force × support span) acting on the eccentric driven roller shaft 24 can be kept small.
In addition, when the 3rd speed is selected, the distance from the two support bearings 3 and 4 that support the eccentric driven roller shaft 24 to the roller load point is as long as L2 (> L1). Since the transmission torque and the pressing force (= third speed roller load) are reduced, the bending stress acting on the eccentric driven roller shaft 24 can be kept small.

この結果、伝達トルクが大きくなるロー側の1速選択時や2速選択時であっても、偏心従動ローラ軸24の曲げによるローラ偏摩耗や最大伝達トルクの低下を防止することができる。   As a result, even when the low-side 1st speed or the 2nd speed is selected when the transmission torque becomes large, it is possible to prevent roller partial wear due to bending of the eccentric driven roller shaft 24 and a decrease in the maximum transmission torque.

次に、効果を説明する。
実施例1の変速装置にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the transmission of the first embodiment, the effects listed below can be obtained.

(1) 回転自在に支持された駆動ローラ1と従動ローラ2とを押圧接触させ、その接触部に生じる摩擦力によって、一方のローラ1または2から他方のローラ2または1に動力を伝達する摩擦伝動ローラにおいて、前記駆動ローラ1として、ローラ径の異なる3個以上の複数の駆動ローラ11,12,13を設定し、前記従動ローラ2として、ローラ径の異なる3個以上の複数の従動ローラ21,22,23を設定し、前記複数の従動ローラ21,22,23は、両端に第1支持軸受け3と第2支持軸受け4を配置した偏心従動ローラ軸24上に設定すると共に、変速比を異ならせて設定した複数のローラ対を切り替え可能に構成し、複数のローラ対のうち、最も減速比の大きい1速ローラ対11,21と、該1速ローラ対11,21に近い第1支持軸受け3との間に他のローラ対を配置しないと共に、2番目に減速比の大きい2速ローラ対12,22と、該2速ローラ対12,22に近い第2支持軸受け4との間に他のローラ対を配置しないため、伝達トルクが大きくなるロー側の変速比選択時であっても、偏心従動ローラ軸24の曲げによるローラ偏摩耗や最大伝達トルクの低下を防止することができる。   (1) Friction in which power is transmitted from one roller 1 or 2 to the other roller 2 or 1 by the friction force generated at the contact portion between the driving roller 1 and the driven roller 2 that are rotatably supported. In the transmission roller, as the driving roller 1, three or more driving rollers 11, 12, 13 having different roller diameters are set, and as the driven roller 2, three or more driven rollers 21 having different roller diameters are set. , 22, 23, and the plurality of driven rollers 21, 22, 23 are set on an eccentric driven roller shaft 24 in which the first support bearing 3 and the second support bearing 4 are disposed at both ends, and the transmission ratio is set. A plurality of roller pairs set differently are configured to be switchable, and among the plurality of roller pairs, the first speed roller pair 11, 21 having the largest reduction ratio, and the first speed roller pair 11, 21 close to the first speed roller pair 11, 21 No other roller pair is arranged between the support bearing 3 and the second-speed roller pair 12 and 22 having the second largest reduction ratio and the second support bearing 4 close to the second-speed roller pair 12 and 22. Since no other roller pair is disposed at the same time, even when the low gear ratio is selected, which increases the transmission torque, it is possible to prevent uneven roller wear due to bending of the eccentric driven roller shaft 24 and a decrease in the maximum transmission torque. .

(2) 前記複数のローラ対のうち、減速比が大きいローラ対ほど、支持軸受けに近い位置に配置したため、1速や2速等のように、伝達トルクが大きくなる減速比大の変速比を選択した時であっても、偏心従動ローラ軸24の曲げによるローラ偏摩耗や最大伝達トルクの低下を防止することができる。   (2) Among the plurality of roller pairs, a roller pair having a larger reduction ratio is arranged at a position closer to the support bearing, so that a transmission ratio having a large reduction ratio that increases transmission torque, such as first speed or second speed, is provided. Even when selected, it is possible to prevent roller uneven wear and a decrease in maximum transmission torque due to bending of the eccentric driven roller shaft 24.

(3) 前記三対のローラ対は、前記駆動ローラ支持軸部17,18に駆動ローラ支持軸受け5,6を設定し、該駆動ローラ支持軸受け5,6に、変速装置ケース7に設定したカム8を当接することで、ローラ対間に押し付け力を付与したため、くさびローラやアクチュエータを用いることのない簡単な構成としながら、伝達トルクに比例した押し付け力を与えることにより、寿命と動力伝達効率の向上を達成することができる。加えて、転がり軸受である駆動ローラ支持軸受け5,6によりカム8に対し転動可能であるため、カム8の当接部での摩擦力発生による押し付け力の低下を防止することができる。   (3) The three roller pairs are provided with drive roller support bearings 5 and 6 on the drive roller support shaft portions 17 and 18, and cams set on the transmission case 7 on the drive roller support bearings 5 and 6. Since the pressing force is applied between the pair of rollers by abutting 8, the life and power transmission efficiency can be improved by applying the pressing force proportional to the transmission torque while using a simple configuration without using a wedge roller or actuator. An improvement can be achieved. In addition, since it can roll with respect to the cam 8 by the driving roller support bearings 5 and 6 which are rolling bearings, it is possible to prevent the pressing force from being reduced due to the generation of frictional force at the contact portion of the cam 8.

(4) 前記3個の従動ローラ21,22,23は、両端に第1支持軸受け3と第2支持軸受け4とを配置した偏心従動ローラ軸24上に回転可能に設定すると共に、前記偏心従動ローラ軸24を回動させるサーボモータ9を偏心従動ローラ軸24の一端部に設け、変速指令時、前記サーボモータ9による偏心従動ローラ軸24の回動により、変速前の変速位置に対応する従動ローラ回転軸21a,22a,23aのうち1つの軸を駆動ローラ回転軸1aから離し、変速後の変速位置に対応する従動ローラ回転軸21a,22a,23aのうち1つの軸を駆動ローラ回転軸1aに近づけ、変速比を異ならせて設定した三対のローラ対を切り替え可能に構成したため、動力を途切れさせることなく変速を行うことができると共に、クラッチや回転同期機構(シンクロナイザ)が不要であり、簡単な構成により変速動作を達成することができる。   (4) The three driven rollers 21, 22, and 23 are set so as to be rotatable on an eccentric driven roller shaft 24 in which the first support bearing 3 and the second support bearing 4 are arranged at both ends, and the eccentric driven A servo motor 9 for rotating the roller shaft 24 is provided at one end portion of the eccentric driven roller shaft 24. When the gear shift command is issued, the driven shaft corresponding to the speed change position before the gear shift is performed by the rotation of the eccentric driven roller shaft 24 by the servo motor 9. One of the roller rotation shafts 21a, 22a, and 23a is separated from the drive roller rotation shaft 1a, and one of the driven roller rotation shafts 21a, 22a, and 23a corresponding to the speed change position after the shift is used as the drive roller rotation shaft 1a. Since the three roller pairs set with different gear ratios can be switched, the speed can be changed without interrupting the power, and the clutch and rotation synchronization can be performed. A mechanism (synchronizer) is not required, and a speed change operation can be achieved with a simple configuration.

(5) 前記複数のローラ対は、1速ローラ対11,21と2速ローラ対12,22と3速ローラ対13,23であり、前記従動ローラ2の両端の支持軸受けを、第1支持軸受け3と第2支持軸受け4としたとき、前記第1支持軸受け3と第2支持軸受け4との間に、第1支持軸受け3から順に、1速用従動ローラ21と3速用従動ローラ23と2速用従動ローラ22とを並べて配置し、前記1速用従動ローラ21と3速用従動ローラ23と2速用従動ローラ22とは、第1連結部31と第2連結部32により、径方向は互いに移動可能で、かつ、回転方向は一体に連結したため、3速の変速装置において、1,2,3速の何れの変速段を選択しても、偏心従動ローラ軸24の曲げによるローラ偏摩耗や最大伝達トルクの低下を防止することができる。   (5) The plurality of roller pairs are a first speed roller pair 11, 21, a second speed roller pair 12, 22, and a third speed roller pair 13, 23, and support bearings at both ends of the driven roller 2 are first supported. When the bearing 3 and the second support bearing 4 are used, the first-speed driven roller 21 and the third-speed driven roller 23 are arranged between the first support bearing 3 and the second support bearing 4 in order from the first support bearing 3. And the second-speed driven roller 22 are arranged side by side, and the first-speed driven roller 21, the third-speed driven roller 23, and the second-speed driven roller 22 are formed by a first connecting portion 31 and a second connecting portion 32, respectively. Since the radial directions are movable with respect to each other and the rotational directions are integrally connected, the eccentric driven roller shaft 24 is bent regardless of which of the first, second, and third gears is selected in the three-speed transmission. Prevents uneven roller wear and reduction in maximum transmission torque. The

実施例2は、実施例1に示す3速の変速装置を2つ組み合わせて6速の変速装置とした例である。   The second embodiment is an example in which two three-speed transmissions shown in the first embodiment are combined to form a six-speed transmission.

すなわち、図8に示すように、実施例2での複数のローラ対は、1速ローラ対11,21と2速ローラ対12,22と3速ローラ対13,23と4速ローラ対14,24と5速ローラ対15,25と6速ローラ対16,26としている。   That is, as shown in FIG. 8, the plurality of roller pairs in the second embodiment includes a first speed roller pair 11, 21, a second speed roller pair 12, 22, a third speed roller pair 13, 23, and a fourth speed roller pair 14, 24 and 5 speed roller pairs 15 and 25 and 6 speed roller pairs 16 and 26.

そして、前記6個のローラ対を、1速ローラ対11,21と3速ローラ対13,23と5速ローラ対15,25による第1グループと、2速ローラ対12,22と4速ローラ対14,24と6速ローラ対16,26による第2グループに分け、両グループは駆動ローラ軸1aと従動ローラ軸2aを共通としている。   The six roller pairs are divided into a first group consisting of a first speed roller pair 11, 21, a third speed roller pair 13, 23 and a fifth speed roller pair 15, 25, a second speed roller pair 12, 22, and a fourth speed roller. The group is divided into a second group of pairs 14 and 24 and six-speed roller pairs 16 and 26, and both groups share the driving roller shaft 1a and the driven roller shaft 2a.

前記第1グループの駆動ローラ1’は、1速用駆動ローラ11と、3速用駆動ローラ13と、5速用駆動ローラ15と、駆動ローラ支持軸部17’,18’と、を一体形成して構成されている。ローラ径は、1速用駆動ローラ11<3速用駆動ローラ13<5速用駆動ローラ15であり、前記駆動ローラ支持軸部17’,18’の間に、図8の左から1速用駆動ローラ11、5速用駆動ローラ15、3速用駆動ローラ13、が配列される。   The first group of drive rollers 1 'are integrally formed with a first speed drive roller 11, a third speed drive roller 13, a fifth speed drive roller 15, and drive roller support shafts 17' and 18 '. Configured. The roller diameter is the first speed driving roller 11 <the third speed driving roller 13 <the fifth speed driving roller 15 and between the driving roller support shafts 17 ′ and 18 ′ for the first speed from the left in FIG. A driving roller 11, a fifth speed driving roller 15, and a third speed driving roller 13 are arranged.

前記第2グループの駆動ローラ1"は、2速用駆動ローラ12と、4速用駆動ローラ14と、6速用駆動ローラ16と、駆動ローラ支持軸部17",18"と、を一体形成して構成されている。ローラ径は、2速用駆動ローラ12<4速用駆動ローラ14<6速用駆動ローラ16であり、前記駆動ローラ支持軸部17",18"の間に、図8の左から2速用駆動ローラ12、6速用駆動ローラ16、4速用駆動ローラ14、が配列される。   The second group of drive rollers 1 "is integrally formed with a 2-speed drive roller 12, a 4-speed drive roller 14, a 6-speed drive roller 16, and drive roller support shafts 17", 18 ". The roller diameter is 2nd speed driving roller 12 <4th speed driving roller 14 <6th speed driving roller 16 and between the driving roller support shafts 17 ", 18". From the left of FIG. 8, a second speed driving roller 12, a sixth speed driving roller 16, and a fourth speed driving roller 14 are arranged.

前記第1グループの従動ローラ2’の両端の支持軸受けを、第3支持軸受け3’と第4支持軸受け4’としたとき、前記第3支持軸受け3’と第4支持軸受け4’との間に、第3支持軸受け3’から順に、1速用従動ローラ21と5速用従動ローラ25と3速用従動ローラ23とを並べて配置している。前記第2グループの従動ローラ2"の両端の支持軸受けを、第5支持軸受け3"と第6支持軸受け4"としたとき、前記第5支持軸受け3"と第6支持軸受け4"との間に、第5支持軸受け3"から順に、2速用従動ローラ22と6速用従動ローラ26と4速用従動ローラ24とを並べて配置している。   When the support bearings at both ends of the driven roller 2 ′ of the first group are the third support bearing 3 ′ and the fourth support bearing 4 ′, the space between the third support bearing 3 ′ and the fourth support bearing 4 ′ In addition, a first-speed driven roller 21, a fifth-speed driven roller 25, and a third-speed driven roller 23 are arranged side by side in order from the third support bearing 3 ′. When the support bearings at both ends of the second group of driven rollers 2 "are the fifth support bearing 3" and the sixth support bearing 4 ", the distance between the fifth support bearing 3" and the sixth support bearing 4 " In addition, the second-speed driven roller 22, the sixth-speed driven roller 26, and the fourth-speed driven roller 24 are arranged in order from the fifth support bearing 3 ".

前記1速用従動ローラ21と5速用従動ローラ25と3速用従動ローラ23とは、第3連結部33と第4連結部34により、径方向は互いに移動可能で、かつ、回転方向は一体に連結している。また、前記2速用従動ローラ22と6速用従動ローラ26と4速用従動ローラ24とは、第5連結部35と第6連結部36により、径方向は互いに移動可能で、かつ、回転方向は一体に連結している。なお、他の構成は、実施例1と同様であるので、対応する構成に同一符号(但し、第1グループは「’」を追加し、第2グループは「"」を追加する。)を付して説明を省略する。   The first-speed driven roller 21, the fifth-speed driven roller 25, and the third-speed driven roller 23 are movable in the radial direction by the third connecting portion 33 and the fourth connecting portion 34, and the rotational direction is They are connected together. The second-speed driven roller 22, the sixth-speed driven roller 26, and the fourth-speed driven roller 24 are movable in the radial direction and rotated by the fifth connecting portion 35 and the sixth connecting portion 36. The directions are connected together. Since the other configurations are the same as those in the first embodiment, the same reference numerals are added to the corresponding configurations (however, “'” is added to the first group and “” ”is added to the second group). Therefore, the description is omitted.

次に、変速作用を説明すると、実施例2の変速装置にあっては、1−3−5速が第1グループにより分担され、2−4−6速が第2グループにより分担される。そして、第1グループでの最も減速比の大きい1速ローラ対11,21と、2番目に減速比の大きい3速ローラ対13,23と、が両端に配置され、最も減速比が小さい5速ローラ対15,25が1速ローラ対11,21と3速ローラ対13,23との間に配置される。また、第2グループでの最も減速比の大きい2速ローラ対12,22と、2番目に減速比の大きい4速ローラ対14,24と、が両端に配置され、最も減速比が小さい6速ローラ対16,26が2速ローラ対12,22と4速ローラ対14,24との間に配置される。   Next, the speed change operation will be described. In the transmission of the second embodiment, the 1-3-5 speed is assigned by the first group, and the 2-4-6 speed is assigned by the second group. The first-speed roller pair 11, 21 with the largest reduction ratio in the first group and the third-speed roller pair 13, 23 with the second largest reduction ratio are arranged at both ends, and the fifth speed with the smallest reduction ratio. Roller pairs 15 and 25 are arranged between the first speed roller pairs 11 and 21 and the third speed roller pairs 13 and 23. In addition, a pair of 2-speed rollers 12, 22 with the largest reduction ratio in the second group and a pair of 4-speed rollers 14, 24 with the second largest reduction ratio are arranged at both ends, and the 6th speed with the smallest reduction ratio. A pair of rollers 16, 26 is disposed between the pair of second speed rollers 12, 22 and the pair of fourth speed rollers 14, 24.

したがって、第1グループにおいては、1速選択時と3速選択時、偏心従動ローラ軸24を支持する両支持軸受け3’,4’からローラ荷重点までの距離が短くなるため、偏心従動ローラ軸24に作用する曲げ応力が小さく抑えられる。一方、5速選択時には、偏心従動ローラ軸24を支持する両支持軸受け3’,4’からローラ荷重点までの距離が長くなるものの、5速ローラ荷重が小さくなるため、偏心従動ローラ軸24に作用する曲げ応力は小さく抑えられる。   Therefore, in the first group, when the first speed is selected and the third speed is selected, the distance from the two support bearings 3 ′, 4 ′ supporting the eccentric driven roller shaft 24 to the roller load point is shortened. The bending stress acting on 24 can be kept small. On the other hand, when the 5th speed is selected, although the distance from the both support bearings 3 ′ and 4 ′ supporting the eccentric driven roller shaft 24 to the roller load point is increased, the 5th speed roller load is reduced. The acting bending stress is kept small.

また、第2グループにおいては、2速選択時と4速選択時、偏心従動ローラ軸24を支持する両支持軸受け3",4"からローラ荷重点までの距離が短くなるため、偏心従動ローラ軸24に作用する曲げ応力が小さく抑えられる。一方、6速選択時には、偏心従動ローラ軸24を支持する両支持軸受け3",4"からローラ荷重点までの距離が長くなるものの、6速ローラ荷重が小さくなるため、偏心従動ローラ軸24に作用する曲げ応力は小さく抑えられる。   In the second group, when the 2nd speed and the 4th speed are selected, the distance from the support bearings 3 "and 4" supporting the eccentric driven roller shaft 24 to the roller load point is shortened. The bending stress acting on 24 can be kept small. On the other hand, when the 6th speed is selected, although the distance from both support bearings 3 "and 4" supporting the eccentric driven roller shaft 24 to the roller load point is increased, the 6th speed roller load is reduced, so that the eccentric driven roller shaft 24 is The acting bending stress is kept small.

この結果、伝達トルクが大きくなるロー側の1,2,3,4速選択時であっても、偏心従動ローラ軸24の曲げによるローラ偏摩耗や最大伝達トルクの低下を防止することができる。   As a result, even when the low-side 1, 2, 3 and 4 speed are selected on the low side where the transmission torque becomes large, it is possible to prevent roller partial wear due to bending of the eccentric driven roller shaft 24 and a decrease in the maximum transmission torque.

次に、効果を説明する。
実施例2の変速装置にあっては、実施例1の(1)〜(4)の効果に加え、下記の効果を得ることができる。
Next, the effect will be described.
In the transmission of the second embodiment, in addition to the effects (1) to (4) of the first embodiment, the following effects can be obtained.

(7) 複数のローラ対は、1速ローラ対11,21と2速ローラ対12,22と3速ローラ対13,23と4速ローラ対14,24と5速ローラ対15,25と6速ローラ対16,26であり、前記6個のローラ対を、1速ローラ対11,21と3速ローラ対13,23と5速ローラ対15,25による第1グループと、2速ローラ対12,22と4速ローラ対14,24と6速ローラ対16,26による第2グループに分け、前記第1グループの従動ローラ2’の両端の支持軸受けを、第3支持軸受け3’と第4支持軸受け4’としたとき、前記第3支持軸受け3’と第4支持軸受け4’との間に、第3支持軸受け3’から順に、1速用従動ローラ21と5速用従動ローラ25と3速用従動ローラ23とを並べて配置し、前記第2グループの従動ローラ2"の両端の支持軸受けを、第5支持軸受け3"と第6支持軸受け4"としたとき、前記第5支持軸受け3"と第6支持軸受け4"との間に、第5支持軸受け3"から順に、2速用従動ローラ22と6速用従動ローラ26と4速用従動ローラ24とを並べて配置し、前記1速用従動ローラ21と5速用従動ローラ25と3速用従動ローラ23とは、第3連結部33と第4連結部34により、径方向は互いに移動可能で、かつ、回転方向は一体に連結したため、6速の変速装置において、1,2,3,4,5,6速の何れの変速段を選択しても、偏心従動ローラ軸24の曲げによるローラ偏摩耗や最大伝達トルクの低下を防止することができる。   (7) The plurality of roller pairs include the first speed roller pair 11, 21, the second speed roller pair 12, 22, the third speed roller pair 13, 23, the fourth speed roller pair 14, 24, and the fifth speed roller pair 15, 25, 6 A pair of high-speed rollers 16 and 26, the six roller pairs being divided into a first group consisting of a first-speed roller pair 11, 21, a third-speed roller pair 13, 23 and a fifth-speed roller pair 15, 25; It is divided into a second group of 12, 22 and 4-speed roller pairs 14, 24 and 6-speed roller pairs 16, 26, and the support bearings at both ends of the driven roller 2 'of the first group are connected to the third support bearing 3' and the second support roller 2 '. When the four-support bearing 4 ′ is used, the first-speed driven roller 21 and the fifth-speed driven roller 25 are arranged between the third support bearing 3 ′ and the fourth support bearing 4 ′ in order from the third support bearing 3 ′. And the third-speed driven roller 23 are arranged side by side to follow the second group of driven rollers. When the support bearings at both ends of the moving roller 2 ″ are the fifth support bearing 3 ″ and the sixth support bearing 4 ″, a fifth support is provided between the fifth support bearing 3 ″ and the sixth support bearing 4 ″. The second speed driven roller 22, the sixth speed driven roller 26, and the fourth speed driven roller 24 are arranged side by side in order from the bearing 3 ", and the first speed driven roller 21, the fifth speed driven roller 25, and the third speed drive are arranged. The driven roller 23 is movable in the radial direction by the third connecting portion 33 and the fourth connecting portion 34 and is integrally connected in the rotational direction. Therefore, in the six-speed transmission, 1, 2, 3, Regardless of which of the fourth, fifth, and sixth gear speeds is selected, it is possible to prevent uneven wear of the roller due to bending of the eccentric driven roller shaft 24 and a decrease in the maximum transmission torque.

以上、本発明の変速装置を実施例1及び実施例2に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   As mentioned above, although the transmission of this invention has been demonstrated based on Example 1 and Example 2, it is not restricted to these Examples about a concrete structure, It concerns on each claim of a claim Design changes and additions are allowed without departing from the scope of the invention.

実施例1では3速の変速装置を示し、実施例2では6速の変速装置を示したが、4速や5速や、あるいは、7速以上の変速装置としても適用することができる。   In the first embodiment, a three-speed transmission is shown, and in the second embodiment, a six-speed transmission is shown. However, the present invention can also be applied to a fourth, fifth, or seventh or higher transmission.

実施例1,2では、カム斜面のカムリード(カム角度)を一定値とする例を示したが、駆動ローラと従動ローラの中心を通る直線から離れた位置であるほどカム斜面のカムリードを段階的(カム面が交差面形状)あるいは無段階(カム面が凹曲面形状)に大きく設定するような例としても良い。また、ローラ対への押し付け力付与機構としては、実施例1,2に示すカム機構に限るものではなく、要するに、回転自在に支持された駆動ローラと従動ローラとを押圧接触させるものであれば、他の機構を採用しても良い。   In the first and second embodiments, an example in which the cam lead (cam angle) on the cam slope is set to a constant value has been shown, but the cam lead on the cam slope is stepped as the position is away from the straight line passing through the centers of the driving roller and the driven roller. It may be an example in which it is set large (the cam surface is an intersecting surface shape) or stepless (the cam surface is a concave curved surface shape). Further, the mechanism for applying the pressing force to the roller pair is not limited to the cam mechanism shown in the first and second embodiments. In short, as long as the driving roller and the driven roller that are rotatably supported are pressed and contacted with each other. Other mechanisms may be employed.

実施例1,2では、変速機構として、偏心従動ローラ軸を変速アクチュエータにより回動させることで変速させる例を示したが、変速機構としては、この例に限らず他の変速機構を採用しても良い。要するに、変速比を異ならせて設定した複数のローラ対を切り替え可能とする機構であれば良い。   In the first and second embodiments, an example is shown in which the eccentric driven roller shaft is rotated by the shift actuator as the shift mechanism, but the shift mechanism is not limited to this example, and other shift mechanisms are employed. Also good. In short, any mechanism that enables switching between a plurality of roller pairs set with different gear ratios may be used.

本発明の変速装置は、車両に適用される変速装置への適用に限らず、加速機能や減速機能や変速機能が要求される産業機器等に対し広汎な用途として適用することができる。   The transmission of the present invention is not limited to application to a transmission applied to a vehicle, but can be applied to a wide range of applications to industrial equipment and the like that require an acceleration function, a deceleration function, and a transmission function.

実施例1における3速の変速装置を示す全体図である。1 is an overall view showing a three-speed transmission in Embodiment 1. FIG. 実施例1の変速装置における押し付け力発生部を示す側面図である。It is a side view which shows the pressing force generation part in the transmission of Example 1. 対比例における3速の変速装置を示す全体図である。FIG. 3 is an overall view showing a three-speed transmission in proportional. 対比例における各変速位置での伝達トルク−押し付け力特性図である。It is a transmission torque-pressing force characteristic figure in each shift position in contrast. 対比例で2速選択時における偏心従動ローラ軸の曲げ応力作用説明図である。It is explanatory drawing of the bending stress effect | action of the eccentric driven roller axis | shaft at the time of 2nd speed selection by comparison. 実施例1の変速装置における各変速位置での伝達トルク−押し付け力特性図である。FIG. 6 is a transmission torque-pressing force characteristic diagram at each shift position in the transmission according to the first embodiment. 実施例1の変速装置で3速選択時における偏心従動ローラ軸の曲げ応力作用説明図である。It is bending stress action explanatory drawing of the eccentric driven roller axis | shaft at the time of 3rd speed selection with the transmission of Example 1. FIG. 実施例2における6速の変速装置を示す全体図である。FIG. 6 is an overall view showing a 6-speed transmission in Embodiment 2.

符号の説明Explanation of symbols

1 駆動ローラ
11 1速用駆動ローラ
12 2速用駆動ローラ
13 3速用駆動ローラ
17,18 駆動ローラ支持軸部
2 従動ローラ
21 1速用従動ローラ
22 2速用従動ローラ
23 3速用従動ローラ
24 偏心従動ローラ軸(従動ローラ軸)
3 第1支持軸受け
4 第2支持軸受け
5,6 駆動ローラ支持軸受け
5a,6a カムフォロア
5b,6b ニードル
7 変速装置ケース
8 カム
8a カム斜面
9 サーボモータ(変速アクチュエータ)
DESCRIPTION OF SYMBOLS 1 Drive roller 11 1st speed drive roller 12 2nd speed drive roller 13 3rd speed drive roller 17, 18 Drive roller support shaft part 2 Driven roller 21 1st speed driven roller 22 2nd speed driven roller 23 3rd speed driven roller 24 Eccentric driven roller shaft (driven roller shaft)
3 First Support Bearing 4 Second Support Bearing 5, 6 Drive Roller Support Bearing 5a, 6a Cam Follower 5b, 6b Needle 7 Transmission Case 8 Cam 8a Cam Slope 9 Servo Motor (Transmission Actuator)

Claims (6)

回転自在に支持された駆動ローラと従動ローラとを押圧接触させ、その接触部に生じる摩擦力によって、一方のローラから他方のローラに動力を伝達させる摩擦伝動ローラにおいて、
前記駆動ローラとしてローラ径の異なる3個以上の複数の駆動ローラを設定し、前記従動ローラとしてローラ径の異なる3個以上の複数の従動ローラを設定し、
前記複数の従動ローラは、両端に支持軸受けを配置した従動ローラ軸上に設定すると共に、変速比を異ならせて設定した複数のローラ対を切り替え可能に構成し、
前記複数のローラ対のうち、最も減速比の大きいローラ対と、該ローラ対に近い支持軸受けとの間に他のローラ対を配置しないと共に、2番目に減速比の大きいローラ対と、該ローラ対に近い支持軸受けとの間に他のローラ対を配置しないことを特徴とする変速装置。
In the friction transmission roller that makes the drive roller and the driven roller that are rotatably supported press and contact each other, and the friction force generated in the contact portion transmits power from one roller to the other roller.
Setting three or more driving rollers with different roller diameters as the driving roller, and setting three or more driven rollers with different roller diameters as the driven roller,
The plurality of driven rollers are configured on a driven roller shaft having support bearings disposed at both ends, and are configured to be able to switch a plurality of roller pairs set with different gear ratios,
Among the plurality of roller pairs, no other roller pair is disposed between a roller pair having the largest reduction ratio and a support bearing close to the roller pair, and a roller pair having the second largest reduction ratio, and the roller A transmission is characterized in that no other roller pair is disposed between the support bearings close to the pair.
請求項1に記載された変速装置において、
前記複数のローラ対のうち、減速比が大きいローラ対ほど、支持軸受けに近い位置に配置したことを特徴とする変速装置。
The transmission according to claim 1, wherein
Of the plurality of roller pairs, a roller pair having a larger reduction ratio is disposed at a position closer to the support bearing.
請求項1または2に記載された変速装置において、
前記複数のローラ対は、駆動ローラ支持軸部に駆動ローラ支持軸受けを設定し、該駆動ローラ支持軸受けに、変速装置ケースに設定したカムを当接することで、ローラ対間の押し付け力を付与したことを特徴とする変速装置。
The transmission according to claim 1 or 2,
The plurality of roller pairs are provided with a pressing force between the roller pairs by setting a drive roller support bearing on the drive roller support shaft portion and abutting a cam set on the transmission case on the drive roller support bearing. A transmission characterized by that.
請求項1乃至3の何れか1項に記載された変速装置において、
前記複数の従動ローラは、両端に支持軸受けを配置した偏心従動ローラ軸上に回転可能に設定すると共に、前記偏心従動ローラ軸を回動させる変速アクチュエータを設け、
変速指令時、前記変速アクチュエータによる偏心従動ローラ軸の回動により、変速前の変速位置に対応する従動ローラ回転軸を駆動ローラ回転軸から離し、変速後の変速位置に対応する従動ローラ回転軸を駆動ローラ回転軸に近づけ、変速比を異ならせて設定した複数のローラ対を切り替え可能に構成したことを特徴とする変速装置。
The transmission according to any one of claims 1 to 3,
The plurality of driven rollers are rotatably set on an eccentric driven roller shaft having support bearings arranged at both ends, and provided with a speed change actuator for rotating the eccentric driven roller shaft,
When a shift command is issued, the eccentric driven roller shaft rotated by the shift actuator separates the driven roller rotation shaft corresponding to the shift position before the shift from the drive roller rotation shaft, and the driven roller rotation shaft corresponding to the shift position after the shift. A transmission comprising a plurality of roller pairs that are set close to a drive roller rotating shaft and have different transmission ratios.
請求項1乃至4の何れか1項に記載された変速装置において、
前記複数のローラ対は、1速ローラ対と2速ローラ対と3速ローラ対であり、
前記従動ローラの両端の支持軸受けを、第1支持軸受けと第2支持軸受けとしたとき、前記第1支持軸受けと第2支持軸受けとの間に、一方の支持軸受けから順に、1速用従動ローラと3速用従動ローラと2速用従動ローラとを並べて配置し、
前記1速用従動ローラと3速用従動ローラと2速用従動ローラとは、第1連結部と第2連結部により、径方向は互いに移動可能で、かつ、回転方向は一体に連結したことを特徴とする変速装置。
The transmission according to any one of claims 1 to 4,
The plurality of roller pairs are a first speed roller pair, a second speed roller pair, and a third speed roller pair,
When the support bearings at both ends of the driven roller are a first support bearing and a second support bearing, the first-speed driven roller is arranged in order from one support bearing between the first support bearing and the second support bearing. And a 3-speed driven roller and a 2-speed driven roller arranged side by side,
The first-speed driven roller, the third-speed driven roller, and the second-speed driven roller are movable in the radial direction by the first connecting portion and the second connecting portion, and are integrally connected in the rotational direction. A transmission characterized by.
請求項1乃至4の何れか1項に記載された変速装置において、
前記複数のローラ対は、1速ローラ対と2速ローラ対と3速ローラ対と4速ローラ対と5速ローラ対と6速ローラ対であり、
前記6個のローラ対を、1速ローラ対と3速ローラ対と5速ローラ対による第1グループと、2速ローラ対と4速ローラ対と6速ローラ対による第2グループに分け、両グループは駆動ローラ軸と従動ローラ軸を共通とし、
前記第1グループの従動ローラの両端の支持軸受けを、第3支持軸受けと第4支持軸受けとしたとき、前記第3支持軸受けと第4支持軸受けとの間に、一方の支持軸受けから順に、1速用従動ローラと5速用従動ローラと3速用従動ローラとを並べて配置し、
前記第2グループの従動ローラの両端の支持軸受けを、第5支持軸受けと第6支持軸受けとしたとき、前記第5支持軸受けと第6支持軸受けとの間に、一方の支持軸受けから順に、2速用従動ローラと6速用従動ローラと4速用従動ローラとを並べて配置し、
前記1速用従動ローラと5速用従動ローラと3速用従動ローラとは、第3連結部と第4連結部により、径方向は互いに移動可能で、かつ、回転方向は一体に連結し、
前記2速用従動ローラと6速用従動ローラと4速用従動ローラとは、第5連結部と第6連結部により、径方向は互いに移動可能で、かつ、回転方向は一体に連結したことを特徴とする変速装置。
The transmission according to any one of claims 1 to 4,
The plurality of roller pairs are a first speed roller pair, a second speed roller pair, a third speed roller pair, a fourth speed roller pair, a fifth speed roller pair, and a sixth speed roller pair,
The six roller pairs are divided into a first group consisting of a first speed roller pair, a third speed roller pair and a fifth speed roller pair, and a second group consisting of a second speed roller pair, a fourth speed roller pair and a sixth speed roller pair. The group has a common drive roller shaft and driven roller shaft.
When the support bearings at both ends of the driven roller of the first group are a third support bearing and a fourth support bearing, the first support bearing is sequentially provided between the third support bearing and the fourth support bearing. A speed driven roller, a 5-speed driven roller, and a 3-speed driven roller are arranged side by side,
When the support bearings at both ends of the second group of driven rollers are a fifth support bearing and a sixth support bearing, the two support bearings are sequentially provided between the fifth support bearing and the sixth support bearing in order from one support bearing. The speed driven roller, the 6th speed driven roller, and the 4th speed driven roller are arranged side by side,
The first-speed driven roller, the fifth-speed driven roller, and the third-speed driven roller are movable in the radial direction by the third connecting portion and the fourth connecting portion, and are integrally connected in the rotational direction.
The second-speed driven roller, the sixth-speed driven roller, and the fourth-speed driven roller can be moved in the radial direction by the fifth connection portion and the sixth connection portion, and the rotation direction is integrally connected. A transmission characterized by.
JP2004325142A 2004-11-09 2004-11-09 Transmission Pending JP2006132738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325142A JP2006132738A (en) 2004-11-09 2004-11-09 Transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325142A JP2006132738A (en) 2004-11-09 2004-11-09 Transmission

Publications (1)

Publication Number Publication Date
JP2006132738A true JP2006132738A (en) 2006-05-25

Family

ID=36726455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325142A Pending JP2006132738A (en) 2004-11-09 2004-11-09 Transmission

Country Status (1)

Country Link
JP (1) JP2006132738A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333123A (en) * 2006-06-16 2007-12-27 Nissan Motor Co Ltd Transmission
WO2009081876A1 (en) * 2007-12-26 2009-07-02 Nissan Motor Co., Ltd. Driving force distribution device
WO2009107543A1 (en) * 2008-02-26 2009-09-03 日産自動車株式会社 Friction type transmission device and pressing force control method for friction type transmission device
JP2010091061A (en) * 2008-10-10 2010-04-22 Nissan Motor Co Ltd Tranction transmission capacity control device of drive force distribution device
JP2010216508A (en) * 2009-03-13 2010-09-30 Nissan Motor Co Ltd Friction transmission device
EP2246592A1 (en) * 2008-01-24 2010-11-03 Nissan Motor Co., Ltd. Friction-roller type transmission mechanism
WO2011001743A1 (en) * 2009-06-30 2011-01-06 日産自動車株式会社 Traction transmission capacity control device used in drive force distribution device
US8187134B2 (en) 2008-01-23 2012-05-29 Nissan Motor Co., Ltd. Friction roller type power transmission device
US8657715B2 (en) 2009-01-22 2014-02-25 Nissan Motor Co., Ltd. Torque distributor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333123A (en) * 2006-06-16 2007-12-27 Nissan Motor Co Ltd Transmission
CN101909918A (en) * 2007-12-26 2010-12-08 日产自动车株式会社 Driving force distribution device
WO2009081876A1 (en) * 2007-12-26 2009-07-02 Nissan Motor Co., Ltd. Driving force distribution device
JP2009173261A (en) * 2007-12-26 2009-08-06 Nissan Motor Co Ltd Driving force distribution device
US8820193B2 (en) 2007-12-26 2014-09-02 Nissan Motor Co., Ltd. Driving force distribution device
US8187134B2 (en) 2008-01-23 2012-05-29 Nissan Motor Co., Ltd. Friction roller type power transmission device
JPWO2009093569A1 (en) * 2008-01-24 2011-05-26 日産自動車株式会社 Friction roller transmission
US8402851B2 (en) 2008-01-24 2013-03-26 Nissan Motor Co., Ltd. Friction-roller type transmission mechanism
EP2246592A1 (en) * 2008-01-24 2010-11-03 Nissan Motor Co., Ltd. Friction-roller type transmission mechanism
CN101925759B (en) * 2008-01-24 2012-12-05 日产自动车株式会社 Friction-roller type transmission mechanism
JP5024391B2 (en) * 2008-01-24 2012-09-12 日産自動車株式会社 Friction roller transmission
EP2246592A4 (en) * 2008-01-24 2011-04-20 Nissan Motor Friction-roller type transmission mechanism
JP5029758B2 (en) * 2008-02-26 2012-09-19 日産自動車株式会社 Friction transmission transmission and method for controlling pressing force of friction transmission transmission
JPWO2009107543A1 (en) * 2008-02-26 2011-06-30 日産自動車株式会社 Friction transmission transmission and method for controlling pressing force of friction transmission transmission
WO2009107543A1 (en) * 2008-02-26 2009-09-03 日産自動車株式会社 Friction type transmission device and pressing force control method for friction type transmission device
US8683885B2 (en) 2008-02-26 2014-04-01 Nissan Motor Co., Ltd. Friction type transmission device and pressing force control method for friction type transmission device
CN101939565A (en) * 2008-02-26 2011-01-05 日产自动车株式会社 Friction type transmission device and pressing force control method for friction type transmission device
JP2010091061A (en) * 2008-10-10 2010-04-22 Nissan Motor Co Ltd Tranction transmission capacity control device of drive force distribution device
US8657715B2 (en) 2009-01-22 2014-02-25 Nissan Motor Co., Ltd. Torque distributor
JP2010216508A (en) * 2009-03-13 2010-09-30 Nissan Motor Co Ltd Friction transmission device
WO2011001743A1 (en) * 2009-06-30 2011-01-06 日産自動車株式会社 Traction transmission capacity control device used in drive force distribution device
JP2011011560A (en) * 2009-06-30 2011-01-20 Nissan Motor Co Ltd Tranction transmission capacity control device for drive force distribution device
CN102458898A (en) * 2009-06-30 2012-05-16 日产自动车株式会社 Traction transmission capacity control device used in drive force distribution device
CN102458898B (en) * 2009-06-30 2014-09-03 日产自动车株式会社 Traction transmission capacity control device used in drive force distribution device
US9057424B2 (en) 2009-06-30 2015-06-16 Nissan Motor Co., Ltd. Traction transmission capacity control device used in drive force distribution device

Similar Documents

Publication Publication Date Title
JP6137809B2 (en) Dual clutch automatic transmission
JP2006077986A (en) Multi-stage transmission of countershaft structure
JP2007321820A (en) Double clutch transmission
KR20060086283A (en) Dog clutch
JP6255980B2 (en) Transmission
JP6219254B2 (en) Variable speed drive mechanism for internal combustion engine
CN101949430A (en) Novel double clutch type automatic transmission (DCT) layout structure
JP2006132738A (en) Transmission
JP2010230111A (en) Dual clutch transmission
JP2013019424A (en) Transmission for vehicle
JP2010151303A (en) Transmission
JP6221485B2 (en) Twin clutch transmission
EP3423735B1 (en) Multi-gear transmission layout
JP2006132572A (en) Transmission device
JP2015081650A (en) Automatic transmission
JP4407504B2 (en) Friction transmission
JP6401092B2 (en) Transmission
JP2017207181A (en) Speed change gear
JP3849893B2 (en) Gear transmission structure
JP2010159831A (en) Transmission
JP2006144996A (en) Transmission device
JP6107579B2 (en) Automatic transmission
JP2006029440A (en) Twin clutch type manual transmission
JP2003247611A (en) Automatic transmission
KR100580473B1 (en) double clutch transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091007

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091020

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A02