JP2006131845A - New optical resin composition - Google Patents

New optical resin composition Download PDF

Info

Publication number
JP2006131845A
JP2006131845A JP2004325436A JP2004325436A JP2006131845A JP 2006131845 A JP2006131845 A JP 2006131845A JP 2004325436 A JP2004325436 A JP 2004325436A JP 2004325436 A JP2004325436 A JP 2004325436A JP 2006131845 A JP2006131845 A JP 2006131845A
Authority
JP
Japan
Prior art keywords
fluorine
fine particles
resin composition
optical
diamond fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004325436A
Other languages
Japanese (ja)
Inventor
Kentaro Tsunosaki
健太郎 角崎
Ko Aosaki
耕 青崎
Tokuhide Sugiyama
徳英 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004325436A priority Critical patent/JP2006131845A/en
Publication of JP2006131845A publication Critical patent/JP2006131845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical resin composition having excellent transparency, durability and light resistance, and forming a transparent resin exhibiting high refractive index and small chromatic dispersion. <P>SOLUTION: The optical resin composition comprises an amorphous fluorine-containing polymer containing diamond fine particles. The optical material contains the optical composition as an effective component. For example, the amorphous fluorine-containing polymer has a fluorine-containing alicyclic structure in the main chain, and the diamond fine particles are obtained by being subjected to a fluorination treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規な光学樹脂組成物、および該光学樹脂組成物を有効成分とする光学材料に関する。   The present invention relates to a novel optical resin composition and an optical material containing the optical resin composition as an active ingredient.

光学技術(レンズ、光ディスク、光ファイバー、光導波路等)の発展に伴い、軽量で成形加工性に優れる透明樹脂が光学材料として種々検討されている。該透明樹脂のなかでも、非晶質含フッ素重合体は屈折率が低く、透明性、耐久耐光性等の物性にも優れることから光学材料として特に好適である。   With the development of optical technologies (lenses, optical discs, optical fibers, optical waveguides, etc.), various types of transparent resins that are lightweight and have excellent moldability are being studied. Among the transparent resins, the amorphous fluorine-containing polymer is particularly suitable as an optical material because of its low refractive index and excellent physical properties such as transparency and durability and light resistance.

光学材料用の透明樹脂には、色収差が小さくなる等の観点から、屈折率が高く屈折率の波長分散性が小さい物性が求められる場合がある。屈折率の波長分散性の指標としてはアッベ数が知られており、アッベ数が大きい材料である程、屈折率の波長分散性が小さい材料であることが知られている。   A transparent resin for an optical material may be required to have physical properties with a high refractive index and a low wavelength dispersion of the refractive index from the viewpoint of reducing chromatic aberration. The Abbe number is known as an index of the wavelength dispersion of the refractive index, and it is known that the higher the Abbe number, the smaller the refractive index wavelength dispersion.

この場合の透明樹脂として非晶質含フッ素重合体は、アッベ数が一般に高く(65〜90程度。)屈折率の波長分散性は小さいが屈折率が低い問題がある。また、この場合の透明樹脂として透明樹脂にチタニア微粒子を分散させてなる樹脂組成物が提案されている(特許文献1、2参照)が、該樹脂組成物はチタニア微粒子のアッベ数が低いため屈折率の波長分散性が高い問題がある。   In this case, the amorphous fluoropolymer as a transparent resin generally has a high Abbe number (about 65 to 90), but has a problem of low refractive index but low refractive index. Further, as a transparent resin in this case, a resin composition in which titania fine particles are dispersed in a transparent resin has been proposed (see Patent Documents 1 and 2), but the resin composition is refracted because the Abbe number of the titania fine particles is low. There is a problem of high wavelength dispersion.

また、高分子重合体中にダイヤモンド微粒子を分散させてなる高分子複合材料が提案されている(特許文献3参照。)が、高分子重合体として非晶質含フッ素重合体を用いることは知られていない。   Further, a polymer composite material in which diamond fine particles are dispersed in a polymer is proposed (see Patent Document 3), but it is known that an amorphous fluorine-containing polymer is used as the polymer. It is not done.

特開2003−073564号公報JP 2003-073564 A 特表2003−521556号公報Special table 2003-521556 gazette 特開2004−051937号公報Japanese Patent Laid-Open No. 2004-051937

屈折率が高く屈折率の波長分散性が小さい物性と他の物性(透明性、耐久耐光性等)とを具備する透明樹脂が、光学材料として求められていた。   A transparent resin having physical properties with a high refractive index and low refractive index wavelength dispersion and other physical properties (transparency, durable light resistance, etc.) has been demanded as an optical material.

本発明者らは、屈折率が高くアッベ数が高いダイヤモンド微粒子と非晶質含フッ素重合体を複合化させた光学樹脂組成物は、非晶質含フッ素重合体の光学物性(透明性、耐久耐光性等)と、屈折率が高く屈折率の波長分散性が低い物性とを具備するとの知見を得た。   The present inventors have found that an optical resin composition obtained by combining diamond fine particles having a high refractive index and a high Abbe number and an amorphous fluorine-containing polymer is an optical property (transparency, durability) of the amorphous fluorine-containing polymer. The light resistance and the physical properties of the refractive index being high and the wavelength dispersion of the refractive index being low.

すなわち本発明は以下の発明を提案する。
<1>:ダイヤモンド微粒子を含む非晶質含フッ素重合体からなる光学樹脂組成物。
<2>:非晶質含フッ素重合体が、300〜700nmの波長光に対して80%以上の平均透過率を有する<1>の光学樹脂組成物。
<3>:ダイヤモンド微粒子の平均粒子径が、1〜100nmである<1>または<2>の光学樹脂組成物。
<4>:ダイヤモンド微粒子が、フッ素化処理されている<1>〜<3>のいずれかの光学樹脂組成物。
<5>:ダイヤモンド微粒子が、含フッ素表面処理剤で処理されている<1>〜<4>のいずれかの光学樹脂組成物。
That is, the present invention proposes the following inventions.
<1>: An optical resin composition comprising an amorphous fluorine-containing polymer containing fine diamond particles.
<2>: The optical resin composition according to <1>, wherein the amorphous fluorine-containing polymer has an average transmittance of 80% or more with respect to light having a wavelength of 300 to 700 nm.
<3>: The optical resin composition according to <1> or <2>, wherein the average particle size of the diamond fine particles is 1 to 100 nm.
<4>: The optical resin composition according to any one of <1> to <3>, wherein the diamond fine particles are fluorinated.
<5>: The optical resin composition according to any one of <1> to <4>, wherein the diamond fine particles are treated with a fluorine-containing surface treatment agent.

<6>:<1>〜<5>のいずれかの光学樹脂組成物を有効成分とする光学材料。   <6>: An optical material comprising the optical resin composition according to any one of <1> to <5> as an active ingredient.

本発明の光学樹脂組成物は、透明性と耐久耐光性に優れ、屈折率が高く屈折率の波長分散性が小さい透明樹脂を形成するため、各種の光学材料として有用である。   The optical resin composition of the present invention is useful as various optical materials because it forms a transparent resin that is excellent in transparency and durable light resistance and has a high refractive index and a small wavelength dispersion of the refractive index.

本発明における非晶質含フッ素重合体の300〜700nmの波長の光に対する平均透過率は、透明性の観点から80%以上が好ましく、90%以上が特に好ましい。非晶質含フッ素重合体のアッベ数は、屈折率の波長分散性(以下、単に波長分散性という。)の観点から65以上が好ましく、70以上がより好ましく、75以上が特に好ましい。アッベ数の上限は、特に限定されない。非晶質含フッ素重合体の結晶化度は、30%以下が好ましく、20%以下が特に好ましい。   The average transmittance of the amorphous fluoropolymer in the present invention with respect to light having a wavelength of 300 to 700 nm is preferably 80% or more, particularly preferably 90% or more, from the viewpoint of transparency. The Abbe number of the amorphous fluoropolymer is preferably 65 or more, more preferably 70 or more, and particularly preferably 75 or more, from the viewpoint of wavelength dispersion of the refractive index (hereinafter simply referred to as wavelength dispersion). The upper limit of the Abbe number is not particularly limited. The crystallinity of the amorphous fluorine-containing polymer is preferably 30% or less, particularly preferably 20% or less.

本発明における非晶質含フッ素重合体は、熱可塑性の非晶質含フッ素重合体であっても熱硬化性の非晶質含フッ素重合体であってもよい。また熱可塑性の非晶質含フッ素重合体と熱硬化性の非晶質含フッ素重合体を混合して用いてもよい。   The amorphous fluorine-containing polymer in the present invention may be a thermoplastic amorphous fluorine-containing polymer or a thermosetting amorphous fluorine-containing polymer. A thermoplastic amorphous fluorine-containing polymer and a thermosetting amorphous fluorine-containing polymer may be mixed and used.

熱可塑性の非晶質含フッ素重合体は、主鎖に含フッ素脂肪族環構造を有する重合体、ペルフルオロポリエーテル、テトラフルオロエチレン/フッ化ビニリデン/ヘキサフルオロプロピレン系重合体、テトラフルオロエチレン/ペルフルオロメチルビニルエーテル系重合体、またはテトラフルオロエチレン/ペルフルオロ(プロピルビニルエーテル)系重合体が好ましく、主鎖に含フッ素脂肪族環構造を有する重合体またはペルフルオロポリエーテルがより好ましく、主鎖に含フッ素脂肪族環構造を有する重合体が特に好ましい。   Thermoplastic amorphous fluorine-containing polymers are polymers having a fluorine-containing aliphatic ring structure in the main chain, perfluoropolyether, tetrafluoroethylene / vinylidene fluoride / hexafluoropropylene polymer, tetrafluoroethylene / perfluoro. A methyl vinyl ether polymer or a tetrafluoroethylene / perfluoro (propyl vinyl ether) polymer is preferred, a polymer having a fluorinated aliphatic ring structure in the main chain or a perfluoropolyether is more preferred, and a fluorinated aliphatic in the main chain. A polymer having a ring structure is particularly preferred.

「主鎖に含フッ素脂肪族環構造を有する」重合体とは、主鎖が炭素原子の連鎖からなる重合体であって、含フッ素脂肪族環の環を構成する炭素原子の1個以上がその主鎖を構成する炭素原子であることをいう。主鎖の炭素原子は、該重合体を構成する単量体の重合性二重結合の2個の炭素原子に由来するか、または、2個の重合性二重結合を有する単量体の環化重合により形成される重合体の場合は2個の重合性二重結合の4個の炭素原子に由来する。含フッ素脂肪族環の環を構成する原子としては炭素原子以外に酸素原子や窒素原子等を含んでいてもよい。好ましい含フッ素脂肪族環は1〜2個の酸素原子を有する含フッ素脂肪族環である。含フッ素脂肪族環を構成する原子の数は4〜7個が好ましい。   The polymer “having a fluorinated aliphatic ring structure in the main chain” is a polymer in which the main chain is composed of a chain of carbon atoms, and at least one carbon atom constituting the ring of the fluorinated aliphatic ring is The carbon atom that constitutes the main chain. The carbon atom of the main chain is derived from two carbon atoms of the polymerizable double bond of the monomer constituting the polymer, or the monomer ring having two polymerizable double bonds. In the case of a polymer formed by chemical polymerization, it is derived from 4 carbon atoms of 2 polymerizable double bonds. The atoms constituting the ring of the fluorinated aliphatic ring may contain oxygen atoms, nitrogen atoms, etc. in addition to carbon atoms. Preferred fluorine-containing aliphatic rings are fluorine-containing aliphatic rings having 1 to 2 oxygen atoms. The number of atoms constituting the fluorine-containing aliphatic ring is preferably 4-7.

「主鎖に含フッ素脂肪族環構造を有する重合体」(以下、「フッ素系環構造含有重合体」とも言う。)は、環状単量体の単独重合体または共重合体、もしくは、ジエン系単量体を環化重合して得られる単独重合体または共重合体が挙げられる。これらの共重合体としては、環状単量体と他の単量体との共重合体、ジエン系単量体と他の単量体との共重合体、環状単量体とジエン系単量体との共重合体等がある。
ただし「環状単量体」とは、脂肪族環を構成する炭素原子間に重合性二重結合を有する単量体、または、含フッ素脂肪族環を構成する炭素原子と含フッ素脂肪族環外の炭素原子との間に重合性二重結合を有する単量体である。また「ジエン系単量体」とは、2個の重合性二重結合を有する単量体である。
“Polymer having fluorine-containing aliphatic ring structure in main chain” (hereinafter also referred to as “fluorine-containing ring structure-containing polymer”) is a homopolymer or copolymer of a cyclic monomer, or a diene-based polymer. Examples thereof include a homopolymer or a copolymer obtained by cyclopolymerizing a monomer. These copolymers include copolymers of cyclic monomers and other monomers, copolymers of diene monomers and other monomers, cyclic monomers and diene monomers And a copolymer with the body.
However, “cyclic monomer” means a monomer having a polymerizable double bond between carbon atoms constituting an aliphatic ring, or a carbon atom constituting a fluorine-containing aliphatic ring and a fluorine-containing aliphatic ring outside. It is a monomer having a polymerizable double bond between the carbon atom. The “diene monomer” is a monomer having two polymerizable double bonds.

環状単量体とジエン系単量体は、フッ素原子を有する単量体であり、高度にフッ素化された単量体であるのが好ましい。「高度にフッ素化された」とは、炭素原子に結合した水素原子と炭素原子に結合したフッ素原子の合計数に対する炭素原子に結合したフッ素原子の数の割合が80%以上であることをいう。より好ましくはペルフルオロ単量体(フッ素原子の数の割合が100%である単量体。)である。またペルフルオロ単量体のフッ素原子の1〜4個(ただし全フッ素原子の数の1/2以下である。)が塩素により置換されたペルハロポリフルオロ単量体を使用してもよい。これらと共重合するこれら以外の単量体もペルフルオロ単量体やペルハロポリフルオロ単量体が好ましい。   The cyclic monomer and the diene monomer are monomers having a fluorine atom, and are preferably highly fluorinated monomers. “Highly fluorinated” means that the ratio of the number of fluorine atoms bonded to carbon atoms to the total number of hydrogen atoms bonded to carbon atoms and fluorine atoms bonded to carbon atoms is 80% or more. . More preferred is a perfluoromonomer (a monomer having a fluorine atom number ratio of 100%). Further, a perhalopolyfluoromonomer in which 1 to 4 fluorine atoms of the perfluoromonomer (but not more than 1/2 of the total fluorine atoms) are substituted with chlorine may be used. Monomers other than these copolymerized with these are also preferably perfluoromonomers and perhalopolyfluoromonomers.

環状単量体の代表例としては、ペルフルオロ(2,2−ジメチル−1,3−ジオキソール)、ペルフルオロ(2−メチレン−4−メチル−1,3−ジオキソラン)等がある。これらの単量体を重合することにより、または、これらの単量体とCF=CF、CF=CFCl、CF=CFOCF等のラジカル重合性単量体とを共重合することにより、フッ素系環構造含有重合体が得られる。 Typical examples of the cyclic monomer include perfluoro (2,2-dimethyl-1,3-dioxole), perfluoro (2-methylene-4-methyl-1,3-dioxolane) and the like. By polymerizing these monomers or by copolymerizing these monomers with radically polymerizable monomers such as CF 2 = CF 2 , CF 2 = CFCl, CF 2 = CFOCF 3 A fluorine-containing ring structure-containing polymer is obtained.

環状単量体の具体例を、前記例を含め以下に示す。ただし、X、X、R、およびRは、それぞれ独立に、フッ素原子、炭素数が4以下のペルフルオロアルキル基または炭素数4以下のペルフルオロアルコキシ基を示す。Xはフッ素原子が好ましい。Xはフッ素原子、トリフルオロメチル基、または炭素数2以下のペルフルオロアルコキシ基が好ましい。XおよびXは、それぞれ独立に、フッ素原子またはトリフルオロメチル基を示す。 Specific examples of the cyclic monomer are shown below including the above examples. However, X 1 , X 2 , R 1 , and R 2 each independently represent a fluorine atom, a perfluoroalkyl group having 4 or less carbon atoms, or a perfluoroalkoxy group having 4 or less carbon atoms. X 1 is preferably a fluorine atom. X 2 is preferably a fluorine atom, a trifluoromethyl group, or a perfluoroalkoxy group having 2 or less carbon atoms. X 3 and X 4 each independently represent a fluorine atom or a trifluoromethyl group.

Figure 2006131845
Figure 2006131845

ジエン系単量体の代表例としては、CF=CFOCFCFCF=CF、CF=CFOCFCF=CF等がある。この単量体を環化重合することにより、または、この単量体とCF=CF、CF=CFCl、CF=CFOCF等のラジカル重合性単量体とを共重合することにより、フッ素系環構造含有重合体が得られる。 Typical examples of the diene monomer include CF 2 ═CFOCF 2 CF 2 CF═CF 2 , CF 2 ═CFOCF 2 CF═CF 2, and the like. By cyclopolymerizing this monomer, or by copolymerizing this monomer with a radical polymerizable monomer such as CF 2 = CF 2 , CF 2 = CFCl, CF 2 = CFOCF 3 A fluorine-containing ring structure-containing polymer is obtained.

ジエン系単量体としては、式CF=CF−Q−CF=CFで表される単量体が好ましい。ただし、Qは、炭素数1〜3のエーテル性酸素原子を有していてもよいペルフルオロアルキレン基を示す。エーテル性酸素原子を有するペルフルオロアルキレン基である場合、該ペルフルオロアルキレン基におけるエーテル性酸素原子は、該基の一方の末端に存在していてもよく、該基の両末端に存在していてもよく、該基の炭素原子間に存在していてもよい。環化重合性の観点から、該基の一方の末端に存在していることが好ましい。CF=CF−Q−CF=CFは、環化重合により下記環状モノマー単位を有する重合体を生成する。このようにジエン系単量体の環化重合により生成する重合体の主鎖の炭素原子は、2個の重合性二重結合の4個の炭素原子に由来する。 As the diene monomer, a monomer represented by the formula CF 2 ═CF—Q—CF═CF 2 is preferable. However, Q shows the perfluoroalkylene group which may have a C1-C3 ether oxygen atom. In the case of a perfluoroalkylene group having an etheric oxygen atom, the etheric oxygen atom in the perfluoroalkylene group may be present at one end of the group, or may be present at both ends of the group. , May be present between the carbon atoms of the group. From the viewpoint of cyclopolymerizability, it is preferably present at one end of the group. CF 2 = CF-Q-CF = CF 2 produces a polymer having the following cyclic monomer units by cyclic polymerization. Thus, the main chain carbon atoms of the polymer produced by the cyclopolymerization of the diene monomer are derived from the four carbon atoms of two polymerizable double bonds.

Figure 2006131845
Figure 2006131845

ジエン系単量体の具体例を、前記例を含め以下に示す。
CF=CFOCFCFCF=CF、CF=CFOCFCF(CF3)CF=CF、CF=CFOCF(CF)CFCF=CF、CF=CFOCFCF=CF、CF=CFOCF(CF)CF=CF、CF=CFOCFOCF=CF、CF=CFOC(CFOCF=CF
Specific examples of the diene monomer are shown below including the above examples.
CF 2 = CFOCF 2 CF 2 CF = CF 2, CF 2 = CFOCF 2 CF (CF 3) CF = CF 2, CF 2 = CFOCF (CF 3) CF 2 CF = CF 2, CF 2 = CFOCF 2 CF = CF 2, CF 2 = CFOCF (CF 3) CF = CF 2, CF 2 = CFOCF 2 OCF = CF 2, CF 2 = CFOC (CF 3) 2 OCF = CF 2.

フッ素系環構造含有重合体の全モノマー単位に対する含フッ素脂肪族環構造を有するモノマー単位の割合は、20モル%以上が好ましく、40モル%以上が特に好ましい。含フッ素脂肪族環構造を有するモノマー単位とは、環状単量体の重合により形成されたモノマー単位およびジエン系単量体の環化重合により形成されたモノマー単位をいう。   The ratio of the monomer unit having a fluorinated aliphatic ring structure to the total monomer units of the fluorine-based ring structure-containing polymer is preferably 20 mol% or more, and particularly preferably 40 mol% or more. The monomer unit having a fluorinated alicyclic structure means a monomer unit formed by polymerization of a cyclic monomer and a monomer unit formed by cyclopolymerization of a diene monomer.

またフッ素系環構造含有重合体は、官能基を有するフッ素系環構造含有重合体であってもよい。フッ素系環構造含有重合体は、光透過率向上や耐薬品性向上の観点から、官能基部分(すなわち、官能基を有する側鎖部分や官能基を有する末端部分)を除いて、炭素原子に結合した水素原子を実質的に含まない重合体が好ましい。   The fluorine-containing ring structure-containing polymer may be a fluorine-containing ring structure-containing polymer having a functional group. From the viewpoint of improving light transmittance and chemical resistance, the fluorine-containing ring-structure-containing polymer has a functional group portion (that is, a side chain portion having a functional group or a terminal portion having a functional group). Polymers substantially free of bonded hydrogen atoms are preferred.

前記官能基は、基材との密着性を確保する観点から、フッ素系環構造含有重合体に対して0.001〜1ミリモル/g含まれることが好ましく、0.01〜0.2ミリモル/g含まれることが特に好ましい。0.001ミリモル/g未満の場合は、基材との密着性が充分でなく、1ミリモル/g超の場合は、溶媒に対する溶解性が低下し分散性に悪影響を及ぼすおそれがある。   The functional group is preferably contained in an amount of 0.001 to 1 mmol / g with respect to the fluorine-containing ring structure-containing polymer from the viewpoint of ensuring adhesion to the substrate, and 0.01 to 0.2 mmol / g. g is particularly preferable. If it is less than 0.001 mmol / g, the adhesion to the substrate is not sufficient, and if it is more than 1 mmol / g, the solubility in a solvent is lowered, and the dispersibility may be adversely affected.

官能基の具体例としては、カルボキシル基、スルホン酸基、エステル結合を有する基、水酸基、アミノ基、シアノ基、イソシアネート基等が挙げられる。官能基としては、シリコン基板等の基材上への密着性が良好である、保存安定性に優れる観点から、カルボキシル基が好ましい。   Specific examples of the functional group include a carboxyl group, a sulfonic acid group, a group having an ester bond, a hydroxyl group, an amino group, a cyano group, and an isocyanate group. As the functional group, a carboxyl group is preferable from the viewpoint of good adhesion to a substrate such as a silicon substrate and excellent storage stability.

ペルフルオロポリエーテルとしては、(CFO)単位、(CFCFO)単位、(CFCF(CF)O)単位、および(CFCFCFO)からなる群れより選ばれる1以上の単位を含むペルフルオロポリエーテルが好ましく、(CFCFO)単位からなるペルフルオロポリエーテルが特に好ましい。 The perfluoropolyether is selected from the group consisting of (CF 2 O) units, (CF 2 CF 2 O) units, (CF 2 CF (CF 3 ) O) units, and (CF 2 CF 2 CF 2 O). Perfluoropolyethers containing one or more units are preferred, and perfluoropolyethers composed of (CF 2 CF 2 O) units are particularly preferred.

熱硬化性の非晶質含フッ素重合体としては、含フッ素アクリレートおよび含フッ素メタクリレートからなる群より選ばれる化合物の1種以上の重合により得られる重合体が好ましい。   The thermosetting amorphous fluorine-containing polymer is preferably a polymer obtained by polymerization of one or more compounds selected from the group consisting of fluorine-containing acrylates and fluorine-containing methacrylates.

含フッ素アクリレートの代表例としては、CH=CHC(O)O(CH(CFF、CH=CHC(O)OCHCF(CFCFO)CFCHOC(O)CH=CH(ただし、fは3〜30の整数を示す。以下同じ。)、CH=CHC(O)OCHCyCHOC(O)CH=CH(ただし、Cyはペルフルオロ(1,4−シクロへキシレン)基を示す。以下同じ。)等が挙げられる。 As a typical example of the fluorine-containing acrylate, CH 2 ═CHC (O) O (CH 2 ) 2 (CF 2 ) 6 F, CH 2 ═CHC (O) OCH 2 CF 2 (CF 2 CF 2 O) f CF 2 CH 2 OC (O) CH = CH 2 ( where, f represents an integer of 3 to 30. hereinafter the same.), CH 2 = CHC ( O) OCH 2 Cy F CH 2 OC (O) CH = CH 2 ( However, Cy F represents a perfluoro (1,4-cyclohexylene) group. The same shall apply hereinafter) and the like.

含フッ素メタクリレートの代表例としては、CH=C(CH)C(O)O(CH(CFF、CH=C(CH)C(O)OCHCF(CFCFO)CFCHOC(O)C(CH)=CH、CH=C(CH)C(O)OCHCyCHOC(O)C(CH)=CH等が挙げられる。 Representative examples of the fluorine-containing methacrylate, CH 2 = C (CH 3 ) C (O) O (CH 2) 2 (CF 2) 6 F, CH 2 = C (CH 3) C (O) OCH 2 CF 2 (CF 2 CF 2 O) f CF 2 CH 2 OC (O) C (CH 3) = CH 2, CH 2 = C (CH 3) C (O) OCH 2 Cy F CH 2 OC (O) C (CH 3 ) = CH 2 and the like.

本発明におけるダイヤモンド微粒子の平均粒子径は、透明性と波長分散性との観点から、1〜100nmが好ましく、2〜50nmが特に好ましい。ダイヤモンド微粒子の平均粒子径は、ダイヤモンド微粒子を解砕して調製してもよい。ダイヤモンド微粒子を解砕してダイヤモンド微粒子の平均粒子径を調製した具体例としては、砥粒加工学会誌47巻(2003),414〜417頁に記載の、酸素欠如爆発法を用いて製造したダイヤモンド微粒子の凝集体を解砕して平均粒子径が4〜5nmのダイヤモンド微粒子の分散液を調製した例が挙げられる。なおダイヤモンド微粒子の平均粒子径は、動的光散乱法を用いて測定できる。   The average particle diameter of the diamond fine particles in the present invention is preferably 1 to 100 nm, and particularly preferably 2 to 50 nm, from the viewpoints of transparency and wavelength dispersibility. The average particle diameter of the diamond fine particles may be prepared by crushing the diamond fine particles. A specific example of pulverizing diamond fine particles to adjust the average particle size of the diamond fine particles is diamond produced using the oxygen-deficient explosion method described in Journal of Abrasive Technology, Vol. 47 (2003), pages 414 to 417. An example in which a fine particle aggregate is crushed to prepare a dispersion of diamond fine particles having an average particle diameter of 4 to 5 nm is given. The average particle diameter of the diamond fine particles can be measured using a dynamic light scattering method.

ダイヤモンド微粒子は、高温高圧アンビル法、衝撃圧縮法、CVD法、酸素欠如爆発法等を用いて製造できる。ダイヤモンド微粒子の製造方法の具体例としては、特開2002−066302号公報に記載のカーボンナノチューブを原料とした高温高圧アンビル法を用いたダイヤモンド微粒子の製造方法が挙げられる。該製造方法を用いた場合、平均粒子径が20〜50nmのダイヤモンド微粒子の集合体が製造できる。   Diamond fine particles can be produced using a high-temperature and high-pressure anvil method, an impact compression method, a CVD method, an oxygen-deficient explosion method, or the like. Specific examples of the method for producing diamond fine particles include a method for producing diamond fine particles using a high-temperature and high-pressure anvil method using carbon nanotubes as a raw material described in JP-A No. 2002-066302. When this production method is used, an aggregate of diamond fine particles having an average particle diameter of 20 to 50 nm can be produced.

本発明におけるダイヤモンド微粒子は、透明性の観点から、表面が表面処理されているのが好ましい。その理由は必ずしも明確でないが、ダイヤモンド微粒子の表面に存在する非ダイヤモンド炭素原子が表面処理により除去されるためと考えられる。   The diamond fine particles in the present invention are preferably surface-treated from the viewpoint of transparency. The reason is not necessarily clear, but it is considered that non-diamond carbon atoms present on the surface of the diamond fine particles are removed by the surface treatment.

表面処理は、ダイヤモンド微粒子が非晶質含フッ素重合体に均一に分散性する観点から、超臨界水処理(たとえば特開2004−43265号公報に記載の方法。)、水素化処理、酸化処理またはフッ素化処理が好ましく、酸化処理またはフッ素化処理がより好ましく、フッ素化処理が特に好ましい。その理由は、必ずしも明確ではないが、フッ素化処理によりダイヤモンド微粒子の表面にフッ素原子の被膜が形成され非晶質含フッ素重合体との親和性が向上するためと考えられる。
フッ素化処理の方法としては、CFの存在下で発生したプラズマでダイヤモンド微粒子の表面を処理する方法(J.Chem.Soc.Faraday Trans.89巻(1993)、3105〜3109頁)、またはフッ素ガスとダイヤモンド微粒子の表面とを直接反応させる方法(J.Chem.Soc.Faraday Trans.91巻(1995)、3209〜3212頁)が好ましい。
From the viewpoint of uniformly dispersing the diamond fine particles in the amorphous fluorine-containing polymer, the surface treatment is performed by supercritical water treatment (for example, a method described in JP-A-2004-43265), hydrogenation treatment, oxidation treatment or Fluorination treatment is preferred, oxidation treatment or fluorination treatment is more preferred, and fluorination treatment is particularly preferred. The reason is not necessarily clear, but it is considered that a fluorine atom film is formed on the surface of the diamond fine particles by the fluorination treatment and the affinity with the amorphous fluoropolymer is improved.
As a method of fluorination treatment, a method of treating the surface of diamond fine particles with plasma generated in the presence of CF 4 (J. Chem. Soc. Faraday Trans. 89 (1993), 3105-3109), or fluorine A method of directly reacting the gas and the surface of the diamond fine particles (J. Chem. Soc. Faraday Trans. 91 (1995), pages 3209 to 3212) is preferable.

酸化処理の方法としては、酸素プラズマを用いてダイヤモンド微粒子を処理する方法、または強酸(熱硝酸、次亜塩素酸、過酸化マンガン、王水等。)を用いてダイヤモンド微粒子を処理する方法が好ましい。   As the oxidation treatment method, a method of treating diamond fine particles using oxygen plasma or a method of treating diamond fine particles using a strong acid (hot nitric acid, hypochlorous acid, manganese peroxide, aqua regia, etc.) is preferable. .

本発明におけるダイヤモンド微粒子は、非晶質含フッ素重合体に均一分散する観点から、表面が含フッ素表面処理剤で処理されているのが好ましい。この場合、ダイヤモンド微粒子は、あらかじめ前記表面処理されているのが好ましく、酸化処理されているのがより好ましい。その理由は必ずしも明確でないが、酸化処理によりダイヤモンド微粒子の表面に生成する親水性官能基(ヒドロキシル基、カルボニル基等。)が含フッ素表面処理剤と高い親和性で相互作用するためと考えられる。   The surface of the diamond fine particles in the present invention is preferably treated with a fluorine-containing surface treatment agent from the viewpoint of being uniformly dispersed in the amorphous fluorine-containing polymer. In this case, the diamond fine particles are preferably subjected to the surface treatment in advance, and more preferably oxidized. The reason is not necessarily clear, but it is considered that hydrophilic functional groups (hydroxyl group, carbonyl group, etc.) generated on the surface of diamond fine particles by the oxidation treatment interact with the fluorine-containing surface treatment agent with high affinity.

含フッ素表面処理剤としては、含フッ素シランカップリング剤が好ましく、式RCHCHSiYで表される化合物が特に好ましい。ただし、Rは炭素数4〜16のポリフルオロアルキル基(直鎖のペルフルオロアルキル基が好ましい。)を示し、Yはメトキシ基またはエトキシ基を示す。 As the fluorine-containing surface treatment agent, a fluorine-containing silane coupling agent is preferable, and a compound represented by the formula R F CH 2 CH 2 SiY 3 is particularly preferable. However, R F represents a (preferably. Perfluoroalkyl group linear) polyfluoroalkyl group having 4 to 16 carbon atoms, Y represents a methoxy group or an ethoxy group.

含フッ素表面処理剤は、ダイヤモンド微粒子の100質量部に対して、1質量部以上を用いるのが好ましく、10〜200質量部を用いるのが好ましく、20〜100質量部を用いるのが特に好ましい。ダイヤモンド微粒子に対する含フッ素表面処理剤の量がこの範囲であると、ダイヤモンド微粒子が非晶質含フッ素重合体に均一分散し、光学樹脂組成物中のダイヤモンド微粒子の添加効果が高くなる。   The fluorine-containing surface treatment agent is preferably used in an amount of 1 part by mass or more, more preferably 10 to 200 parts by mass, and particularly preferably 20 to 100 parts by mass with respect to 100 parts by mass of the diamond fine particles. When the amount of the fluorine-containing surface treatment agent relative to the diamond fine particles is within this range, the diamond fine particles are uniformly dispersed in the amorphous fluorine-containing polymer, and the effect of adding the diamond fine particles in the optical resin composition is enhanced.

ダイヤモンド微粒子を含フッ素表面処理剤で処理する方法としては、ダイヤモンド微粒子を溶媒に分散させてなる溶液と含フッ素表面処理剤を混合して、つぎに加熱処理により含フッ素表面処理剤を反応させて処理する方法が好ましい。   As a method for treating diamond fine particles with a fluorine-containing surface treatment agent, a solution in which diamond fine particles are dispersed in a solvent and a fluorine-containing surface treatment agent are mixed, and then the fluorine-containing surface treatment agent is reacted by heat treatment. The method of processing is preferred.

溶媒としては、非プロトン性含フッ素溶媒が好ましい。非プロトン性溶媒とは、通常の使用条件下ではプロトンを解離しない含フッ素溶媒である。非プロトン性含フッ素溶媒としては、ペルフルオロデカリン、ペルフルオロシクロヘキサン、ペルフルオロヘキサン、ペルフルオロオクタン、1H,1H,1H,2H,2H−ペルフルオロオクタン、1H,1H,1H,2H,2H−ペルフルオロデカン等の含フッ素脂肪族炭化水素類。ペルフルオロトリペンチルアミン、ペルフルオロトリブチルアミン、ペルフルオロトリプロピルアミン等の含フッ素アルキルアミン類。ペルフルオロ(2−ブチルテトラヒドロフラン)等の含フッ素環状エーテル類。メチルペルフルオロブチルエーテル、メチルペルフルオロヘキシルエーテル等のハイドロフルオロエーテル類。   As the solvent, an aprotic fluorine-containing solvent is preferable. An aprotic solvent is a fluorine-containing solvent that does not dissociate protons under normal use conditions. As the aprotic fluorine-containing solvent, fluorine-containing solvents such as perfluorodecalin, perfluorocyclohexane, perfluorohexane, perfluorooctane, 1H, 1H, 1H, 2H, 2H-perfluorooctane, 1H, 1H, 1H, 2H, 2H-perfluorodecane, etc. Aliphatic hydrocarbons. Fluorine-containing alkylamines such as perfluorotripentylamine, perfluorotributylamine, and perfluorotripropylamine. Fluorine-containing cyclic ethers such as perfluoro (2-butyltetrahydrofuran). Hydrofluoroethers such as methyl perfluorobutyl ether and methyl perfluorohexyl ether.

含フッ素表面処理剤を溶液に混合する際には、補助溶媒として含フッ素アルコールを添加するのが好ましい。含フッ素アルコールとしては、CFCHOH、CFCFCHOH、CF(CFCHCHOH、CF(CFCHCHOH、CFCFCHCHCHOH、CF(CFCHCHCHOH等が挙げられる。
また加熱処理は、酸性条件下で行うのが好ましい。
When the fluorine-containing surface treatment agent is mixed with the solution, it is preferable to add a fluorine-containing alcohol as an auxiliary solvent. Examples of the fluorinated alcohol include CF 3 CH 2 OH, CF 3 CF 2 CH 2 OH, CF 3 (CF 2 ) 3 CH 2 CH 2 OH, CF 3 (CF 2 ) 5 CH 2 CH 2 OH, and CF 3 CF 2. CH 2 CH 2 CH 2 OH, CF 3 (CF 2) 3 CH 2 CH 2 CH 2 OH , and the like.
The heat treatment is preferably performed under acidic conditions.

本発明の光学樹脂組成物におけるダイヤモンド微粒子の量は、非晶質含フッ素重合体(含フッ素表面処理剤を用いる場合は非晶質含フッ素重合体と含フッ素表面処理剤の和。)に対して0.01〜0.6(体積比)が好ましく、0.03〜0.4(体積比)が特に好ましい。非晶質含フッ素重合体とダイヤモンド微粒子の体積比がこの範囲である場合、光学樹脂組成物の成形加工性が良好でダイヤモンド微粒子の添加効果の大きい光学樹脂組成物が得られる。   The amount of the fine diamond particles in the optical resin composition of the present invention is based on the amorphous fluorine-containing polymer (the sum of the amorphous fluorine-containing polymer and the fluorine-containing surface treatment agent when a fluorine-containing surface treatment agent is used). 0.01 to 0.6 (volume ratio) is preferable, and 0.03 to 0.4 (volume ratio) is particularly preferable. When the volume ratio of the amorphous fluoropolymer and diamond fine particles is within this range, an optical resin composition having good molding processability of the optical resin composition and a large effect of adding the diamond fine particles can be obtained.

本発明の光学樹脂組成物は、屈折率が高く屈折率の波長分散性が小さい物性を有する透明樹脂である。本発明の光学樹脂組成物を有効成分とする材料は、光学材料として有用である。光学材料の用途としては特に限定されず、該物性が要求される、レンズ用材料(眼鏡レンズ材料、光学機器用レンズ材料、オプトエレクトロニクス用レンズ材料、レーザー用レンズ材料、CDピックアップ用レンズ材料、自動車用ランプレンズ材料、OHP用レンズ材料等。)、発光素子の封止用材料(白色発光ダイオードの封止用材料等。)、光ファイバー用材料、光導波路用材料、光学フィルター用材料、光学接着剤、光ディスク基盤用材料、ディスプレー基盤用材料、プリズム用材料、光学接着剤、またはコーティング剤が好ましい。   The optical resin composition of the present invention is a transparent resin having a high refractive index and a low refractive index wavelength dispersibility. The material containing the optical resin composition of the present invention as an active ingredient is useful as an optical material. There are no particular restrictions on the use of the optical material, and the physical properties are required. Lens materials (glass lens materials, lens materials for optical instruments, lens materials for optoelectronics, lens materials for lasers, lens materials for CD pickups, automobiles, etc. Lamp lens materials, OHP lens materials, etc.), light emitting device sealing materials (white light emitting diode sealing materials, etc.), optical fiber materials, optical waveguide materials, optical filter materials, optical adhesives An optical disk substrate material, a display substrate material, a prism material, an optical adhesive, or a coating agent is preferable.

以下、本発明を具体的な実施例を用いて説明するが、本発明はこれらに限定されない。   Hereinafter, although the present invention is explained using a concrete example, the present invention is not limited to these.

[例1(合成例)]PBVEの製造例
CF=CFOCFCFCF=CF(35g)、イオン交換水(150g)、メタノール(20g)、および((CHCHOCOO)(90mg)をオートクレーブ(内容積200mL、耐圧ガラス製)に入れ、オートクレーブ内を3回窒素ガスで置換した。つぎに40℃で22時間、懸濁重合した。その結果、固有粘度が0.2dL/gの重合体(28g)を得た。
Example 1 (Synthesis Example) Production Example of PBVE CF 2 = CFOCF 2 CF 2 CF = CF 2 (35 g), ion-exchanged water (150 g), methanol (20 g), and ((CH 3 ) 2 CHOCOO) 2 ( 90 mg) was placed in an autoclave (internal volume 200 mL, pressure-resistant glass), and the inside of the autoclave was replaced with nitrogen gas three times. Next, suspension polymerization was carried out at 40 ° C. for 22 hours. As a result, a polymer (28 g) having an intrinsic viscosity of 0.2 dL / g was obtained.

重合体を300℃の空気中で3時間、熱処理してから水中に浸漬して、さらに乾燥して得た重合体(以下、単にPBVEという。)は、実質的に下式(P)で表されるモノマー単位からなり、0.03ミリモル/gのカルボキシル基を含む、ガラス転移点が108℃の非晶質含フッ素重合体であった。また、PVBEの300〜700nmの波長光に対する平均透過率は95%以上であった。   A polymer (hereinafter simply referred to as PBVE) obtained by heat-treating the polymer in air at 300 ° C. for 3 hours, then immersing in water, and further drying is substantially represented by the following formula (P). It was an amorphous fluorine-containing polymer having a glass transition point of 108 ° C. and comprising 0.03 mmol / g of carboxyl groups. Moreover, the average transmittance | permeability with respect to the 300-700 nm wavelength light of PVBE was 95% or more.

Figure 2006131845
Figure 2006131845

[例2(実施例)]光学樹脂組成物の製造例(その1)
平均粒子径が4nmのダイヤモンド微粒子を5質量%含む水溶液(20g)の水分を凍結乾燥法により除去すると、ダイヤモンド微粒子が凝集している乾燥粉(1g)が得られる。該乾燥粉をペルフルオロ(2−テトラブチルヒドロフラン)(以下、単にPTBFという。)(50g)に加えて撹拌すると、ダイヤモンド微粒子を含むPBTF溶液が得られる。
[Example 2 (Example)] Production example of optical resin composition (Part 1)
When water in an aqueous solution (20 g) containing 5% by mass of diamond fine particles having an average particle size of 4 nm is removed by freeze drying, a dry powder (1 g) in which diamond fine particles are aggregated is obtained. When the dried powder is added to perfluoro (2-tetrabutylhydrofuran) (hereinafter simply referred to as PTBF) (50 g) and stirred, a PBTF solution containing diamond fine particles is obtained.

反応容器(ニッケル製)に、該分散液を加えて撹拌する。撹拌を続けながら反応容器内に窒素ガスで5体積%に希釈したフッ素ガスを流通させると、ダイヤモンド微粒子がPTBFに均一に分散されている分散液を得る。   The dispersion is added to a reaction vessel (made of nickel) and stirred. When a fluorine gas diluted to 5% by volume with nitrogen gas is passed through the reaction vessel while continuing the stirring, a dispersion liquid in which diamond fine particles are uniformly dispersed in PTBF is obtained.

つぎにダイヤモンド微粒子とPBVEが体積比で25:75となるように、該分散液と10質量%のPBVEを含むPTBF溶液を混合した混合液を調製する。該混合液をキャストし、120℃にて12時間加熱してPBTFを除去すると、PBVEにダイヤモンド微粒子が均一に分散している光学樹脂組成物が得られる。該光学樹脂組成物を加圧プレスして板状(厚さ0.3mm)の成形体を得る。成形体の屈折率は1.61であり、アッベ数は67である。   Next, a mixed liquid is prepared by mixing the dispersion and a PTBF solution containing 10% by mass of PBVE so that the diamond fine particles and PBVE are in a volume ratio of 25:75. When the mixed solution is cast and heated at 120 ° C. for 12 hours to remove PBTF, an optical resin composition in which diamond fine particles are uniformly dispersed in PBVE is obtained. The optical resin composition is pressure-pressed to obtain a plate-like (thickness 0.3 mm) shaped body. The molded article has a refractive index of 1.61 and an Abbe number of 67.

[例3(実施例)]光学樹脂組成物の製造例(その2)
ダイヤモンド微粒子とPBVEの体積比で16:84とする以外は、例2と同様の方法を用いて板状(厚さ0.3mm)の成形体を得る。成形体の屈折率は1.51であり、アッベ数は71である。
[Example 3 (Example)] Production example of optical resin composition (Part 2)
A plate-like (thickness 0.3 mm) shaped body is obtained using the same method as in Example 2 except that the volume ratio of diamond fine particles to PBVE is 16:84. The molded article has a refractive index of 1.51 and an Abbe number of 71.

[例4(実施例)]光学樹脂組成物の製造例(その3)
例2と同様の方法で得られるダイヤモンド微粒子が凝集している乾燥粉を、RFプラズマ発生装置を用いて、20秒間、酸素プラズマ処理(酸素分圧20Pa、プラズマ出力70W)する。その結果、表面の非ダイヤモンド炭素原子が除去され、かつ表面に含酸素官能基が導入されているダイヤモンド微粒子が得られる。
[Example 4 (Example)] Production example of optical resin composition (part 3)
A dry powder obtained by a method similar to that in Example 2 in which diamond fine particles are aggregated is subjected to an oxygen plasma treatment (oxygen partial pressure 20 Pa, plasma output 70 W) for 20 seconds using an RF plasma generator. As a result, diamond fine particles in which non-diamond carbon atoms on the surface are removed and oxygen-containing functional groups are introduced on the surface can be obtained.

該ダイヤモンド微粒子をエタノールに分散させてなる分散液に、C13Si(OCH(0.5g)と1質量%の酢酸を含む水溶液(0.05g)を加え、50℃にて2時間、撹拌する。つぎにCFCFCHOH(以下、単にPFPAという。)(20g)とPBTF(180g)を加えて、PBTFの沸点温度にて加熱してPFPAとエタノールを除去すると、C13Si(OCHの反応物により表面処理されたダイヤモンド微粒子を含むPBTF溶液を得る。 An aqueous solution (0.05 g) containing C 6 F 13 C 2 H 4 Si (OCH 3 ) 3 (0.5 g) and 1% by mass of acetic acid was added to a dispersion obtained by dispersing the diamond fine particles in ethanol, Stir at 50 ° C. for 2 hours. Next, when CF 3 CF 2 CH 2 OH (hereinafter simply referred to as PFPA) (20 g) and PBTF (180 g) are added and heated at the boiling temperature of PBTF to remove PFPA and ethanol, C 6 F 13 C A PBTF solution containing diamond fine particles surface-treated with the reaction product of 2 H 4 Si (OCH 3 ) 3 is obtained.

つぎに該ダイヤモンド微粒子と、C13Si(OCHおよびPBVEとが体積比で15:85になるように、該PBTF溶液と10質量%のPBVEを含むPTBF溶液を混合した混合液を調製する。該混合液をキャストし、120℃にて12時間加熱してPBTFを除去すると、PBVEにダイヤモンド微粒子が均一に分散している光学樹脂組成物が得られる。該光学樹脂組成物を加圧プレスして板状(厚さ0.3mm)の成形体を得る。成形体の屈折率は1.52であり、アッベ数は67である。 Next, a PTBF solution containing the PBTF solution and 10% by mass of PBVE is used so that the diamond fine particles, C 6 F 13 C 2 H 4 Si (OCH 3 ) 3 and PBVE are in a volume ratio of 15:85. Prepare a mixed solution. When the mixed solution is cast and heated at 120 ° C. for 12 hours to remove PBTF, an optical resin composition in which diamond fine particles are uniformly dispersed in PBVE is obtained. The optical resin composition is pressure-pressed to obtain a plate-like (thickness 0.3 mm) shaped body. The molded article has a refractive index of 1.52 and an Abbe number of 67.

[例5(比較例)]樹脂組成物の製造例
平均粒子径が10nmのチタニア微粒子を20質量%含む2−プロパノールの分散液(10g)、C13Si(OCH(2g)およびPFPA(20g)を混合して得られる混合液を、60℃にて1時間、撹拌する。つぎに該混合液にPBTF(180g)を加え、2−プロパノールとPFPAを加熱留去して、表面がC13Si(OCHで処理されたチタニア微粒子を含むPBTF溶液が得られる。
[Example 5 (Comparative Example)] Production Example of Resin Composition 2-propanol dispersion (20 g) containing 20% by mass of titania fine particles having an average particle diameter of 10 nm, C 6 F 13 C 2 H 4 Si (OCH 3 ) 3 (2 g) and PFPA (20 g) are mixed and stirred at 60 ° C. for 1 hour. Next, PBTF (180 g) is added to the mixture, 2-propanol and PFPA are distilled off by heating, and PBTF containing titania fine particles whose surface is treated with C 6 F 13 C 2 H 4 Si (OCH 3 ) 3 is used. A solution is obtained.

該チタニア微粒子と、C13Si(OCHおよびPBVEとが体積比で16:84になるように、該PBTF溶液とPBVEを10重量%含むPBTF溶液とを混合した混合液を得る。該混合液をキャストした後に120℃にて、12時間加熱するとPBTFが除去され、チタニア微粒子がPBVEに均一に分散している組成物が得られる。該組成物を加圧プレスして板状(厚さ0.3mm)の成形体を得る。成形体の屈折率は1.51であり、アッベ数は29である。 The PBTF solution and a PBTF solution containing 10% by weight of PBVE were mixed so that the titania fine particles, C 6 F 13 C 2 H 4 Si (OCH 3 ) 3 and PBVE were in a volume ratio of 16:84. A liquid mixture is obtained. When the mixture is cast and heated at 120 ° C. for 12 hours, PBTF is removed and a composition in which titania fine particles are uniformly dispersed in PBVE is obtained. The composition is pressed under pressure to obtain a plate-shaped (thickness 0.3 mm) shaped body. The molded article has a refractive index of 1.51 and an Abbe number of 29.

本発明の光学樹脂組成物は、透明性と耐久耐光性に優れ、屈折率が高く屈折率の波長分散性が小さい透明樹脂であるため、各種の光学材料(レンズ材料、発光素子の封止材料、光ファイバー材料、光導波路材料、光学フィルター材料、光学接着剤、光ディスク基盤材料、ディスプレー基盤材料、コーティング剤、プリズム材料等の光学材料)として有用である。
The optical resin composition of the present invention is a transparent resin having excellent transparency and durability and light resistance, and having a high refractive index and a small wavelength dispersion of the refractive index. Therefore, various optical materials (lens materials, sealing materials for light emitting elements) , Optical materials such as optical fiber materials, optical waveguide materials, optical filter materials, optical adhesives, optical disk base materials, display base materials, coating agents, prism materials, and the like.

Claims (6)

ダイヤモンド微粒子を含む非晶質含フッ素重合体からなる光学樹脂組成物。   An optical resin composition comprising an amorphous fluorine-containing polymer containing fine diamond particles. 非晶質含フッ素重合体が、300〜700nmの波長光に対して80%以上の平均透過率を有する請求項1に記載の光学樹脂組成物。   The optical resin composition according to claim 1, wherein the amorphous fluorine-containing polymer has an average transmittance of 80% or more with respect to light having a wavelength of 300 to 700 nm. ダイヤモンド微粒子の平均粒子径が、1〜100nmである請求項1または2に記載の光学樹脂組成物。   The optical resin composition according to claim 1 or 2, wherein the diamond fine particles have an average particle diameter of 1 to 100 nm. ダイヤモンド微粒子が、フッ素化処理されている請求項1〜3のいずれかに記載の光学樹脂組成物。   The optical resin composition according to claim 1, wherein the diamond fine particles are fluorinated. ダイヤモンド微粒子が、含フッ素表面処理剤で処理されている請求項1〜4のいずれかに記載の光学樹脂組成物。   The optical resin composition according to any one of claims 1 to 4, wherein the diamond fine particles are treated with a fluorine-containing surface treatment agent. 請求項1〜5のいずれかに記載の光学樹脂組成物を有効成分とする光学材料。
The optical material which uses the optical resin composition in any one of Claims 1-5 as an active ingredient.
JP2004325436A 2004-11-09 2004-11-09 New optical resin composition Pending JP2006131845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325436A JP2006131845A (en) 2004-11-09 2004-11-09 New optical resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325436A JP2006131845A (en) 2004-11-09 2004-11-09 New optical resin composition

Publications (1)

Publication Number Publication Date
JP2006131845A true JP2006131845A (en) 2006-05-25

Family

ID=36725676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325436A Pending JP2006131845A (en) 2004-11-09 2004-11-09 New optical resin composition

Country Status (1)

Country Link
JP (1) JP2006131845A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142213A1 (en) * 2006-06-05 2007-12-13 Central Glass Co., Ltd. Method for preparing fluorinated nanodiamond liquid dispersion
JP2009190902A (en) * 2006-06-05 2009-08-27 Central Glass Co Ltd Method for preparing fluorinated nanodiamond liquid dispersion and its dispersion
JP2010006671A (en) * 2008-06-30 2010-01-14 Central Glass Co Ltd Fluorinated nanodiamond, dispersion thereof and method for preparing the dispersion
US20100160600A1 (en) * 2008-12-22 2010-06-24 Fujifilm Corporation Resin composition for optical material and its shaped article, optical component and lens
JP2012022047A (en) 2010-07-12 2012-02-02 Vision Development Co Ltd Hard coat film including diamond fine particle containing silicon and/or fluorine
JP2012035537A (en) * 2010-08-09 2012-02-23 Vision Development Co Ltd Hard coat film including diamond minute particle
JP2012035538A (en) * 2010-08-09 2012-02-23 Vision Development Co Ltd Method for manufacturing high surface hardness film containing diamond fine particles
JP2012035536A (en) * 2010-08-09 2012-02-23 Vision Development Co Ltd Method for manufacturing high surface hardness film containing diamond fine particles having silicon and/or fluorine
JP2012045840A (en) * 2010-08-27 2012-03-08 Vision Development Co Ltd Transparent plastic composite
WO2014027620A1 (en) * 2012-08-15 2014-02-20 ダイキン工業株式会社 Fluororesin composition containing fluorinated nano-diamond
JP2017045902A (en) * 2015-08-27 2017-03-02 日機装株式会社 Light-emitting device
CN112029436A (en) * 2019-06-03 2020-12-04 日东电工株式会社 Adhesive sheet, adhesive kit, and laminate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2033935A4 (en) * 2006-06-05 2013-05-29 Central Glass Co Ltd Method for preparing fluorinated nanodiamond liquid dispersion
JP2009190902A (en) * 2006-06-05 2009-08-27 Central Glass Co Ltd Method for preparing fluorinated nanodiamond liquid dispersion and its dispersion
WO2007142213A1 (en) * 2006-06-05 2007-12-13 Central Glass Co., Ltd. Method for preparing fluorinated nanodiamond liquid dispersion
US8790541B2 (en) 2006-06-05 2014-07-29 Central Glass Co., Ltd. Method for preparing fluorinated nanodiamond liquid dispersion
JP2010006671A (en) * 2008-06-30 2010-01-14 Central Glass Co Ltd Fluorinated nanodiamond, dispersion thereof and method for preparing the dispersion
US20100160600A1 (en) * 2008-12-22 2010-06-24 Fujifilm Corporation Resin composition for optical material and its shaped article, optical component and lens
JP2012022047A (en) 2010-07-12 2012-02-02 Vision Development Co Ltd Hard coat film including diamond fine particle containing silicon and/or fluorine
JP2012035536A (en) * 2010-08-09 2012-02-23 Vision Development Co Ltd Method for manufacturing high surface hardness film containing diamond fine particles having silicon and/or fluorine
JP2012035538A (en) * 2010-08-09 2012-02-23 Vision Development Co Ltd Method for manufacturing high surface hardness film containing diamond fine particles
JP2012035537A (en) * 2010-08-09 2012-02-23 Vision Development Co Ltd Hard coat film including diamond minute particle
JP2012045840A (en) * 2010-08-27 2012-03-08 Vision Development Co Ltd Transparent plastic composite
WO2014027620A1 (en) * 2012-08-15 2014-02-20 ダイキン工業株式会社 Fluororesin composition containing fluorinated nano-diamond
JP2014055290A (en) * 2012-08-15 2014-03-27 Daikin Ind Ltd Fluororesin composition containing fluorinated nanodiamond
KR101671128B1 (en) 2012-08-15 2016-10-31 다이킨 고교 가부시키가이샤 Fluororesin composition containing fluorinated nano-diamond
US9725582B2 (en) 2012-08-15 2017-08-08 Daikin Industries, Ltd. Fluororesin composition containing fluorinated nano-diamond
JP2017045902A (en) * 2015-08-27 2017-03-02 日機装株式会社 Light-emitting device
CN112029436A (en) * 2019-06-03 2020-12-04 日东电工株式会社 Adhesive sheet, adhesive kit, and laminate
JP2020196820A (en) * 2019-06-03 2020-12-10 日東電工株式会社 Pressure sensitive adhesive sheet, pressure sensitive adhesive kit and laminate

Similar Documents

Publication Publication Date Title
US6593392B2 (en) Curable halogenated compositions
JP5327057B2 (en) Curable composition, fluorine-containing cured product
JP2006131845A (en) New optical resin composition
CN108368211B (en) Curable composition and cured product
KR100904014B1 (en) Amorphous perfluorinated polymers
JP4399144B2 (en) Amorphous perfluorinated copolymer
CN1831032A (en) Halogenated optical polymer composition
JPWO2017038718A1 (en) Fluoropolymer, production method thereof, and cured product of fluoropolymer
WO2007086478A1 (en) Fluoropolymer for chromatic aberration correction lens, and chromatic aberration correction lens
JP5852330B2 (en) Curable resin composition and molded body
TW201137021A (en) Composition for a low-refractive-index film
JP2006150741A (en) Method for forming pattern on transfer layer
JP2006233095A (en) Layered crystal compound containing fluoropolymer and manufacturing method thereof
JP2003238762A (en) Fluorine containing resin composition
JP2002188047A (en) Coating composition and method for producing the same
CN1628141A (en) Halogenated optical polymer composition
TWI470020B (en) A hardened resin composition, a hardened product and a fluorine-containing polymer
CN100349932C (en) Amorphous perfluorinated polymers
JP5345379B2 (en) Resin composition for optical material and molded product thereof, optical component and lens
TW201510038A (en) Fluorine-containing aromatic compound, method for producing same, curable material, cured product thereof, and optical member
JP7395338B2 (en) Method for producing optical resin composition and optical resin composition
JP2016204464A (en) Surface treatment agent
WO2023157589A1 (en) Fluororesin, manufacturing method therefor, composition, and article
US10745508B2 (en) Surface-modified metal oxide particles, production method, dispersion liquid, curable composition, and cured product
WO2017111094A1 (en) Dispersion, curable composition, cured product, surface-modified silica particles and method for producing same