JP2006129070A - Video processor and video processing method - Google Patents

Video processor and video processing method Download PDF

Info

Publication number
JP2006129070A
JP2006129070A JP2004314571A JP2004314571A JP2006129070A JP 2006129070 A JP2006129070 A JP 2006129070A JP 2004314571 A JP2004314571 A JP 2004314571A JP 2004314571 A JP2004314571 A JP 2004314571A JP 2006129070 A JP2006129070 A JP 2006129070A
Authority
JP
Japan
Prior art keywords
gradation correction
signal
video signal
level
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004314571A
Other languages
Japanese (ja)
Inventor
Koichi Hoshino
功一 星野
Toshiyuki Sano
俊幸 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004314571A priority Critical patent/JP2006129070A/en
Priority to PCT/JP2005/019549 priority patent/WO2006054427A1/en
Publication of JP2006129070A publication Critical patent/JP2006129070A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10144Varying exposure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Image Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a video processor capable of reducing the sense of incongruity of image synthesis caused by a condition of an imaged object. <P>SOLUTION: An image pickup device is provided with a level synthesizing part 106 for synthesizing a first video signal and a second video signal obtained by being imaged at different exposure periods of time to generate a level synthesized video image, an optional frame signal generating part 105 for dividing video relating to the level synthesized video signal into a plurality of areas corresponding to an intensity level on the basis of the first video signal or the second video signal and generating a signal corresponding to the divided areas, gradation correcting parts 109 and 110 for using histograms of areas formed by an optional frame signal generated by the optional frame signal generating part 105 to perform gradation correction of the level synthesized video signal and obtaining gradation corrected videos about respective histograms, and an area synthesizing part 111 for synthesizing respective gradation corrected videos obtained in the gradation correcting parts 109 and 110. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はビデオカメラ等に用いられ、異なる露光時間で撮像して得られた複数の映像信号を用いて、ダイナミックレンジの広い画像を生成し、被写体の状況に応じて最適な階調補正を行う映像処理装置に関するものである。   The present invention is used in a video camera or the like, generates an image with a wide dynamic range using a plurality of video signals obtained by imaging with different exposure times, and performs optimum gradation correction according to the condition of the subject. The present invention relates to a video processing apparatus.

従来の撮像装置を図20に示す。撮像装置において、撮像部201は、水平CCDの転送速度が通常の2倍速度で、露光量が長時間と短時間の2種類の映像信号を1フィールド期間内に交互に出力する。撮像部201より出力された映像信号は、前処理部202にてCDS、AGC等の前処理が行われた後、A/D変換部203にてデジタル信号に変換され、時間軸変換部204に入力される。時間軸変換部204は、入力されたデジタル信号を標準速度で且つ同一タイミングの長時間露光画像信号(LONG信号)と短時間露光画像信号(SHORT信号)に分離し、レベル合成部205に渡す。そして、時間軸変換部204からLONG信号およびSHORT信号を受け取ったレベル合成部205は、図21(a)および図21(b)に示すようにLONG信号については飽和点に達している信号を圧縮し、また図21(c)および図21(d)に示すようにSHORT信号についてはオフセットを足しこむ。そして、レベル合成部205は、図21(e)に示すように飽和点を合成点として合成点以下の輝度レベルの時はLONG信号で合成点以上の時はSHORT信号になるように合成する。ヒストグラムデータ検波部208は、レベル合成部205にて合成された信号の輝度のヒストグラムを検出する。ブロックデータ検波部210は、合成された信号を8×6のブロックに分割して各ブロックの平均輝度を検出する。その結果に基づいて、画面分割位置データ算出部211が画面分割位置を決定し、階調補正データ算出部212が画面分割された各領域における階調補正特性を算出する。そして、A〜D領域階調補正部206が、階調補正データ算出部212にて算出された特性に基づいて階調補正を行う。領域分割パルス生成部209が画面分割位置に従って、合成された信号の領域を分割し合成するための制御パルスを生成し、その制御パルスに基づいて領域合成部207が階調補正された画像の合成を行う。その後、メイン信号処理部213が撮像装置のメイン部分の信号処理を行って信号を出力する(例えば、特許文献1参照)。
特開平10−261077号公報(第3−5頁、第1図)
A conventional imaging device is shown in FIG. In the image pickup apparatus, the image pickup unit 201 alternately outputs two types of video signals having a horizontal CCD transfer rate twice the normal speed and a long exposure time and a short exposure amount within one field period. The video signal output from the imaging unit 201 is subjected to preprocessing such as CDS and AGC in the preprocessing unit 202, and then converted into a digital signal in the A / D conversion unit 203. Entered. The time axis conversion unit 204 separates the input digital signal into a long-exposure image signal (LONG signal) and a short-exposure image signal (SHORT signal) at a standard speed and the same timing, and passes them to the level synthesis unit 205. Then, the level synthesis unit 205 that has received the LONG signal and the SHORT signal from the time axis conversion unit 204 compresses the signal that has reached the saturation point for the LONG signal as shown in FIGS. 21 (a) and 21 (b). Further, as shown in FIGS. 21 (c) and 21 (d), an offset is added to the SHORT signal. Then, as shown in FIG. 21E, the level synthesis unit 205 synthesizes a saturation point as a synthesis point so that it becomes a LONG signal when the luminance level is lower than the synthesis point and becomes a SHORT signal when the luminance level is higher than the synthesis point. The histogram data detection unit 208 detects a luminance histogram of the signal synthesized by the level synthesis unit 205. The block data detection unit 210 divides the synthesized signal into 8 × 6 blocks and detects the average luminance of each block. Based on the result, the screen division position data calculation unit 211 determines the screen division position, and the gradation correction data calculation unit 212 calculates gradation correction characteristics in each of the divided areas. Then, the A to D area gradation correction unit 206 performs gradation correction based on the characteristics calculated by the gradation correction data calculation unit 212. An area division pulse generation unit 209 generates a control pulse for dividing and synthesizing an area of the synthesized signal according to the screen division position, and an area synthesis unit 207 synthesizes an image whose tone has been corrected based on the control pulse. I do. Thereafter, the main signal processing unit 213 performs signal processing of the main part of the imaging apparatus and outputs a signal (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 10-261077 (page 3-5, FIG. 1)

しかしながら、上記の撮像装置では、階調補正を施す領域の分割位置を変えることはできるが最小単位の領域があらかじめ決められているため、必ずしも被写体に対して最適な階調補正が行えるとは限らない。例えば、同一の最小単位の領域内に高輝度から低輝度までの輝度が均一に分布しているような被写体の場合、効果的な階調補正ができずメリハリのない画像が得られる場合があった。   However, in the above-described imaging apparatus, the division position of the area to be subjected to gradation correction can be changed, but since the minimum unit area is determined in advance, it is not always possible to perform optimum gradation correction for the subject. Absent. For example, in the case of a subject in which the luminance from high luminance to low luminance is uniformly distributed within the same minimum unit area, there is a case where effective gradation correction cannot be performed and a sharp image is obtained. It was.

本発明は、上記背景に鑑み、撮像された被写体の条件に起因する画像合成の違和感を低減することができる映像処理装置を提供することを目的とする。   In view of the above background, an object of the present invention is to provide a video processing apparatus capable of reducing the uncomfortable feeling of image synthesis caused by the condition of a captured subject.

本発明の映像処理装置は、互いに異なる露光時間で撮像することにより得られた第1の映像信号および第2の映像信号をレベル合成してレベル合成映像信号を生成するレベル合成手段と、前記第1の映像信号または前記第2の映像信号に基づいて、前記レベル合成映像信号に係る映像を輝度レベルに応じた複数の領域に分割する領域分割手段と、前記領域分割手段にて分割されたそれぞれの領域のヒストグラムを用いて前記レベル合成映像信号の階調補正を行って、それぞれのヒストグラムについての階調補正映像を得る階調補正手段と、前記階調補正手段にて得られたそれぞれの階調補正映像を合成する領域合成手段とを備えた構成を有する。   The video processing apparatus of the present invention includes level combining means for generating a level combined video signal by level combining a first video signal and a second video signal obtained by imaging with different exposure times. Based on one video signal or the second video signal, an area dividing unit that divides the video according to the level composite video signal into a plurality of areas corresponding to luminance levels, and each divided by the area dividing unit Gradation correction means for performing gradation correction of the level composite video signal using a histogram of the area of the image to obtain a gradation correction image for each histogram, and the respective levels obtained by the gradation correction means. And a region synthesizing unit for synthesizing the tone correction video.

この構成により、輝度に応じて分割されたそれぞれの領域ごとにヒストグラムを作成し、作成されたヒストグラムを用いて階調補正を行うので、分割された領域内に高輝度部分と低輝度部分が混在することを回避でき、適切な階調補正を行える。   With this configuration, a histogram is created for each area divided according to the brightness, and gradation correction is performed using the created histogram, so a high-luminance portion and a low-luminance portion are mixed in the divided area. Can be avoided and appropriate gradation correction can be performed.

上記映像処理装置において、前記領域分割手段は、前記第1の映像信号または前記第2の映像信号とあらかじめ定められた閾値との大小関係に応じて、前記映像を分割してもよい。   In the video processing apparatus, the area dividing unit may divide the video according to a magnitude relationship between the first video signal or the second video signal and a predetermined threshold value.

この構成により、閾値との大小に応じて適切に領域を分割できる。   With this configuration, the area can be appropriately divided according to the threshold value.

上記映像処理装置において、前記領域合成手段は、前記階調補正手段にて得られた複数の階調補正映像のそれぞれから、その階調補正映像を得るためのヒストグラムを求めた領域を最適階調補正領域として切り出し、切り出した最適階調補正領域を合成してもよい。   In the video processing apparatus, the region synthesizing unit determines an optimum gray level for a region for which a histogram for obtaining the tone correction video is obtained from each of the plurality of tone correction videos obtained by the tone correction unit. It may be cut out as a correction area, and the cut out optimum gradation correction area may be synthesized.

この構成により、階調補正された複数の階調補正映像のそれぞれから、適切に補正された領域を取り出して合成することができるので、メリハリのある画像を合成できる。   With this configuration, it is possible to extract and synthesize appropriately corrected regions from each of the plurality of gradation-corrected images that have been subjected to gradation correction, so that a sharp image can be synthesized.

上記映像処理装置において、前記領域合成手段は、異なる最適階調補正領域が隣接する境界付近では、境界での階調補正率が滑らかに変化するように、隣接する最適階調補正領域に互いの階調補正の影響を与えてもよい。   In the video processing apparatus, the region synthesizing unit may be arranged so that the gradation correction rate at the boundary changes smoothly in the vicinity of the boundary where the different optimal gradation correction areas are adjacent to each other. The effect of gradation correction may be given.

この構成により、異なる階調補正がなされた複数の最適階調補正領域を隣接する部分で階調補正係数が滑らかに変化するようにすることで、境界部分の違和感を低減させ、画質を向上できる。   With this configuration, it is possible to reduce the sense of incongruity in the boundary portion and improve the image quality by smoothly changing the gradation correction coefficient in the adjacent portions of the plurality of optimum gradation correction regions subjected to different gradation corrections. .

本発明の映像処理方法は、互いに異なる露光時間で撮像することにより得られた第1の映像信号および第2の映像信号をレベル合成してレベル合成映像信号を生成するレベル合成ステップと、前記第1の映像信号または第2の映像信号の少なくとも一方に基づいて、レベル合成ステップにおいて合成された映像を輝度レベルに応じた複数の領域に分割する領域分割ステップと、前記領域分割ステップにおいて分割されたそれぞれの領域のヒストグラムを用いて前記レベル合成映像信号の階調補正を行って、それぞれのヒストグラムについての階調補正映像を得る階調補正ステップと、前記階調補正ステップにおいて得られたそれぞれの階調補正映像を合成する領域合成ステップとを備える。   The video processing method of the present invention includes a level synthesis step of generating a level synthesized video signal by level-synthesizing a first video signal and a second video signal obtained by imaging with different exposure times, An area dividing step for dividing the video synthesized in the level synthesizing step into a plurality of areas according to the luminance level based on at least one of the one video signal or the second video signal, and the division in the area dividing step A gradation correction step for obtaining a gradation-corrected image for each histogram by performing gradation correction of the level composite video signal using the histogram of each region, and the respective levels obtained in the gradation correction step. And an area synthesis step for synthesizing the tone correction video.

この構成により、本発明の映像処理装置と同様に、分割された領域内に高輝度部分と低輝度部分が混在することを回避し、適切な階調補正を行うことができる。また、本発明の映像処理装置の各種の構成を本発明の映像処理方法に適用することも可能である。   With this configuration, similar to the video processing apparatus of the present invention, it is possible to avoid mixing high-brightness portions and low-brightness portions in the divided areas and perform appropriate gradation correction. Various configurations of the video processing apparatus of the present invention can also be applied to the video processing method of the present invention.

本発明によれば、輝度に応じて分割されたそれぞれの領域ごとにヒストグラムを作成し、作成されたヒストグラムを用いて階調補正を行うことにより、分割された領域内に高輝度部分と低輝度部分が混在することを回避でき、適切な階調補正を行えるというすぐれた効果を有する。   According to the present invention, a histogram is created for each region divided according to luminance, and gradation correction is performed using the created histogram, whereby a high luminance portion and a low luminance are included in the divided region. It is possible to avoid mixing the portions and to have an excellent effect that appropriate gradation correction can be performed.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1の実施の形態の撮像装置を示す。本実施の形態における撮像装置は、撮像部101、前処理部102、A/D変換部103、時間軸変換部104、任意枠信号生成部105、レベル合成部106、ヒストグラムデータ検波部107、階調補正データ算出部108、低輝度領域階調補正部109、高輝度領域階調補正部110、領域合成部111、メイン信号処理部112より構成されている。   FIG. 1 shows an imaging apparatus according to a first embodiment of the present invention. The imaging apparatus according to the present embodiment includes an imaging unit 101, a preprocessing unit 102, an A / D conversion unit 103, a time axis conversion unit 104, an arbitrary frame signal generation unit 105, a level synthesis unit 106, a histogram data detection unit 107, a floor The tone correction data calculation unit 108, the low luminance region gradation correction unit 109, the high luminance region gradation correction unit 110, the region synthesis unit 111, and the main signal processing unit 112 are configured.

撮像部101は、平面状に配置された複数の画素からなるCCDを含んでいる。撮像部101は、図示しない制御部からの指示に従って、露光時間が長時間の映像信号(LONG信号)と露光時間が短時間の映像信号(SHORT信号)とを生成する。このとき、撮像部101は、CCDの水平転送速度を通常の2倍の速度にして水平ラインごとにLONG信号およびSHORT信号を交互に出力することにより、通常の撮像にて1フィールド分の映像信号を出力する期間内に、LONG信号およびSHORT信号をそれぞれ1フィールド分出力する。   The imaging unit 101 includes a CCD composed of a plurality of pixels arranged in a planar shape. The imaging unit 101 generates a video signal with a long exposure time (LONG signal) and a video signal with a short exposure time (SHORT signal) in accordance with an instruction from a control unit (not shown). At this time, the imaging unit 101 sets the horizontal transfer rate of the CCD to twice the normal rate, and alternately outputs a LONG signal and a SHORT signal for each horizontal line, so that a video signal for one field is obtained in normal imaging. LONG signal and SHORT signal are each output for one field within the period for outputting.

前処理部102は、ノイズ除去処理を行なうCDS回路とゲイン制御処理を行なうAGC回路を含み、撮像部101から出力された信号に対してノイズ除去およびゲイン制御などの前処理を施す。A/D変換部103は、前処理部102にて前処理された映像信号をアナログ信号からデジタル信号に変換する。   The preprocessing unit 102 includes a CDS circuit that performs noise removal processing and an AGC circuit that performs gain control processing, and performs preprocessing such as noise removal and gain control on the signal output from the imaging unit 101. The A / D conversion unit 103 converts the video signal preprocessed by the preprocessing unit 102 from an analog signal to a digital signal.

時間軸変換部104は、撮像部101にて連続的に生成されたLONG信号とSHORT信号の時間軸を変換することにより、両信号をそれぞれ標準の速度でかつ同一のタイミングにする。この時間軸変換部104によって撮像部101で生成された映像信号は、LONG信号とSHORT信号とに分離され、それぞれ独立して取り扱うことができる。LONG信号およびSHORT信号は、レベル合成部106に入力される。レベル合成部106は、LONG信号とSHORT信号とをレベル合成し、レベル合成映像信号を生成する。   The time axis conversion unit 104 converts the time axes of the LONG signal and the SHORT signal continuously generated by the imaging unit 101, thereby setting both signals at a standard speed and the same timing. The video signal generated by the imaging unit 101 by the time axis conversion unit 104 is separated into a LONG signal and a SHORT signal and can be handled independently. The LONG signal and the SHORT signal are input to the level synthesis unit 106. The level synthesis unit 106 performs level synthesis of the LONG signal and the SHORT signal to generate a level synthesized video signal.

図2(a)〜図2(d)は、任意枠信号生成部105を説明するための図である。図2(a)は、撮像部101で撮像した被写体を示す図である。被写体は、楕円形の高輝度領域LAとそれを取り囲む低輝度領域DAを有する。図2(b)は時間軸変換部104が撮像部101から取得したLONG信号、図2(c)は時間変換部104が撮像部101から取得したSHORT信号を示す。図2(b)および図2(c)は共に、図2(a)に示す被写体のAB線に対応する信号である。任意枠信号生成部105は、LONG信号の輝度レベルと閾値の比較を行い、輝度レベルが閾値未満の領域は0で輝度レベルが閾値以上の領域は1になるような任意枠信号を生成する。図2(d)は、図2(a)に示す被写体においてAからBの水平方向で見た場合の任意枠信号を示す。任意枠信号において0で示されている領域は低輝度領域、1で示されている領域は高輝度領域を示す。このように任意枠信号により、映像が高輝度領域と低輝度領域の2つの領域に分けられる。任意枠信号生成部105は、本発明の領域分割手段に相当する。   FIG. 2A to FIG. 2D are diagrams for explaining the arbitrary frame signal generation unit 105. FIG. 2A is a diagram illustrating a subject imaged by the imaging unit 101. The subject has an elliptical high luminance area LA and a low luminance area DA surrounding it. 2B shows a LONG signal acquired by the time axis conversion unit 104 from the imaging unit 101, and FIG. 2C shows a SHORT signal acquired by the time conversion unit 104 from the imaging unit 101. FIG. 2B and FIG. 2C are signals corresponding to the AB line of the subject shown in FIG. The arbitrary frame signal generation unit 105 compares the luminance level of the LONG signal with a threshold value, and generates an arbitrary frame signal such that an area where the luminance level is less than the threshold value is 0 and an area where the luminance level is equal to or higher than the threshold value is 1. FIG. 2D shows an arbitrary frame signal when viewed in the horizontal direction from A to B in the subject shown in FIG. In the arbitrary frame signal, an area indicated by 0 indicates a low luminance area, and an area indicated by 1 indicates a high luminance area. In this way, the video is divided into two regions, a high luminance region and a low luminance region, by the arbitrary frame signal. The arbitrary frame signal generation unit 105 corresponds to an area dividing unit of the present invention.

図3(a)〜図3(f)は、ヒストグラムデータ検波部107および階調補正データ算出部108を説明するための図である。図3(a)は、レベル合成部106で合成されたレベル合成映像信号を示す。ヒストグラムデータ検波部107は、レベル合成部106で生成されたレベル合成映像信号の中から、任意枠信号(図3(b)参照)で示されている低輝度領域と高輝度領域のそれぞれのヒストグラムを検波する。任意枠信号において0で示されている低輝度領域のヒストグラムを算出すると、低輝度領域は被写体の暗い領域を示しているため、ヒストグラムは図3(c)に示すように暗いところに集中する。また、任意枠信号で1で示されている高輝度領域のヒストグラムは、高輝度領域が被写体の明るい領域を示しているため、ヒストグラムは図3(d)に示すように明るいところに集中する。   FIGS. 3A to 3F are diagrams for explaining the histogram data detection unit 107 and the gradation correction data calculation unit 108. FIG. 3A shows the level synthesized video signal synthesized by the level synthesis unit 106. The histogram data detection unit 107 includes a histogram for each of the low-brightness region and the high-brightness region indicated by the arbitrary frame signal (see FIG. 3B) from the level-combined video signal generated by the level synthesis unit 106. To detect. When the histogram of the low luminance area indicated by 0 in the arbitrary frame signal is calculated, the low luminance area indicates the dark area of the subject, and therefore the histogram is concentrated in a dark place as shown in FIG. In the histogram of the high luminance area indicated by 1 in the arbitrary frame signal, since the high luminance area indicates a bright area of the subject, the histogram is concentrated in a bright place as shown in FIG.

階調補正データ算出部108は、ヒストグラムデータ検波部107で算出されたヒストグラムを用いて階調補正データを算出する。低輝度領域のヒストグラムは、暗い部分に集中しているので、図3(e)に示すように暗い部分を持ち上げるような階調補正データを算出する。高輝度領域のヒストグラムは、明るい部分に集中しているので、図3(f)に示すように明るい部分を持ち上げるような階調補正データを算出する。   The gradation correction data calculation unit 108 calculates gradation correction data using the histogram calculated by the histogram data detection unit 107. Since the histogram of the low luminance area is concentrated in the dark part, the gradation correction data for raising the dark part is calculated as shown in FIG. Since the histogram of the high luminance region is concentrated on the bright part, the gradation correction data for raising the bright part is calculated as shown in FIG.

図4(a)〜図4(c)は、低輝度領域階調補正部109を説明するための図である。図4(a)はレベル合成部106で生成されたレベル合成信号を示す図である。低輝度領域階調補正部109は、図4(b)に示す階調補正データを用いて補正を行うため、図4(c)に示す低輝度階調補正信号のように信号レベルの低い部分が強調され、高い部分を抑えられる。   FIG. 4A to FIG. 4C are diagrams for explaining the low luminance region gradation correction unit 109. FIG. 4A is a diagram showing the level synthesis signal generated by the level synthesis unit 106. Since the low luminance region gradation correction unit 109 performs correction using the gradation correction data shown in FIG. 4B, a low signal level portion such as the low luminance gradation correction signal shown in FIG. Is emphasized and the high part is suppressed.

図5(a)〜図5(c)は、高輝度領域階調補正部110を説明するための図である。図5(a)はレベル合成部106で生成されたレベル合成信号を示す図である。高輝度領域階調補正部110は、図5(b)に示す階調補正データを用いて補正を行うため、図5(c)に示す高輝度階調補正信号のように信号レベルの低い部分が抑えられ、高い部分が強調される。   FIG. 5A to FIG. 5C are diagrams for explaining the high luminance area gradation correction unit 110. FIG. 5A is a diagram showing a level synthesis signal generated by the level synthesis unit 106. Since the high luminance area gradation correction unit 110 performs correction using the gradation correction data shown in FIG. 5B, a portion having a low signal level like the high luminance gradation correction signal shown in FIG. Is suppressed and the high part is emphasized.

図6(a)〜図6(d)は、領域合成部110について説明するための図である。図6(a)は低輝度領域階調補正部109で生成された低輝度階調補正信号、図6(c)は高輝度領域階調補正110で生成された高輝度階調補正信号を示す図である。領域合成部110は、図6(b)に示す任意枠信号を用いて出力切り替え処理を行い、高輝度階調補正信号と低輝度階調補正信号とを合成する。すなわち、任意枠信号が0の領域は低輝度階調補正信号を、任意枠信号が1の領域は高輝度階調補正信号を選択して出力する。任意枠信号によって、高輝度領域については高輝度階調補正信号を選択し、低輝度領域については低輝度階調補正信号を選択するので、それぞれの領域について生成された最適な階調補正信号を合成できる。この領域合成結果を図6(d)に示す。   FIG. 6A to FIG. 6D are diagrams for explaining the region composition unit 110. 6A shows a low luminance gradation correction signal generated by the low luminance area gradation correction unit 109, and FIG. 6C shows a high luminance gradation correction signal generated by the high luminance area gradation correction 110. FIG. The area synthesis unit 110 performs output switching processing using the arbitrary frame signal shown in FIG. 6B, and synthesizes the high luminance gradation correction signal and the low luminance gradation correction signal. That is, a low luminance gradation correction signal is selected for an area where the arbitrary frame signal is 0, and a high luminance gradation correction signal is selected for an area where the arbitrary frame signal is 1. Since the arbitrary frame signal selects the high luminance gradation correction signal for the high luminance area and the low luminance gradation correction signal for the low luminance area, the optimum gradation correction signal generated for each area is selected. Can be synthesized. The result of this region synthesis is shown in FIG.

メイン信号処理部112は、領域合成信号に対して、圧縮符号化処理を含むメイン部分の信号処理を行い、外部の装置に信号を出力する。   The main signal processing unit 112 performs signal processing of the main part including compression coding processing on the region synthesized signal and outputs a signal to an external device.

第1の実施の形態の撮像装置によれば、輝度に応じて分割された領域ごとにヒストグラムを検波し、階調補正を行うことができる。そして、領域ごとに最適に階調補正された画像を出力することができ、被写体の条件によらず明るい所から暗い所までよく見えるダイナミックレンジの広い画像を得ることができる。   According to the imaging apparatus of the first embodiment, gradation correction can be performed by detecting a histogram for each region divided according to luminance. Then, it is possible to output an image whose tone is optimally corrected for each region, and to obtain an image with a wide dynamic range that can be clearly seen from a bright place to a dark place regardless of the conditions of the subject.

図7は、本発明の第2の実施の形態の撮像装置を示す図である。第2の実施の形態の撮像装置は、第1の実施の形態の撮像装置と基本的な構成は同じであるが、低輝度寄り領域階調補正部120、高輝度寄り領域階調補正部121をさらに備える点が第1の実施の形態の撮像装置と異なる。また、第2の実施の形態では、任意枠生成部105、階調補正データ算出部108、領域合成部111の機能が第1の実施の形態の撮像装置と異なる。   FIG. 7 is a diagram illustrating an imaging apparatus according to the second embodiment of the present invention. The imaging apparatus of the second embodiment has the same basic configuration as that of the imaging apparatus of the first embodiment, but the low-luminance side region gradation correction unit 120 and the high-luminance side region gradation correction unit 121. Is different from the imaging apparatus of the first embodiment. In the second embodiment, the functions of the arbitrary frame generation unit 105, the gradation correction data calculation unit 108, and the region synthesis unit 111 are different from those of the imaging apparatus of the first embodiment.

図8(a)〜(e)は、任意枠信号生成部105を説明するための図である。図8(a)は、撮像部101で撮像した被写体を示す。被写体は、楕円形の高輝度領域LA1とそれを取り囲む低輝度領域DA1を有する。そして、高輝度領域LA1と低輝度領域DA1との間は、高輝度領域LA1側から順に高輝度寄り領域LA2、低輝度寄り領域DA2を有し、次第に暗くなっている。図8(b)は時間軸変換部104が撮像部101から取得したLONG信号、図8(c)は時間軸変換部104が撮像部101から取得したSHORT信号を示す。任意枠信号生成部105は、LONG信号と閾値2の比較を行い、閾値未満の領域は0、閾値以上の領域は1になるような図8(d)に示す第1任意枠信号を生成する。さらに、任意枠信号生成部105は、LONG信号と閾値1および閾値3の比較を行い、閾値1以上閾値3未満の領域は1、閾値1未満および閾値3以上の領域は0となるような図8(e)に示す第2任意枠信号を生成する。以上のように生成された第1任意枠信号および第2任意枠信号により、第1任意枠信号が0で第2任意枠信号が0で示されている領域は低輝度領域、第1任意枠信号が1で第2任意枠信号が0で示されている領域は高輝度領域、第1任意枠信号が0で第2任意枠信号が1で示されている領域は低輝度領域に近い低輝度寄り領域、第1任意枠信号が1で第2任意枠信号が1で示されている領域は高輝度領域に近い高輝度寄り領域という4つの領域に分割される。   FIGS. 8A to 8E are diagrams for explaining the arbitrary frame signal generation unit 105. FIG. 8A shows the subject imaged by the imaging unit 101. The subject has an elliptical high luminance area LA1 and a low luminance area DA1 surrounding it. And between the high-luminance area LA1 and the low-luminance area DA1, there are a high-luminance area LA2 and a low-luminance area DA2 in order from the high-luminance area LA1 side, and it is gradually darker. 8B shows a LONG signal acquired by the time axis conversion unit 104 from the imaging unit 101, and FIG. 8C shows a SHORT signal acquired by the time axis conversion unit 104 from the imaging unit 101. The arbitrary frame signal generation unit 105 compares the LONG signal with the threshold 2 and generates the first arbitrary frame signal shown in FIG. 8D so that the area below the threshold is 0 and the area above the threshold is 1. . Further, the arbitrary frame signal generation unit 105 compares the LONG signal with the threshold value 1 and the threshold value 3 so that the region where the threshold value is 1 or more and less than the threshold value 3 is 1, and the region where the threshold value is less than 1 and the region where the threshold value 3 or more is 0 A second arbitrary frame signal shown in 8 (e) is generated. Based on the first arbitrary frame signal and the second arbitrary frame signal generated as described above, the area where the first arbitrary frame signal is 0 and the second arbitrary frame signal is 0 is the low luminance area, the first arbitrary frame signal A region where the signal is 1 and the second arbitrary frame signal is 0 is a high luminance region, and a region where the first arbitrary frame signal is 0 and the second arbitrary frame signal is 1 is a low luminance region. The area near the luminance, the area where the first arbitrary frame signal is 1 and the second arbitrary frame signal is 1 is divided into four areas called a high luminance area close to the high luminance area.

図9(a)〜図9(g)は、階調補正データ算出部108を説明するための図である。階調補正データ算出部108は、第1の実施の形態と同様に、図9(a)に示す低輝度領域のヒストグラムから、図9(c)に示す低輝度領域の階調補正データを生成する。また、図9(b)に示す高輝度領域のヒストグラムから、図9(d)に示す高輝度領域の階調補正データを生成する。次に、階調補正データ算出部108は、低輝度寄り領域および高輝度寄り領域の階調補正データを生成するために、図9(b)および図9(d)に示す階調補正データの平均の平均階調補正データ(図9(e)参照)を生成する。そして、低輝度領域の階調補正データ(図9(c))と平均階調補正データ(図9(e))との平均を求め、図9(f)に示す低輝度寄り領域の階調補正データを生成する。同様に、高輝度領域の階調補正データ(図9(d))と平均階調補正データ(図9(e))の平均を求め、図9(g)に示す高輝度寄り領域の階調補正データを生成する。以上の処理によって、階調補正データ算出部108は、それぞれの領域の階調補正データを算出する。   FIG. 9A to FIG. 9G are diagrams for explaining the gradation correction data calculation unit 108. Similar to the first embodiment, the gradation correction data calculation unit 108 generates gradation correction data for the low luminance region shown in FIG. 9C from the histogram for the low luminance region shown in FIG. 9A. To do. Further, tone correction data for the high luminance region shown in FIG. 9D is generated from the histogram of the high luminance region shown in FIG. 9B. Next, the gradation correction data calculation unit 108 generates the gradation correction data shown in FIGS. 9B and 9D in order to generate the gradation correction data for the low-luminance area and the high-luminance area. Average average tone correction data (see FIG. 9E) is generated. Then, the average of the gradation correction data (FIG. 9 (c)) and the average gradation correction data (FIG. 9 (e)) in the low luminance region is obtained, and the gradation in the low luminance region shown in FIG. 9 (f) is obtained. Generate correction data. Similarly, the average of the gradation correction data (FIG. 9 (d)) and the average gradation correction data (FIG. 9 (e)) of the high luminance region is obtained, and the gradation of the high luminance region shown in FIG. 9 (g) is obtained. Generate correction data. Through the above processing, the gradation correction data calculation unit 108 calculates gradation correction data for each region.

図10〜図13はそれぞれ、低輝度領域階調補正部109、高輝度領域階調補正部110、低輝度寄り領域階調補正部120、高輝度寄り領域階調補正部121を説明するための図である。各図において、(a)はレベル合成部106で生成されたレベル合成映像信号、(b)は階調補正するための階調補正データ、(c)は補正後の階調補正信号を示す図である。低輝度階調補正部109は、階調補正データ(図10(b)参照)を用いてレベル合成映像信号(図10(a)参照)の補正を行うため信号レベルが低い部分が強調され、高い部分が抑えられる。高輝度階調補正部110は、階調補正データ(図11(b)参照)を用いてレベル合成映像信号(図11(a)参照)の補正を行うため信号レベルが低い部分が抑えられ、高い部分が強調される。低輝度寄り階調補正部120は、階調補正データ(図12(b)参照)を用いてレベル合成映像信号(図12(a)参照)の補正を行うため低輝度階調補正信号と同様に信号レベルが低い部分が強調され、高い部分が抑えられる。ただし、補正の度合いは低輝度階調補正信号より小さい。また、高輝度寄り領域階調補正部121では、階調補正データ(図13(b)参照)を用いてレベル合成映像信号(図13(a)参照)の補正を行うため、高輝度階調補正信号と同様に低い部分が抑えられ、高い部分が強調される。ただし、補正の度合いは高輝度階調補正信号より小さい。   10 to 13 are respectively for explaining the low luminance region gradation correction unit 109, the high luminance region gradation correction unit 110, the low luminance region gradation correction unit 120, and the high luminance region gradation correction unit 121. FIG. In each figure, (a) is a level synthesized video signal generated by the level synthesizing unit 106, (b) is tone correction data for tone correction, and (c) is a tone correction signal after correction. It is. Since the low luminance gradation correction unit 109 corrects the level composite video signal (see FIG. 10A) using the gradation correction data (see FIG. 10B), the low signal level portion is emphasized, High part is suppressed. Since the high luminance gradation correction unit 110 corrects the level composite video signal (see FIG. 11A) using the gradation correction data (see FIG. 11B), a portion with a low signal level is suppressed, The high part is emphasized. Since the low-luminance shift gradation correction unit 120 corrects the level composite video signal (see FIG. 12A) using the gradation correction data (see FIG. 12B), it is the same as the low-luminance gradation correction signal. The portion with a low signal level is emphasized and the portion with a high signal level is suppressed. However, the degree of correction is smaller than the low luminance gradation correction signal. Further, since the high brightness shift area tone correction unit 121 corrects the level composite video signal (see FIG. 13A) using the tone correction data (see FIG. 13B), the high brightness tone is corrected. Similar to the correction signal, the low part is suppressed and the high part is emphasized. However, the degree of correction is smaller than the high luminance gradation correction signal.

図14は、領域合成部111の動作を説明するための図である。図14の上段は第1任意枠信号、中段は第2任意枠信号を示し、下段は第1任意枠信号および第2任意枠信号で規定されるそれぞれの領域に適用すべき階調補正信号を示している。領域合成部111は、低輝度寄り領域階調補正信号、高輝度寄り領域階調補正信号、低輝度領域階調補正信号および高輝度領域階調補正信号を、第1任意枠信号と第2任意枠信号に基づいて切り替える処理を行う。すなわち、第1任意枠信号が0で第2任意枠信号が0で示されている領域は低輝度領域階調補正信号、第1任意枠信号が1で第2任意枠信号が0で示されている領域は高輝度領域階調補正信号、第1任意枠信号が0で第2任意枠信号が1で示されている領域は低輝度寄り領域階調補正信号、第1任意枠信号が1で第2任意枠信号が1で示されている領域は高輝度寄り領域階調補正信号を出力する。図15は、領域合成部111による領域合成結果を示す。   FIG. 14 is a diagram for explaining the operation of the region composition unit 111. The upper part of FIG. 14 shows the first arbitrary frame signal, the middle part shows the second arbitrary frame signal, and the lower part shows the gradation correction signal to be applied to each region defined by the first arbitrary frame signal and the second arbitrary frame signal. Show. The region synthesizing unit 111 converts the low luminance region gradation correction signal, the high luminance region gradation correction signal, the low luminance region gradation correction signal, and the high luminance region gradation correction signal into the first arbitrary frame signal and the second arbitrary frame signal. A switching process is performed based on the frame signal. That is, a region where the first arbitrary frame signal is 0 and the second arbitrary frame signal is 0 is a low luminance region gradation correction signal, the first arbitrary frame signal is 1 and the second arbitrary frame signal is 0. The region indicated by the high luminance region gradation correction signal, the region indicated by the first arbitrary frame signal 0 and the second arbitrary frame signal 1 is the low luminance region gradation correction signal, and the first arbitrary frame signal is 1 In the area where the second arbitrary frame signal is indicated by 1, a high-brightness close area gradation correction signal is output. FIG. 15 shows a region synthesis result by the region synthesis unit 111.

第2の実施の形態の撮像装置によれば、第1の実施の形態と同様に、被写体の条件によらず明るい所から暗い所までよく見えるダイナミックレンジの広い画像を得ることができるという効果を有する。   According to the imaging apparatus of the second embodiment, as in the first embodiment, an image having a wide dynamic range that can be clearly seen from a bright place to a dark place can be obtained regardless of the subject condition. Have.

また、第2の実施の形態の撮像装置では、3つの閾値を用いて、輝度に応じて映像を4種類の領域に分割したので、それぞれの輝度に応じていっそう適切に階調補正を行うことができる。   In the imaging apparatus according to the second embodiment, since the video is divided into four types of areas according to the luminance using three threshold values, gradation correction is performed appropriately according to each luminance. Can do.

なお、第2の実施の形態では、低輝度寄り領域および高輝度寄り領域の階調補正データを平均階調補正データ(図9(e)参照)を用いて生成したが、低輝度寄り領域、高輝度寄り領域のそれぞれのヒストグラムから階調補正データを求めてもよい。   In the second embodiment, the gradation correction data for the low-luminance area and the high-luminance area is generated using the average gradation correction data (see FIG. 9E). The gradation correction data may be obtained from the respective histograms in the high-luminance area.

図16は、本発明の第3の実施の形態の撮像装置を示す図である。第3の実施の形態の撮像装置は、第2の実施の形態の撮像装置と基本的な構成は同じであるが、第3の実施の形態の撮像装置は多値化部122を備えている点が異なる。また、第3の実施の形態では、領域合成部111の機能が第2の実施の形態と異なる。   FIG. 16 is a diagram illustrating an imaging apparatus according to the third embodiment of the present invention. The image pickup apparatus according to the third embodiment has the same basic configuration as the image pickup apparatus according to the second embodiment, but the image pickup apparatus according to the third embodiment includes a multi-value quantization unit 122. The point is different. In the third embodiment, the function of the region composition unit 111 is different from that of the second embodiment.

図17は、多値化部122の構成を示す図、図18および図19は多値化部122の動作を説明するための図である。多値化部122は、0/255変換部123とLPF部124とを有する。0/255変換部123は、図18(a)に示す第1任意枠信号を図18(b)に示す0〜255までの値を持つ第1任意枠信号に変換する。また、0/255変換部123は、図19(a)に示す第2任意枠信号を図19(b)に示す0〜255までの値を持つ第2任意枠信号に変換する。LPF部124は、多値化された第1任意枠信号および第2任意枠信号にフィルタ処理をかけることにより、図18(c)および図19(c)に示すように、0から255に徐々に変化する第1任意枠信号および第2任意枠信号に変換する。   FIG. 17 is a diagram illustrating the configuration of the multi-value quantization unit 122, and FIGS. 18 and 19 are diagrams for explaining the operation of the multi-value quantization unit 122. The multi-value conversion unit 122 includes a 0/255 conversion unit 123 and an LPF unit 124. The 0/255 conversion unit 123 converts the first arbitrary frame signal shown in FIG. 18A into a first arbitrary frame signal having a value from 0 to 255 shown in FIG. Also, the 0/255 converter 123 converts the second arbitrary frame signal shown in FIG. 19A into a second arbitrary frame signal having a value from 0 to 255 shown in FIG. 19B. The LPF unit 124 applies a filtering process to the multi-valued first arbitrary frame signal and the second arbitrary frame signal to gradually increase from 0 to 255 as shown in FIGS. 18 (c) and 19 (c). Into a first arbitrary frame signal and a second arbitrary frame signal that change to

領域合成部111は、基本的には第2の実施の形態と同様の処理を行う(図14参照)第1任意枠信号が0で第2任意枠信号が0で示されている領域は低輝度領域階調補正信号、第1任意枠信号が255で第2任意枠信号が0で示されている領域は高輝度領域階調補正信号、第1任意枠信号が0で第2任意枠信号が255で示されている領域は低輝度寄り領域階調補正信号、第1任意枠信号が255で第2任意枠信号が255で示されている領域は高輝度寄り領域階調補正信号を出力する。本実施の形態においては、領域合成部111は、第1任意枠信号および第2任意枠信号が0以上で255に達していない領域は、重み付け処理を行い、第1任意枠信号および第2任意枠信号の割合に応じて領域階調補正を出力する。   The region synthesis unit 111 basically performs the same processing as in the second embodiment (see FIG. 14). The region where the first arbitrary frame signal is 0 and the second arbitrary frame signal is 0 is low. The luminance region gradation correction signal, the region where the first arbitrary frame signal is 255 and the second arbitrary frame signal is 0 is the high luminance region gradation correction signal, the first arbitrary frame signal is 0 and the second arbitrary frame signal is The area indicated by 255 outputs a low-luminance area gradation correction signal, and the area where the first arbitrary frame signal is 255 and the second arbitrary frame signal is 255 outputs a high-luminance area gradation correction signal. To do. In the present embodiment, region synthesizing section 111 performs weighting processing on the first arbitrary frame signal and the second arbitrary frame signal that are 0 or more and has not reached 255, and performs the first arbitrary frame signal and the second arbitrary frame signal. The area gradation correction is output according to the ratio of the frame signal.

第3の実施の形態の撮像装置によれば、領域合成部による領域合成において領域の合成境界を滑らかにすることができ、領域の合成境界などに見られる違和感をなくすことができ、領域合成後の画質を向上させることができる。   According to the imaging apparatus of the third embodiment, the region composition boundary can be smoothed in region composition by the region composition unit, and the uncomfortable feeling seen in the region composition boundary can be eliminated. Image quality can be improved.

以上、本発明の映像処理装置を備えた撮像装置について、実施の形態を挙げて詳細に説明したが、本発明の映像処理装置は上記実施の形態に限定されるものではない。   While the imaging apparatus provided with the video processing apparatus of the present invention has been described in detail with reference to the embodiment, the video processing apparatus of the present invention is not limited to the above embodiment.

上記実施の形態では、任意枠信号生成部105は、LONG信号に基づいて任意枠信号を生成したが、SHORT信号に基づいて任意枠信号を生成してもよい。またLONG信号とSHORT信号を合成したレベル合成映像信号に基づいて任意枠信号を生成してもよい。   In the above embodiment, the arbitrary frame signal generation unit 105 generates the arbitrary frame signal based on the LONG signal, but may generate the arbitrary frame signal based on the SHORT signal. An arbitrary frame signal may be generated based on a level composite video signal obtained by combining a LONG signal and a SHORT signal.

以上説明したように、本発明によれば、輝度に応じて分割されたそれぞれの領域ごとにヒストグラムを作成し、作成されたヒストグラムを用いて階調補正を行うことにより、分割された領域内に高輝度部分と低輝度部分が混在することを回避でき、適切な階調補正を行えるというすぐれた効果を有し、例えば、ビデオカメラ等に用いられる映像処理装置として有用である。   As described above, according to the present invention, a histogram is created for each area divided according to luminance, and gradation correction is performed using the created histogram, so that the area is divided. It has an excellent effect that it is possible to avoid mixing a high luminance portion and a low luminance portion and perform appropriate gradation correction. For example, it is useful as a video processing device used in a video camera or the like.

本発明の第1の実施の形態における撮像装置のブロック図The block diagram of the imaging device in the 1st Embodiment of this invention 任意枠信号生成部を説明するための図The figure for demonstrating an arbitrary frame signal generation part ヒストグラムデータ検波部および階調補正データ算出部を説明するための図The figure for demonstrating a histogram data detection part and a gradation correction data calculation part 低輝度領域階調補正部を説明するための図The figure for demonstrating a low-intensity area | region gradation correction | amendment part. 高輝度領域階調補正部を説明するための図The figure for demonstrating a high-intensity area | region gradation correction | amendment part. 領域合成部について説明するための図Diagram for explaining the region composition unit 本発明の第2の実施の形態の撮像装置を示す図The figure which shows the imaging device of the 2nd Embodiment of this invention 任意枠信号生成部を説明するための図The figure for demonstrating an arbitrary frame signal generation part 階調補正データ算出部を説明するための図The figure for demonstrating a gradation correction data calculation part 低輝度領域階調補正部を説明するための図The figure for demonstrating a low-intensity area | region gradation correction | amendment part. 高輝度領域階調補正部を説明するための図The figure for demonstrating a high-intensity area | region gradation correction | amendment part. 低輝度寄り領域階調補正部を説明するための図The figure for demonstrating a low-intensity area | region gradation correction | amendment part 高輝度寄り領域階調補正部を説明するための図The figure for demonstrating a high-intensity side area | region gradation correction | amendment part 領域合成部の動作を説明するための図Diagram for explaining the operation of the region composition unit 領域合成部による領域合成結果を示す図The figure which shows the area composition result by the area composition section 本発明の第3の実施の形態の撮像装置を示す図The figure which shows the imaging device of the 3rd Embodiment of this invention 多値化部の構成を示す図The figure which shows the composition of the multi-value conversion part 多値化部の動作を説明するための図The figure for demonstrating operation | movement of a multi-value quantization part 多値化部の動作を説明するための図The figure for demonstrating operation | movement of a multi-value quantization part 従来の撮像装置のブロック図Block diagram of a conventional imaging device 従来の撮像装置におけるレベル合成部の動作を示す図The figure which shows operation | movement of the level synthetic | combination part in the conventional imaging device.

符号の説明Explanation of symbols

101 撮像部
102 前処理部
103 A/D変換部
104 時間軸変換部
105 任意枠信号生成部
106 レベル合成部
107 ヒストグラムデータ検波部
108 階調補正データ算出部
109 低輝度領域階調補正部
110 高輝度領域階調補正部
111 領域合成部
112 メイン信号処理部
120 低輝度寄り領域階調補正部
121 高輝度寄り領域階調補正部
122 多値化部
123 0/255変換部
124 LPF部
101 Imaging unit 102 Preprocessing unit 103 A / D conversion unit 104 Time axis conversion unit 105 Arbitrary frame signal generation unit 106 Level synthesis unit 107 Histogram data detection unit 108 Gradation correction data calculation unit 109 Low luminance region gradation correction unit 110 High Luminance region gradation correction unit 111 Region composition unit 112 Main signal processing unit 120 Low luminance side region gradation correction unit 121 High luminance side region gradation correction unit 122 Multi-value conversion unit 123 0/255 conversion unit 124 LPF unit

Claims (5)

互いに異なる露光時間で撮像することにより得られた第1の映像信号および第2の映像信号をレベル合成してレベル合成映像信号を生成するレベル合成手段と、
前記第1の映像信号または前記第2の映像信号に基づいて、前記レベル合成映像信号に係る映像を輝度レベルに応じた複数の領域に分割する領域分割手段と、
前記領域分割手段にて分割されたそれぞれの領域のヒストグラムを用いて前記レベル合成映像信号の階調補正を行って、それぞれのヒストグラムについての階調補正映像を得る階調補正手段と、
前記階調補正手段にて得られたそれぞれの階調補正映像を合成する領域合成手段と、
を備えたことを特徴とする映像処理装置。
Level combining means for generating a level combined video signal by level combining the first video signal and the second video signal obtained by imaging with different exposure times;
Area dividing means for dividing the video of the level composite video signal into a plurality of areas according to luminance levels based on the first video signal or the second video signal;
Gradation correction means for performing gradation correction of the level composite video signal using a histogram of each area divided by the area dividing means to obtain a gradation corrected image for each histogram;
Area composition means for synthesizing respective gradation correction images obtained by the gradation correction means;
A video processing apparatus comprising:
前記領域分割手段は、前記第1の映像信号または前記第2の映像信号とあらかじめ定められた閾値との大小関係に応じて、前記映像を分割することを特徴とする請求項1に記載の映像処理装置。   2. The video according to claim 1, wherein the region dividing unit divides the video in accordance with a magnitude relationship between the first video signal or the second video signal and a predetermined threshold value. Processing equipment. 前記領域合成手段は、
前記階調補正手段にて得られた複数の階調補正映像のそれぞれから、その階調補正映像を得るためのヒストグラムを求めた領域を最適階調補正領域として切り出し、切り出した最適階調補正領域を合成することを特徴とする請求項1に記載の映像処理装置。
The region synthesis means includes
An optimum gradation correction area obtained by cutting out an area from which a histogram for obtaining the gradation corrected image is obtained as an optimum gradation correction area from each of the plurality of gradation correction images obtained by the gradation correction means. The video processing apparatus according to claim 1, wherein:
前記領域合成手段は、
異なる最適階調補正領域が隣接する境界付近では、境界での階調補正率が滑らかに変化するように、隣接する最適階調補正領域に互いの階調補正の影響を与えることを特徴とする請求項3に記載の映像処理装置。
The region synthesis means includes
In the vicinity of a boundary where different optimum gradation correction areas are adjacent, the adjacent optimum gradation correction areas are influenced by mutual gradation correction so that the gradation correction rate at the boundary changes smoothly. The video processing apparatus according to claim 3.
互いに異なる露光時間で撮像することにより得られた第1の映像信号および第2の映像信号をレベル合成してレベル合成映像信号を生成するレベル合成ステップと、
前記第1の映像信号または第2の映像信号の少なくとも一方に基づいて、前記レベル合成ステップにおいて合成された映像を輝度レベルに応じた複数の領域に分割する領域分割ステップと、
前記領域分割ステップにおいて分割されたそれぞれの領域のヒストグラムを用いて前記レベル合成映像信号の階調補正を行って、それぞれのヒストグラムについての階調補正映像を得る階調補正ステップと、
前記階調補正ステップにおいて得られたそれぞれの階調補正映像を合成する領域合成ステップと、
を備えたことを特徴とする映像処理方法。
A level synthesis step for generating a level synthesized video signal by level-synthesizing the first video signal and the second video signal obtained by imaging with different exposure times;
A region dividing step of dividing the image combined in the level combining step into a plurality of regions according to a luminance level based on at least one of the first video signal and the second video signal;
A gradation correction step of performing gradation correction of the level composite video signal using a histogram of each area divided in the area dividing step to obtain a gradation corrected image for each histogram;
A region combining step of combining the respective gradation correction images obtained in the gradation correction step;
A video processing method comprising:
JP2004314571A 2004-10-28 2004-10-28 Video processor and video processing method Pending JP2006129070A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004314571A JP2006129070A (en) 2004-10-28 2004-10-28 Video processor and video processing method
PCT/JP2005/019549 WO2006054427A1 (en) 2004-10-28 2005-10-25 Video processing device and video processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314571A JP2006129070A (en) 2004-10-28 2004-10-28 Video processor and video processing method

Publications (1)

Publication Number Publication Date
JP2006129070A true JP2006129070A (en) 2006-05-18

Family

ID=36406972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314571A Pending JP2006129070A (en) 2004-10-28 2004-10-28 Video processor and video processing method

Country Status (2)

Country Link
JP (1) JP2006129070A (en)
WO (1) WO2006054427A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4119290B2 (en) * 2003-03-28 2008-07-16 松下電器産業株式会社 Video processing apparatus and imaging system

Also Published As

Publication number Publication date
WO2006054427A1 (en) 2006-05-26

Similar Documents

Publication Publication Date Title
JP2951909B2 (en) Gradation correction device and gradation correction method for imaging device
JP5299867B2 (en) Image signal processing device
KR101267404B1 (en) Image processor, image processing method, and recording medium
US7688380B2 (en) Imaging device
JP4720537B2 (en) Imaging device
JPH10261078A (en) Gradation correcting method for image-pickup device
JP2008104009A (en) Imaging apparatus and method
JP2007028088A (en) Imaging apparatus and image processing method
JP4119290B2 (en) Video processing apparatus and imaging system
JP6887853B2 (en) Imaging device, its control method, program
JP3424060B2 (en) Gradation correction device and video signal processing device using the same
JP6029430B2 (en) Image processing apparatus and image processing method
JP4775230B2 (en) Image processing apparatus, imaging apparatus, and image processing program
JP6543787B2 (en) Image processing apparatus and image processing method
JP5609788B2 (en) Image processing apparatus and image processing method
JP2002288650A (en) Image processing device, digital camera, image processing method and recording medium
JP5188312B2 (en) Video signal processing apparatus and video signal processing method
JP6324235B2 (en) Image processing apparatus and image processing method
JP6376339B2 (en) Image processing apparatus and image processing method
JP2007194832A (en) Gradation correction device
JP5146500B2 (en) Image composition apparatus, image composition method, and program
JP2006129070A (en) Video processor and video processing method
JP2005109579A (en) Imaging apparatus employing solid-state imaging device
JPH11155098A (en) Device and method for processing signal
JP3218022B2 (en) Gradation correction device and gradation correction method for imaging device