JP2006127920A - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
JP2006127920A
JP2006127920A JP2004314909A JP2004314909A JP2006127920A JP 2006127920 A JP2006127920 A JP 2006127920A JP 2004314909 A JP2004314909 A JP 2004314909A JP 2004314909 A JP2004314909 A JP 2004314909A JP 2006127920 A JP2006127920 A JP 2006127920A
Authority
JP
Japan
Prior art keywords
peltier element
battery
secondary battery
power supply
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004314909A
Other languages
Japanese (ja)
Inventor
Wataru Okada
渉 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004314909A priority Critical patent/JP2006127920A/en
Publication of JP2006127920A publication Critical patent/JP2006127920A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply device capable of efficiently heat and cool a battery by a Peltier element, by making the Peltier element contact with a battery surface having various shapes in a wide area to bring heat conduction between the Peltier element and the battery in an ideal state. <P>SOLUTION: This power supply device is equipped with the secondary battery, the Peltier element 1 forced into contact with the surface of the secondary battery to cool or warm the secondary battery, and a control circuit to control the current carrying condition and the current carrying direction of the Peltier element 1. In this Peltier element 1, a plurality of n type semiconductors 5 and p type semiconductors 6 are adjacently disposed, and both surfaces of the n type semiconductor 5 and the p type semiconductor 6 adjacently disposed are electrically connected by a flexible conductive plate 7. In this power supply device, the Peltier element 1 is formed in a flexible plate shape, and is disposed on the surface of the secondary battery in a surface contact state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二次電池をペルチェ素子で冷却又は加熱する電源装置に関する。   The present invention relates to a power supply device that cools or heats a secondary battery with a Peltier element.

二次電池は、低温と高温で電気特性が低下する。温度が非常に低くなると、電池を所定の電流で放電できなくなる。また、実質的に放電できる容量も相当に小さくなる。反対に電池温度が異常に高くなる状態で充放電すると、電池の劣化が甚だしくなって寿命が著しく短くなる。この弊害は、電池温度が異常に低いときに設定温度まで加温し、反対に電池温度が異常に高くなると、設定温度まで冷却して解消できる。このことを実現するために、たとえば車両用の電源装置は、電池を加温するためのヒーターと、電池を冷却するための強制送風機構を備えている。しかしながら、この電源装置は、電池を加温する機構と、電池を冷却する機構の両方を装備する必要があって、構造が複雑になる。   The secondary battery has low electrical characteristics at low and high temperatures. When the temperature becomes very low, the battery cannot be discharged with a predetermined current. Further, the capacity that can be substantially discharged is considerably reduced. On the other hand, if charging / discharging in a state where the battery temperature is abnormally high, the battery will deteriorate significantly and the life will be shortened remarkably. This adverse effect can be solved by heating to the set temperature when the battery temperature is abnormally low, and conversely, if the battery temperature becomes abnormally high, the battery is cooled to the set temperature. In order to realize this, for example, a power supply device for a vehicle includes a heater for heating a battery and a forced air blowing mechanism for cooling the battery. However, this power supply device needs to be equipped with both a mechanism for heating the battery and a mechanism for cooling the battery, and the structure becomes complicated.

この欠点を解消するために、ペルチェ素子を使用する電源装置が開発されている(特許文献1参照)。
特開平11−176487号公報
In order to eliminate this drawback, a power supply device using a Peltier element has been developed (see Patent Document 1).
Japanese Patent Laid-Open No. 11-176487

以上の公報に記載される電源装置は、ペルチェ素子に流す電流の方向を切り換えて、二次電池を加温又は冷却する。ペルチェ素子が、電流の方向で冷却と加熱に切り換えできるからである。したがって、この電源装置は、ペルチェ素子を二次電池の冷却と加熱の両方に利用できる。   The power supply device described in the above publication switches the direction of the current flowing through the Peltier element to heat or cool the secondary battery. This is because the Peltier element can be switched between cooling and heating in the direction of current. Therefore, this power supply device can use the Peltier element for both cooling and heating of the secondary battery.

図1は、ペルチェ素子21の動作原理を示す概略図である。ペルチェ素子21は、この図の矢印で示す方向に電流を流すと、p型半導体26とn型半導体25を接続している上面の金属プレート27が冷却され、p型半導体26とn型半導体25の下面の金属プレート28は加熱される。したがって、図においてp型半導体26とn型半導体25の上面を電池の表面に接触して、矢印で示す方向に通電すると、ペルチェ素子21は電池を冷却する。同じようにペルチェ素子を電池に接触させて、電流の方向を矢印と逆にすると、ペルチェ素子は電池との接触面が加温されて、電池を加温する。したがって、ペルチェ素子は、電流の方向を切り換える簡単な方法で電池の冷却と加熱の両方をできる。   FIG. 1 is a schematic diagram showing the operating principle of the Peltier element 21. When a current flows in the direction indicated by the arrow in this figure, the Peltier element 21 cools the upper metal plate 27 connecting the p-type semiconductor 26 and the n-type semiconductor 25, and the p-type semiconductor 26 and the n-type semiconductor 25. The lower metal plate 28 is heated. Therefore, when the upper surfaces of the p-type semiconductor 26 and the n-type semiconductor 25 are in contact with the surface of the battery in the drawing and energized in the direction indicated by the arrow, the Peltier element 21 cools the battery. Similarly, when the Peltier element is brought into contact with the battery and the direction of the current is reversed to the arrow, the contact surface of the Peltier element with the battery is heated to heat the battery. Therefore, the Peltier device can both cool and heat the battery by a simple method of switching the direction of current.

ただ、ペルチェ素子が電池を効率よく冷却又は加熱するためには、ペルチェ素子と電池との接触面積を大きくする必要がある。しかしながら、ペルチェ素子は可撓性がないので、二次電池の表面に広い面積で接触させるのが難しい。とくに、円筒型電池のように表面を湾曲面とする電池には、広い面積で接触できない欠点がある。また角型電池においても、全面に広い面積でペルチェ素子を接触するのが難しい欠点があった。   However, in order for the Peltier element to efficiently cool or heat the battery, it is necessary to increase the contact area between the Peltier element and the battery. However, since the Peltier element is not flexible, it is difficult to contact the surface of the secondary battery over a wide area. In particular, a battery having a curved surface such as a cylindrical battery has a drawback that it cannot be contacted over a wide area. Also, the square battery has a drawback that it is difficult to contact the Peltier element over a large area.

本発明は、従来のこのような欠点を解決することを目的に開発されたものである。本発明の重要な目的は、ペルチェ素子を種々の形状の電池表面に広い面積で接触して、ペルチェ素子と電池との熱伝導を理想的な状態として、ペルチェ素子が効率よく電池を加熱又は冷却できる電源装置を提供することにある。   The present invention has been developed for the purpose of solving the conventional drawbacks. An important object of the present invention is that the Peltier device efficiently heats or cools the battery by bringing the Peltier device into contact with the surface of the battery of various shapes over a wide area so that the heat conduction between the Peltier device and the battery is ideal. An object of the present invention is to provide a power supply device that can be used.

本発明の電源装置は、前述の目的を達成するために以下の構成を備える。電源装置は、二次電池2と、二次電池2の表面に接触されて二次電池2を冷却又は加温するペルチェ素子1と、このペルチェ素子1の通電状態と通電方向をコントロールする制御回路3とを備える。ペルチェ素子1は、複数のn型半導体5とp型半導体6を隣接して配設して、隣接して配設されるn型半導体5とp型半導体6の両面を可撓性のある導電プレート7で電気接続している。電源装置は、ペルチェ素子1を可撓性のあるプレート状として、二次電池2の表面に面接触状態で配設している。   The power supply device of the present invention has the following configuration in order to achieve the above-described object. The power supply device includes a secondary battery 2, a Peltier element 1 that is brought into contact with the surface of the secondary battery 2 to cool or heat the secondary battery 2, and a control circuit that controls an energization state and an energization direction of the Peltier element 1. 3. The Peltier device 1 includes a plurality of n-type semiconductors 5 and a p-type semiconductor 6 disposed adjacent to each other, and both surfaces of the n-type semiconductor 5 and the p-type semiconductor 6 disposed adjacent to each other are flexible. The plate 7 is electrically connected. In the power supply device, the Peltier element 1 is arranged in a surface contact state on the surface of the secondary battery 2 in the form of a flexible plate.

本発明の電源装置は、n型半導体5とp型半導体6とを電気接続する可撓性のある導電プレート7を導電性プラスチックとすることができる。さらに、本発明の電源装置は、可撓性のある導電プレート7の表面に絶縁シート8を積層することができる。さらにまた、本発明の電源装置は、二次電池2を円筒型電池として、可撓性のあるプレート状のペルチェ素子1を円筒型電池の表面に配設することができる。   In the power supply device of the present invention, the flexible conductive plate 7 that electrically connects the n-type semiconductor 5 and the p-type semiconductor 6 can be made of conductive plastic. Furthermore, in the power supply device of the present invention, the insulating sheet 8 can be laminated on the surface of the flexible conductive plate 7. Furthermore, in the power supply device of the present invention, the secondary battery 2 can be a cylindrical battery, and the flexible plate-like Peltier element 1 can be disposed on the surface of the cylindrical battery.

本発明の電源装置は、ペルチェ素子を種々の形状の電池表面に広い面積で接触させて、ペルチェ素子と電池との熱伝導を理想的な状態として、ペルチェ素子で効率よく電池を加熱又は冷却できる特徴がある。それは、本発明の電源装置のペルチェ素子が、隣接して配設しているn型半導体とp型半導体の両面を、可撓性のある導電プレートで接続して、ペルチェ素子を可撓性のあるプレート状として、二次電池の表面に面接触状態で配設しているからである。   The power supply apparatus according to the present invention can efficiently heat or cool a battery with a Peltier element by bringing the Peltier element into contact with a battery surface of various shapes over a wide area and making the heat conduction between the Peltier element and the battery ideal. There are features. This is because the Peltier element of the power supply device of the present invention connects the n-type semiconductor and the p-type semiconductor adjacent to each other with a flexible conductive plate, and the Peltier element is made flexible. This is because it is arranged in a surface contact state on the surface of the secondary battery as a certain plate shape.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電源装置を例示するものであって、本発明は電源装置を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiments described below exemplify a power supply device for embodying the technical idea of the present invention, and the present invention does not specify the power supply device as follows.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

本発明の電源装置は、ハイブリッドカー、電気自動車、あるいは燃料電池車等の車両に搭載されて車両を走行させるモーターを駆動する電源装置として最適である。また、電動自転車や電動オートバイ、さらに電動工具等のように大電流で充放電される用途にも使用できる。車両に搭載される電源装置は、ペルチェ素子を接触させている電池からペルチェ素子に通電し、あるいは電装用のバッテリーからペルチェ素子に通電する。電動オートバイや電動自転車、あるいは電動工具は、ペルチェ素子を接触している電池からペルチェ素子に通電し、あるいは外部電源でペルチェ素子に通電する。   The power supply device of the present invention is optimal as a power supply device that is mounted on a vehicle such as a hybrid car, an electric vehicle, or a fuel cell vehicle and drives a motor that runs the vehicle. It can also be used for applications such as electric bicycles, electric motorcycles, and electric tools that are charged and discharged with a large current. A power supply device mounted on a vehicle energizes a Peltier element from a battery in contact with the Peltier element, or energizes a Peltier element from a battery for electrical equipment. An electric motorcycle, an electric bicycle, or an electric tool energizes a Peltier element from a battery in contact with the Peltier element, or energizes the Peltier element with an external power source.

図2は電源装置の概略図である。この図の電源装置は、二次電池2と、二次電池2の表面に接触されて二次電池2を冷却又は加温するペルチェ素子1と、このペルチェ素子1の通電状態と通電方向をコントロールする制御回路3とを備える。   FIG. 2 is a schematic diagram of the power supply apparatus. The power supply device of this figure controls the secondary battery 2, the Peltier element 1 that is in contact with the surface of the secondary battery 2 to cool or heat the secondary battery 2, and the energization state and direction of energization of the Peltier element 1. And a control circuit 3 for performing the operation.

図の電源装置は、複数の二次電池2をケース4に収納している。ケース4は外気を換気できる換気構造としている。この電源装置は、ケース4内に換気する空気で、ペルチェ素子1の外側の熱を外部に放熱し、あるいはペルチェ素子1に空気から熱を供給する。ただし、本発明の電源装置は、必ずしもケースを換気構造とする必要はない。それは、ペルチェ素子の外側面に熱伝導材(図示せず)を接触させて、熱伝導材を介してペルチェ素子に熱を供給し、あるいはペルチェ素子の熱を外部に放熱できるからである。   In the illustrated power supply apparatus, a plurality of secondary batteries 2 are housed in a case 4. Case 4 has a ventilation structure that can ventilate the outside air. This power supply device uses the air ventilated in the case 4 to radiate heat outside the Peltier element 1 to the outside or supply heat to the Peltier element 1 from the air. However, the power supply device of the present invention does not necessarily have a case having a ventilation structure. This is because a heat conductive material (not shown) is brought into contact with the outer surface of the Peltier element, and heat is supplied to the Peltier element via the heat conductive material, or the heat of the Peltier element can be radiated to the outside.

ケース4に収納する二次電池2を図3と図4に示す。これ等の図に示す二次電池2は、複数の素電池を連結した電池モジュールである。電池モジュールは、充電できる複数の素電池を、直列に直線状に連結している。図の二次電池2は、円筒型電池である素電池を直線状に連結して電池モジュールとしている。円筒型電池は、表面の広い面積に、ペルチェ素子1を接触できる特徴がある。二次電池2である電池モジュールの表面に、ペルチェ素子1を接触させて、ケース4に収納している。   The secondary battery 2 housed in the case 4 is shown in FIGS. The secondary battery 2 shown in these drawings is a battery module in which a plurality of unit cells are connected. In the battery module, a plurality of unit cells that can be charged are linearly connected in series. In the illustrated secondary battery 2, unit cells that are cylindrical batteries are linearly connected to form a battery module. The cylindrical battery is characterized in that the Peltier element 1 can be brought into contact with a large surface area. The Peltier element 1 is brought into contact with the surface of the battery module that is the secondary battery 2 and is housed in the case 4.

ペルチェ素子1は可撓性のあるシート状で、図5に示すように、二次電池2の外周面に巻き付けて接触させる。図のペルチェ素子1は、両側に沿って、直角に折曲している折曲片9を設けている。ペルチェ素子1は、図3ないし図5に示すように、二次電池2の表面に巻き付ける状態で、両側の折曲片9が積層される幅としている。すなわち、両側の折曲片9間の長さを、二次電池2の円周に等しくし、あるいは円周よりもわずかに狭くしている。幅を円周よりも狭くしているペルチェ素子1は、折曲片9を連結して、ペルチェ素子1を二次電池2の表面に密着できる。   The Peltier element 1 is in the form of a flexible sheet, and is wound around and brought into contact with the outer peripheral surface of the secondary battery 2 as shown in FIG. The illustrated Peltier element 1 is provided with bent pieces 9 that are bent at right angles along both sides. As shown in FIGS. 3 to 5, the Peltier element 1 has a width in which the folded pieces 9 on both sides are stacked in a state of being wound around the surface of the secondary battery 2. That is, the length between the bent pieces 9 on both sides is made equal to the circumference of the secondary battery 2 or slightly narrower than the circumference. The Peltier device 1 whose width is narrower than the circumference can connect the bent pieces 9 to closely attach the Peltier device 1 to the surface of the secondary battery 2.

図3と図4は、ペルチェ素子1の折曲片9を貫通する止ネジ10を、ケース4の周壁に設けたネジ穴11にねじ込んで固定している。この構造は、止ネジ10でペルチェ素子1を二次電池2の周囲に固定し、さらに、表面にペルチェ素子1を接触している二次電池2をケース4に固定できる。すなわち、止ネジ10は、ペルチェ素子1を二次電池2に固定し、さらに二次電池2をケース4に固定するふたつの作用をする。このため、止ネジ10をねじ込んで、ペルチェ素子1を二次電池2に固定しながら、二次電池2をケース4に固定できるので、組み立てを簡単にできる。   3 and 4, a set screw 10 that penetrates the bent piece 9 of the Peltier element 1 is screwed into a screw hole 11 provided in the peripheral wall of the case 4 and fixed. In this structure, the Peltier element 1 can be fixed around the secondary battery 2 with a set screw 10, and the secondary battery 2 having the Peltier element 1 in contact with the surface can be fixed to the case 4. That is, the set screw 10 has two functions of fixing the Peltier element 1 to the secondary battery 2 and further fixing the secondary battery 2 to the case 4. For this reason, since the secondary battery 2 can be fixed to the case 4 while the set screw 10 is screwed in and the Peltier element 1 is fixed to the secondary battery 2, the assembly can be simplified.

ただ、本発明は、ペルチェ素子を二次電池に接触して固定する構造を、図3ないし図5に示す構造には特定しない。ペルチェ素子は、接着して二次電池の表面に固定することができ、また、図示しないがケースの内面にペルチェ素子を固定し、このケースに二次電池を収納して、ペルチェ素子を二次電池の表面に接触させることもできるからである。   However, the present invention does not specify the structure for fixing the Peltier element in contact with the secondary battery as shown in FIGS. The Peltier element can be bonded and fixed to the surface of the secondary battery. Although not shown, the Peltier element is fixed to the inner surface of the case, the secondary battery is accommodated in the case, and the Peltier element is fixed to the secondary battery. This is because it can be brought into contact with the surface of the battery.

さらに、本発明の電源装置は、二次電池を円筒型電池には特定しない。二次電池2には、図6に示すように、角型電池も使用できる。角型電池の外装缶は、コーナー部において小さい曲率半径で湾曲される。このため、角型電池の表面に接触されるペルチェ素子1は、外装缶の小さい曲率半径で変形できる可撓性のあるシート状のものを使用する。このペルチェ素子1は、角型電池の全周に接触する状態で、二次電池2の表面に広い面積で接触して固定される。   Furthermore, the power supply device of the present invention does not specify a secondary battery as a cylindrical battery. As the secondary battery 2, a square battery can be used as shown in FIG. The outer can of the square battery is curved with a small radius of curvature at the corner. For this reason, the flexible Peltier element 1 which can deform | transform with the small curvature radius of an exterior can is used for the Peltier device 1 contacted with the surface of a square battery. The Peltier element 1 is fixed in contact with the surface of the secondary battery 2 over a wide area in a state where the Peltier element 1 is in contact with the entire circumference of the square battery.

ペルチェ素子1は、図7と図8に示す独特の構造で、可撓性のあるシート状としている。これ等の図に示すペルチェ素子1は、複数のn型半導体5とp型半導体6を隣接して配設している。隣接して配設しているn型半導体5とp型半導体6は、両面を可撓性のある導電プレート7で電気接続している。図のペルチェ素子1は、p型半導体6とn型半導体5を交互に配設して、縦横に配列している。縦横に配列されるp型半導体6とn型半導体5は、隣接するもの同士を互いに離して配設している。隣接するp型半導体6とn型半導体5は、導電プレート7で接続している。導電プレート7は、折り曲げできるように可撓性のある導電性プラスチック、あるいは薄い金属板である。さらに、導電プレート7に可撓性と伸縮性のある導電性プラスチックを使用すると、ペルチェ素子1をさらに変形しやすくなる。   The Peltier element 1 has a unique structure shown in FIGS. 7 and 8 and has a flexible sheet shape. In the Peltier device 1 shown in these drawings, a plurality of n-type semiconductors 5 and p-type semiconductors 6 are arranged adjacent to each other. The n-type semiconductor 5 and the p-type semiconductor 6 disposed adjacent to each other are electrically connected to each other by a flexible conductive plate 7. In the Peltier device 1 shown in the figure, p-type semiconductors 6 and n-type semiconductors 5 are alternately arranged and arranged vertically and horizontally. Adjacent ones of the p-type semiconductor 6 and the n-type semiconductor 5 arranged vertically and horizontally are arranged apart from each other. Adjacent p-type semiconductor 6 and n-type semiconductor 5 are connected by a conductive plate 7. The conductive plate 7 is a flexible conductive plastic or thin metal plate so that it can be bent. Further, when a conductive plastic having flexibility and stretchability is used for the conductive plate 7, the Peltier element 1 is further easily deformed.

ペルチェ素子1は、高さが等しい複数のp型半導体6とn型半導体5を同一面に配列して、その両側に第1表面1Aと第2表面1Bを設けている。p型半導体6とn型半導体5は、第1表面1Aと第2表面1Bに位置する導電プレート7で接続している。ペルチェ素子1は、図7と図8に示す方向に電流を流すと、第1表面1Aにある全ての導電プレート7Aは、n型半導体5からp型半導体6に電流を流し、第2表面1Bにある全ての導電プレート7Bは、p型半導体6からn型半導体5に電流を流す。電流の方向を図に示す方向から逆にすると、第1表面1Aの導電プレート7Aは、p型半導体6からn型半導体5に電流を流し、第2表面1Bの導電プレート7Bは、n型半導体5からp型半導体6に電流を流す。   In the Peltier element 1, a plurality of p-type semiconductors 6 and n-type semiconductors 5 having the same height are arranged on the same surface, and a first surface 1A and a second surface 1B are provided on both sides thereof. The p-type semiconductor 6 and the n-type semiconductor 5 are connected by a conductive plate 7 located on the first surface 1A and the second surface 1B. When a current flows in the direction shown in FIGS. 7 and 8, the Peltier element 1 causes all the conductive plates 7A on the first surface 1A to flow a current from the n-type semiconductor 5 to the p-type semiconductor 6 and the second surface 1B. All of the conductive plates 7 </ b> B in FIG. 6 pass current from the p-type semiconductor 6 to the n-type semiconductor 5. When the direction of the current is reversed from the direction shown in the figure, the conductive plate 7A on the first surface 1A flows current from the p-type semiconductor 6 to the n-type semiconductor 5, and the conductive plate 7B on the second surface 1B is n-type semiconductor. A current is passed from 5 to the p-type semiconductor 6.

ペルチェ素子1は、図1の動作原理図に示すように、n型半導体5からp型半導体6に電流を流すように接続している導電プレート7が吸熱(冷却)して、その反対側が放熱(加熱)される。したがって、第1表面1Aを冷却する状態では、第1表面1Aの全ての導電プレート7Aは、n型半導体5からp型半導体6に電流を流す必要がある。このことを実現するために、第1表面1Aの全ての導電プレート7Aは、p型半導体6とn型半導体5との間で同じ方向に電流を流すように接続して、全ての導電プレート7が吸熱し、あるいは放熱するようにしている。   As shown in the operation principle diagram of FIG. 1, the Peltier element 1 absorbs heat (cools) the conductive plate 7 connected so that a current flows from the n-type semiconductor 5 to the p-type semiconductor 6, and the opposite side dissipates heat. (Heated). Therefore, in a state where the first surface 1A is cooled, it is necessary for all the conductive plates 7A on the first surface 1A to flow current from the n-type semiconductor 5 to the p-type semiconductor 6. In order to realize this, all the conductive plates 7A on the first surface 1A are connected so that current flows in the same direction between the p-type semiconductor 6 and the n-type semiconductor 5, and all the conductive plates 7A are connected. Absorbs heat or dissipates heat.

第1表面1Aの全ての導電プレート7Aは、ペルチェ素子1を平面状とする状態で同一平面に位置する。また、第2表面1Bの全ての導電プレート7Bも、ペルチェ素子1を平面状とする状態で同一平面に位置する。同一平面に配設される第1表面1Aにある全ての導電プレート7Aには、絶縁シート8を積層している。同一平面に配設される第2表面1Bにある全ての導電プレート7Bにも、絶縁シート8を積層している。絶縁シート8には、優れた絶縁特性があって、熱伝導特性に優れ、しかも可撓性のあるシートが適している。絶縁シート8には、好ましくは熱伝導に優れた可撓性のシート、たとえばプラスチックシートを使用する。絶縁シート8は、隣に配置される導電プレート7を絶縁状態で連結して、ペルチェ素子1全体を可撓性のあるシート状としている。   All the conductive plates 7A on the first surface 1A are located on the same plane with the Peltier element 1 in a planar shape. Further, all the conductive plates 7B on the second surface 1B are also located on the same plane in a state where the Peltier element 1 is planar. Insulating sheets 8 are laminated on all the conductive plates 7A on the first surface 1A arranged in the same plane. The insulating sheet 8 is also laminated on all the conductive plates 7B on the second surface 1B arranged on the same plane. As the insulating sheet 8, a sheet having excellent insulating characteristics, excellent heat conduction characteristics, and flexibility is suitable. The insulating sheet 8 is preferably a flexible sheet excellent in heat conduction, such as a plastic sheet. The insulating sheet 8 connects the conductive plates 7 arranged adjacent to each other in an insulating state, so that the entire Peltier element 1 has a flexible sheet shape.

隣接して配置される導電プレート7は同電位でない。図7のペルチェ素子1は、全てのp型半導体6とn型半導体5を、導電プレート7を介して互いに直列に接続している。このため、隣接する導電プレート7が互いに接触すると、電流がバイパスされて、全てのp型半導体6とn型半導体5に通電できなくなる。したがって、縦横に配設している全てのp型半導体6とn型半導体5は、互いに絶縁して配置され、さらにこれを接続する導電プレート7も隣のものから絶縁される。第1表面1Aと第2表面1Bの導電プレート7を絶縁シート8に積層して接着する構造は、絶縁シート8でp型半導体6とn型半導体5を絶縁位置に配置しながら、導電プレート7を絶縁状態で連結できる。   Adjacent conductive plates 7 are not at the same potential. In the Peltier device 1 of FIG. 7, all p-type semiconductors 6 and n-type semiconductors 5 are connected in series with each other via a conductive plate 7. For this reason, when the adjacent conductive plates 7 come into contact with each other, the current is bypassed, and all the p-type semiconductor 6 and the n-type semiconductor 5 cannot be energized. Accordingly, all the p-type semiconductor 6 and the n-type semiconductor 5 arranged vertically and horizontally are insulated from each other, and the conductive plate 7 connecting them is also insulated from the adjacent one. The structure in which the conductive plates 7 of the first surface 1A and the second surface 1B are laminated and bonded to the insulating sheet 8 is such that the p-type semiconductor 6 and the n-type semiconductor 5 are arranged at the insulating positions on the insulating sheet 8 while the conductive plate 7 Can be connected in an insulated state.

以上の構造のペルチェ素子1は、2枚の絶縁シート8の間に、導電プレート7で直列に接続している多数のp型半導体6とn型半導体5を配設して、全体を可撓性のあるシート状とする。シート状のペルチェ素子1は、図9に示すように、両側に折曲片9を設けると共に、全体を二次電池2に巻き付けて、電池の表面に接触して固定される。   In the Peltier element 1 having the above structure, a large number of p-type semiconductors 6 and n-type semiconductors 5 connected in series by a conductive plate 7 are disposed between two insulating sheets 8 so as to be flexible as a whole. It is made into a sheet form. As shown in FIG. 9, the sheet-like Peltier element 1 is provided with bent pieces 9 on both sides, and the whole is wound around the secondary battery 2 and fixed in contact with the surface of the battery.

図2に示す電源装置は、制御回路3が、二次電池2の温度を温度センサー12で検出する。制御回路3は、検出温度が最低温度よりも低くなると、ペルチェ素子1に通電して二次電池2を加温する。このとき、ペルチェ素子1は、二次電池2との接触面が加熱される方向に通電する。二次電池2の温度が設定温度まで上昇すると、制御回路3はペルチェ素子1の通電を遮断する。また、制御回路3は、検出温度が最高温度よりも高くなると、ペルチェ素子1に通電して二次電池2を冷却する。このとき、ペルチェ素子1は、二次電池2との接触面が冷却される方向に通電する。二次電池2の温度が設定温度まで低下すると、制御回路3はペルチェ素子1の通電を遮断する。制御回路3は、二次電池2を電源としてペルチェ素子1に通電し、あるいは外部電源から供給される電力でペルチェ素子1に通電する。   In the power supply device shown in FIG. 2, the control circuit 3 detects the temperature of the secondary battery 2 with the temperature sensor 12. When the detected temperature becomes lower than the minimum temperature, the control circuit 3 energizes the Peltier element 1 to heat the secondary battery 2. At this time, the Peltier device 1 is energized in the direction in which the contact surface with the secondary battery 2 is heated. When the temperature of the secondary battery 2 rises to the set temperature, the control circuit 3 cuts off the energization of the Peltier element 1. When the detected temperature becomes higher than the maximum temperature, the control circuit 3 energizes the Peltier element 1 to cool the secondary battery 2. At this time, the Peltier device 1 is energized in a direction in which the contact surface with the secondary battery 2 is cooled. When the temperature of the secondary battery 2 decreases to the set temperature, the control circuit 3 cuts off the energization of the Peltier element 1. The control circuit 3 energizes the Peltier element 1 with the secondary battery 2 as a power source, or energizes the Peltier element 1 with electric power supplied from an external power source.

ペルチェ素子1に通電して、二次電池2を加温するとき、ペルチェ素子1の内面である電池との対向面は加熱されて、外側面は冷却される。この状態において、ペルチェ素子1の外側面に熱エネルギーを供給するために、ケース4内に外気を換気して、空気の熱をペルチェ素子1の外側面に供給し、あるいはケース4を介してペルチェ素子1の外側面に熱エネルギーを供給する。また、ペルチェ素子1に通電して、二次電池2を冷却するとき、ペルチェ素子1の内面である電池との対向面は冷却されて、外側面は加熱される。この状態において、ペルチェ素子1の外側面を冷却するために、ケース4内に外気を換気して、ペルチェ素子1の熱を空気中に放熱し、あるいはケース4を介してペルチェ素子1の外側面の熱を放熱させる。   When energizing the Peltier element 1 to heat the secondary battery 2, the surface facing the battery, which is the inner surface of the Peltier element 1, is heated and the outer surface is cooled. In this state, in order to supply heat energy to the outer surface of the Peltier element 1, the outside air is ventilated in the case 4, and the heat of the air is supplied to the outer surface of the Peltier element 1, or through the case 4, Thermal energy is supplied to the outer surface of the element 1. Further, when the secondary battery 2 is cooled by energizing the Peltier element 1, the surface facing the battery, which is the inner surface of the Peltier element 1, is cooled and the outer surface is heated. In this state, in order to cool the outer surface of the Peltier element 1, the outside air is ventilated in the case 4, and the heat of the Peltier element 1 is radiated into the air, or the outer surface of the Peltier element 1 is passed through the case 4. Dissipate the heat.

ペルチェ素子の動作原理を示す概略図である。It is the schematic which shows the principle of operation of a Peltier device. 本発明の一実施例にかかる電源装置の概略断面図である。It is a schematic sectional drawing of the power supply device concerning one Example of this invention. 本発明の一実施例にかかる電源装置の一部分解斜視図である。It is a partial exploded perspective view of the power supply device concerning one Example of this invention. 図3に示す電源装置の分解斜視図である。It is a disassembled perspective view of the power supply device shown in FIG. ペルチェ素子を曲げる状態を示す斜視図である。It is a perspective view which shows the state which bends a Peltier device. 本発明の他の実施例にかかる電源装置の概略図である。It is the schematic of the power supply device concerning the other Example of this invention. ペルチェ素子の構造を示す概略斜視図である。It is a schematic perspective view which shows the structure of a Peltier device. ペルチェ素子の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a Peltier device. 図5に示すペルチェ素子を広げた状態を示す斜視図である。It is a perspective view which shows the state which extended the Peltier device shown in FIG.

符号の説明Explanation of symbols

1…ペルチェ素子 1A…第1表面 1B…第2表面
2…二次電池
3…制御回路
4…ケース
5…n型半導体
6…p型半導体
7…導電プレート 7A…導電プレート 7B…導電プレート
8…絶縁シート
9…折曲片
10…止ネジ
11…ネジ穴
12…温度センサー
21…ペルチェ素子
25…n型半導体
26…p型半導体
27…金属プレート
28…金属プレート
DESCRIPTION OF SYMBOLS 1 ... Peltier device 1A ... 1st surface 1B ... 2nd surface 2 ... Secondary battery 3 ... Control circuit 4 ... Case 5 ... n-type semiconductor 6 ... p-type semiconductor 7 ... Conductive plate 7A ... Conductive plate 7B ... Conductive plate 8 ... Insulating sheet 9 ... Bending piece 10 ... Set screw 11 ... Screw hole 12 ... Temperature sensor 21 ... Peltier element 25 ... N-type semiconductor 26 ... P-type semiconductor 27 ... Metal plate 28 ... Metal plate

Claims (4)

二次電池(2)と、二次電池(2)の表面に接触されて二次電池(2)を冷却又は加温するペルチェ素子(1)と、このペルチェ素子(1)の通電状態と通電方向をコントロールする制御回路(3)とを備える電源装置であって、
ペルチェ素子(1)が、複数のn型半導体(5)とp型半導体(6)を隣接して配設して、隣接して配設されるn型半導体(5)とp型半導体(6)の両面を可撓性のある導電プレート(7)で電気接続して、ペルチェ素子(1)を可撓性のあるプレート状として、二次電池(2)の表面に面接触状態で配設している電源装置。
The secondary battery (2), the Peltier element (1) that is in contact with the surface of the secondary battery (2) to cool or heat the secondary battery (2), and the energization state and energization of the Peltier element (1) A power supply device comprising a control circuit (3) for controlling the direction,
The Peltier element (1) includes a plurality of n-type semiconductors (5) and p-type semiconductors (6) disposed adjacent to each other, and the n-type semiconductor (5) and p-type semiconductor (6) disposed adjacent to each other. ) Are electrically connected by a flexible conductive plate (7), and the Peltier element (1) is arranged in a flexible plate shape on the surface of the secondary battery (2) in surface contact. Power supply.
n型半導体(5)とp型半導体(6)とを電気接続する可撓性のある導電プレート(7)が導電性プラスチックである請求項1に記載される電源装置。   The power supply device according to claim 1, wherein the flexible conductive plate (7) for electrically connecting the n-type semiconductor (5) and the p-type semiconductor (6) is a conductive plastic. 可撓性のある導電プレート(7)の表面に絶縁シート(8)を積層している請求項1に記載される電源装置。   The power supply device according to claim 1, wherein an insulating sheet (8) is laminated on a surface of the flexible conductive plate (7). 二次電池(2)が円筒型電池で、可撓性のあるプレート状のペルチェ素子(1)を円筒型電池の表面に配設している請求項1に記載される電源装置。
The power supply device according to claim 1, wherein the secondary battery (2) is a cylindrical battery, and a flexible plate-like Peltier element (1) is disposed on the surface of the cylindrical battery.
JP2004314909A 2004-10-29 2004-10-29 Power supply device Pending JP2006127920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314909A JP2006127920A (en) 2004-10-29 2004-10-29 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314909A JP2006127920A (en) 2004-10-29 2004-10-29 Power supply device

Publications (1)

Publication Number Publication Date
JP2006127920A true JP2006127920A (en) 2006-05-18

Family

ID=36722429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314909A Pending JP2006127920A (en) 2004-10-29 2004-10-29 Power supply device

Country Status (1)

Country Link
JP (1) JP2006127920A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071740A (en) * 2006-07-04 2008-03-27 Campagnolo Spa Method and system for supplying electrical energy from battery power source unit
WO2008102683A1 (en) * 2007-02-20 2008-08-28 Toyota Jidosha Kabushiki Kaisha Power supply device
JP2009147208A (en) * 2007-12-17 2009-07-02 Dainippon Printing Co Ltd Solar cell laminated thermoelectric conversion sheet
JP2010113861A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Battery pack
JP2010525999A (en) * 2007-01-11 2010-07-29 オーチス エレベータ カンパニー Thermoelectric thermal management system for energy storage system in regenerative elevator
JP2010282878A (en) * 2009-06-05 2010-12-16 Nec Corp Secondary battery system and method of controlling temperature
WO2011159619A2 (en) 2010-06-14 2011-12-22 Johnson Controls - Saft Advanced Power Solutions Llc Thermal management system for a battery system
KR101283344B1 (en) * 2010-08-05 2013-07-09 주식회사 엘지화학 Battery Module Containing Thermoelectric Film
WO2014010286A1 (en) * 2012-07-09 2014-01-16 日本電気株式会社 Thermoelectric conversion element, and method for producing same
US9469202B2 (en) 2006-07-04 2016-10-18 Campagnolo S.R.L. Method for controlling and system for charging a battery power supply unit
JP2016540344A (en) * 2013-10-29 2016-12-22 ジェンサーム インコーポレイテッドGentherm Incorporated Battery thermal management using thermoelectric devices
CN106992351A (en) * 2015-12-14 2017-07-28 福特全球技术公司 Vehicle antenna assembly with cooling
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10337770B2 (en) 2011-07-11 2019-07-02 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US10686232B2 (en) 2013-01-14 2020-06-16 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US10700393B2 (en) 2014-09-12 2020-06-30 Gentherm Incorporated Graphite thermoelectric and/or resistive thermal management systems and methods
CN112490539A (en) * 2020-05-12 2021-03-12 西华大学 Distributed temperature equalization method for battery pack in high-safety electric vehicle
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
US11264655B2 (en) 2009-05-18 2022-03-01 Gentherm Incorporated Thermal management system including flapper valve to control fluid flow for thermoelectric device
JP7413212B2 (en) 2020-09-03 2024-01-15 愛三工業株式会社 battery module
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469202B2 (en) 2006-07-04 2016-10-18 Campagnolo S.R.L. Method for controlling and system for charging a battery power supply unit
US9634518B2 (en) 2006-07-04 2017-04-25 Campagnolo S.R.L. Method and system for supplying electrical energy from a battery power supply unit to a heating element
JP2008071740A (en) * 2006-07-04 2008-03-27 Campagnolo Spa Method and system for supplying electrical energy from battery power source unit
JP2010525999A (en) * 2007-01-11 2010-07-29 オーチス エレベータ カンパニー Thermoelectric thermal management system for energy storage system in regenerative elevator
US8220590B2 (en) 2007-01-11 2012-07-17 Otis Elevator Company Thermoelectric thermal management system for the energy storage system in a regenerative elevator
WO2008102683A1 (en) * 2007-02-20 2008-08-28 Toyota Jidosha Kabushiki Kaisha Power supply device
JP2009147208A (en) * 2007-12-17 2009-07-02 Dainippon Printing Co Ltd Solar cell laminated thermoelectric conversion sheet
JP2010113861A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Battery pack
US11264655B2 (en) 2009-05-18 2022-03-01 Gentherm Incorporated Thermal management system including flapper valve to control fluid flow for thermoelectric device
JP2010282878A (en) * 2009-06-05 2010-12-16 Nec Corp Secondary battery system and method of controlling temperature
US9620827B2 (en) 2010-06-14 2017-04-11 Johnson Controls—SAFT Advanced Power Solutions LLC Thermal management system for a battery system
WO2011159619A3 (en) * 2010-06-14 2012-04-19 Johnson Controls - Saft Advanced Power Solutions Llc Thermal management system for a battery system
WO2011159619A2 (en) 2010-06-14 2011-12-22 Johnson Controls - Saft Advanced Power Solutions Llc Thermal management system for a battery system
CN103038934A (en) * 2010-06-14 2013-04-10 江森自控帅福得先进能源动力***有限责任公司 Thermal management system for a battery system
KR101283344B1 (en) * 2010-08-05 2013-07-09 주식회사 엘지화학 Battery Module Containing Thermoelectric Film
US10337770B2 (en) 2011-07-11 2019-07-02 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
WO2014010286A1 (en) * 2012-07-09 2014-01-16 日本電気株式会社 Thermoelectric conversion element, and method for producing same
US10686232B2 (en) 2013-01-14 2020-06-16 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US10784546B2 (en) 2013-01-30 2020-09-22 Gentherm Incorporated Thermoelectric-based thermal management system
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10236547B2 (en) 2013-10-29 2019-03-19 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
JP2016540344A (en) * 2013-10-29 2016-12-22 ジェンサーム インコーポレイテッドGentherm Incorporated Battery thermal management using thermoelectric devices
US10700393B2 (en) 2014-09-12 2020-06-30 Gentherm Incorporated Graphite thermoelectric and/or resistive thermal management systems and methods
CN106992351A (en) * 2015-12-14 2017-07-28 福特全球技术公司 Vehicle antenna assembly with cooling
CN106992351B (en) * 2015-12-14 2021-11-16 福特全球技术公司 Vehicle antenna assembly with cooling
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
CN112490539A (en) * 2020-05-12 2021-03-12 西华大学 Distributed temperature equalization method for battery pack in high-safety electric vehicle
CN112490539B (en) * 2020-05-12 2021-09-03 西华大学 Distributed temperature equalization method for battery pack in high-safety electric vehicle
JP7413212B2 (en) 2020-09-03 2024-01-15 愛三工業株式会社 battery module

Similar Documents

Publication Publication Date Title
JP2006127920A (en) Power supply device
JP5659554B2 (en) Battery pack
EP2405528B1 (en) Battery module
US8492642B2 (en) System for controlling temperature of a secondary battery module
KR100658626B1 (en) Secondary battery module
JP4504936B2 (en) Battery module
JP5137480B2 (en) Power supply for vehicle
JP5985255B2 (en) Power supply device, vehicle including this power supply device, and power storage device
US20120129020A1 (en) Temperature-controlled battery system ii
JP5270326B2 (en) Assembled battery
US20180226699A1 (en) Graphite thermoelectric and/or resistive thermal management systems and methods
JP5305780B2 (en) Battery pack for vehicles
JP2006035942A (en) Power source device for vehicle
CN108886189A (en) Battery pack temperature control, power supply system
KR100696694B1 (en) Secondary battery module
JP2006278330A (en) Secondary battery module
JP2013229266A (en) Battery pack
JP2005285456A (en) Power supply apparatus
JP2006156404A (en) Secondary battery module
JP2006271063A (en) Cooling structure of bus bar
JP2012134101A (en) Battery module and battery pack
JP5906921B2 (en) Battery module and vehicle
JP2019192380A (en) Power storage device for vehicle
JP5910256B2 (en) Battery temperature control mechanism and vehicle
JP7135348B2 (en) battery device