JP2006122634A - Biological member, artificial joint employing the same, and method for manufacture the member - Google Patents

Biological member, artificial joint employing the same, and method for manufacture the member Download PDF

Info

Publication number
JP2006122634A
JP2006122634A JP2004375045A JP2004375045A JP2006122634A JP 2006122634 A JP2006122634 A JP 2006122634A JP 2004375045 A JP2004375045 A JP 2004375045A JP 2004375045 A JP2004375045 A JP 2004375045A JP 2006122634 A JP2006122634 A JP 2006122634A
Authority
JP
Japan
Prior art keywords
mass
zro
biological
composite ceramic
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004375045A
Other languages
Japanese (ja)
Other versions
JP4753575B2 (en
Inventor
Kunihide Yomo
邦英 四方
Takefumi Nakanishi
健文 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004375045A priority Critical patent/JP4753575B2/en
Publication of JP2006122634A publication Critical patent/JP2006122634A/en
Application granted granted Critical
Publication of JP4753575B2 publication Critical patent/JP4753575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prostheses (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological member and an artificial joint employing the same both exhibiting high strengths, high toughness and high hardness, and additionally, high resistance to abrasion also in a circumstance in vivo. <P>SOLUTION: The biological member such as an acetabular socket or a caput ball employes a composite ceramic containing 65 mass% or more of Al<SB>2</SB>O<SB>3</SB>, 4 to 34 mass% of ZrO<SB>2</SB>and 0.1 to 4 mass% of SrO, and a part of the ZrO<SB>2</SB>particles forms a solid solution with Sr as a slide member. Furthermore, the composite ceramic contains TiO<SB>2</SB>, MgO and SiO<SB>2</SB>as sintering auxiliaries. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特に人工関節などのインプラント材に用いられる高強度、高靱性でかつ高硬度のセラミックスを用いた生体部材およびそれを用いた人工関節ならびに生体部材の製造方法に関するものである。   The present invention relates to a biological member using ceramics having high strength, toughness and high hardness, particularly used for implant materials such as artificial joints, and the like, and an artificial joint using the same and a method for manufacturing the biological member.

AlやZrOのセラミックス材料は生体不活性な材料である上、機械的強度、耐摩耗性に優れることから人工関節や人工歯根といった医療用材料としての適用が進んでいる。例えば、人工股関節では、金属に比べ、AlもしくはZrO/超高分子ポリエチレンの組合せが摩耗しにくく、且つ欠陥も生じにくいとされていることから、骨頭にセラミックスが、臼蓋ソケットに超高分子ポリエチレンが採用されてきた(特許文献1参照)。 Al 2 O 3 and ZrO 2 ceramic materials are biologically inert materials, and are excellent in mechanical strength and wear resistance, and thus are being applied as medical materials such as artificial joints and artificial tooth roots. For example, in an artificial hip joint, it is said that the combination of Al 2 O 3 or ZrO 2 / ultra high molecular weight polyethylene is less likely to wear and less likely to cause defects than metal. Ultra high molecular weight polyethylene has been employed (see Patent Document 1).

さらにAl同士の摺動部を有した人工股関節も開発されている(特許文献2参照)。 Furthermore, an artificial hip joint having a sliding portion between Al 2 O 3 has also been developed (see Patent Document 2).

また近年、Al、ZrO系の酸化物セラミックスは、高強度、耐摩耗性及び耐食性が要求される構造部材として広く利用されている。特にAlとZrOを一定の比率で複合化する場合は、結晶粒の微細化効果によりそれぞれの単体よりも高い強度が得られることが注目されている(非特許文献1参照)。 In recent years, Al 2 O 3 and ZrO 2 -based oxide ceramics are widely used as structural members that require high strength, wear resistance, and corrosion resistance. In particular, when Al 2 O 3 and ZrO 2 are compounded at a certain ratio, it has been noticed that a higher strength than each simple substance can be obtained due to the effect of crystal grain refinement (see Non-Patent Document 1).

しかし、上記複合材を切削工具として用いた場合、靱性不足が原因で切刃に欠損やチッピングが生じ易く、実用に供する事が出来ない為、形状異方性粒子による靱性改善等が行われている。例えば、Al−ZrO複合セラミックスにSiOとBaO、SrO、CaOのいずれかを添加することによりAlの異方粒成長を促進し、高靱性Al−ZrO複合セラミックスを開示している(例えば、特許文献3)。これらの材料はCa、Ba、Srの酸化物とSiOの共存作用でAl結晶が細長く成長し、Alの主体が細長成長結晶からなる組織を持つようになり、この細長成長Al結晶によって優れた靱性を具備するようになる。
特公平06−22572号公報 特開2000−16836号公報 特開平5−294718号公報 四方良一他、「粉体および粉末冶金」、(社)粉体粉末冶金協会、1991年4月10日、第38巻、第3号 p.57−61
However, when the composite material is used as a cutting tool, chipping and chipping are likely to occur on the cutting edge due to insufficient toughness and cannot be put to practical use. Yes. For example, by adding any of SiO 2 and BaO, SrO, and CaO to Al 2 O 3 —ZrO 2 composite ceramics, the anisotropic grain growth of Al 2 O 3 is promoted, and the toughness Al 2 O 3 —ZrO 2 is increased. A composite ceramic is disclosed (for example, Patent Document 3). In these materials, Al 2 O 3 crystals grow elongated due to the coexistence of oxides of Ca, Ba, Sr and SiO 2 , and the main component of Al 2 O 3 has a structure composed of elongated growth crystals. The grown Al 2 O 3 crystal has excellent toughness.
Japanese Patent Publication No. 06-22572 JP 2000-16836 A Japanese Patent Laid-Open No. 5-294718 Ryoichi Shikata et al., “Powder and Powder Metallurgy”, Powder Powder Metallurgy Association, April 10, 1991, Volume 38, No. 3 p. 57-61

ところで、前述のセラミックス材料であるAlは非常に優れた生体材料であるが、強度と靱性の点でZrOに遠く及ばない。例えば、前述のAl同士の摺動部を有した人工股関節では、Alの強度と靱性では不十分で、残念ながら破壊に至った症例が報告されている。この原因として、エッジコンタクトによる、アルミナソケットと骨頭ボールの高面圧下での摺動が影響していると考えられている。 By the way, Al 2 O 3 which is the above-mentioned ceramic material is a very excellent biomaterial, but is far from ZrO 2 in terms of strength and toughness. For example, in a hip prosthesis having a sliding portion between the Al 2 O 3 described above, it is insufficient in strength and toughness of the Al 2 O 3, cases leading to destruction unfortunately have been reported. It is thought that this is caused by the sliding of the alumina socket and the head ball under high surface pressure due to the edge contact.

一方、ZrOは、Alに比べて高強度、高靱性であるが、金属の靱性には遠く及ばない。しかし、前述したように金属と超高分子ポリエチレンの組合せはセラミックスと超高分子ポリエチレンの組合せよりも摩耗しやすい傾向がある。また、通常ZrOは、Yなどの安定化剤を適量ZrOに固溶させることで機械的特性を向上させることができる。Yを安定化剤として用いた場合、水が存在する環境下では相変態が起こりやすく、強度低下や表面粗さが悪化する場合がある。表面粗さが悪化した場合、摺動部での摩耗に伴って摩耗粉が発生し、この摩耗粉が人工関節近傍の組織内に蓄積されると、骨吸収を引き起こす。この骨吸収は、人工関節と骨との緩みの原因になる。特に、ZrO同士で摺動させると応力誘起変態が起き、表面粗さが悪化し、摩耗粉の発生が顕著になる。 On the other hand, ZrO 2 has higher strength and higher toughness than Al 2 O 3 , but is far from the toughness of metals. However, as described above, the combination of metal and ultrahigh molecular weight polyethylene tends to wear more easily than the combination of ceramics and ultra high molecular weight polyethylene. In general, ZrO 2 can improve mechanical properties by dissolving a stabilizer such as Y 2 O 3 in an appropriate amount of ZrO 2 . When Y 2 O 3 is used as a stabilizer, phase transformation is likely to occur in an environment where water is present, and strength reduction and surface roughness may deteriorate. When the surface roughness is deteriorated, wear powder is generated with wear at the sliding portion, and when this wear powder is accumulated in the tissue near the artificial joint, bone resorption is caused. This bone resorption causes loosening between the artificial joint and the bone. In particular, when sliding between ZrO 2 , stress-induced transformation occurs, the surface roughness is deteriorated, and the generation of wear powder becomes remarkable.

また、CeOを安定化剤に用いた場合、水による相変態はなくなるが、Yと比較し、結晶が成長するため、摺動特性と強度が良好なZrOを作製することが困難であった。 In addition, when CeO 2 is used as a stabilizer, phase transformation due to water is eliminated. However, since crystals grow as compared with Y 2 O 3 , it is possible to produce ZrO 2 having good sliding characteristics and strength. It was difficult.

前述のAl−ZrO複合材については、形状異方性粒子の生成によって、破壊靱性が向上する一方で、強度と硬度が低下することが知られている。破壊靱性をより高くするためには形状異方性粒子をより細長く成長させる必要があるが、粒子が大きくなるほど強度と硬度が低下する。前記特許文献1では、Alの異方性粒子の成長により靱性の改善効果が見られたが、結晶粒成長により曲げ強度が1050MPa以下となり、強度が低下している。したがって、高強度・高靱性材料を得るには、結晶粒成長を抑えながら、靱性を向上することが必要である。 Regarding the Al 2 O 3 —ZrO 2 composite described above, it is known that the formation of shape anisotropic particles improves fracture toughness while decreasing strength and hardness. In order to increase the fracture toughness, it is necessary to grow the shape anisotropic particles longer and longer. However, the larger the particles, the lower the strength and hardness. In Patent Document 1, an effect of improving toughness was observed by the growth of anisotropic particles of Al 2 O 3 , but the bending strength became 1050 MPa or less due to the crystal grain growth, and the strength was lowered. Therefore, in order to obtain a high strength and high toughness material, it is necessary to improve toughness while suppressing crystal grain growth.

準安定相である正方晶としてZrOが分散したAl−ZrO複合セラミックスに外部応力が作用すると応力誘起変態により、正方晶が安定な単斜晶へ相変態する。この相変態は体積膨張を伴うので、クラックの進展が妨げられ、靱性が向上する。しかし、ZrOは本来常温では単斜晶であり、準安定な正方晶として分散させるためには、安定化剤を微量添加する必要がある。アルカリ土類、稀土類元素の8配位のイオン半径が、Zrイオン半径の140%以下のとき、固溶し、安定化剤として作用すると言われている。安定化剤となる物質は、Mg、Ca、Y等があり、Sr、Baはイオン半径が大きいために、安定化剤にならないことが知られている。Al−ZrO複合セラミックスにおいてYの配合量が多すぎると立方晶が多くなり相変態の破壊靱性への寄与が小さくなる。一方、Yの配合量が少なすぎると単斜晶ZrOが多くなり、強度、靱性ともに低下する。またAl含有量の増加によって硬度が高くなるが強度と靱性が低下する。これを補う目的でSrOを添加し形状異方性粒子生成による破壊靱性向上をおこなうが、高温焼成を必要とし、結晶粒成長や緻密化阻害等により、強度、硬度は大きく低下する。 When an external stress is applied to Al 2 O 3 —ZrO 2 composite ceramics in which ZrO 2 is dispersed as a tetragonal crystal that is a metastable phase, the tetragonal crystal is transformed into a stable monoclinic crystal by stress-induced transformation. Since this phase transformation is accompanied by volume expansion, the progress of cracks is hindered and the toughness is improved. However, ZrO 2 is originally monoclinic at normal temperature, and in order to disperse it as a metastable tetragonal crystal, it is necessary to add a trace amount of a stabilizer. It is said that when the eight-coordinate ionic radius of the alkaline earth and rare earth elements is 140% or less of the Zr ionic radius, it dissolves and acts as a stabilizer. Substances that serve as stabilizers include Mg, Ca, Y, etc., and Sr and Ba are known not to be stabilizers because of their large ionic radii. In the Al 2 O 3 —ZrO 2 composite ceramics, if the amount of Y 2 O 3 is too large, the number of cubic crystals increases and the contribution to the fracture toughness of the phase transformation decreases. On the other hand, if the blending amount of Y 2 O 3 is too small, monoclinic ZrO 2 increases, and both strength and toughness decrease. In addition, the hardness and the toughness are reduced although the hardness is increased by increasing the Al 2 O 3 content. In order to compensate for this, SrO is added to improve fracture toughness by forming anisotropically shaped particles. However, high temperature firing is required, and strength and hardness are greatly reduced due to growth of crystal grains and inhibition of densification.

本発明は、このような従来技術の課題にかえりみてなされたものであり、高強度・高靱性を有する生体部材およびその製造方法を提供することを目的とする。さらに本発明の材料を用いて、生体内環境下で耐摩耗性を有した人工関節を提供することである。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a biological member having high strength and high toughness and a method for manufacturing the same. It is another object of the present invention to provide an artificial joint having wear resistance in an in vivo environment using the material of the present invention.

本発明者らはAl主体のAl−ZrO複合セラミックスにSrOを添加して、低温で焼成する工程により、Alの形状異方性粒子の生成を抑えつつ、同時に、分散させたZrOの粒成長を抑制することができる製造工程を開発した。本製造工程ではZrO粒子がAl粒子に囲まれており、ZrO粒子に歪みが残存するたえ、本来固溶しないSrをZrO粒子に微量固溶させることが可能になったと考えられる。すなわち、SrOが安定化剤として作用し、より多く正方晶に準安定相として斬罪させることにより応力誘起変態によって、強度と破壊靱性を向上できる。さらに焼結助剤としてTiO、MgOおよびSiOを添加することによりZrO粒子へのSr固溶が促進され、応力誘起変態の効果が大きくなることを見出し、本発明に至った。 The present inventors have by adding SrO to Al 2 O 3 -ZrO 2 composite ceramic of Al 2 O 3 mainly by firing at a low temperature, while suppressing the generation of shape anisotropic particles of Al 2 O 3, At the same time, a manufacturing process that can suppress the grain growth of dispersed ZrO 2 was developed. In this manufacturing process is ZrO 2 particles surrounded by Al 2 O 3 particles, Tae distortion ZrO 2 particles remains, it has become possible to trace solid solution Sr which is not originally dissolved in ZrO 2 particles Conceivable. That is, the strength and fracture toughness can be improved by the stress-induced transformation by causing SrO to act as a stabilizer and killing more tetragonal crystals as a metastable phase. Further, by adding TiO 2 , MgO and SiO 2 as sintering aids, it was found that Sr solid solution in ZrO 2 particles was promoted, and the effect of stress-induced transformation was increased, leading to the present invention.

すなわち、本発明の生体部材は、Alを65質量%以上、ZrOを4〜34質量%、SrOを0.1〜4質量%を含有する複合セラミックスからなり、前記ZrO粒子の一部にSrが固溶していることを特徴とする。 In other words, biological component of the present invention, Al 2 O 3 65 wt% or more, the ZrO 2 4 to 34 wt%, consists of a composite ceramic containing 0.1 to 4% by weight of SrO, of the ZrO 2 particles It is characterized in that Sr is partly dissolved.

即ち、複合セラミックス材料が上記組成範囲で、かつZrO粒子の一部にSrが固溶していることにより、SrOによる正方晶ZrOの安定化効果が発現し、強度と靱性が向上する。また、ZrO含有量の増加やAlの形状異方性粒子の生成による強度の低下も少なく、実用に耐え得るものが得られるようになる。 That is, when the composite ceramic material is in the above composition range and Sr is dissolved in a part of the ZrO 2 particles, the effect of stabilizing the tetragonal ZrO 2 by SrO is expressed, and the strength and toughness are improved. Moreover, there is little decrease in strength due to the increase in the ZrO 2 content and the formation of Al 2 O 3 shape anisotropic particles, and a product that can withstand practical use can be obtained.

本発明において、上記複合セラミックスは焼結助剤としてTiO、MgO及びSiOを含むのが望ましく、そのSiOを0.20質量%以上、TiOを0.22質量%以上、MgOを0.12質量%以上含有し、かつSiO、TiO及びMgOを合計で0.6〜4.5質量%含有することがより望ましい。 In the present invention, the composite ceramic preferably contains TiO 2 , MgO and SiO 2 as sintering aids, the SiO 2 being 0.20% by mass or more, the TiO 2 being 0.22% by mass or more, and the MgO being 0%. It is more desirable to contain 12 mass% or more and to contain SiO 2 , TiO 2 and MgO in a total of 0.6 to 4.5 mass%.

前記複合セラミックスにおけるAlの結晶粒子は、長軸及び短軸を有する針状もしくは鱗片状の楕円形状を有しており、そのアスペクト比が2.5以下であり、かつ前記短軸径の平均と長軸径の平均との中間値が1ミクロン以下であることを特徴とする。 The crystal grains of Al 2 O 3 in the composite ceramic have a needle-like or scale-like elliptical shape having a major axis and a minor axis, an aspect ratio of 2.5 or less, and the minor axis diameter The average value of the average of the major axis diameter and the average of the major axis diameter is 1 micron or less.

前記複合セラミックスにおけるZrOの結晶粒子が1ミクロン以下であることを特徴とする。 The composite ceramic is characterized in that ZrO 2 crystal particles are 1 micron or less.

121℃の飽和水蒸気中で152時間の条件で行う加速劣化試験後の前記複合セラミックスの比摩耗量が0.3×10−7mm/N・m以下であることを特徴とする。 A specific wear amount of the composite ceramic after an accelerated deterioration test performed in a saturated steam at 121 ° C. for 152 hours is 0.3 × 10 −7 mm 3 / N · m or less.

ピンオンフラット法においてピンの面圧が2.5GPaのとき、比摩耗量が1.0×10−7mm/N・m以下であることを特徴とする。 When the pin surface pressure is 2.5 GPa in the pin-on-flat method, the specific wear amount is 1.0 × 10 −7 mm 3 / N · m or less.

前記複合セラミックスにより人工関節の摺動部を構成したことを特徴とする。   A sliding portion of the artificial joint is formed by the composite ceramic.

また、本発明の人工関節は、上述した摺動部を構成する一対の生体部材からなるとともに、該生体部材が相互に摺動することを特徴とする。   In addition, the artificial joint of the present invention includes a pair of biological members constituting the above-described sliding portion, and the biological members slide relative to each other.

さらに、本発明の生体部材の製造方法は、Al、Zr及びSrを金属、又はこれらの金属化合物として含む主原料を、これらの金属または金属化合物を金属酸化物に換算して、複合セラミックス中でAlを65質量%以上、ZrOを4〜34質量%、およびSrOを0.1〜4質量%含有するように混合して、所定形状に成形した後、1300℃〜1500℃の温度範囲で焼成し、前記焼成温度より30℃低い温度で熱間静水圧処理することを特徴とする。 Furthermore, in the method for producing a biological member of the present invention, a main raw material containing Al, Zr, and Sr as a metal or a metal compound thereof is converted into a metal oxide by converting the metal or the metal compound into a metal oxide. After mixing Al 2 O 3 in an amount of 65% by mass or more, ZrO 2 in a range of 4 to 34% by mass, and SrO in a range of 0.1 to 4% by mass and forming into a predetermined shape, 1300 ° C. to 1500 ° C. Firing in a temperature range, and hot isostatic pressing at a temperature 30 ° C. lower than the firing temperature.

この場合、Al、Zr、およびSrの金属、又はこれらの金属化合物として含む前記主原料に、さらにTi、MgおよびSiの金属、又はこれらの金属化合物として含む焼結助剤を、これらの金属または金属化合物を金属酸化物に換算して、複合セラミックス中でSiOが0.20質量%以上、TiOが0.22質量%以上、MgOが0.12質量%以上で、かつSiO、TiOおよびMgOが合計で0.6〜4.5質量%含有するように混合することが望ましい。 In this case, the main raw materials containing Al, Zr, and Sr, or these metal compounds, further include a sintering aid containing Ti, Mg, and Si metals, or these metal compounds. When the metal compound is converted into a metal oxide, the composite ceramic has SiO 2 of 0.20 mass% or more, TiO 2 of 0.22 mass% or more, MgO of 0.12 mass% or more, and SiO 2 or TiO 2 . It is desirable to mix so that 2 and MgO may contain 0.6 to 4.5 mass% in total.

本発明材料であるAl−ZrO複合セラミックスはSrが固溶したZrO粒子が準安定化相の正方晶となり、また、SrではZrOへの固溶量が少ないため、立方晶は生成し難くなる。そのため応力誘起変態の効果が大きく、形状異方性粒子生成によらずよって高強度、高靱性材料となる。さらに、焼結助剤としてSiO、TiOおよびMgOを同時に添加することでその効果が顕著になり、また、これらの焼結助剤は焼成温度を下げるので、Alの形状異方性粒子が生成せずに、高緻密化、組織微細化がおこる。その結果、高強度、高靱性、高硬度の前記複合セラミックスからなる生体部材およびそれを用いた人工関節を得ることが可能となる。 In the Al 2 O 3 —ZrO 2 composite ceramics of the present invention, ZrO 2 particles with solid solution of Sr become tetragonal crystals of a metastable phase, and since Sr has a small amount of solid solution in ZrO 2 , cubic crystals Is difficult to generate. Therefore, the effect of stress-induced transformation is great, and the material becomes a high-strength and high-toughness material regardless of the generation of shape anisotropic particles. Furthermore, the effect becomes remarkable by simultaneously adding SiO 2 , TiO 2 and MgO as sintering aids, and these sintering aids lower the firing temperature, so that the anisotropic shape of Al 2 O 3 High density and fine structure occur without forming the conductive particles. As a result, it is possible to obtain a living body member made of the composite ceramic having high strength, high toughness and high hardness and an artificial joint using the living body member.

さらに、前記複合セラミックスは、水分が多い生体内環境下でも相変態による表面性状劣化が起こらず、非常に優れた摺動特性を有する。したがって、本発明の生体部材は摺動部材としても高い耐摩耗性を有する。特に、前記複合セラミックス同士の摺動では、121℃の飽和水蒸気中で152時間の条件で行う加速劣化試験後の比摩耗量を0.3×10−7mm/N・m以下にすることができる。また、エッジコンタクトを想定した高面圧下での比摩耗量を1.0×10−7mm/N・m以下にすることができる。したがって、前記複合セラミックスで相互に摺動する人工関節の摺動部を構成することにより、人工関節において、高強度、高靱性、耐摩耗性を実現することができる。 Furthermore, the composite ceramics has very good sliding characteristics without deterioration of surface properties due to phase transformation even in an in vivo environment with a lot of moisture. Therefore, the living body member of the present invention has high wear resistance as a sliding member. In particular, when sliding between the composite ceramics, the specific wear after an accelerated deterioration test performed in a saturated steam at 121 ° C. for 152 hours should be 0.3 × 10 −7 mm 3 / N · m or less. Can do. Further, the specific wear amount under high surface pressure assuming the edge contact can be made to be 1.0 × 10 −7 mm 3 / N · m or less. Therefore, high strength, high toughness, and wear resistance can be realized in the artificial joint by configuring the sliding portion of the artificial joint that slides with the composite ceramic.

以下に本発明を詳述する。図1ないし図2に本発明の生体部材の実施形態を例示する。本発明の生体部材はAl−ZrOからなる後述の複合セラミックスが用いられる。 The present invention is described in detail below. 1 to 2 illustrate an embodiment of the biological member of the present invention. For the biomaterial of the present invention, a later-described composite ceramic made of Al 2 O 3 —ZrO 2 is used.

図1によれば、生体部材である人工股関節、人工膝関節などの人工関節の摺動部に本発明の複合セラミックスが用いられている。具体的には、人工股関節であれば金属ステムならびにセラミックス製の骨頭ボールおよび臼蓋ソケットにより人工股関節が構成されている。   According to FIG. 1, the composite ceramic of the present invention is used for sliding portions of artificial joints such as artificial hip joints and artificial knee joints which are biological members. Specifically, in the case of an artificial hip joint, the artificial hip joint is constituted by a metal stem, a ceramic head ball and a acetabular socket.

本発明では、例えば、人工関節において、対をなす摺動部が複合セラミックスからなり、これら摺動部を含む一対の生体部材が人工関節を構成する場合のみではなく、一方の摺動部のみが複合セラミックスからなる場合でも構わない。   In the present invention, for example, in an artificial joint, a pair of sliding portions are made of composite ceramics, and not only a pair of living body members including these sliding portions constitute an artificial joint, but also only one sliding portion. It may be made of composite ceramics.

図2によれば、人工膝関節の大腿骨コンポートネントが前記複合セラミックスからなり、他方、頸骨コンポーネントは、超高分子量ポリエチレンより構成される。   According to FIG. 2, the femoral component of the knee prosthesis is made of the composite ceramic, while the tibial component is made of ultra high molecular weight polyethylene.

また、本発明の生体部材は摺動部を有しないものでもよい。例えば、関節部分を含まない人工骨であっても構わない。   Moreover, the living body member of the present invention may not have a sliding part. For example, an artificial bone that does not include a joint portion may be used.

本発明の生体部材をなす複合セラミックスの特徴は、Alを65質量%以上、ZrOを4〜34質量%、およびSrOを0.1〜4質量%を含有しており、ZrO粒子の一部にSrが固溶していることである。 Features of the composite ceramic constituting the living body member of the present invention, Al 2 O 3 65 wt% or more, and the ZrO 2 4 to 34 wt%, and SrO contained 0.1 to 4% by weight, ZrO 2 That is, Sr is dissolved in a part of the particles.

複合セラミックスのAlの含有量としては、65質量%以上、好ましくは67〜90質量%、特に好ましくは76〜84質量%であり、ZrOの含有量は4〜34質量%、好ましくは10〜34質量%、特に好ましくは11〜20質量%である。 The content of Al 2 O 3 in the composite ceramic is 65% by mass or more, preferably 67 to 90% by mass, particularly preferably 76 to 84% by mass, and the content of ZrO 2 is 4 to 34% by mass, preferably Is 10 to 34% by mass, particularly preferably 11 to 20% by mass.

Alを65質量%以上含有させることにより、高強度でかつ高硬度という効果が得られ、ZrOの含有量が4質量%未満では強度が低下し、低靱性となり、一方、34質量%をこえるとヤング率低下により硬度が下がる。 By containing 65% by mass or more of Al 2 O 3 , an effect of high strength and high hardness is obtained, and when the content of ZrO 2 is less than 4% by mass, the strength is lowered and the toughness is reduced, whereas 34% by mass. If it exceeds 50%, the hardness decreases due to a decrease in Young's modulus.

また、SrOの添加量は、複合セラミックス中で0.1〜4質量%、好ましくは0.5〜3質量%特に好ましくは0.7〜1.5質量%である。特に本発明においてSrOの添加量を上記0.1〜4質量%とすることは重要である。   Moreover, the addition amount of SrO is 0.1-4 mass% in composite ceramics, Preferably it is 0.5-3 mass%, Most preferably, it is 0.7-1.5 mass%. In particular, in the present invention, it is important that the amount of SrO added is 0.1 to 4% by mass.

すなわち、SrOの添加量が0.1質量%未満のとき、単斜晶ZrOが多くなり、強度が低下する。またSrOの添加量が4質量%をこえるときは、焼成温度が高くなり、Alの形状異方性粒子の生成による緻密化阻害、ZrO粒成長による強度あるいは硬度の低下がおきる。 That is, when the amount of SrO added is less than 0.1% by mass, monoclinic ZrO 2 increases and the strength decreases. On the other hand, when the amount of SrO added exceeds 4% by mass, the firing temperature becomes high, densification is inhibited by the formation of Al 2 O 3 shape anisotropic particles, and the strength or hardness is lowered by the growth of ZrO 2 grains.

上記組成範囲にさらに焼結助剤として、SiO、TiOおよびMgOを一定割合添加することにより、AlとZrOの結晶粒成長を抑制しながら、低い温度条件で焼結体を作製でき、微細結晶、高緻密化の組織形成により高強度化の実現が可能となる。 Further, by adding a certain proportion of SiO 2 , TiO 2 and MgO as sintering aids to the above composition range, the sintered body can be obtained under low temperature conditions while suppressing the growth of crystal grains of Al 2 O 3 and ZrO 2. High strength can be realized by forming a fine crystal and a highly densified structure.

すなわち、Alを65質量%以上、ZrOを4〜34質量%、SrOを0.1〜4質量%含有し、さらにSiOを0.2質量%以上、TiOを0.22質量%以上、MgOを0.12質量%以上含有して、かつSiO、TiOおよびMgOが総量で0.6〜4.5質量%含有する組成において高強度、高靱性、高硬度が実現される。 That is, Al 2 O 3 is contained at 65% by mass or more, ZrO 2 is contained at 4-34% by mass, SrO is contained at 0.1-4% by mass, SiO 2 is contained at 0.2% by mass or more, and TiO 2 is contained at 0.22%. High strength, high toughness, and high hardness are realized in a composition containing at least 0.1% by mass, 0.12% by mass MgO, and 0.6 to 4.5% by mass in total of SiO 2 , TiO 2 and MgO. Is done.

ここで、SiOの含有量は0.2質量%以上、好ましくは0.4〜1.5質量%であり、TiOの含有量は、0.22質量%以上、好ましくは0.3〜0.7質量%であり、MgOの含有量は、0.12質量%以上、好ましくは0.2〜1.4質量%である。 Here, the content of SiO 2 is 0.2% by mass or more, preferably 0.4 to 1.5% by mass, and the content of TiO 2 is 0.22% by mass or more, preferably 0.3 to The content of MgO is 0.12% by mass or more, preferably 0.2 to 1.4% by mass.

SiOの含有量が0.20s質量%未満、あるいはTiOの含有量が0.22質量%未満、あるいはMgOの含有量が0.12質量%未満では、液相が不足し、Alが緻密化しにくいという不都合を生ずる。 When the content of SiO 2 is less than 0.20 s% by mass, the content of TiO 2 is less than 0.22% by mass, or the content of MgO is less than 0.12% by mass, the liquid phase is insufficient, and Al 2 O 3 causes the inconvenience that it is difficult to densify.

焼結助剤としてSiO、TiOおよびMgOを上記割合添加することにより、SrのZrOへの固溶が促進され、強度、靱性が向上するとともに共晶点が1300℃以下になり、焼結時に液相が生成して材料の焼結が大きく促進される。このため、より低い温度でも高い緻密性の焼結体が得られる。また、比較的低温で焼成することによってAlの形状異方性粒子の成長を抑制し、微細な結晶組織となり強度と強度が低下しない。 By adding SiO 2 , TiO 2, and MgO in the above proportions as sintering aids, solid solution of Sr in ZrO 2 is promoted, strength and toughness are improved, and the eutectic point is 1300 ° C. or lower. A liquid phase is generated during the sintering, and the sintering of the material is greatly promoted. For this reason, a highly dense sintered body can be obtained even at a lower temperature. Further, by firing at a relatively low temperature, the growth of the shape anisotropic particles of Al 2 O 3 is suppressed, and a fine crystal structure is obtained, and strength and strength are not reduced.

次に、高強度、高靱性、および高硬度の材料特性を得るには、1500℃以下の低温焼成によりAlとZrOの結晶粒成長を抑制することが重要であり、特に1490℃以下とするのが望ましい。SrOを添加した状態で高温にて焼成した場合Alの形状異方性粒子が成長し、強度、靱性、硬度が低下する。これはZrOの結晶粒成長によって単斜晶ZrO量が増加して、強度と硬度が低下するからである。 Next, in order to obtain material properties of high strength, high toughness, and high hardness, it is important to suppress the crystal grain growth of Al 2 O 3 and ZrO 2 by low-temperature firing at 1500 ° C. or less, particularly 1490 ° C. The following is desirable. When fired at a high temperature with SrO added, shape-anisotropic particles of Al 2 O 3 grow and strength, toughness, and hardness decrease. This is because the amount of monoclinic ZrO 2 increases due to the growth of ZrO 2 crystal grains, and the strength and hardness decrease.

一方、本発明の生体部材に用いられる複合セラミックスは、121℃の飽和水蒸気中で152時間の条件で行う加速劣化試験後の複合セラミックスの比摩耗量が0.3×10−7mm/N・m以下であることを特徴とする。すなわち、複合セラミックスの比摩耗量が0.3×10−7mm/N・mを超える場合には、人工関節として利用した場合に摩耗粉がオステオライシス(骨融解)を引き起こし、人工関節のルースニング(緩み)が発生し、再置換が必要となる恐れがあるからである。 On the other hand, the composite ceramic used for the biomaterial of the present invention has a specific wear amount of 0.3 × 10 −7 mm 3 / N after the accelerated deterioration test performed in saturated steam at 121 ° C. for 152 hours. -It is characterized by being m or less. That is, when the specific wear amount of the composite ceramic exceeds 0.3 × 10 −7 mm 3 / N · m, the wear powder causes osteolysis when used as an artificial joint, This is because loosening (loosening) occurs and re-replacement may be necessary.

また、本発明の生体部材に用いられる複合セラミックスは、ピンオンフラット法においてピンの面圧が2.5GPaのとき、比摩耗量が1.0×10−7mm/N・m以下であることを特徴とする。すなわち、複合セラミックスの比摩耗量が1.0×10−7mm/N・mを超える場合には人工関節として利用した場合にその摩耗痕が破壊起点となり、人工関節の破損を引き起こし、再置換が必要となる恐れがあるからである。 Further, the composite ceramic used for the biomaterial of the present invention has a specific wear amount of 1.0 × 10 −7 mm 3 / N · m or less when the pin surface pressure is 2.5 GPa in the pin-on-flat method. It is characterized by that. That is, when the specific wear amount of the composite ceramic exceeds 1.0 × 10 −7 mm 3 / N · m, when used as an artificial joint, the wear mark becomes a starting point of destruction, causing damage to the artificial joint, This is because replacement may be necessary.

なお、上述のように加速劣化試験による比摩耗量とピンオンフラット法による比摩耗量とを挙げて本発明の生体部材を説明したが、より好ましくは何れの比摩耗量も上述の範囲に入ったものを使用するのが好ましい。その理由としては、人工関節においては、加速劣化試験による比摩耗量は通常の関節摺動運動を想定し、ピンオンフラット法による比摩耗量はマイクロセパレーションと呼ばれる亜脱臼状態を想定する必要があるからである。また、マイクロセパレーションは正常に設置した人工関節でも発生することが判明しており、想定可動域を超えていないときにも発生するからである。   In addition, as described above, the biological member of the present invention has been described by taking the specific wear amount by the accelerated deterioration test and the specific wear amount by the pin-on-flat method, but more preferably, any specific wear amount falls within the above range. It is preferable to use the same. The reason for this is that, in an artificial joint, the specific wear amount by the accelerated deterioration test assumes a normal joint sliding motion, and the specific wear amount by the pin-on-flat method needs to assume a subluxation state called micro separation. Because. In addition, it is known that micro separation occurs even in a normally installed artificial joint, and also occurs when the assumed range of motion is not exceeded.

上記組成を有する本発明の複合セラミックスは、Alの形状異方性粒子による緻密化阻害や、ZrOの粒成長による強度あるいは硬度の低下を回避しており、例えば、複合セラミックス中のAl粒子は、複合セラミックスにおけるAlの粒子が、長軸及び短軸を有する針状もしくは鱗片状の楕円形状を有しており、そのアスペクト比が2.5以下であり、かつ前記短軸径の平均と長軸径の平均との中間値が1ミクロン以下であることが望ましい。 The composite ceramic of the present invention having the above composition avoids densification inhibition by shape anisotropic particles of Al 2 O 3 and a decrease in strength or hardness due to grain growth of ZrO 2. For example, in the composite ceramic Al 2 O 3 particles, the particles of Al 2 O 3 in the composite ceramic has a needle-like or scale-like oval shape having a major axis and a minor axis, and the aspect ratio is 2.5 or less, In addition, it is desirable that an intermediate value between the average of the short axis diameter and the average of the long axis diameter is 1 micron or less.

すなわち、Al粒子の平均アスペクト比が2.5をこえるときには、形状異方性粒子による緻密化阻害を生じ、強度低下が生じる。また、ZrO粒子の結晶粒子径が1.0μmよりも大きいと、正方晶の安定化が低下し、相変態によるクラックが発生し、強度が低下、比摩耗量の増加を生じる。 That is, when the average aspect ratio of Al 2 O 3 particles exceeds 2.5, densification is inhibited by shape anisotropic particles, resulting in a decrease in strength. On the other hand, if the crystal grain size of the ZrO 2 particles is larger than 1.0 μm, the stabilization of the tetragonal crystal is lowered, cracks are generated due to phase transformation, the strength is lowered, and the specific wear amount is increased.

よって、後述の1500℃以下で焼成し、Al、ZrOの結晶粒成長を抑制しつつ、熱間静水圧焼成によって、緻密化させることが重要である。この熱間静水圧焼成条件としては、大気焼成温度よりも30℃以上低い温度、特に50℃以上低い温度が望ましい。 Therefore, it is important to perform densification by hot isostatic firing while firing at 1500 ° C. or less, which will be described later, while suppressing the growth of Al 2 O 3 and ZrO 2 crystal grains. As the hot isostatic firing condition, a temperature lower by 30 ° C. or more than the atmospheric firing temperature, particularly a temperature lower by 50 ° C. or more is desirable.

次に本発明の生体部材の製造方法を説明する。すなわち、Al、Zr及びSrを金属、又はこれらの金属化合物として含む主原料を所定の割合で混合し、所定形状に成形する。ここでいう原料とは、金属、金属酸化物、金属水酸化物、金属炭酸塩などの塩類等を粉末あるいは水溶液等として使用することが可能である。粉末として使用する場合、その平均粒径は、1.0μm以下が望ましい。   Next, the manufacturing method of the biological member of this invention is demonstrated. That is, a main raw material containing Al, Zr, and Sr as a metal or a metal compound thereof is mixed at a predetermined ratio and formed into a predetermined shape. As the raw material here, it is possible to use metals, metal oxides, metal hydroxides, salts such as metal carbonates and the like as powders or aqueous solutions. When used as a powder, the average particle size is desirably 1.0 μm or less.

また、成形には、プレス成形、鋳込み成形、冷間静水圧成形、あるいは冷間静水圧処理などの成形法を使用可能である。   For the molding, a molding method such as press molding, casting molding, cold isostatic pressing, or cold isostatic pressing can be used.

次に本発明によれば、1300℃〜1500℃の温度範囲で焼成し、さらに前記焼成温度より30℃低い温度で熱間静水圧処理がおこなわれる。これによりAl、ZrOが微粒で、Alの異方性粒子の生成を抑えた緻密体を作製することが可能となる。 Next, according to the present invention, baking is performed in a temperature range of 1300 ° C. to 1500 ° C., and hot isostatic treatment is performed at a temperature 30 ° C. lower than the baking temperature. Thereby, it becomes possible to produce a dense body in which Al 2 O 3 and ZrO 2 are fine particles and generation of anisotropic particles of Al 2 O 3 is suppressed.

本発明により、Srが固溶したZrOにおいて応力誘起変態の効果が大きく、さらに焼結助剤としてSiO、TiOおよびMgOを添加することでその効果が顕著になる。また、SiO、TiOおよびMgOの添加により、焼成温度が下がり、高緻密化、組織微細化がおこり、高強度、高靱性、高硬度の複合セラミックスからなる生体部材を提供できる。 According to the present invention, the effect of stress-induced transformation is large in ZrO 2 in which Sr is dissolved, and the effect becomes remarkable by adding SiO 2 , TiO 2 and MgO as sintering aids. Moreover, the addition of SiO 2 , TiO 2, and MgO lowers the firing temperature, resulting in higher densification and refinement of the structure, thereby providing a biological member made of a composite ceramic with high strength, high toughness, and high hardness.

純度が99.95質量%で平均粒径0.22μmのAl粉末に、純度が99.95質量%で平均粒径0.4μmのZrO粉末、平均粒径0.2μmのSrO粉末、平均粒径0.6μmのMg(OH)、平均粒径0.5μmのSiO粉末、および平均粒径0.5μmのTiO粉末を表1に示すような組成になるように秤量混合して混合粉末を得た。そして、この混合粉末を98MPaで金型成形し、さらに294MPaで静水圧処理を加えて成形体を作製し、表2に示す温度にて大気焼成、および熱間静水圧焼成(表中HIPと表示)をおこなった。 Al 2 O 3 powder having a purity of 99.95% by mass and an average particle size of 0.22 μm, ZrO 2 powder having a purity of 99.95% by mass and an average particle size of 0.4 μm, and SrO powder having an average particle size of 0.2 μm , Mg (OH) 2 having an average particle diameter of 0.6 μm, SiO 2 powder having an average particle diameter of 0.5 μm, and TiO 2 powder having an average particle diameter of 0.5 μm are weighed and mixed so as to have the composition shown in Table 1. Thus, a mixed powder was obtained. Then, this mixed powder was molded at 98 MPa and further subjected to hydrostatic pressure treatment at 294 MPa to produce a molded body. At the temperatures shown in Table 2, atmospheric firing and hot isostatic firing (indicated as HIP in the table) ).

得られた各焼結体に対して、JIS−R1601による室温における抗折強度、およびJIS−R1607によるSEPB法による破壊靱性値、JIS−R1610によるビッカース硬度を測定した。結晶粒径の測定方法は、試験片を鏡面研磨後、焼成温度より50℃低い温度でサーマルエッチング処理し、SEMによる研磨面上の写真をAlおよびZrO粒子がそれぞれ100個以上写るように撮影し、その写真から完全な粒子形状を有するAlを抜き出し、長軸、短軸を測定してアスペクト比を算出した。ZrO結晶粒径は、上記写真より、結晶粒子の2軸方向の長さを測定して平均粒径とした。 For each of the obtained sintered bodies, the bending strength at room temperature according to JIS-R1601, the fracture toughness value according to the SEPB method according to JIS-R1607, and the Vickers hardness according to JIS-R1610 were measured. The crystal grain size is measured by mirror-polishing the test piece, then subjecting it to thermal etching at a temperature lower by 50 ° C. than the firing temperature, and showing 100 or more Al 2 O 3 and ZrO 2 particles on the polished surface by SEM. The Al 2 O 3 having a complete particle shape was extracted from the photograph, and the aspect ratio was calculated by measuring the long axis and the short axis. The ZrO 2 crystal grain size was determined as the average grain size by measuring the length of the crystal grains in the biaxial direction from the above photograph.

また、X線回折(XRD)によってSrOによる正方晶ZrOが安定化されていることを確認し、電子線プローグマイクロアナライザー(EPMA)によりZrOへのSrの固溶を確認した。 Further, it was confirmed by X-ray diffraction (XRD) that tetragonal ZrO 2 by SrO was stabilized, and solid solution of Sr in ZrO 2 was confirmed by an electron beam probe microanalyzer (EPMA).

さらに、ピンオンディスク試験法(JIS−T0303)により耐摩耗性を評価した。試験片は121℃の飽和水蒸気中で152時間の加速試験を実施したものを使用した。ディスクおよびピンを表1に示した組成の材料で作製した。摩擦面圧力はピンの面圧が1.0GPaとなるようにし、摺動速度20mm/sec、摺動距離を10mmとし、潤滑溶液は37℃、30%希釈牛血清を用いた。ピンの摩耗量を測定し比摩耗量を算出した。得られた結果を加速試験後の比摩耗量として表2に示す。 Furthermore, abrasion resistance was evaluated by a pin-on-disk test method (JIS-T0303). The test piece used was subjected to an accelerated test for 152 hours in saturated steam at 121 ° C. Disks and pins were made of materials having the composition shown in Table 1. The friction surface pressure was such that the pin surface pressure was 1.0 GPa, the sliding speed was 20 mm / sec, the sliding distance was 10 8 mm, and the lubricating solution was 37 ° C. and 30% diluted bovine serum. The wear amount of the pin was measured and the specific wear amount was calculated. The obtained results are shown in Table 2 as specific wear after the acceleration test.

また、高荷重下での耐摩耗性をピンオンプレート方式の摩耗試験(ASTM F732)にて評価した。プレートおよびピンを表1に示した組成の材料で作製した。摩擦面圧力はピンの面圧が2.5GPaとなるようにし、周波数1Hz、摺動速度50mm/sec、摺動距離を1.5×10mmとし、潤滑溶液は37℃、30%希釈牛血清を用いた。ピンの摩耗量を測定し比摩耗量を算出した。得られた結果を高荷重下での比摩耗量として表2に示す。 In addition, the wear resistance under high load was evaluated by a pin-on-plate wear test (ASTM F732). Plates and pins were made of materials having the composition shown in Table 1. The friction surface pressure is such that the pin surface pressure is 2.5 GPa, the frequency is 1 Hz, the sliding speed is 50 mm / sec, the sliding distance is 1.5 × 10 8 mm, the lubricating solution is 37 ° C., 30% diluted cow Serum was used. The wear amount of the pin was measured and the specific wear amount was calculated. The obtained results are shown in Table 2 as specific wear amount under high load.

表2より、SrOを含み、他の焼結助剤を含まない材料(試料No.8)ではSrOを添加していない材料(試料No.12)よりも強度と破壊靱性が高かった。しかし、SrOと焼結助剤SiO、TiO、MgOを含み、さらにより低温で焼結した材料(試料No.1、2、6、14)は強度1410〜1540MPa、破壊靱性5.1〜5.4MPa√m、硬度1740〜1790Hvの特性を示し、試料No.8の材料よりも特性が向上した。 From Table 2, the strength and fracture toughness of the material containing SrO and no other sintering aid (sample No. 8) were higher than the material not containing SrO (sample No. 12). However, materials containing SrO and sintering aids SiO 2 , TiO 2 , MgO and sintered at lower temperatures (sample Nos. 1, 2, 6, and 14) have a strength of 1410 to 1540 MPa and a fracture toughness of 5.1 to 5.1. 5.4 MPa√m and hardness of 1740-1790 Hv are shown. The characteristics were improved as compared with the material of No. 8.

試料No.4の材料では焼成温度が高く、僅かに形状異方性粒子が生成するため、強度と硬度が多少低下したが試料No.8の材料よりも破壊靱性は高かった。Yの固溶したZrOを含む材料(試料No.12)では、立方晶ZrO含有量が増加し、SrOによる正方晶安定化の効果が小さくなるため、SrOとSiO2、TiO、MgOを含有しているにも関わらず強度と靱性が小さかった。 Sample No. In the case of the material No. 4, the firing temperature is high, and slightly anisotropically shaped particles are formed. The fracture toughness was higher than that of the 8 material. In the material containing ZrO 2 in which Y 2 O 3 is dissolved (sample No. 12), the cubic ZrO 2 content is increased, and the effect of tetragonal crystal stabilization by SrO is reduced. Therefore, SrO, SiO 2 and TiO 2 are reduced. Despite containing MgO, the strength and toughness were small.

また、試料No.1とNo.11の材料のX線回折(XRD)測定結果を比較することで、試料No.1の材料ではSrOの添加によって正方晶ZrOが安定化されていることを確認した。 Sample No. 1 and No. 11 by comparing the X-ray diffraction (XRD) measurement results of the materials. It was confirmed that the tetragonal ZrO 2 was stabilized by adding SrO in the material No. 1.

図3は試料No.1の材料の組織を観察した透過電子顕微鏡(TEM)写真である。Srの固溶の確認方法として図3におけるZrO結晶のa部位、b部位、d部位をEDS分析し、b部位でSrのピークを確認した。これにより、Srが固溶していることを確認した。 FIG. It is the transmission electron microscope (TEM) photograph which observed the structure | tissue of 1 material. As a method for confirming the Sr solid solution, EDS analysis was performed on the a, b and d sites of the ZrO 2 crystal in FIG. Thereby, it was confirmed that Sr was dissolved.

試料No.10よりAlが65質量%以下でZrOが34質量%以上では曲げ強度が720MPa、破壊靱性が4.3MPa√mと試料No.5と比較し、低かった。 Sample No. 10 shows that when Al 2 O 3 is 65 mass% or less and ZrO 2 is 34 mass% or more, the bending strength is 720 MPa and the fracture toughness is 4.3 MPa√m. Compared to 5, it was low.

また、試料No.21〜27においては焼結助剤であるTiO、MgO、SiO2のいずれかが少ないか多いものであるが、いずれかが少ないと焼結温度が高くなり、結晶粒径が大きくなるために曲げ強度が低くなり、いずれかが多いものは焼結温度が低いものの液相成分が多くなり、曲げ強度が低い結果となった。 Sample No. In Nos. 21 to 27, any of the sintering aids TiO 2 , MgO, and SiO 2 is small or large, but if any of them is small, the sintering temperature becomes high and the crystal grain size becomes large. The strength was low, and when there was a lot of either, the liquid phase component increased although the sintering temperature was low, resulting in low bending strength.

試料No.28は、成分は本発明内であるが、大気焼成温度が高く結晶粒径が大きいため耐摩耗性が低下する結果となった。

Figure 2006122634
Figure 2006122634
Sample No. No. 28 is included in the present invention, but the result was that the wear resistance was lowered because the atmospheric firing temperature was high and the crystal grain size was large.
Figure 2006122634
Figure 2006122634

本発明の生体部材である人工股関節の模式図である。It is a mimetic diagram of an artificial hip joint which is a living body member of the present invention. 本発明の生体部材である人工膝関節の模式図である。It is a mimetic diagram of an artificial knee joint which is a living body member of the present invention. 試料No.1の組織のTEM写真である。Sample No. It is a TEM photograph of 1 organization.

Claims (11)

Alを65質量%以上、ZrOを4〜34質量%、SrOを0.1〜4質量%を含有する複合セラミックスからなり、前記ZrO粒子の一部にSrが固溶していることを特徴とする生体部材。 It is composed of a composite ceramic containing 65% by mass or more of Al 2 O 3 , 4 to 34% by mass of ZrO 2 and 0.1 to 4% by mass of SrO, and Sr is dissolved in a part of the ZrO 2 particles. A biological member characterized by comprising: 上記複合セラミックスは、焼結助剤としてTiO、MgO、SiOを含むことを特徴とする請求項1に記載の生体部材。 The biomaterial according to claim 1, wherein the composite ceramic contains TiO 2 , MgO, and SiO 2 as a sintering aid. 前記セラミックス中にSiOを0.20質量%以上、TiOを0.22質量%以上、MgOを0.12質量%以上含有し、かつSiO、TiO及びMgOを合計で0.6〜4.5質量%含有することを特徴とする請求項2に記載の生体部材。 The SiO 2 0.20 wt% or more in said ceramic, the TiO 2 0.22 wt% or more of MgO containing more than 0.12 wt%, and the SiO 2, TiO 2 and MgO in total 0.6 It contains 4.5 mass%, The biological member of Claim 2 characterized by the above-mentioned. 前記複合セラミックスにおけるAlの結晶粒子は、長軸及び短軸を有する針状もしくは鱗片状の楕円形状を有しており、そのアスペクト比が2.5以下であり、かつ前記短軸径の平均と長軸径の平均との中間値が1ミクロン以下であることを特徴とする請求項1〜3のいずれかに記載の生体部材。 The crystal grains of Al 2 O 3 in the composite ceramic have a needle-like or scale-like elliptical shape having a major axis and a minor axis, an aspect ratio of 2.5 or less, and the minor axis diameter The biological member according to any one of claims 1 to 3, wherein an intermediate value between the average of the average diameter and the average of the major axis diameter is 1 micron or less. 前記複合セラミックスにおけるZrOの結晶粒子が1ミクロン以下であることを特徴とする請求項1〜4のいずれかに記載の生体部材。 The living body member according to any one of claims 1 to 4, wherein the ZrO 2 crystal particles in the composite ceramic are 1 micron or less. 121℃の飽和水蒸気中で152時間の条件で行う加速劣化試験後の前記複合セラミックスの比摩耗量が0.3×10−7mm/N・m以下であることを特徴とする請求項1〜5のいずれかに記載の生体部材。 2. The specific wear amount of the composite ceramic after an accelerated deterioration test performed in a saturated steam at 121 ° C. for 152 hours is 0.3 × 10 −7 mm 3 / N · m or less. The biological member according to any one of -5. ピンオンフラット法においてピンの面圧が2.5GPaのとき、比摩耗量が1.0×10−7mm/N・m以下であることを特徴とする請求項1〜5のいずれかに記載の生体部材。 6. The specific wear amount is 1.0 × 10 −7 mm 3 / N · m or less when the surface pressure of the pin is 2.5 GPa in the pin-on-flat method. The biological member described. 前記複合セラミックスにより人工関節の摺動部を構成したことを特徴とする請求項1〜7のいずれかに記載の生体部材。 The living body member according to any one of claims 1 to 7, wherein a sliding portion of the artificial joint is configured by the composite ceramic. 一対の請求項8に記載の生体部材からなるとともに、該生体部材が相互に摺動することを特徴とする人工関節。 An artificial joint comprising the pair of biological members according to claim 8, wherein the biological members slide relative to each other. 主原料としてAl、ZrおよびSrの金属、又はこれらを含む金属化合物を金属酸化物に換算して、Alを65質量%以上、ZrOを4〜34質量%、SrOを0.1〜4質量%含有するように混合し、所定形状に成形した後、1300〜1500℃の温度範囲で焼成し、更に熱間静水圧処理することを特徴とする生体部材の製造方法。 Converting metal of Al, Zr and Sr, or a metal compound containing them as a main oxide as a metal oxide, 65% by mass or more of Al 2 O 3 , 4 to 34% by mass of ZrO 2 , 0.1% of SrO A method for producing a biological member, comprising: mixing so as to contain ˜4% by mass, forming into a predetermined shape, firing in a temperature range of 1300 to 1500 ° C., and further performing a hydrostatic pressure treatment. 前記主原料に対してTi、Mg及びSiの金属、又はこれらを含む金属化合物を金属酸化物に換算して、SiOが0.20質量%以上、TiOが0.22質量%以上、MgOが0.12質量%以上でかつSiO、TiO及びMgOが合計で0.6〜4.5質量%含有するように混合することを特徴とする請求項10に記載の生体部材の製造方法。 When the metal of Ti, Mg and Si or a metal compound containing these is converted into a metal oxide with respect to the main raw material, SiO 2 is 0.20% by mass or more, TiO 2 is 0.22% by mass or more, MgO The method for producing a biological member according to claim 10, wherein 0.12 mass% or more and SiO 2 , TiO 2, and MgO are mixed so as to contain 0.6 to 4.5 mass% in total. .
JP2004375045A 2003-12-25 2004-12-24 Biomaterial, artificial joint using the same, and method for producing biomaterial Active JP4753575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375045A JP4753575B2 (en) 2003-12-25 2004-12-24 Biomaterial, artificial joint using the same, and method for producing biomaterial

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003431558 2003-12-25
JP2003431558 2003-12-25
JP2004283564 2004-09-29
JP2004283564 2004-09-29
JP2004375045A JP4753575B2 (en) 2003-12-25 2004-12-24 Biomaterial, artificial joint using the same, and method for producing biomaterial

Publications (2)

Publication Number Publication Date
JP2006122634A true JP2006122634A (en) 2006-05-18
JP4753575B2 JP4753575B2 (en) 2011-08-24

Family

ID=36717902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375045A Active JP4753575B2 (en) 2003-12-25 2004-12-24 Biomaterial, artificial joint using the same, and method for producing biomaterial

Country Status (1)

Country Link
JP (1) JP4753575B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248051A (en) * 2009-04-20 2010-11-04 Japan Medical Materials Corp Alumina-zirconia composite sintered compact
JP2010273835A (en) * 2009-05-28 2010-12-09 Japan Medical Materials Corp Ceramic bone head ball and artificial joint
WO2013136990A1 (en) * 2012-03-16 2013-09-19 京セラメディカル株式会社 Medical ceramic material and manufacturing method thereof
WO2020022425A1 (en) * 2018-07-27 2020-01-30 京セラ株式会社 Aluminous porcelain and ceramic heater
CN111187069A (en) * 2020-02-21 2020-05-22 四川大学 Titanium dioxide and magnesium oxide composite biomedical ceramic material and preparation method thereof
JP7466048B1 (en) 2023-09-26 2024-04-11 株式会社Maruwa Alumina-zirconia sintered plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262560A (en) * 1992-03-17 1993-10-12 Mitsubishi Materials Corp Production of cutting tool made of aluminum oxide-zirconium oxide ceramic having excellent toughness
JPH05294718A (en) * 1992-04-23 1993-11-09 Mitsubishi Materials Corp Aluminum oxide-zirconium oxide based sintered ceramic excellent in toughness
WO2002011780A1 (en) * 2000-08-07 2002-02-14 Matsushita Electric Works, Ltd. Artificial joint made from zirconia-alumina composite ceramic
JP2003040673A (en) * 2001-07-30 2003-02-13 Kyocera Corp High strength zirconia sintered compact
JP2005075659A (en) * 2003-08-28 2005-03-24 Kyocera Corp Ceramic sintered compact, method for producing the same, and biomaterial
JP2005097077A (en) * 2003-08-28 2005-04-14 Kyocera Corp Alumina/zirconia ceramic and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262560A (en) * 1992-03-17 1993-10-12 Mitsubishi Materials Corp Production of cutting tool made of aluminum oxide-zirconium oxide ceramic having excellent toughness
JPH05294718A (en) * 1992-04-23 1993-11-09 Mitsubishi Materials Corp Aluminum oxide-zirconium oxide based sintered ceramic excellent in toughness
WO2002011780A1 (en) * 2000-08-07 2002-02-14 Matsushita Electric Works, Ltd. Artificial joint made from zirconia-alumina composite ceramic
JP2003040673A (en) * 2001-07-30 2003-02-13 Kyocera Corp High strength zirconia sintered compact
JP2005075659A (en) * 2003-08-28 2005-03-24 Kyocera Corp Ceramic sintered compact, method for producing the same, and biomaterial
JP2005097077A (en) * 2003-08-28 2005-04-14 Kyocera Corp Alumina/zirconia ceramic and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248051A (en) * 2009-04-20 2010-11-04 Japan Medical Materials Corp Alumina-zirconia composite sintered compact
JP2010273835A (en) * 2009-05-28 2010-12-09 Japan Medical Materials Corp Ceramic bone head ball and artificial joint
WO2013136990A1 (en) * 2012-03-16 2013-09-19 京セラメディカル株式会社 Medical ceramic material and manufacturing method thereof
US9358321B2 (en) 2012-03-16 2016-06-07 Kyocera Medical Corporation Medical ceramic material and manufacturing method thereof
WO2020022425A1 (en) * 2018-07-27 2020-01-30 京セラ株式会社 Aluminous porcelain and ceramic heater
CN112739661A (en) * 2018-07-27 2021-04-30 京瓷株式会社 Alumina ceramic and ceramic heater
JPWO2020022425A1 (en) * 2018-07-27 2021-08-12 京セラ株式会社 Alumina porcelain and ceramic heaters
JP7148613B2 (en) 2018-07-27 2022-10-05 京セラ株式会社 Alumina porcelain and ceramic heater
CN111187069A (en) * 2020-02-21 2020-05-22 四川大学 Titanium dioxide and magnesium oxide composite biomedical ceramic material and preparation method thereof
JP7466048B1 (en) 2023-09-26 2024-04-11 株式会社Maruwa Alumina-zirconia sintered plate

Also Published As

Publication number Publication date
JP4753575B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
US7148167B2 (en) Alumina/zirconia ceramics and method of producing the same
Bal et al. Orthopedic applications of silicon nitride ceramics
Ramesh et al. The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics
JP5698740B2 (en) Zirconia-alumina ceramic material
US7820577B2 (en) Biomedical member and method for producing the same
EP1514856B1 (en) Alumina/zirconia ceramics and method of producing the same
JP4753575B2 (en) Biomaterial, artificial joint using the same, and method for producing biomaterial
JP2005075659A (en) Ceramic sintered compact, method for producing the same, and biomaterial
JP4761749B2 (en) Biomaterial and artificial joint using the same
JP4721635B2 (en) Biomaterial, artificial joint using the same, and method for producing biomaterial
JP4589642B2 (en) Alumina / zirconia ceramics and process for producing the same
US6241773B1 (en) Biomedical article made of alumina ceramics
JP4570348B2 (en) Biomaterial manufacturing method, biomaterial and artificial joint using the same
JP4883885B2 (en) Biomaterial, method for manufacturing the same, and artificial joint
JP2010248051A (en) Alumina-zirconia composite sintered compact
Lee et al. Sintering behaviour of forsterite bioceramics
Hasan et al. Effect of sintering temperature and time on microstructure and properties of zirconia toughened alumina (Zta)
JP4601303B2 (en) Alumina / zirconia ceramics and process for producing the same
JP4514563B2 (en) Alumina / zirconia ceramics and process for producing the same
JP4601304B2 (en) Alumina / zirconia ceramics and process for producing the same
JP4109499B2 (en) Artificial joint
JP2001089224A (en) Ceramic biomember
JP4243514B2 (en) Composite ceramics and manufacturing method thereof
Evis et al. Effect of MgF 2 on hot pressed hydroxylapatite and monoclinic zirconia composites
JP2022191863A (en) Ceramic biomaterial, biological part, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150