JP2006121813A - Linear motor armature and linear motor - Google Patents

Linear motor armature and linear motor Download PDF

Info

Publication number
JP2006121813A
JP2006121813A JP2004306553A JP2004306553A JP2006121813A JP 2006121813 A JP2006121813 A JP 2006121813A JP 2004306553 A JP2004306553 A JP 2004306553A JP 2004306553 A JP2004306553 A JP 2004306553A JP 2006121813 A JP2006121813 A JP 2006121813A
Authority
JP
Japan
Prior art keywords
refrigerant
linear motor
armature
frame
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004306553A
Other languages
Japanese (ja)
Inventor
Teruhiko Aoki
輝彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004306553A priority Critical patent/JP2006121813A/en
Publication of JP2006121813A publication Critical patent/JP2006121813A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear motor armature wherein the windings as a whole can be made to impregnate with cooling mediums, irrespective of the passage positions of inlets and outlets of the cooling mediums, and which is improved in the heat exchange efficiency. <P>SOLUTION: The linear motor armature 1 comprises a frame 3, having a cooling medium inlet passage 9a and an outlet passage 4a that communicate with cooling medium pools 13, 13, respectively; a can 2 that is fixed to the frame 3 and forms the cooling medium pools 13 to close them; and the armature windings 12 accommodated in the cooling medium pools 13. The tip 4b of the cooling medium cooling side of the cooling medium outlet passage 4a is formed at an upper region, wherein the armature winding 12 as a whole can be impregnated to a liquid level of the cooling medium pooled in the cooling medium pool 13. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、温度上昇を低く抑えることが要求される、例えば半導体露光装置、液晶露光装置等に使用されるリニアモータに関し、特にその電機子に関するものである。   The present invention relates to a linear motor used in, for example, a semiconductor exposure apparatus, a liquid crystal exposure apparatus or the like that is required to keep temperature rise low, and more particularly to an armature thereof.

半導体露光装置、液晶露光装置など高精度位置決め装置、送り装置は、高速化、高出力化が年々高まってきている。装置の高性能化のためその構成部品であるリニアモータにおいては、リニアモータ表面の温度上昇が大きくならないことが要求される。
そこで、リニアモータの電機子を構成するフレームの中央部に冷媒溜り部を設けこの冷媒溜り部に電機子巻線を収納し、キャンでこの冷媒溜り部を閉止して、外部からこの冷媒溜り部内に冷媒を通過させて冷却することが行なわれている(例えば、特許文献1参照)。
2001−238428号公報
High-precision positioning devices and feeding devices such as semiconductor exposure devices and liquid crystal exposure devices are increasing in speed and output year by year. In order to improve the performance of the apparatus, the linear motor that is a component of the apparatus is required not to have a large temperature rise on the surface of the linear motor.
Therefore, a refrigerant reservoir is provided at the center of the frame constituting the armature of the linear motor, the armature winding is accommodated in the refrigerant reservoir, the refrigerant reservoir is closed with a can, and the refrigerant reservoir is Cooling is performed by allowing a refrigerant to pass through (see, for example, Patent Document 1).
2001-238428

図5は、第1従来技術を示すリニアモータの全体斜視図であり、特許文献1記載のキャンドリニアモータと同じ原理のステージ駆動用として使用されているものである。
図において、1’は可動子としての電機子側である。そして、電機子側1’には、キャン2、フレーム3、冷媒出口4、冷媒入口9が図で見えている。そして、10は電機子側1’の進む方向を示している。
一方、8は界磁側で、界磁側8は、永久磁石5と、この永久磁石5と接着することで磁気回路を形成するヨーク6と、このヨーク6を組付けるベース7とで構成されている。
FIG. 5 is an overall perspective view of the linear motor showing the first prior art, which is used for stage driving of the same principle as the canned linear motor described in Patent Document 1.
In the figure, 1 ′ is an armature side as a mover. On the armature side 1 ', a can 2, a frame 3, a refrigerant outlet 4, and a refrigerant inlet 9 are visible in the figure. Reference numeral 10 denotes a direction in which the armature side 1 'advances.
On the other hand, 8 is a field side, and the field side 8 is composed of a permanent magnet 5, a yoke 6 that is bonded to the permanent magnet 5 to form a magnetic circuit, and a base 7 to which the yoke 6 is assembled. ing.

図6は図5の電機子側1’の構成を説明する分解斜視図である。
電機子側1(図5)は、銅線を巻いた電機子巻線12と、この電機子巻線12を位置決め固定するためのキバン11と、このキバン11を固定するためのフレーム3と、このフレーム3を密封するためのキャン2で構成されている。フレーム3には、中央部に冷媒溜り部(冷媒溜り部)13が設けられ、この冷媒溜り部13にはフレーム3の外部からそれぞれ冷媒入口9と冷媒出口4とが通じている。
FIG. 6 is an exploded perspective view illustrating the configuration of the armature side 1 ′ of FIG.
The armature side 1 (FIG. 5) includes an armature winding 12 wound with a copper wire, a collar 11 for positioning and fixing the armature winding 12, and a frame 3 for fixing the collar 11; A can 2 is used to seal the frame 3. The frame 3 is provided with a refrigerant reservoir (refrigerant reservoir) 13 at the center, and the refrigerant inlet 9 and the refrigerant outlet 4 communicate with the refrigerant reservoir 13 from the outside of the frame 3, respectively.

図7は図6の電機子側1の組立後の正面図を示している。
冷媒は冷媒入口9から流入し、通電により発熱した電機子巻線12の熱量を回収できるように、冷媒溜まり部13に溜まり、冷媒出口4より流出していく。冷媒入口9と冷媒出口4の位置は電機子巻線12全体を浸漬させる必要があるため、電機子巻線12の上方部になければならない。
FIG. 7 shows a front view of the armature side 1 of FIG. 6 after assembly.
The refrigerant flows in from the refrigerant inlet 9, accumulates in the refrigerant reservoir 13, and flows out from the refrigerant outlet 4 so that the heat quantity of the armature winding 12 that generates heat by energization can be recovered. The positions of the refrigerant inlet 9 and the refrigerant outlet 4 must be above the armature winding 12 because the entire armature winding 12 needs to be immersed.

ところが、第1従来技術は冷媒入口および出口が上方にあるので電機子巻線全体を十分浸漬させるのに問題はないが、下方の冷媒が澱みがちとなる共に冷媒出口にかかる圧力が低いため、冷媒の入れ替わりが悪いという問題があり、熱交換の効率が低いという欠点があった。
また、図8は第2従来技術を示すもので、冷媒入口9と冷媒出口4が電機子巻線12の下方部にある場合の冷媒の溜り状態を示す図である。
図から判るように、第2従来技術は、冷媒入口9と冷媒出口4が電機子巻線12の下方部に位置し、かつ、冷媒出口の冷媒溜り部側先端が下部にある場合を示すものである。第2従来技術は、第1従来技術(図6,7)に示す冷媒出口およびその冷媒溜り部側先端が上部に位置する場合に比べて冷媒出口にかかる圧力が高く、それに応じて冷媒出口から吐出される冷媒量が多くなるため、図に示すように冷媒はフレーム3の底辺を通過して冷媒出口4より流出し、電機子巻線12が全体に渡って冷媒に浸漬されることにはならない。 その結果、通電により発熱した電機子巻線12の熱回収量が少なくなり、リニアモータ表面の温度上昇を招いてしまった。
そこで、本発明は冷媒入口9および冷媒出口4の位置に関係なく冷媒が電機子巻線12の全体を浸漬させることが可能な構造を提供し、熱交換効率が良好で、しかもリニアモータ表面の温度上昇の低減を図ることを目的とする。
However, since the first prior art has the refrigerant inlet and outlet on the upper side, there is no problem in sufficiently immersing the entire armature winding, but the lower refrigerant tends to stagnate and the pressure on the refrigerant outlet is low. There was a problem that the replacement of the refrigerant was bad, and there was a drawback that the efficiency of heat exchange was low.
FIG. 8 shows the second prior art, and is a diagram showing the state of refrigerant accumulation when the refrigerant inlet 9 and the refrigerant outlet 4 are in the lower part of the armature winding 12.
As can be seen from the figure, the second prior art shows a case where the refrigerant inlet 9 and the refrigerant outlet 4 are located below the armature winding 12 and the refrigerant outlet side tip of the refrigerant outlet is at the lower part. It is. Compared with the case where the refrigerant outlet shown in the first conventional technique (FIGS. 6 and 7) and the tip of the refrigerant reservoir side are located at the upper part, the second conventional technique has a higher pressure applied to the refrigerant outlet, and accordingly, from the refrigerant outlet. Since the amount of refrigerant discharged increases, the refrigerant passes through the bottom of the frame 3 and flows out of the refrigerant outlet 4 as shown in the figure, and the armature winding 12 is immersed in the refrigerant throughout. Don't be. As a result, the amount of heat recovered from the armature winding 12 that generates heat due to energization is reduced, leading to an increase in the temperature of the linear motor surface.
Therefore, the present invention provides a structure in which the refrigerant can immerse the entire armature winding 12 regardless of the positions of the refrigerant inlet 9 and the refrigerant outlet 4, and the heat exchange efficiency is good, and the linear motor surface The purpose is to reduce the temperature rise.

上記問題を解決するため、請求項1記載の発明は、リニアモータ電機子に係り、中央部に設けられた冷媒溜り部と該冷媒溜り部にそれぞれ通じる冷媒入口通路と冷媒出口通路とを有するフレームと、該フレームに固定されて前記冷媒溜り部を閉止・形成するキャンと、前記冷媒溜り部に収納される電機子巻線と、を備えたリニアモータ電機子において、前記冷媒出口通路の前記冷媒溜り部側先端が、前記冷媒溜り部に溜められた冷媒の液位が前記電機子巻線の全体を浸漬するような上部部位に形成されたことを特徴としている。
請求項2記載の発明は、請求項1記載のリニアモータ電機子において、前記冷媒出口通路の外界側先端は前記フレームの任意の高さに設けられることを特徴としている。
請求項3記載の発明は、請求項1又は2記載のリニアモータ電機子において、前記冷媒入口通路の外界側先端は前記フレームの任意の高さに設けられることを特徴としている。
請求項4記載の発明は、リニアモータに係り、前記請求項1〜3のいずれか1項記載のリニアモータ電機子と、該リニアモータ電機子に磁気的空隙を設けて対向配置される永久磁石と前記永久磁石と接着することで磁気回路を形成するヨークと前記ヨークを組付けるベースとで構成される界磁と、を備えたことを特徴としている。
In order to solve the above problem, an invention according to claim 1 relates to a linear motor armature, and includes a refrigerant reservoir portion provided at a central portion, and a refrigerant inlet passage and a refrigerant outlet passage respectively communicating with the refrigerant reservoir portion. A linear motor armature including: a can fixed to the frame to close and form the refrigerant reservoir; and an armature winding housed in the refrigerant reservoir; The front end of the pool portion is formed in an upper portion where the liquid level of the coolant stored in the coolant pool portion immerses the entire armature winding.
According to a second aspect of the present invention, in the linear motor armature according to the first aspect of the present invention, the front end of the refrigerant outlet passage is provided at an arbitrary height of the frame.
According to a third aspect of the present invention, in the linear motor armature according to the first or second aspect of the present invention, the front end of the refrigerant inlet passage is provided at an arbitrary height of the frame.
A fourth aspect of the present invention relates to a linear motor, and the linear motor armature according to any one of the first to third aspects, and a permanent magnet disposed opposite to the linear motor armature by providing a magnetic gap. And a field composed of a yoke that forms a magnetic circuit by being bonded to the permanent magnet and a base to which the yoke is assembled.

以上の構成により、冷媒が内部全体を通過するようになるため図5のような冷媒の澱む部分がなくなると共に、冷媒出入口の位置に関係なく電機子巻線を十分に浸漬させることが可能となり、したがって発熱した電機子巻線の熱回収が大幅に向上しリニアモータ表面の温度上昇を低く抑えることが実現できる。   With the above configuration, the refrigerant passes through the entire interior, so that the portion where the refrigerant stagnates as shown in FIG. 5 is eliminated, and the armature winding can be sufficiently immersed regardless of the position of the refrigerant inlet and outlet. Therefore, the heat recovery of the generated armature winding is greatly improved, and the temperature rise on the surface of the linear motor can be suppressed to a low level.

以下、本発明の実施の形態について図を参照して説明する。
図1は本発明のリニアモータの電機子側の構成を説明する分解斜視図である。
図において、電機子側1は、銅線を巻いた電機子巻線12と、この電機子巻線12を位置決め固定するためのキバン11と、このキバン11をネジ14(図2、図3)で固定するためのフレーム3と、このフレーム3を密封するためのキャン2とで構成されている。
フレーム3は中央部に冷媒溜り部13が大きく形成されており、この冷媒溜り部13に電機子巻線12が収納され、キャン2で冷媒溜り部13の側面を閉止した状態でキャン2がフレーム3に密閉固定されている。フレーム3のコア内には、コアの各入口9と4とから冷媒溜り部13にそれぞれ通じるように冷媒入口通路9aと冷媒出口通路4aとが形成されている。そして、本発明によれば、冷媒出口通路4aの冷媒溜り部側先端4bをフレーム3の上部に設けることを特徴としている。より正確に言えば、冷媒溜り部13に溜まった冷媒の液位が電機子巻線12の全体を浸漬するほどの上部に設けるものである。
次に、このように構成することによる作用効果について、図2および図3を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an exploded perspective view illustrating the configuration of the armature side of the linear motor of the present invention.
In the figure, an armature side 1 includes an armature winding 12 wound with a copper wire, a collar 11 for positioning and fixing the armature winding 12, and a screw 14 (FIGS. 2 and 3). And a can 3 for sealing the frame 3.
The frame 3 has a large refrigerant reservoir 13 at the center. The armature winding 12 is housed in the refrigerant reservoir 13 and the can 2 is framed with the can 2 closing the side surface of the refrigerant reservoir 13. 3 is hermetically fixed. In the core of the frame 3, a refrigerant inlet passage 9a and a refrigerant outlet passage 4a are formed so as to communicate with the refrigerant reservoir 13 from the respective inlets 9 and 4 of the core. And according to this invention, the refrigerant | coolant accumulation part side front-end | tip 4b of the refrigerant | coolant exit channel | path 4a is provided in the upper part of the flame | frame 3. It is characterized by the above-mentioned. More precisely, the coolant level in the coolant reservoir 13 is provided above the armature winding 12 so that the entire armature winding 12 is immersed.
Next, the effect by having such a structure is demonstrated using FIG. 2 and FIG.

図2は、図1の電機子側1を組立てた後の正面図、図3は図2のB−B断面図である。
両図において、冷媒は、電機子巻線12を冷却するために冷媒入口9から冷媒入口通路9aを通って冷媒溜り部13に流入して、ここに溜められる。冷媒出口4に対して上方に位置した冷媒出口通路4aの冷媒溜り部側先端4bは、冷媒出口の冷媒溜り部側先端が下方に位置する第2従来技術に比べて、冷媒が電機子巻線12の全体を浸漬するに十分な高い位置に形成してあり、しかも、冷媒出口の冷媒溜り部側先端にかかる圧力が低いことから、その位置に達するまで冷媒は冷媒溜り部13に十分に溜められていく(溜まった液位をハッチングで示している。)。
そして、冷媒が冷媒出口通路4aの冷媒溜り部側先端4bに達すると、オーバフロー分が冷媒溜り部側先端4bから冷媒出口通路4aを通って冷媒出口4に到達し、そこより流出される。
このように、冷媒出口通路4aの冷媒溜り部側先端4bが、電機子巻線12の全体が冷媒で浸漬されるのに十分な上部に形成されていることにより、冷媒は電機子巻線12を十分に浸漬できるので、発熱した電機子巻線12の熱回収が大幅に向上し、熱交換効率も良好になり、リニアモータ表面の温度上昇の低減を実現できる。
また、冷媒溜り部側先端4aが十分高い上部に形成されていることにより、冷媒出口4の位置は高さ方向に制限される必要はなくなり、設計の自由度が増える。
2 is a front view after the armature side 1 of FIG. 1 is assembled, and FIG. 3 is a cross-sectional view taken along the line BB of FIG.
In both figures, in order to cool the armature winding 12, the refrigerant flows from the refrigerant inlet 9 through the refrigerant inlet passage 9a into the refrigerant reservoir 13 and is stored therein. The refrigerant reservoir side tip 4b of the refrigerant outlet passage 4a located above the refrigerant outlet 4 has an armature winding as compared with the second prior art in which the refrigerant reservoir side tip of the refrigerant outlet is located below. 12 is formed at a sufficiently high position to immerse the whole, and since the pressure applied to the coolant outlet side tip of the coolant outlet is low, the coolant is sufficiently stored in the coolant reservoir 13 until the position is reached. (The accumulated liquid level is indicated by hatching.)
Then, when the refrigerant reaches the refrigerant reservoir side tip 4b of the refrigerant outlet passage 4a, the overflow reaches the refrigerant outlet 4 from the refrigerant reservoir side tip 4b through the refrigerant outlet passage 4a and flows out from there.
In this way, the refrigerant reservoir passage side tip 4b of the refrigerant outlet passage 4a is formed at an upper part sufficient for the entire armature winding 12 to be immersed in the refrigerant, so that the refrigerant is the armature winding 12. Therefore, the heat recovery of the generated armature winding 12 is significantly improved, the heat exchange efficiency is improved, and the temperature rise on the surface of the linear motor can be reduced.
In addition, since the coolant reservoir side tip 4a is formed at a sufficiently high upper portion, the position of the coolant outlet 4 does not need to be restricted in the height direction, and the degree of freedom in design increases.

図4は、本発明に係る電機子側をリニアモータに採用したときの全体斜視図である。図において、本発明に係るリニアモータは、電機子側1と界磁側8とで構成され、電機子側1は図示のない手段でベース7から浮上して10で示す方向に移動可能となっている。電機子側1はキャン2とフレーム3と(内部に電機子巻線と)を備え、フレーム3の下部にに冷媒出口4と冷媒入口9が形成されている。
一方、界磁側8は、永久磁石5と、この永久磁石5と接着することで磁気回路を形成するヨーク6と、このヨーク6を組付けるベース7とで構成されている。
そこで、電機子巻線12(図2,図3)に電流を流すことで電機子巻線12に磁界が発生し、これが界磁側8の永久磁石5と反発して10で示す方向に移動することとなる。
このように本発明に係るリニアモータは、第1従来技術である図5のリニアモータと比較すると判るように、冷媒出口4および冷媒入口9が上方ではなくてかなり低い位置に設けられている。このように、本発明に係る電機子側1をリニアモータに採用すると、冷媒出口4および冷媒入口9を上方に設ける必要がなくなるので、冷却能力は従来と同じでありながら設計の自由度が増すリニアモータが得られることとなると共に、冷媒入口9から冷媒溜り部側先端4bへ向かう冷媒が内部全体を通過するようになるため、図5のような冷媒の澱む部分がなくなり、熱交換効率が良好となる。また、第2従来技術である図8と比べても電機子巻線12が冷媒に完全に浸漬されるので電機子巻線12の熱回収量が多くなり、リニアモータ表面の温度上昇を抑えることが可能となる。
FIG. 4 is an overall perspective view when the armature side according to the present invention is employed in a linear motor. In the figure, the linear motor according to the present invention is composed of an armature side 1 and a field side 8, and the armature side 1 is lifted from a base 7 by means not shown and can move in a direction indicated by 10. ing. The armature side 1 includes a can 2, a frame 3 (with an armature winding inside), and a refrigerant outlet 4 and a refrigerant inlet 9 are formed in the lower part of the frame 3.
On the other hand, the field side 8 includes a permanent magnet 5, a yoke 6 that forms a magnetic circuit by being bonded to the permanent magnet 5, and a base 7 to which the yoke 6 is assembled.
Therefore, when a current is passed through the armature winding 12 (FIGS. 2 and 3), a magnetic field is generated in the armature winding 12, which repels the permanent magnet 5 on the field side 8 and moves in the direction indicated by 10. Will be.
As described above, the linear motor according to the present invention is provided with the refrigerant outlet 4 and the refrigerant inlet 9 at rather low positions rather than above, as can be seen from comparison with the linear motor of FIG. 5 as the first prior art. As described above, when the armature side 1 according to the present invention is employed in the linear motor, it is not necessary to provide the refrigerant outlet 4 and the refrigerant inlet 9 upward, so that the degree of freedom in design increases while the cooling capacity is the same as the conventional one. A linear motor is obtained, and the refrigerant from the refrigerant inlet 9 toward the refrigerant reservoir side tip 4b passes through the entire interior, so there is no stagnation of the refrigerant as shown in FIG. It becomes good. Compared with FIG. 8 which is the second prior art, the armature winding 12 is completely immersed in the refrigerant, so that the amount of heat recovery of the armature winding 12 is increased and the temperature rise on the surface of the linear motor is suppressed. Is possible.

なお、本発明のリニアモータは、固定子に電機子巻線を配置するか、または永久磁石を配置するかの選択が可能である。本発明はその選択を限定するものではない。また、通電方式についても直流通電、交流通電の限定をするものではない。
本発明のリニアモータは、産業上のあらゆる装置に利用可能である。
In the linear motor of the present invention, it is possible to select whether the armature winding is disposed on the stator or the permanent magnet is disposed. The present invention does not limit the selection. Further, the energization method is not limited to DC energization or AC energization.
The linear motor of the present invention can be used in any industrial apparatus.

本発明に係る電機子側の分解斜視図である。It is a disassembled perspective view by the side of the armature concerning the present invention. 本発明に係る電機子側の正面図である。It is a front view by the side of the armature concerning the present invention. 図2のB−B断面図である。It is BB sectional drawing of FIG. 本発明に係る電機子側を採用したリニアモータの全体斜視図である。1 is an overall perspective view of a linear motor employing an armature side according to the present invention. 第1従来技術を示すリニアモータの全体斜視図であり、特許文献1記載のキャンドリニアモータと同じ原理のステージ駆動用として使用されているものである。It is a whole perspective view of the linear motor which shows 1st prior art, and is used for the stage drive of the same principle as the canned linear motor of patent document 1. FIG. 第1従来技術を示すリニアモータ電機子側の分解斜視図である。It is a disassembled perspective view by the side of the linear motor armature which shows a 1st prior art. 第1従来技術を示すリニアモータ電機子側の正面図である。It is a front view by the side of the linear motor armature which shows 1st prior art. 第2従来技術を示す冷媒出口が下部にあるリニアモータ電機子側の正面図である。It is a front view by the side of the linear motor armature which has the refrigerant | coolant exit which shows a 2nd prior art in the lower part.

符号の説明Explanation of symbols

1 電機子側
2 キャン
3 フレーム
4 冷媒出口
4a 冷媒出口通路
4b 冷媒出口通路の冷媒溜り部側先端
5 永久磁石
6 ヨーク
7 ベース
8 界磁側
9 冷媒入口
9a 冷媒入口通路
9b 冷媒入口通路の冷媒溜り部側先端
10 進行方向
11 キバン
12 電機子巻線
13 冷媒溜まり
14 ネジ
DESCRIPTION OF SYMBOLS 1 Armature side 2 Can 3 Frame 4 Refrigerant outlet 4a Refrigerant outlet passage 4b Refrigerant outlet passage side refrigerant tip end 5 Permanent magnet 6 Yoke 7 Base 8 Field side 9 Refrigerant inlet passage 9a Refrigerant inlet passage 9b Refrigerant reservoir passage Part-side tip 10 Traveling direction 11 Kiban 12 Armature winding 13 Refrigerant pool 14 Screw

Claims (4)

中央部に設けられた冷媒溜り部と該冷媒溜り部にそれぞれ通じる冷媒入口通路と冷媒出口通路とを有するフレームと、該フレームに固定されて前記冷媒溜り部を閉止・形成するキャンと、前記冷媒溜り部に収納される電機子巻線と、を備えたリニアモータ電機子において、前記冷媒出口通路の前記冷媒溜り部側先端が、前記冷媒溜り部に溜められた冷媒の液位が前記電機子巻線の全体を浸漬するような上部部位に形成されたことを特徴とするリニアモータ電機子。   A frame having a refrigerant reservoir portion provided in the central portion, a refrigerant inlet passage and a refrigerant outlet passage communicating with the refrigerant reservoir portion, a can fixed to the frame to close and form the refrigerant reservoir portion, and the refrigerant A linear motor armature including an armature winding housed in a reservoir, wherein the coolant outlet side end of the refrigerant outlet passage is at a level of the refrigerant stored in the coolant reservoir. A linear motor armature formed at an upper part soaking the entire winding. 前記冷媒出口通路の外界側先端は前記フレームの任意の高さに設けられることを特徴とする請求項1記載のリニアモータ電機子。   2. The linear motor armature according to claim 1, wherein a front end of the refrigerant outlet passage on an outer side is provided at an arbitrary height of the frame. 前記冷媒入口通路の外界側先端は前記フレームの任意の高さに設けられることを特徴とする請求項1又は2記載のリニアモータ電機子。   3. The linear motor armature according to claim 1, wherein a front end of the refrigerant inlet passage on an outer side is provided at an arbitrary height of the frame. 前記請求項1〜3のいずれか1項記載のリニアモータ電機子と、該リニアモータ電機子に磁気的空隙を設けて対向配置される永久磁石と前記永久磁石と接着することで磁気回路を形成するヨークと前記ヨークを組付けるベースとで構成される界磁と、を備えたことを特徴とするリニアモータ。   A magnetic circuit is formed by adhering the linear motor armature according to any one of claims 1 to 3, a permanent magnet that is disposed opposite to the linear motor armature with a magnetic gap, and the permanent magnet. A linear motor comprising a yoke and a base for assembling the yoke.
JP2004306553A 2004-10-21 2004-10-21 Linear motor armature and linear motor Pending JP2006121813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306553A JP2006121813A (en) 2004-10-21 2004-10-21 Linear motor armature and linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306553A JP2006121813A (en) 2004-10-21 2004-10-21 Linear motor armature and linear motor

Publications (1)

Publication Number Publication Date
JP2006121813A true JP2006121813A (en) 2006-05-11

Family

ID=36539173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306553A Pending JP2006121813A (en) 2004-10-21 2004-10-21 Linear motor armature and linear motor

Country Status (1)

Country Link
JP (1) JP2006121813A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336765A (en) * 2006-06-19 2007-12-27 Yaskawa Electric Corp Armature for refrigerant-cooling linear motor, and refrigerant-cooling linear motor
EP2348617A2 (en) 2010-01-26 2011-07-27 Kabushiki Kaisha Yaskawa Denki Coolant-cooled linear motor
JP5423392B2 (en) * 2007-06-13 2014-02-19 株式会社安川電機 Canned linear motor armature and canned linear motor
KR101535331B1 (en) * 2012-03-27 2015-07-08 스미도모쥬기가이고교 가부시키가이샤 Arrangement for cooling linear motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116104A (en) * 1998-10-01 2000-04-21 Nikon Corp Linear actuator and stage device
JP2001238428A (en) * 2000-02-25 2001-08-31 Yaskawa Electric Corp Canned linear motor
JP2002325420A (en) * 1997-03-06 2002-11-08 Canon Inc Stage apparatus having linear motor and aligner
JP2003169461A (en) * 2001-11-30 2003-06-13 Yaskawa Electric Corp Linear motor armature and linear motor
JP2004040874A (en) * 2002-07-01 2004-02-05 Nikon Corp Linear motor, stage arrangement, and aligner
JP2004048919A (en) * 2002-07-12 2004-02-12 Nikon Corp Linear motor and stage device, and exposure device
JP2004297845A (en) * 2003-03-25 2004-10-21 Hitachi Metals Ltd Coil body for linear motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325420A (en) * 1997-03-06 2002-11-08 Canon Inc Stage apparatus having linear motor and aligner
JP2000116104A (en) * 1998-10-01 2000-04-21 Nikon Corp Linear actuator and stage device
JP2001238428A (en) * 2000-02-25 2001-08-31 Yaskawa Electric Corp Canned linear motor
JP2003169461A (en) * 2001-11-30 2003-06-13 Yaskawa Electric Corp Linear motor armature and linear motor
JP2004040874A (en) * 2002-07-01 2004-02-05 Nikon Corp Linear motor, stage arrangement, and aligner
JP2004048919A (en) * 2002-07-12 2004-02-12 Nikon Corp Linear motor and stage device, and exposure device
JP2004297845A (en) * 2003-03-25 2004-10-21 Hitachi Metals Ltd Coil body for linear motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336765A (en) * 2006-06-19 2007-12-27 Yaskawa Electric Corp Armature for refrigerant-cooling linear motor, and refrigerant-cooling linear motor
JP5423392B2 (en) * 2007-06-13 2014-02-19 株式会社安川電機 Canned linear motor armature and canned linear motor
EP2348617A2 (en) 2010-01-26 2011-07-27 Kabushiki Kaisha Yaskawa Denki Coolant-cooled linear motor
US8450885B2 (en) 2010-01-26 2013-05-28 Kabushiki Kaisha Yaskawa Denki Coolant-cooled linear motor
KR101535331B1 (en) * 2012-03-27 2015-07-08 스미도모쥬기가이고교 가부시키가이샤 Arrangement for cooling linear motor

Similar Documents

Publication Publication Date Title
JP6848050B2 (en) Electromechanical equipment
KR101222713B1 (en) Armature of canned linear motor and canned linear motor
JP5370928B2 (en) Motor and vehicle including the same
US9893588B2 (en) Motor housing with cooling channel and resin injected winding ends for improved heat transfer
JP7065280B2 (en) motor
JP2006121813A (en) Linear motor armature and linear motor
JP7050234B2 (en) motor
JP7065303B2 (en) motor
JP4038652B2 (en) Linear motor armature and linear motor
CN111279596B (en) Linear motor with armature cooling channel
JP2006006091A (en) Cooling device for motor
JP5348476B2 (en) Linear motor, linear motor armature, and method of manufacturing linear motor armature
KR20080044574A (en) A cooling device for linear motor
JP2007336765A (en) Armature for refrigerant-cooling linear motor, and refrigerant-cooling linear motor
JP7271946B2 (en) rotor
JP2585818Y2 (en) Stator for canned linear motor
JP4706119B2 (en) Canned linear motor armature and canned linear motor
JP2009303417A (en) Motor
JP3296530B2 (en) Voice coil type linear motor
JP2010226918A (en) Motor stator
JP2011147246A (en) Electric motor
CN111092531A (en) Motor, and electric fan and electric dust collector using the same
JP2005229786A (en) Cooling device for electric motor
JP7339882B2 (en) Wheel built-in electric device
CN213279460U (en) Linear voice coil motor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019