JP2006120737A - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP2006120737A
JP2006120737A JP2004304752A JP2004304752A JP2006120737A JP 2006120737 A JP2006120737 A JP 2006120737A JP 2004304752 A JP2004304752 A JP 2004304752A JP 2004304752 A JP2004304752 A JP 2004304752A JP 2006120737 A JP2006120737 A JP 2006120737A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
conversion element
refractive index
back electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004304752A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kobayashi
靖之 小林
Tomotsugu Sakai
智嗣 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004304752A priority Critical patent/JP2006120737A/en
Publication of JP2006120737A publication Critical patent/JP2006120737A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element that can improve the efficiency of a thin-film Si solar battery. <P>SOLUTION: In the photoelectric conversion element, a refractive index adjusting layer composed of a material having a refractive index lower than that of a transparent conductive film provided on the surface side of a rear electrode is inserted between the rear electrode and transparent conductive film. When, for example, the transparent conductive film is a GZO, SiO<SB>2</SB>is inserted between the film and the rear electrode composed of Ag. Consequently, the light infiltrated into and absorbed by the rear electrode is reduced and the light reflectance of the rear electrode is improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光電変換素子の効率を高くする技術に関する。   The present invention relates to a technique for increasing the efficiency of a photoelectric conversion element.

特許文献1には、光入射面の反対側に設けられた裏面電極と半導体からなる光電変換層との間に、透明導電層を有する光起電力素子において、該透明導電層に導電率を変化させる元素を含有させ、該元素の添加量が膜厚方向で変化していることを特徴とする光起電力素子が開示されている。この特許文献の[0023]から[0024]には、次の記載がある。   In Patent Document 1, in a photovoltaic device having a transparent conductive layer between a back electrode provided on the opposite side of the light incident surface and a photoelectric conversion layer made of a semiconductor, the conductivity of the transparent conductive layer is changed. There is disclosed a photovoltaic element characterized in that the element to be contained is contained and the amount of the element added varies in the film thickness direction. [0023] to [0024] of this patent document include the following description.

「また前記元素の添加量を前記半導体層との界面に近づくにつれた少なくともある膜厚の範囲にわたって単調に減少させることによって、光起電力素子の長波長感度が増大し、短絡電流が増大して、光電変換効率が上昇した。   “Also, by monotonically reducing the amount of the element added over at least a certain film thickness range as it approaches the interface with the semiconductor layer, the long wavelength sensitivity of the photovoltaic device increases and the short circuit current increases. The photoelectric conversion efficiency increased.

この効果については、前記元素の添加量を前記裏面電極との界面に近づくにつれて単調に減少させることによって、前記導電性酸化物の屈折率が前記裏面電極との界面に近づくにつれて単調に減少し、透明電極層と半導体層の界面での反射が減少して、半導体層への長波長光の入射が増大したものと考えられる。」   About this effect, the refractive index of the conductive oxide decreases monotonously as it approaches the interface with the back electrode by monotonically decreasing the amount of the element added as it approaches the interface with the back electrode, It is considered that the reflection at the interface between the transparent electrode layer and the semiconductor layer decreased, and the incidence of long wavelength light on the semiconductor layer increased. "

特許文献2には、光入射面の反対側に形成された光反射性の裏面電極と、一導電型を示す半導体層との間に、複数の元素の化合物からなる透明導電層を有する光起電力素子において、前記透明導電層を形成する化合物は導電性酸化物であり、該導電性酸化物の酸素の組成比が膜厚方向において連続的に変化する領域を含むことを特徴とする光起電力素子が開示されている。   Patent Document 2 discloses a photovoltaic device having a transparent conductive layer made of a compound of a plurality of elements between a light-reflecting back electrode formed on the opposite side of the light incident surface and a semiconductor layer having one conductivity type. In the power element, the compound forming the transparent conductive layer is a conductive oxide, and includes a region in which the oxygen composition ratio of the conductive oxide continuously changes in the film thickness direction. A power device is disclosed.

特開平5−110125号公報Japanese Patent Laid-Open No. 5-110125 特許第2846508号公報Japanese Patent No. 2846508

本発明の目的は、薄膜Si太陽電池(光電変換素子)を高効率化することである。
本発明の目的をより詳細に述べると、上記目的を達成するために、裏面電極層に侵入し吸収される電磁波を低減することである。
An object of the present invention is to increase the efficiency of a thin-film Si solar cell (photoelectric conversion element).
The object of the present invention will be described in more detail. In order to achieve the above object, it is to reduce electromagnetic waves that penetrate into the back electrode layer and are absorbed.

以下に、[発明を実施するための最良の形態]で使用される番号を括弧付きで用いて、課題を解決するための手段を説明する。これらの番号は、[特許請求の範囲]の記載と[発明を実施するための最良の形態]との対応関係を明らかにするために付加されたものである。ただし、それらの番号を、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。   In the following, means for solving the problem will be described using the numbers used in [Best Mode for Carrying Out the Invention] in parentheses. These numbers are added to clarify the correspondence between the description of [Claims] and [Best Mode for Carrying Out the Invention]. However, these numbers should not be used to interpret the technical scope of the invention described in [Claims].

本発明による光電変換素子は、透光性基板(1)と、透光性基板(1)の主面側に形成され、受光した光を電力に変換する光電変換層(7)と、主面側に形成され、該光電変換素子に外光が入射する側と反対側に形成された裏面電極層(2)と、光電変換層(7)と裏面電極層(2)との間に形成され、裏面電極層(2)に近い側において裏面電極層(2)から遠い側よりも屈折率が小さい透明層(8、9)とを備えている。   A photoelectric conversion element according to the present invention includes a translucent substrate (1), a photoelectric conversion layer (7) formed on the main surface side of the translucent substrate (1), which converts received light into electric power, and a main surface. A back electrode layer (2) formed on the side opposite to the side on which external light is incident on the photoelectric conversion element, and formed between the photoelectric conversion layer (7) and the back electrode layer (2). And a transparent layer (8, 9) having a refractive index smaller on the side closer to the back electrode layer (2) than on the side far from the back electrode layer (2).

本発明による光電変換素子において、透明層(8、9)は、上部透明層(8)と、上部透明層(8)と裏面電極層(2)との間に設けられ、上部透明層(8)よりも屈折率が小さい屈折率調整層(9)とを備えている。   In the photoelectric conversion element according to the present invention, the transparent layers (8, 9) are provided between the upper transparent layer (8), the upper transparent layer (8), and the back electrode layer (2), and the upper transparent layer (8 ) And a refractive index adjustment layer (9) having a refractive index smaller than that.

本発明による光電変換素子において、上部透明層(8)はZnO、ITO、又はSnOのうちのいずれかを含んでいる。ZnOには、Ga、Si、Al、Bのうちのいずれかがドーピングされている。 In the photoelectric conversion element according to the present invention, the upper transparent layer (8) contains ZnO, ITO, or any of the SnO 2. ZnO is doped with any of Ga, Si, Al, and B.

本発明による光電変換素子において、屈折率調整層(9)はSiO、MgF、MgO、ガラス、Al、Y、CaF、LiF、空孔のうちのいずれかを含む。 In the photoelectric conversion element according to the present invention, the refractive index adjustment layer (9) includes any of SiO 2 , MgF 2 , MgO, glass, Al 2 O 3 , Y 2 O 3 , CaF 2 , LiF, and holes. .

本発明による光電変換素子において、屈折率調整層(9)は、第1材料と第2材料との混合相を含んでいる。第1材料は、SiO、MgF、MgO、ガラス、Al、Y、CaF、及びLiFのうちから選択される。第2材料は、ZnO、ITO、及びSnOのうちから選択される。ZnOにはGa、Si、Al、Bのうちのいずれかがドーピングされている。 In the photoelectric conversion element according to the present invention, the refractive index adjustment layer (9) includes a mixed phase of the first material and the second material. The first material is selected from SiO 2 , MgF 2 , MgO, glass, Al 2 O 3 , Y 2 O 3 , CaF 2 , and LiF. The second material is selected ZnO, ITO, and from among the SnO 2. ZnO is doped with any of Ga, Si, Al, and B.

本発明による光電変換素子において、裏面電極層(2)はAg、Al、Cu、Auのいずれかを含む。   In the photoelectric conversion element according to the present invention, the back electrode layer (2) contains one of Ag, Al, Cu, and Au.

本発明による光電変換素子において、屈折率調整層(9)は、厚さが2ナノメートル以上である。より好ましくは、厚さが10ナノメートル以上である。   In the photoelectric conversion element according to the present invention, the refractive index adjusting layer (9) has a thickness of 2 nanometers or more. More preferably, the thickness is 10 nanometers or more.

本発明による光電変換素子において、透明層(8、9)は3層以上の層構造をしている。層構造のなかの任意の層である上側透明層の屈折率は、上側透明層と裏面電極層との間の任意の層である下側透明層の屈折率よりも大きい。   In the photoelectric conversion element according to the present invention, the transparent layers (8, 9) have a layer structure of three or more layers. The refractive index of the upper transparent layer that is an arbitrary layer in the layer structure is larger than the refractive index of the lower transparent layer that is an arbitrary layer between the upper transparent layer and the back electrode layer.

本発明による光電変換素子において、光電変換層(7)は多結晶質シリコンを含んでいる。本発明による光電変換素子は更に、光電変換層(7)に対して裏面電極層(2)の反対側に、アモルファスシリコンを含む光起電力層(5)を含んでいる。   In the photoelectric conversion element according to the present invention, the photoelectric conversion layer (7) contains polycrystalline silicon. The photoelectric conversion element according to the present invention further includes a photovoltaic layer (5) containing amorphous silicon on the opposite side of the back electrode layer (2) with respect to the photoelectric conversion layer (7).

本発明による光電変換素子において、光電変換層(7)はシリコンとシリコン以外のIV族元素(例示:Ge)との合金を含む。   In the photoelectric conversion element according to the present invention, the photoelectric conversion layer (7) includes an alloy of silicon and a group IV element (eg, Ge) other than silicon.

本発明による光電変換素子は、光電変換層(7)と光起電力層(5)との間に、多結晶質シリコンを含む第2光電変換層(10)を含む。   The photoelectric conversion element according to the present invention includes a second photoelectric conversion layer (10) containing polycrystalline silicon between the photoelectric conversion layer (7) and the photovoltaic layer (5).

本発明による光電変換素子において、第2光電変換層(10)はシリコンとシリコン以外のIV族元素(例示:Ge)との合金を含む。   In the photoelectric conversion element according to the present invention, the second photoelectric conversion layer (10) includes an alloy of silicon and a group IV element (eg, Ge) other than silicon.

本発明による光電変換素子は、不透光性基板と、不透光性基板の主面側に形成された裏面電極層と、主面側に形成され、受光した光を電力に変換する光電変換層と、主面側に形成された透明電極層とを備えている。入射光は透明電極層の側から取り入れられる。本発明による光電変換素子は更に、該光電変換素子に外光が入射する側と反対側に形成された裏面電極層と光電変換層との間に形成され、裏面電極層に近い側において裏面電極層から遠い側よりも屈折率が小さい透明層とを備えている。   The photoelectric conversion element according to the present invention includes a light-impermeable substrate, a back electrode layer formed on the main surface side of the light-impermeable substrate, and a photoelectric conversion formed on the main surface side that converts received light into electric power. And a transparent electrode layer formed on the main surface side. Incident light is taken from the transparent electrode layer side. The photoelectric conversion element according to the present invention is further formed between a back electrode layer formed on the side opposite to the side where external light enters the photoelectric conversion element and the photoelectric conversion layer, and on the side close to the back electrode layer, the back electrode And a transparent layer having a refractive index smaller than that of the side far from the layer.

本発明によれば、薄膜Si太陽電池(光電変換素子)が高効率化される。
より詳細には、本発明によれば、上記目的を達成するために、裏面電極層に侵入し吸収される電磁波が低減される。
According to the present invention, the efficiency of a thin film Si solar cell (photoelectric conversion element) is improved.
More specifically, according to the present invention, in order to achieve the above object, electromagnetic waves that enter the back electrode layer and are absorbed are reduced.

以下、図面を参照しながら本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1を参照すると、光電変換素子の断面図が示されている。光電変換素子は、光入射側のガラス基板1と裏面不透明電極2との間に、多層の発電層3が形成されている。発電層3は、第1透明(光透過性)導電膜4と、トップセル層5と、中間層6と、ボトムセル層7と、第2透明導電膜8と、屈折率調整層9の6層の積層構造として形成されている。第1透明導電膜4は、ガラス基板1の裏面側に接合している。トップセル層5は、第1透明導電膜4の裏面側に接合している。中間層6は、トップセル層5の裏面側に接合している。ボトムセル層7は、中間層6の裏面側に接合している。第2透明導電膜8は、ボトムセル層7の裏面側に接合している。屈折率調整層9は、第2透明導電膜8の裏面側に接合している。裏面不透明電極2は、屈折率調整層9の裏面側に接合している。   Referring to FIG. 1, a cross-sectional view of a photoelectric conversion element is shown. In the photoelectric conversion element, a multilayer power generation layer 3 is formed between a glass substrate 1 on the light incident side and a back surface opaque electrode 2. The power generation layer 3 includes six layers of a first transparent (light transmissive) conductive film 4, a top cell layer 5, an intermediate layer 6, a bottom cell layer 7, a second transparent conductive film 8, and a refractive index adjustment layer 9. It is formed as a laminated structure. The first transparent conductive film 4 is bonded to the back side of the glass substrate 1. The top cell layer 5 is bonded to the back side of the first transparent conductive film 4. The intermediate layer 6 is bonded to the back surface side of the top cell layer 5. The bottom cell layer 7 is bonded to the back side of the intermediate layer 6. The second transparent conductive film 8 is bonded to the back surface side of the bottom cell layer 7. The refractive index adjustment layer 9 is bonded to the back side of the second transparent conductive film 8. The back surface opaque electrode 2 is bonded to the back surface side of the refractive index adjustment layer 9.

図2を参照すると、ボトムセル層7、第2透明導電膜8、屈折率調整層9、及び裏面不透明電極2の部分を拡大した断面図が示されている。光電変換素子の裏面不透明電極2の付近の層の材質は、本実施の形態では、ボトムセル層7がc−Si若しくはμc−Si(微結晶シリコン)、第2透明導電膜8がGaドープZnO(GZO)、裏面不透明電極2がAgである。本発明においては第2透明導電層膜8と裏面不透明電極2との間に屈折率調整層9が存在している。屈折率調整層9の材質Xに関しては後述する。   Referring to FIG. 2, an enlarged cross-sectional view of the bottom cell layer 7, the second transparent conductive film 8, the refractive index adjustment layer 9, and the back surface opaque electrode 2 is shown. In this embodiment, the material of the layer near the back surface opaque electrode 2 of the photoelectric conversion element is c-Si or μc-Si (microcrystalline silicon) for the bottom cell layer 7 and Ga-doped ZnO (second transparent conductive film 8). GZO), and the back surface opaque electrode 2 is Ag. In the present invention, the refractive index adjusting layer 9 exists between the second transparent conductive layer film 8 and the back surface opaque electrode 2. The material X of the refractive index adjustment layer 9 will be described later.

屈折率調整層9が存在しない場合、太陽電池(光電変換素子)の裏面電極付近の層構造は例えば、Si発電膜/GZO/Agである。平滑なガラス基板に成膜したGZO/Ag膜の長波長域における光学反射率は充分に高い(R=95%以上)。すなわちGZO膜とAg界面における明瞭な吸収損失は認められない。ガラス基板上の裏面電極の反射率計測はほぼ垂直入射条件である。この場合、偏光依存性は生じない。   When the refractive index adjustment layer 9 does not exist, the layer structure near the back electrode of the solar cell (photoelectric conversion element) is, for example, Si power generation film / GZO / Ag. The optical reflectance in the long wavelength region of the GZO / Ag film formed on a smooth glass substrate is sufficiently high (R = 95% or more). That is, no clear absorption loss is observed at the GZO film and Ag interface. The reflectivity measurement of the back electrode on the glass substrate is almost normal incidence condition. In this case, polarization dependence does not occur.

一方、斜め入射の場合、s偏光とp偏光と呼ばれる二つの偏光状態について反射特性を考慮する必要がある。特に、p偏光に関しては、ブリュースタ角や誘電体/金属界面における表面プラズモンなどs偏光が有しない現象が知られている。   On the other hand, in the case of oblique incidence, it is necessary to consider reflection characteristics for two polarization states called s-polarized light and p-polarized light. In particular, regarding p-polarized light, there are known phenomena that s-polarized light does not have, such as Brewster angle and surface plasmons at the dielectric / metal interface.

金属の反射率は、理想金属ではR=100%であるが、Agなどの実在する金属は98%程度が最高である。誘電体/金属の界面で光は反射されるが、実際には、金属側に僅かに電界が侵入している。侵入の深さは数10nmのオーダーである。侵入の深さは、誘電体の光学定数(屈折率n)と金属の光学定数(n,k)、入射する電磁波の波長λ、入射角θで決まる。金属中に侵入した光の電界強度は界面からの深さに対して指数関数的に減衰する。したがって、誘電体/金属界面の反射における吸収損は電界の侵入深さで決まると考えてよい。   The reflectivity of a metal is R = 100% for an ideal metal, but about 98% is the best for an actual metal such as Ag. Light is reflected at the dielectric / metal interface, but in practice, an electric field slightly penetrates the metal side. The penetration depth is of the order of several tens of nm. The penetration depth is determined by the optical constant (refractive index n) of the dielectric, the optical constant (n, k) of the metal, the wavelength λ of the incident electromagnetic wave, and the incident angle θ. The electric field intensity of light that has entered the metal attenuates exponentially with respect to the depth from the interface. Therefore, it can be considered that the absorption loss in the reflection at the dielectric / metal interface is determined by the penetration depth of the electric field.

本発明の発明者は、屈折率調整層9の材質を変えて、Agの層内部におけるp偏光成分の電界強度分布を計算した。計算には、屈折率調整層9の材質Xとして、GZOより屈折率が高い物質の代表としてTiO、及びGZOより屈折率が低い物質の代表としてSiOを用いた。 The inventor of the present invention calculated the electric field intensity distribution of the p-polarized component in the Ag layer while changing the material of the refractive index adjustment layer 9. The calculation, as the material X of the refractive index adjusting layer 9, TiO 2 as a representative of high material refractive index than GZO, and SiO 2 was used as a representative of a low refractive index material than the GZO.

Agの膜厚は充分にバルクと見なせる80nmとした。Agの裏面側の空気と、ボトムセル層7のc−Siは半無限媒質とした。c−SiからGZO界面に対して入射する入射光の入射角はθとする。GZO/Ag界面に挿入される媒質Xの厚みはdとする。媒質XとGZOの厚みの和は80nmとした。計算にはサイバネット社のOPTAS−FILMを使用した。Ag層における電界強度の二乗(E*E)を求め、マイクロソフト社のエクセルを使用して電界強度の積分値(=Agにおける吸収損に比例した量)を求め、グラフ化した。本計算は、薄膜多重干渉効果を考慮した平膜計算である。   The film thickness of Ag was 80 nm which can be regarded as a sufficient bulk. The air on the back side of Ag and the c-Si of the bottom cell layer 7 were semi-infinite media. The incident angle of incident light incident on the GZO interface from c-Si is θ. The thickness of the medium X inserted into the GZO / Ag interface is d. The sum of the thicknesses of the medium X and GZO was 80 nm. Cybernet OPTAS-FILM was used for the calculation. The square of the electric field strength (E * E) in the Ag layer was obtained, and the integrated value of the electric field strength (= an amount proportional to the absorption loss in Ag) was obtained using Microsoft Excel and graphed. This calculation is a flat film calculation considering the thin film multiple interference effect.

以下、図3乃至図6を用いて計算の結果について述べる。以下の説明において「現状の構造」というのは、屈折率調整層9が存在しない構造のことを示す。   Hereinafter, the calculation results will be described with reference to FIGS. In the following description, the “current structure” indicates a structure in which the refractive index adjustment layer 9 does not exist.

図3を参照すると、現状の構造、TiO挿入構造、SiO挿入構造における電界強度分布の計算結果が示されている。入射角50°、計算波長800nm、挿入媒質の膜厚は30nmの計算結果である。この結果から、GZOに対して、相対的に屈折率が高い媒質が挿入されると、電界強度分布が深くかつ大きくなり、Ag層での吸収損が大きくなる(すなわち反射率が低下する)。逆に屈折率が低い媒質が挿入されると、Ag層での吸収損を現状の構造よりも低減できることが分かる。 Referring to FIG. 3, the calculation results of the electric field strength distribution in the current structure, the TiO 2 insertion structure, and the SiO 2 insertion structure are shown. The calculation result is an incident angle of 50 °, a calculation wavelength of 800 nm, and a thickness of the insertion medium of 30 nm. From this result, when a medium having a relatively high refractive index is inserted with respect to GZO, the electric field intensity distribution becomes deeper and larger, and the absorption loss in the Ag layer increases (that is, the reflectance decreases). Conversely, when a medium having a low refractive index is inserted, it can be seen that the absorption loss in the Ag layer can be reduced as compared with the current structure.

図4を参照すると、積分電界強度の計算結果がグラフに示されている。挿入媒質の膜厚が30nm、計算波長800nmの計算結果である。30°から40°に認められるピークは、表面プラズモン共鳴による吸収増大と推定される。入射角65°を越えると、積分電界強度が急峻に低下する。これはSi/GZO界面の全反射と推定される。   Referring to FIG. 4, the calculation result of the integrated electric field strength is shown in the graph. This is a calculation result when the thickness of the insertion medium is 30 nm and the calculation wavelength is 800 nm. The peak observed from 30 ° to 40 ° is presumed to be an increase in absorption due to surface plasmon resonance. When the incident angle exceeds 65 °, the integrated electric field strength sharply decreases. This is presumed to be total reflection at the Si / GZO interface.

表面プラズモン共鳴現象は、平滑性と入射角が厳密に満たされないと充分に観測されないので、実際の(波長オーダーの凹凸を有する形状の)裏面電極ではシャープな吸収特性は出難いと推定される。そこで、仮定ではあるが、30°から40°のピークを無視して図4を見ると、45°から65°の入射角範囲において、積分電界強度レベルが屈折率調整層9の材質Xの屈折率に応じて変化していると解釈できる。すなわち、GZO/Ag界面にGZOより屈折率の低い媒質を挿入することにより、Agによる吸収損を低減できる可能性があるといえる。   Since the surface plasmon resonance phenomenon is not sufficiently observed unless the smoothness and the incident angle are strictly satisfied, it is presumed that a sharp absorption characteristic is difficult to be obtained with an actual back surface electrode (having a wavelength order unevenness). Therefore, although it is assumed that the peak of 30 ° to 40 ° is ignored and FIG. 4 is viewed, the integrated electric field strength level is the refraction of the material X of the refractive index adjusting layer 9 in the incident angle range of 45 ° to 65 °. It can be interpreted as changing according to the rate. That is, it can be said that absorption loss due to Ag may be reduced by inserting a medium having a refractive index lower than that of GZO at the GZO / Ag interface.

図5を参照すると、積分電界強度の、挿入媒質の膜厚に対する依存性が示されている。入射角50°、計算波長800nmでの計算結果である。膜厚がゼロのプロットは、現状の構造GZO/Agであり、膜厚80nmのプロットは、Si/挿入媒質X/Agの構造を示す。SiOの挿入により積分電界強度を低下できることが示されている。SiOの膜厚が厚いほどAg層に侵入する積分電界強度が低下する傾向にある。 Referring to FIG. 5, the dependence of the integrated electric field strength on the thickness of the insertion medium is shown. It is a calculation result at an incident angle of 50 ° and a calculation wavelength of 800 nm. A plot with a film thickness of zero indicates the current structure GZO / Ag, and a plot with a film thickness of 80 nm indicates the structure of Si / insertion medium X / Ag. It has been shown that the integrated electric field strength can be reduced by inserting SiO 2 . As the thickness of SiO 2 increases, the integrated electric field strength that penetrates the Ag layer tends to decrease.

図6を参照すると、図5と同じ条件でSiOが挿入された場合の積分電界強度の、挿入媒質の膜厚に対する依存性が、特に膜厚が薄い場合について詳細に示されている。この結果によれば、わずか2nm程度の膜厚でも、Ag層に侵入する積分電界強度が低下している。これはセル化に有利な結果である。 Referring to FIG. 6, the dependence of the integrated electric field strength on the thickness of the inserted medium when SiO 2 is inserted under the same conditions as in FIG. 5 is shown in detail when the thickness is particularly small. According to this result, even with a film thickness of only about 2 nm, the integrated electric field strength that penetrates the Ag layer is reduced. This is a favorable result for cellization.

次に、タンデムセル構造を備えた光電変換素子における屈折率調整層の効果の計算について述べる。   Next, calculation of the effect of the refractive index adjustment layer in the photoelectric conversion element having a tandem cell structure will be described.

図7を参照すると、タンデムセル構造を備えた光電変換素子の断面図が示されている。ガラス基板1aの裏面側には、第1透明導電膜4aが成層されている。第1透明導電膜4aの裏面側には、a−Si(アモルファスシリコン)からなるトップセル層5aが成層されている。トップセル層5aの裏面側には、μc−Si(微結晶シリコン)からなるボトムセル層7aが成層されている。ボトムセル層7aの裏面側には、第2透明導電膜8aが成層されている。第2透明導電膜8aの裏面側には、屈折率調整層9aが成層されている。屈折率調整層9aの裏面側には、裏面不透明電極2aが成層されている。ガラス基板1aの裏面側に積層された各層の接合面は、テクスチャ構造面として形成されている。   Referring to FIG. 7, a cross-sectional view of a photoelectric conversion element having a tandem cell structure is shown. A first transparent conductive film 4a is formed on the back side of the glass substrate 1a. A top cell layer 5a made of a-Si (amorphous silicon) is formed on the back side of the first transparent conductive film 4a. A bottom cell layer 7a made of μc-Si (microcrystalline silicon) is formed on the back side of the top cell layer 5a. A second transparent conductive film 8a is formed on the back side of the bottom cell layer 7a. A refractive index adjustment layer 9a is formed on the back side of the second transparent conductive film 8a. On the back surface side of the refractive index adjustment layer 9a, a back surface opaque electrode 2a is formed. The joint surface of each layer laminated | stacked on the back surface side of the glass substrate 1a is formed as a texture structure surface.

図8を参照すると、計算に用いたタンデムセルの層構造が示されている。この層構造は、図7に示された層構造と同じである。計算には、電磁波解析(FDTD法)を用いた。テクスチャ構造の凹凸の1周期分が取り出され、その左端と右端が同じとなる周期的境界条件で計算を行った。テクスチャ構造の凹凸は、ガラス基板(図8には図示されていない)に平行な面から30°の凹凸とした。テクスチャ構造の凹凸の1周期分の幅(ピッチ)としては、後述するように様々な条件を指定した。ガラス基板の厚さは半無限とした。   Referring to FIG. 8, the layer structure of the tandem cell used for the calculation is shown. This layer structure is the same as the layer structure shown in FIG. An electromagnetic wave analysis (FDTD method) was used for the calculation. One period of texture structure irregularities was taken out, and the calculation was performed under a periodic boundary condition in which the left end and the right end were the same. The unevenness of the texture structure was 30 ° from the plane parallel to the glass substrate (not shown in FIG. 8). Various conditions were specified as the width (pitch) of one period of the unevenness of the texture structure as described later. The thickness of the glass substrate was semi-infinite.

図9を参照すると、a−Siよりなるトップセル層5aのp偏光成分により発生する短絡電流に対する屈折率調整層9aの屈折率依存性が示されている。GZOよりなる第2透明導電膜の膜厚は40nm、屈折率調整層9aの厚さは40nmである。ピッチが0.2μmで、屈折率調整層9aの屈折率がGZOと同じ(n≒1.88)場合の短絡電流が基準として100%に取られている。ピッチが0.2μm、0.6μm、1.0μm、及び2.0μmのいずれの場合も、屈折率調整層9aの屈折率が小さい場合に短絡電流が大きくなっていることが見て取れる。   Referring to FIG. 9, the refractive index dependency of the refractive index adjustment layer 9a with respect to a short-circuit current generated by the p-polarized component of the top cell layer 5a made of a-Si is shown. The thickness of the second transparent conductive film made of GZO is 40 nm, and the thickness of the refractive index adjustment layer 9a is 40 nm. When the pitch is 0.2 μm and the refractive index of the refractive index adjusting layer 9a is the same as that of GZO (n≈1.88), the short-circuit current is taken as 100% as a reference. It can be seen that when the pitch is 0.2 μm, 0.6 μm, 1.0 μm, and 2.0 μm, the short-circuit current increases when the refractive index of the refractive index adjustment layer 9a is small.

図10を参照すると、μc−Siよりなるボトムセル層7aのp偏光成分により発生する短絡電流に対する屈折率調整層の9aの屈折率依存性が示されている。GZOよりなる第2透明導電膜の膜厚は40nm、屈折率調整層9aの厚さは40nmである。ピッチが0.2μmで、屈折率調整層9aの屈折率がGZOと同じ(n≒1.88)場合の短絡電流が基準として100%に取られている。図9に示されたトップセル層5aの場合と同じく、ピッチが0.2μm、0.6μm、1.0μm、及び2.0μmのいずれの場合も、屈折率調整層9aの屈折率が小さい場合に短絡電流が大きくなっていることが見て取れる。   Referring to FIG. 10, the refractive index dependency of the refractive index adjusting layer 9a with respect to the short-circuit current generated by the p-polarized component of the bottom cell layer 7a made of μc-Si is shown. The thickness of the second transparent conductive film made of GZO is 40 nm, and the thickness of the refractive index adjustment layer 9a is 40 nm. When the pitch is 0.2 μm and the refractive index of the refractive index adjusting layer 9a is the same as that of GZO (n≈1.88), the short-circuit current is taken as 100% as a reference. As in the case of the top cell layer 5a shown in FIG. 9, the refractive index of the refractive index adjustment layer 9a is small when the pitch is 0.2 μm, 0.6 μm, 1.0 μm, and 2.0 μm. It can be seen that the short-circuit current increases.

図11を参照すると、μc−Siよりなるボトムセル層7aで発生する短絡電流に対する屈折率調整層9aの屈折率・膜厚依存性が示されている。入射光としては、p偏光成分とs偏光成分との平均がとられている。GZOよりなる第2透明導電膜8aの膜厚と屈折率調整層9aの厚さとの和は80nmとした。ピッチは0.6μmである。屈折率調整層9aの屈折率がGZOと同じ(n≒1.88)場合の短絡電流が基準として100%に取られている。屈折率調整層9aの膜厚が20nm、30nm、及び40nmのいずれの場合も、屈折率調整層9aの屈折率がGZOよりも小さい場合に短絡電流が大きくなっていることが見て取れる。   Referring to FIG. 11, the refractive index / film thickness dependence of the refractive index adjustment layer 9a with respect to the short-circuit current generated in the bottom cell layer 7a made of μc-Si is shown. As the incident light, an average of the p-polarized component and the s-polarized component is taken. The sum of the thickness of the second transparent conductive film 8a made of GZO and the thickness of the refractive index adjustment layer 9a was 80 nm. The pitch is 0.6 μm. The short-circuit current when the refractive index of the refractive index adjusting layer 9a is the same as that of GZO (n≈1.88) is taken as 100% as a reference. It can be seen that the short-circuit current is large when the refractive index of the refractive index adjusting layer 9a is smaller than that of GZO when the film thickness of the refractive index adjusting layer 9a is 20 nm, 30 nm, or 40 nm.

図3、図4、図5、図6、図9、図10、及び図11に示された計算結果から、第2透明導電膜8、8aと裏面不透明電極2、2aとの間に第2透明導電膜8、8aよりも屈折率が小さい材質からなる層が挿入されることにより、裏面不透明電極2、2aに侵入し吸収される電界の強度が抑制され、その結果、発電効率が上昇することが示されている。   3, 4, 5, 6, 9, 10, and 11, the second transparent conductive film 8, 8 a and the back surface opaque electrode 2, 2 a have a second value. By inserting a layer made of a material having a refractive index lower than that of the transparent conductive films 8 and 8a, the strength of the electric field that penetrates and is absorbed into the back surface opaque electrodes 2 and 2a is suppressed, and as a result, the power generation efficiency increases. It has been shown.

[特許文献1]により開示されている効果が透明導電層と半導体層との界面での反射の減少によって得られるものであるのに対し、本発明は裏面電極の金属層で吸収される電磁波が低減されることによって発電効率が向上するものであり、原理が異なる。   Whereas the effect disclosed in [Patent Document 1] is obtained by a decrease in reflection at the interface between the transparent conductive layer and the semiconductor layer, the present invention does not absorb electromagnetic waves absorbed by the metal layer of the back electrode. The power generation efficiency is improved by being reduced, and the principle is different.

図12を参照すると、本発明の他の実施の形態が示されている。図12を参照すると、ガラス基板1、第1透明導電層4、トップセル層5、ミドルセル層10、ボトムセル層7、第2透明導電層8、屈折率調整層9、裏面不透明電極2が順次に積層されている。トップセル層5はアモルファスシリコンを含む光電変換層、ミドルセル層10は多結晶シリコン(微結晶シリコンの場合も含める)を含む光電変換層、ボトムセル層7は多結晶シリコン(微結晶シリコンの場合も含める)を含む光電変換層である。本発明による、屈折率が第2透明導電層8よりも小さい屈折率調整層9を第2透明導電層8と裏面不透明電極2との間に形成する構造は、こうしたトリプル型の光電変換素子にも好適に用いられる。   Referring to FIG. 12, another embodiment of the present invention is shown. Referring to FIG. 12, the glass substrate 1, the first transparent conductive layer 4, the top cell layer 5, the middle cell layer 10, the bottom cell layer 7, the second transparent conductive layer 8, the refractive index adjustment layer 9, and the back surface opaque electrode 2 are sequentially formed. Are stacked. The top cell layer 5 is a photoelectric conversion layer containing amorphous silicon, the middle cell layer 10 is a photoelectric conversion layer containing polycrystalline silicon (including microcrystalline silicon), and the bottom cell layer 7 is polycrystalline silicon (including microcrystalline silicon). ). The structure in which the refractive index adjustment layer 9 having a refractive index smaller than that of the second transparent conductive layer 8 according to the present invention is formed between the second transparent conductive layer 8 and the back surface opaque electrode 2 is used in such a triple photoelectric conversion element. Are also preferably used.

本発明は、上述の構造以外の様々な構造の薄膜太陽電池にも適用可能である。例えば、不透光性基板上に、裏面不透明電極、裏面屈折率調整層、裏面透明導電層、光電変換層、透明電極の順に積層された薄膜太陽電池にも適用されることが可能である。   The present invention is also applicable to thin film solar cells having various structures other than the above structure. For example, the present invention can also be applied to a thin film solar cell in which a back opaque electrode, a back refractive index adjustment layer, a back transparent conductive layer, a photoelectric conversion layer, and a transparent electrode are stacked in this order on a light-impermeable substrate.

図1は、光電変換素子の断面図である。FIG. 1 is a cross-sectional view of a photoelectric conversion element. 図2は、光電変換素子の裏面不透明電極の付近の断面図である。FIG. 2 is a cross-sectional view of the vicinity of the back surface opaque electrode of the photoelectric conversion element. 図3は、屈折率調整層の材質を変えたときのAgに侵入する電界強度の計算結果を示す。FIG. 3 shows the calculation result of the electric field strength that penetrates Ag when the material of the refractive index adjustment layer is changed. 図4は、積分電界強度の計算結果である。FIG. 4 shows the calculation result of the integrated electric field strength. 図5は、積分電界強度の、挿入媒質の膜厚に対する依存性を示す。FIG. 5 shows the dependence of the integrated electric field strength on the thickness of the insertion medium. 図6は、積分電界強度の、挿入されるSiOの膜厚に対する依存性を示す。FIG. 6 shows the dependence of the integrated electric field strength on the thickness of the inserted SiO 2 . 図7は、タンデムセル構造を備えた光電変換素子の断面図である。FIG. 7 is a cross-sectional view of a photoelectric conversion element having a tandem cell structure. 図8は、計算に用いたタンデムセルの層構造を示す。FIG. 8 shows the layer structure of the tandem cell used for the calculation. 図9は、トップセル層がp偏光成分により発生する短絡電流に対する屈折率調整層の屈折率依存性を示す。FIG. 9 shows the refractive index dependency of the refractive index adjustment layer with respect to a short-circuit current generated by the p-polarized component in the top cell layer. 図10は、ボトムセル層がp偏光成分により発生する短絡電流に対する屈折率調整層の屈折率依存性を示す。FIG. 10 shows the refractive index dependency of the refractive index adjustment layer with respect to the short-circuit current generated by the p-polarized component in the bottom cell layer. 図11は、ボトムセル層が発生する短絡電流に対する屈折率調整層の屈折率・膜厚依存性を示す。FIG. 11 shows the refractive index / film thickness dependence of the refractive index adjustment layer with respect to the short-circuit current generated by the bottom cell layer. 図12は、本発明の実施の形態によるトリプル型の光電変換素子の断面図である。FIG. 12 is a cross-sectional view of a triple photoelectric conversion element according to an embodiment of the present invention.

符号の説明Explanation of symbols

1…ガラス基板
2…裏面不透明電極
3…発電層
4…第1透明導電膜
5…トップセル層
6…中間層
7…ボトムセル層
8…第2透明導電膜
9…屈折率調整層
10…ミドルセル層
DESCRIPTION OF SYMBOLS 1 ... Glass substrate 2 ... Back surface opaque electrode 3 ... Electric power generation layer 4 ... 1st transparent conductive film 5 ... Top cell layer 6 ... Intermediate | middle layer 7 ... Bottom cell layer 8 ... 2nd transparent conductive film 9 ... Refractive index adjustment layer 10 ... Middle cell layer

Claims (13)

透光性基板と、
前記透光性基板の主面側に形成され、受光した光を電力に変換する光電変換層と、
前記主面側に形成され、該光電変換素子に外光が入射する側と反対側に形成された裏面電極層と、
前記光電変換層と前記裏面電極層との間に形成され、前記裏面電極層に近い側において前記裏面電極層から遠い側よりも屈折率が小さい透明層
とを具備する
光電変換素子。
A translucent substrate;
A photoelectric conversion layer that is formed on the main surface side of the translucent substrate and converts received light into electric power;
A back electrode layer formed on the main surface side and formed on the side opposite to the side on which external light is incident on the photoelectric conversion element;
A photoelectric conversion element comprising: a transparent layer formed between the photoelectric conversion layer and the back electrode layer and having a refractive index smaller on the side closer to the back electrode layer than on the side far from the back electrode layer.
請求項1に記載された光電変換素子であって、
前記透明層は、
上部透明層と、
前記上部透明層と前記裏面電極層との間に設けられ、前記上部透明層よりも屈折率が小さい屈折率調整層
とを具備する
光電変換素子。
The photoelectric conversion device according to claim 1,
The transparent layer is
An upper transparent layer;
A photoelectric conversion element comprising: a refractive index adjustment layer provided between the upper transparent layer and the back electrode layer and having a refractive index smaller than that of the upper transparent layer.
請求項2に記載された光電変換素子であって、
前記上部透明層はZnO、ITO、又はSnOのうちのいずれかを含み、
前記ZnOには、Ga、Si、Al、Bのうちのいずれかがドーピングされている
光電変換素子。
A photoelectric conversion element according to claim 2,
The upper transparent layer comprises ZnO, ITO, or any of SnO 2,
The ZnO is doped with any one of Ga, Si, Al, and B. A photoelectric conversion element.
請求項2又は3のうちのいずれか1項に記載された光電変換素子であって、
前記屈折率調整層はSiO、MgF、MgO、ガラス、Al、Y、CaF、LiF、空孔のうちのいずれかを含む
光電変換素子。
It is a photoelectric conversion element given in any 1 paragraph of Claim 2 or 3,
The refractive index adjustment layer is SiO 2, MgF 2, MgO, glass, Al 2 O 3, Y 2 O 3, CaF 2, LiF, photoelectric conversion element comprising any one of the holes.
請求項4に記載された光電変換素子であって、
前記屈折率調整層は、第1材料と第2材料との混合相を含み、
前記第1材料は、SiO、MgF、MgO、ガラス、Al、Y、CaF、及びLiFのうちから選択され、
前記第2材料は、ZnO、ITO、及びSnOのうちから選択され、前記ZnOにはGa、Si、Al、Bのうちのいずれかがドーピングされている
光電変換素子。
The photoelectric conversion device according to claim 4,
The refractive index adjustment layer includes a mixed phase of a first material and a second material,
The first material is selected from SiO 2 , MgF 2 , MgO, glass, Al 2 O 3 , Y 2 O 3 , CaF 2 , and LiF,
The second material, ZnO, ITO, and is selected from the SnO 2, the in ZnO Ga, Si, Al, photoelectric conversion element either is doped among B.
請求項2から5のうちのいずれか1項に記載された光電変換素子であって、
前記裏面電極層はAg、Al、Cu、Auのいずれかを含む
光電変換素子。
It is a photoelectric conversion element given in any 1 paragraph of Claims 2-5,
The back electrode layer includes one of Ag, Al, Cu, and Au.
請求項2から6のうちのいずれか1項に記載された光電変換素子であって、
前記屈折率調整層は、厚さが2ナノメートル以上である
光電変換素子。
It is a photoelectric conversion element given in any 1 paragraph of Claims 2-6,
The refractive index adjustment layer has a thickness of 2 nanometers or more.
請求項1から7のうちのいずれか1項に記載された光電変換素子であって、
前記透明層は3層以上の層構造をしており、
前記層構造のなかの任意の層である上側透明層の屈折率は、前記上側透明層と前記裏面電極層との間の任意の層である下側透明層の屈折率よりも大きい
光電変換素子。
It is a photoelectric conversion element given in any 1 paragraph of Claims 1-7,
The transparent layer has a layer structure of three or more layers,
The refractive index of the upper transparent layer which is an arbitrary layer in the layer structure is larger than the refractive index of the lower transparent layer which is an arbitrary layer between the upper transparent layer and the back electrode layer. .
請求項1から8までのいずれか1項に記載された光電変換素子であって、
前記光電変換層は多結晶質シリコンを含み、
更に、前記光電変換層に対して前記裏面電極層の反対側に、アモルファスシリコンを含む光起電力層を含む
光電変換素子。
It is a photoelectric conversion element given in any 1 paragraph of Claims 1-8,
The photoelectric conversion layer includes polycrystalline silicon,
Furthermore, the photoelectric conversion element containing the photovoltaic layer containing an amorphous silicon on the opposite side of the said back surface electrode layer with respect to the said photoelectric converting layer.
請求項9に記載された光電変換素子であって、
前記光電変換層はシリコンとシリコン以外のIV族元素との合金を含む
光電変換素子。
The photoelectric conversion element according to claim 9,
The photoelectric conversion layer includes an alloy of silicon and a group IV element other than silicon.
請求項9または10のうちのいずれか1項に記載された光電変換素子であって、
更に、前記光電変換層と前記光起電力層との間に、多結晶質シリコンを含む第2光電変換層を含む
光電変換素子。
It is a photoelectric conversion element given in any 1 paragraph of Claim 9 or 10,
Furthermore, a photoelectric conversion element including a second photoelectric conversion layer containing polycrystalline silicon between the photoelectric conversion layer and the photovoltaic layer.
請求項11に記載された光電変換素子であって、
前記第2光電変換層はシリコンとシリコン以外のIV族元素との合金を含む
光電変換素子。
The photoelectric conversion device according to claim 11,
The second photoelectric conversion layer includes an alloy of silicon and a group IV element other than silicon.
請求項1から7のうちのいずれか1項に記載された光電変換素子であって、
不透光性基板と、
前記不透光性基板の主面側に形成された裏面電極層と、
前記主面側に形成され、受光した光を電力に変換する光電変換層と、
前記主面側に形成された透明電極層と、入射光は前記透明電極層の側から取り入れられ、
該光電変換素子に外光が入射する側と反対側に形成された裏面電極層と前記光電変換層との間に形成され、前記裏面電極層に近い側において前記裏面電極層から遠い側よりも屈折率が小さい透明層
とを具備する
光電変換素子。
It is a photoelectric conversion element given in any 1 paragraph of Claims 1-7,
An opaque substrate,
A back electrode layer formed on the main surface side of the opaque substrate,
A photoelectric conversion layer that is formed on the main surface side and converts received light into electric power;
The transparent electrode layer formed on the main surface side, and incident light is taken from the transparent electrode layer side,
The photoelectric conversion element is formed between the back electrode layer formed on the side opposite to the side on which external light is incident and the photoelectric conversion layer, and closer to the back electrode layer than the side far from the back electrode layer. A photoelectric conversion element comprising: a transparent layer having a small refractive index.
JP2004304752A 2004-10-19 2004-10-19 Photoelectric conversion element Pending JP2006120737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304752A JP2006120737A (en) 2004-10-19 2004-10-19 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304752A JP2006120737A (en) 2004-10-19 2004-10-19 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2006120737A true JP2006120737A (en) 2006-05-11

Family

ID=36538356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304752A Pending JP2006120737A (en) 2004-10-19 2004-10-19 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2006120737A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266095A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Photoelectric conversion cell, photoelectric conversion module, photoelectric conversion panel and photoelectric conversion system
WO2009037734A1 (en) * 2007-09-18 2009-03-26 Mitsubishi Heavy Industries, Ltd. Photoelectric conversion apparatus and method for manufacturing the same
JP2009117463A (en) * 2007-11-02 2009-05-28 Kaneka Corp Thin-film photoelectric conversion device
WO2009116578A1 (en) * 2008-03-21 2009-09-24 三洋電機株式会社 Solar cell
WO2009119125A1 (en) * 2008-03-28 2009-10-01 三菱重工業株式会社 Photoelectric converter
CN101830640A (en) * 2010-04-08 2010-09-15 天津市瑞丰纳米材料有限公司 Nanometer compound anti-reflection film coating liquid for preparing solar energy photovoltaic glass and solar energy photovoltaic glass
US20100282297A1 (en) * 2007-10-30 2010-11-11 Sanyo Electric Co., Ltd. Solar cell
JP2011040796A (en) * 2010-11-25 2011-02-24 Mitsubishi Heavy Ind Ltd Photoelectric conversion device, and production method therefor
US8410355B2 (en) 2007-11-02 2013-04-02 Kaneka Corporation Thin film photoelectric conversion device having a stacked transparent oxide and carbon intermediate layer
US9184320B2 (en) 2010-06-21 2015-11-10 Mitsubishi Electric Corporation Photoelectric conversion device
CN105164819A (en) * 2013-05-14 2015-12-16 三菱电机株式会社 Photovoltaic element and method for manufacturing same
CN107681020A (en) * 2017-09-26 2018-02-09 南开大学 A kind of method for improving the response of plane silicon heterojunction solar battery long wavelength light

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110125A (en) * 1991-10-17 1993-04-30 Canon Inc Photovoltaic element
JPH05145095A (en) * 1991-11-18 1993-06-11 Sanyo Electric Co Ltd Photovoltaic element
JPH05206490A (en) * 1992-01-27 1993-08-13 Sharp Corp Photoelectric conversion device
JPH07321362A (en) * 1994-05-24 1995-12-08 Sanyo Electric Co Ltd Photovoltaic device
JPH11274528A (en) * 1998-03-25 1999-10-08 Sanyo Electric Co Ltd Photovoltaic device
JP2000150934A (en) * 1998-11-16 2000-05-30 Sanyo Electric Co Ltd Photovoltaic element and manufacture thereof
JP2003174177A (en) * 2001-12-05 2003-06-20 Mitsubishi Heavy Ind Ltd Solar battery
JP2003179241A (en) * 2001-12-10 2003-06-27 Kyocera Corp Thin film solar cell
JP2003298088A (en) * 2002-04-02 2003-10-17 Kanegafuchi Chem Ind Co Ltd Silicon based thin film photoelectric converter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110125A (en) * 1991-10-17 1993-04-30 Canon Inc Photovoltaic element
JPH05145095A (en) * 1991-11-18 1993-06-11 Sanyo Electric Co Ltd Photovoltaic element
JPH05206490A (en) * 1992-01-27 1993-08-13 Sharp Corp Photoelectric conversion device
JPH07321362A (en) * 1994-05-24 1995-12-08 Sanyo Electric Co Ltd Photovoltaic device
JPH11274528A (en) * 1998-03-25 1999-10-08 Sanyo Electric Co Ltd Photovoltaic device
JP2000150934A (en) * 1998-11-16 2000-05-30 Sanyo Electric Co Ltd Photovoltaic element and manufacture thereof
JP2003174177A (en) * 2001-12-05 2003-06-20 Mitsubishi Heavy Ind Ltd Solar battery
JP2003179241A (en) * 2001-12-10 2003-06-27 Kyocera Corp Thin film solar cell
JP2003298088A (en) * 2002-04-02 2003-10-17 Kanegafuchi Chem Ind Co Ltd Silicon based thin film photoelectric converter

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266095A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Photoelectric conversion cell, photoelectric conversion module, photoelectric conversion panel and photoelectric conversion system
WO2009037734A1 (en) * 2007-09-18 2009-03-26 Mitsubishi Heavy Industries, Ltd. Photoelectric conversion apparatus and method for manufacturing the same
JP4940309B2 (en) * 2007-10-30 2012-05-30 三洋電機株式会社 Solar cell
US20100282297A1 (en) * 2007-10-30 2010-11-11 Sanyo Electric Co., Ltd. Solar cell
JP2009117463A (en) * 2007-11-02 2009-05-28 Kaneka Corp Thin-film photoelectric conversion device
US8410355B2 (en) 2007-11-02 2013-04-02 Kaneka Corporation Thin film photoelectric conversion device having a stacked transparent oxide and carbon intermediate layer
WO2009116578A1 (en) * 2008-03-21 2009-09-24 三洋電機株式会社 Solar cell
JP2009231505A (en) * 2008-03-21 2009-10-08 Sanyo Electric Co Ltd Solar battery
CN101978512B (en) * 2008-03-21 2012-09-05 三洋电机株式会社 Solar cell
WO2009119125A1 (en) * 2008-03-28 2009-10-01 三菱重工業株式会社 Photoelectric converter
CN101830640B (en) * 2010-04-08 2012-01-04 赵文祥 Nanometer compound anti-reflection film coating liquid for preparing solar energy photovoltaic glass and solar energy photovoltaic glass
CN101830640A (en) * 2010-04-08 2010-09-15 天津市瑞丰纳米材料有限公司 Nanometer compound anti-reflection film coating liquid for preparing solar energy photovoltaic glass and solar energy photovoltaic glass
US9184320B2 (en) 2010-06-21 2015-11-10 Mitsubishi Electric Corporation Photoelectric conversion device
JP2011040796A (en) * 2010-11-25 2011-02-24 Mitsubishi Heavy Ind Ltd Photoelectric conversion device, and production method therefor
CN105164819A (en) * 2013-05-14 2015-12-16 三菱电机株式会社 Photovoltaic element and method for manufacturing same
CN105164819B (en) * 2013-05-14 2017-03-29 三菱电机株式会社 Photovoltaic generation element and its manufacture method
CN107681020A (en) * 2017-09-26 2018-02-09 南开大学 A kind of method for improving the response of plane silicon heterojunction solar battery long wavelength light

Similar Documents

Publication Publication Date Title
JP2007266095A (en) Photoelectric conversion cell, photoelectric conversion module, photoelectric conversion panel and photoelectric conversion system
Sai et al. Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response
JP4959127B2 (en) Photoelectric conversion device and substrate for photoelectric conversion device
Haase et al. Thin-film silicon solar cells with efficient periodic light trapping texture
JP4634129B2 (en) Light scattering film and optical device using the same
JP4222500B2 (en) Silicon-based thin film photoelectric conversion device
KR101000057B1 (en) Solar Cell Having Multiple Transparent Conducting Layers And Manufacturing Method Thereof
US20080223436A1 (en) Back reflector for use in photovoltaic device
WO2005011002A1 (en) Silicon based thin film solar cell
JPH10117006A (en) Thin-film photoelectric conversion device
WO2009116578A1 (en) Solar cell
JP2006120737A (en) Photoelectric conversion element
CN103069308A (en) Silicon multilayer anti-reflective film with gradually varying refractive index and manufacturing method therefor, and solar cell having same and manufacturing method therefor
JP2008270562A (en) Multi-junction type solar cell
JP5127925B2 (en) Thin film solar cell and manufacturing method thereof
JPWO2006046397A1 (en) Substrate for thin film photoelectric conversion device and integrated thin film photoelectric conversion device using the same
JPH07321362A (en) Photovoltaic device
EP2273559A1 (en) Solar cell
JP2010272651A (en) Thin-film solar cell and method of manufacturing the same
JP5036663B2 (en) Thin film solar cell and manufacturing method thereof
EP2738819B1 (en) Solar cell
JP3196155B2 (en) Photovoltaic device
Kumar et al. Converging photo-absorption limit in periodically textured ultra-thin silicon foils and wafers
JP2012256776A (en) Manufacturing method of thin-film photoelectric conversion device
Bittkau et al. Geometrical light trapping in thin c-Si solar cells beyond lambertian limit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100511

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100730