JP2006120589A - Flat plate lamination type fuel cell - Google Patents

Flat plate lamination type fuel cell Download PDF

Info

Publication number
JP2006120589A
JP2006120589A JP2005011244A JP2005011244A JP2006120589A JP 2006120589 A JP2006120589 A JP 2006120589A JP 2005011244 A JP2005011244 A JP 2005011244A JP 2005011244 A JP2005011244 A JP 2005011244A JP 2006120589 A JP2006120589 A JP 2006120589A
Authority
JP
Japan
Prior art keywords
power generation
separator
fuel cell
manifold
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005011244A
Other languages
Japanese (ja)
Other versions
JP5023429B2 (en
Inventor
Naoya Murakami
直也 村上
Hisafumi Kotani
尚史 小谷
Kiichi Komada
紀一 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2005011244A priority Critical patent/JP5023429B2/en
Priority to EP06711589A priority patent/EP1855338A4/en
Priority to PCT/JP2006/300266 priority patent/WO2006077762A1/en
Priority to US11/795,312 priority patent/US20110151348A1/en
Publication of JP2006120589A publication Critical patent/JP2006120589A/en
Application granted granted Critical
Publication of JP5023429B2 publication Critical patent/JP5023429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To realize compatibility of adhesiveness of a power generation portion and gas sealing performance of a manifold portion in a fuel cell stack. <P>SOLUTION: This is a flat plate lamination type fuel cell of an inner manifold structure in which a power generation cell 5 and a separator 8 are laminated alternately and the laminated units are weighted from the lamination direction and each component is pressure contacted. Flexibility for load is provided at the connection portion 8b linking the manifold portion 8a of the separator 8 and a portion 8c where the power generation cell 5 is located. Thereby, the load applied to the separator 8 can be separated between the manifold portion 8a and the portion 8c where the power generation cell 5 is located, thus each is weighted suitably. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、平板積層型燃料電池に関し、詳しくは、積層体の各発電部分の密着性とマニホールド部分のガスシール性を両立させた平板積層型燃料電池に関するものである。   The present invention relates to a flat plate type fuel cell, and more particularly to a flat plate type fuel cell that achieves both the adhesion of each power generation portion of a laminate and the gas sealability of a manifold portion.

近年、燃料の有する化学エネルギーを直接電気エネルギーに変換する燃料電池は高効率でクリーンな発電装置として注目されている。この燃料電池は、酸化物イオン導電体から成る固体電解質層を両側から空気極層(カソード)と燃料極層(アノード)で挟み込んだ積層構造を有する。   In recent years, fuel cells that directly convert chemical energy of fuel into electrical energy have attracted attention as highly efficient and clean power generators. This fuel cell has a laminated structure in which a solid electrolyte layer made of an oxide ion conductor is sandwiched between an air electrode layer (cathode) and a fuel electrode layer (anode) from both sides.

発電時、反応用ガスとして空気極層側に酸化剤ガス(酸素) が、また燃料極層側に燃料ガス (H2、CO、CH4等) が供給される。空気極層と燃料極層は、反応用ガスが固体電解質層との界面に到達することができるよう、何れも多孔質の層とされている。 During power generation, an oxidant gas (oxygen) is supplied to the air electrode layer side and a fuel gas (H 2 , CO, CH 4, etc.) is supplied to the fuel electrode layer side as a reaction gas. The air electrode layer and the fuel electrode layer are both porous layers so that the reaction gas can reach the interface with the solid electrolyte layer.

発電セル内において、空気極層側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で空気極層から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極層に向かって固体電解質層内を拡散移動する。燃料極層との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2O、CO2等)を生じ、燃料極層に電子を放出する。尚、電極反応で生じた電子は、別ルートの外部負荷にて起電力として取り出すことができる。 In the power generation cell, oxygen supplied to the air electrode layer passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer. It is ionized to (O 2− ). The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode layer. Oxide ions that have reached the vicinity of the interface with the fuel electrode layer react with the fuel gas at this portion to generate reaction products (H 2 O, CO 2, etc.), and discharge electrons to the fuel electrode layer. Electrons generated by the electrode reaction can be taken out as an electromotive force at an external load on another route.

平板積層型燃料電池は、これら発電セルとセパレータを交互に多数積層してスタック化すると共に、その両端より積層方向に荷重を掛けてスタックの各構成要素を相互に圧接・密着させることにより構成される。
上記セパレータは、発電セル間を電気的に接続すると同時に発電セルに対して反応用ガスを供給する機能を有し、その内部に、燃料ガスを燃料極層側に誘導する燃料ガス通路と、酸化剤ガスを空気極層側に誘導する酸化剤ガス通路とを備える。このような平板積層型の燃料電池は、例えば、特許文献1に開示されている。
A flat stacked fuel cell is constructed by stacking a large number of these power generation cells and separators alternately to form a stack, and by applying a load in the stacking direction from both ends of the stacks so that the components of the stack are pressed and adhered to each other. The
The separator has a function of supplying the reaction gas to the power generation cells while electrically connecting the power generation cells, and a fuel gas passage for guiding the fuel gas to the fuel electrode layer side, and an oxidation And an oxidant gas passage for guiding the oxidant gas to the air electrode layer side. Such a flat plate type fuel cell is disclosed in Patent Document 1, for example.

外部反応用ガスをセパレータに供給するためのガス導入機構として、特許文献1に開示されるような、燃料電池スタックの外周に外部マニホールドを設け、多数の接続管を介して各セパレータに各ガスを供給する構造と、図5に示されるような、厚さ数mmのステンレス板等で構成される各セパレータ8の周縁部にガス孔13、14を設け、このガス孔から各ガス通路11、12を通して各発電セルの各電極面に燃料ガスおよび酸化剤ガスを供給するようにした内部マニホールド構造とが知られている。
尚、内部マニホールドでは、図3に示すように、上下に積層されるセパレータ8のガス孔同士は、各セパレータ間に介在されたリング状の絶縁性ガスケット15、16によって連通される。
特開2004−55195号公報
As a gas introduction mechanism for supplying gas for external reaction to the separator, an external manifold is provided on the outer periphery of the fuel cell stack as disclosed in Patent Document 1, and each gas is supplied to each separator through a number of connection pipes. Gas holes 13 and 14 are provided in the peripheral portion of each separator 8 made of a stainless steel plate or the like having a thickness of several millimeters as shown in FIG. An internal manifold structure is known in which fuel gas and oxidant gas are supplied to each electrode surface of each power generation cell.
In the internal manifold, as shown in FIG. 3, the gas holes of the separators 8 stacked one above the other are communicated by ring-shaped insulating gaskets 15 and 16 interposed between the separators.
JP 2004-55195 A

ところで、平板積層型燃料電池は、複数の発電要素を積層して構成される発電セルを、更にセパレータ等の導電部材を介して多数積層した構造であるから、安定した電池性能を確保するために構成要素相互の優れた密着性が要求される。特に、内部マニホールドの場合は、各構成要素の密着性に加え、ガスケット部分のガスシール性も要求される。
このため、平板積層型燃料電池の場合は、スタック組立後にその両端より積層方向に荷重を掛けて各構成要素を圧接させる構造と成されており、例えば、特許文献1では、スタック上下端に配した締付板をボルトにて締め付けすることにより積層体を一括して加重している。
By the way, the flat plate type fuel cell has a structure in which a large number of power generation cells configured by stacking a plurality of power generation elements are further stacked via conductive members such as separators, so that stable battery performance is ensured. Excellent adhesion between components is required. In particular, in the case of an internal manifold, in addition to the adhesiveness of each component, the gas sealability of the gasket portion is also required.
For this reason, in the case of a flat stack type fuel cell, after stack assembly, a load is applied from both ends of the stack in the stacking direction so that the respective components are pressed against each other. The laminated body is collectively loaded by tightening the tightened plate with bolts.

ところが、特に、内部マニホールド構造では、スタック中央の発電部分とスタック縁部のマニホールド部分とで積層される構成要素が異なるため、マニホールド部分と発電部分を締付板を用いて上下より締め付けると、剛性の高いセパレータ板をもってその縁部と中央部が同じ変位量で締め付けられることから、双方の高さの違いが起因して各部の締め付けが不十分となり、各構成要素の密着性が損なわれるという問題がある。
この結果、発電部分では密着不良により電気的な接触抵抗が増大し、発電性能や発電効率の低下を招くことになり、また、マニホールド部分では、ガスケットとガス孔のシール性が低下し、ガス漏れによる発電性能の低下を招くことになる。
However, especially in the internal manifold structure, the components stacked in the power generation part at the center of the stack and the manifold part at the edge of the stack are different, so if the manifold part and the power generation part are tightened from above and below using a clamping plate, the rigidity Because the edge and center of the separator plate are tightened with the same amount of displacement with a high separator plate, the tightening of each part becomes insufficient due to the difference in height between the two, and the adhesion of each component is impaired. There is.
As a result, the electrical contact resistance increases due to poor adhesion in the power generation part, leading to a decrease in power generation performance and power generation efficiency. In the manifold part, the sealing performance between the gasket and the gas hole is reduced, causing gas leakage. This will cause a decrease in power generation performance.

尚、過大な締め付けは各構成要素の高温クリープを促進し、発電セルの破損を招く恐れがあるため、スタックの締め付けは、発電部分の電気的な接触性とマニホールド部分のガスシール性を確保するのに十分で、且つ、最小にするのが好ましい。   In addition, excessive tightening promotes high-temperature creep of each component and may cause damage to the power generation cell. Therefore, tightening the stack ensures electrical contact of the power generation portion and gas sealing performance of the manifold portion. Preferably, it is sufficient and minimal.

本発明は、このような問題に鑑み成されたもので、燃料電池スタックにおける発電部分の密着性とマニホールド部分のガスシール性の向上を図った平板積層型燃料電池を提供することを目的としている。   The present invention has been made in view of such problems, and an object of the present invention is to provide a flat plate type fuel cell in which the adhesion of the power generation part and the gas sealability of the manifold part in the fuel cell stack are improved. .

すなわち、請求項1に記載の本発明は、発電セルと反応用ガスの通路を備えたセパレータを交互に積層すると共に、各セパレータのガス通路に連通して積層体内を積層方向に貫通する反応ガス導入用の内部マニホールドを設け、且つ、前記積層体を積層方向より加重して各構成要素を圧接して成る平板積層型燃料電池において、前記セパレータのマニホールド部分と発電セルが位置する部分とを繋ぐ連絡部分に前記荷重に対する可撓性を持たせたことを特徴としている。   That is, the present invention according to claim 1, the separator having the power generation cells and the reaction gas passages are alternately laminated, and the reaction gas that communicates with the gas passages of each separator and penetrates the laminate in the lamination direction. An internal manifold for introduction is provided, and in the flat plate stacked fuel cell formed by applying pressure to each component by weighting the stacked body from the stacking direction, the manifold portion of the separator and the portion where the power generation cell is located are connected. The connecting portion is characterized by having flexibility with respect to the load.

また、請求項2に記載の本発明は、請求項1に記載の平板積層型燃料電池において、前記連絡部分の少なくとも一部を幅狭・肉薄としたことを特徴としている。   The present invention described in claim 2 is characterized in that, in the flat plate stacked fuel cell according to claim 1, at least a part of the connecting portion is narrow and thin.

また、請求項3に記載の本発明は、請求項1に記載の平板積層型燃料電池において、前記連絡部分をセパレータの周縁に沿う細長帯状としたことを特徴としている。   Further, according to a third aspect of the present invention, in the flat-plate laminated fuel cell according to the first aspect, the connecting portion is formed in an elongated strip shape along the periphery of the separator.

また、請求項4に記載の本発明は、請求項1から請求項3までの何れかに記載の平板積層型燃料電池において、前記連絡部分に断熱材または断熱塗料を施したことを特徴としている。   According to a fourth aspect of the present invention, in the flat plate fuel cell according to any one of the first to third aspects, a heat insulating material or a heat insulating paint is applied to the connecting portion. .

また、請求項5に記載の本発明は、請求項1から請求項4までの何れかに記載の平板積層型燃料電池において、前記セパレータのマニホールド部分と発電セルが位置する部分を前記積層体の両端より個々に加重することを特徴としている。   According to a fifth aspect of the present invention, in the flat-plate laminated fuel cell according to any one of the first to fourth aspects, the portion of the separator where the manifold portion and the power generation cell are located is disposed on the laminated body. It is characterized by weighting individually from both ends.

ここで、請求項1から請求項3に記載の構成では、セパレータに掛かる荷重をマニホールド部分と発電セルが位置する部分とに分離することができ、これにより、マニホールド部分と発電セルの位置する部分の高さのバラツキ等を吸収して双方を確実に加重することができる。その結果、積層体を構成する各発電要素相互の密着性とマニホールド部分のガスシール性が向上し、発電性能および発電効率の向上が図れる。
また、請求項4に記載の構成では、断熱材や断熱塗料により連絡部分を断熱処理することにより、マニホールドからの反応用ガスがこの連絡部分を通過する間に加熱、または冷却されるのが抑制でき、よって、反応用ガスはマニホールド内に導入された好適温度の状態で発電セルに供給されることになり、これにより、発電セル部分の温度が安定し、各発電要素の密着性は向上する。
また、請求項5に記載の構成では、マニホールド部分と発電セルの位置する部分のそれぞれに最適な荷重を掛けることができ、その結果、積層体を構成する各発電要素の密着性とマニホールド部分のガスシール性がより一層向上する。
Here, in the configuration according to any one of claims 1 to 3, the load applied to the separator can be separated into the manifold portion and the portion where the power generation cell is located, whereby the manifold portion and the portion where the power generation cell is located. It is possible to reliably weight both of them by absorbing the variation in height. As a result, the adhesion between the power generation elements constituting the laminate and the gas sealability of the manifold portion are improved, and the power generation performance and power generation efficiency can be improved.
Moreover, in the structure of Claim 4, it is suppressed that the reaction gas from a manifold is heated or cooled while passing through this connection part by heat-insulating a connection part with a heat insulating material or a heat insulation paint. Therefore, the reaction gas is supplied to the power generation cell at a suitable temperature state introduced into the manifold, thereby stabilizing the temperature of the power generation cell portion and improving the adhesion of each power generation element. .
Further, in the configuration according to claim 5, it is possible to apply an optimum load to each of the manifold portion and the portion where the power generation cell is located. As a result, the adhesion of each power generation element constituting the laminate and the manifold portion Gas sealability is further improved.

以上説明したように、本発明によれば、セパレータのマニホールド部分と発電セルが位置する部分を繋ぐ連絡部分に荷重に対する可撓性を持たせたので、セパレータに掛かる荷重をマニホールド部分と発電セルが位置する部分とに分けることができ、これにより、マニホールド部分と発電セルの位置する部分の高さのバラツキ等を吸収して双方を好適荷重にて締め付けることができる。
その結果、各発電部分の密着性とマニホールド部分のガスシール性が向上し、発電性能と発電効率の向上が図れる。
As described above, according to the present invention, the connecting portion that connects the manifold portion of the separator and the portion where the power generation cell is located is made flexible with respect to the load. It is possible to divide it into a portion where it is located, and thereby it is possible to absorb variations in height between the manifold portion and the portion where the power generation cell is located, and to tighten both with a suitable load.
As a result, the adhesion of each power generation portion and the gas seal performance of the manifold portion are improved, and the power generation performance and power generation efficiency can be improved.

以下、図面に基づいて本発明の実施形態を説明する。
図1は本発明が適用された平板積層型固体酸化物形燃料電池の構成を示し、図2は本発明に係るセパレータの構造を示し、図3は本発明に係る単セルの構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of a flat plate type solid oxide fuel cell to which the present invention is applied, FIG. 2 shows a structure of a separator according to the present invention, and FIG. 3 shows a configuration of a single cell according to the present invention. Yes.

図3に示すように、単セル10は、固体電解質層2の両面に燃料極層3と空気極層4を配した発電セル5と、燃料極層3の外側に配した燃料極集電体6と、空気極層4の外側に配した空気極集電体7と、各集電体6、7の外側に配したセパレータ8とで構成されている。   As shown in FIG. 3, the single cell 10 includes a power generation cell 5 in which a fuel electrode layer 3 and an air electrode layer 4 are disposed on both surfaces of a solid electrolyte layer 2, and a fuel electrode current collector disposed outside the fuel electrode layer 3. 6, an air electrode current collector 7 disposed outside the air electrode layer 4, and a separator 8 disposed outside each current collector 6, 7.

これら発電要素の内、固体電解質層2はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層3はNi、Co等の金属あるいはNi−YSZ、Co−YSZ等のサーメットで構成され、空気極層4はLaMnO3、LaCoO3等で構成され、燃料極集電体6はNi基合金等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体7はAg基合金等のスポンジ状の多孔質焼結金属板で構成され、セパレータ8はステンレス等で構成されている。 Among these power generation elements, the solid electrolyte layer 2 is composed of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer 3 is composed of a metal such as Ni or Co or a cermet such as Ni-YSZ or Co-YSZ. The air electrode layer 4 is made of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector 6 is made of a sponge-like porous sintered metal plate such as a Ni-based alloy, and the air electrode current collector 7 is made of Ag. The separator 8 is made of stainless steel or the like, and is made of a sponge-like porous sintered metal plate such as a base alloy.

上記セパレータ8は、厚さ2〜3mmのステンレス板で構成され、、発電セル5間を電気的に接続すると共に、発電セル5に対して反応用ガスを供給する機能を有し、その内部に燃料ガスをセパレータ8の縁部から導入してセパレータ8の燃料極集電体6に対向する面のほぼ中央部11aから吐出する燃料ガス通路11と、酸化剤ガスをセパレータ8の縁部から導入してセパレータ8の空気極集電体7に対向する面のほぼ中央12aから吐出する酸化剤ガス通路12を有する。   The separator 8 is formed of a stainless steel plate having a thickness of 2 to 3 mm, and has a function of electrically connecting the power generation cells 5 and supplying a reaction gas to the power generation cells 5. The fuel gas is introduced from the edge of the separator 8 and discharged from the substantially central portion 11 a of the surface of the separator 8 facing the anode current collector 6, and the oxidant gas is introduced from the edge of the separator 8. The separator 8 has an oxidant gas passage 12 that is discharged from the substantially center 12a of the surface facing the air electrode current collector 7.

また、セパレータ8の左右縁部には、板厚方向に貫通する一対のガス孔13、14が設けてあり、一方のガス孔13は燃料ガス通路11に、他方のガス孔14は酸化剤ガス通路12に連通し、各々のガス孔13、14からこれらのガス通路11、12を通して各発電セル5の各電極面に燃料ガスおよび酸化剤ガスが供給されるようなっている。尚、上下に積層されるセパレータ8のガス孔同士は、それぞれリング状の絶縁性ガスケット15、16にて連結されている。   Further, a pair of gas holes 13 and 14 penetrating in the plate thickness direction are provided in the left and right edge portions of the separator 8, one gas hole 13 is in the fuel gas passage 11, and the other gas hole 14 is in the oxidant gas. The fuel gas and the oxidant gas are supplied to the electrode surfaces of the power generation cells 5 from the gas holes 13 and 14 through the gas passages 11 and 12, respectively. The gas holes of the separators 8 stacked one above the other are connected by ring-shaped insulating gaskets 15 and 16, respectively.

本実施形態のセパレータは、例えば、図2に示すように、左右のマニホールド部分8a、8aと中央の発電セル5が位置する部分8cとを繋ぐ連絡部分8b、8bを肉薄・幅狭として積層方向の加重に対してある程度の可撓性を持たせた構造として、スタック組立後にセパレータ8に掛かる荷重をマニホールド部分8aと発電セル5が位置する部分8cとに分離させるようにしたもので、この点が図5に示した全体的に高い剛性を有する従来型と相違している。   In the separator of this embodiment, for example, as shown in FIG. 2, the connecting portions 8b and 8b connecting the left and right manifold portions 8a and 8a and the portion 8c in which the central power generation cell 5 is located are made thin and narrow in the stacking direction. As a structure having some degree of flexibility with respect to the weight of the load, the load applied to the separator 8 after stack assembly is separated into the manifold portion 8a and the portion 8c where the power generation cells 5 are located. Is different from the conventional type having high overall rigidity shown in FIG.

連絡部分に可撓性を持たせることにより、構成要素の積層・組立で生じる周縁のマニホールド部分8aと中央の発電セル5の位置する部分の高さバラツキ等を吸収して各部8a、8cが個々に確実な状態で加重されるようになる。即ち、上記した各部分8a、8cは相互に影響を及ぼすことなく個々に加重される。
その結果、好適荷重により、積層体を構成する各発電要素の密着性とガスケット部分のガスシール性が向上し、発電性能および発電効率の向上が図れる。
By making the connecting portion flexible, each of the portions 8a and 8c can be individually absorbed by absorbing the height variation of the peripheral manifold portion 8a and the central power generation cell 5 position generated by stacking and assembling the components. Will be weighted with certainty. That is, the above-described portions 8a and 8c are individually weighted without affecting each other.
As a result, due to the suitable load, the adhesion of each power generation element constituting the laminate and the gas sealability of the gasket portion are improved, and the power generation performance and power generation efficiency can be improved.

上記構成の単セル10を、間にガスケット15、16を介在して順次積層していくことにより、図1に示す平板積層型の燃料電池スタック1が構成される。この燃料電池スタック1の上下両端に締付板20aと締付板20bが配設されている。
上締付板20aはドーナツ状を成し、この締付板20aをスタックの上端部に配置すると、中央部の孔23よりセパレータ8の中央部分、即ち、発電セルが位置する部分8cが露出するようになっている。一方、下締付板20bは円板状を成し、スタックの底部を下方より支持する。
By laminating the single cells 10 having the above-described configuration sequentially with gaskets 15 and 16 interposed therebetween, the flat plate fuel cell stack 1 shown in FIG. 1 is constructed. Fastening plates 20a and 20b are disposed on the upper and lower ends of the fuel cell stack 1, respectively.
The upper clamping plate 20a has a donut shape, and when this clamping plate 20a is arranged at the upper end of the stack, the central portion of the separator 8, that is, the portion 8c where the power generation cell is located is exposed from the hole 23 in the central portion. It is like that. On the other hand, the lower fastening plate 20b has a disc shape and supports the bottom of the stack from below.

燃料電池スタック1は、図1に示すように、スタック上下両端に締付板20a、20bを配してその周縁部がボルト21にて締め付けされ、その強力な締め付け荷重により、主にスタック各層のマニホールド部分8a、8aにおいて、セパレータ8のガス孔13、14と各ガスケット15、16を機械的に密着・接合させる。締め付け荷重により、各々のガスケット15、16がそれぞれセパレータ8の各ガス孔13、14を介して積層方向に連結されることにより、スタック内部を積層方向に延びる燃料ガス用の管状マニホールドと酸化剤ガス用の管状マニホールドの2系統が形成される。
尚、発電時、各管状マニホールドには、外部から供給される燃料ガスと酸化剤ガスが流通し、各ガスが各セパレータ8のガス孔13、14より各ガス通路を介して各発電セル5の各電極面に分配・誘導される。
As shown in FIG. 1, the fuel cell stack 1 is provided with clamping plates 20a and 20b at the upper and lower ends of the stack, and the peripheral portions thereof are tightened with bolts 21. In the manifold portions 8a and 8a, the gas holes 13 and 14 of the separator 8 and the gaskets 15 and 16 are mechanically tightly bonded. Due to the tightening load, the gaskets 15 and 16 are connected in the stacking direction via the gas holes 13 and 14 of the separator 8, respectively, so that the fuel gas tubular manifold and the oxidant gas extend in the stacking direction inside the stack. Two systems of tubular manifolds are formed.
During power generation, fuel gas and oxidant gas supplied from the outside flow through each tubular manifold, and each gas flows from the gas holes 13 and 14 of each separator 8 through each gas passage to each power generation cell 5. It is distributed and guided to each electrode surface.

また、上締付板20aの中央部(孔23の部分)には、縁部材24を介在して錘22が配設されており、この錘22による積層方向の荷重によりセパレータ8の中央部分8cが押圧されることにより、単セル10を構成する複数の発電要素が相互に密着させられて一体的に固定される。
尚、セパレータ8間に介在されている燃料極集電体6と空気極集電体7はスポンジ状の多孔質焼結金属とされるから、錘22の荷重でこれらスポンジ状部材が弾性変形し、上下セパレータ8の間にある程度の弾力を持って圧接・挟持された状態となっている。
このため、錘22による発電部分の荷重は、上記したボルト21によるマニホールド部分8aの強力な締め付け荷重に比べて極端に少なくしても発電要素間に良好な電気的接触性が得られることになり、荷重による各発電要素のダメージを極力軽減できる。
In addition, a weight 22 is disposed in the center portion (portion of the hole 23) of the upper fastening plate 20a with an edge member 24 interposed, and the center portion 8c of the separator 8 is loaded by the load in the stacking direction by the weight 22. Is pressed, the plurality of power generation elements constituting the single cell 10 are brought into close contact with each other and fixed integrally.
Since the fuel electrode current collector 6 and the air electrode current collector 7 interposed between the separators 8 are made of a sponge-like porous sintered metal, these sponge-like members are elastically deformed by the load of the weight 22. The upper and lower separators 8 are pressed and clamped with a certain degree of elasticity.
For this reason, even if the load of the power generation portion by the weight 22 is extremely smaller than the strong tightening load of the manifold portion 8a by the bolt 21 described above, good electrical contact between the power generation elements can be obtained. The damage of each power generating element due to the load can be reduced as much as possible.

このように、本発明の燃料電池スタック1では、セパレータ8のマニホールド部分8aと発電セル5の位置する部分8cのそれぞれに他の部分に影響を与えずに最適荷重を掛け得る構造としている。この結果、スタックを構成する各発電要素の密着性とマニホールド部分8aのガスシール性をより一層向上した状態で両立させることが可能となる。   As described above, the fuel cell stack 1 of the present invention has a structure in which the optimum load can be applied to the manifold portion 8a of the separator 8 and the portion 8c where the power generation cell 5 is located without affecting other portions. As a result, it becomes possible to achieve both the adhesion of the power generating elements constituting the stack and the gas sealability of the manifold portion 8a in a state of further improvement.

このような加重構造は、セパレータ8に設けた連絡部分8bの奏する可撓性により可能となるものであり、実施形態の燃料電池スタック1では、図1(a)に示すような連絡部分8bを細長帯状としたセパレータ8を用いている。
当セパレータ8も、マニホールド部分8aと発電セル5が位置する部分8cとの連絡部分8bに荷重に対する可撓性を持たせた点は図2のセパレータ8の場合と同様であるが、本実施形態で連絡部分8bをセパレータ8に沿う細長帯状とすることにより、図2のように連絡部分8bの肉厚を他の部分より薄くしなくともが優れた可撓性が得られること、セパレータ8自体をコンパクトに纏められること等のメリットを有する。
Such a weighted structure is made possible by the flexibility exhibited by the connecting portion 8b provided in the separator 8. In the fuel cell stack 1 of the embodiment, the connecting portion 8b as shown in FIG. A separator 8 having an elongated strip shape is used.
The separator 8 is also similar to the separator 8 of FIG. 2 in that the connecting portion 8b between the manifold portion 8a and the portion 8c where the power generation cell 5 is located is flexible with respect to the load. By forming the connecting portion 8b in the shape of an elongated band along the separator 8, excellent flexibility can be obtained without making the thickness of the connecting portion 8b thinner than other portions as shown in FIG. Has advantages such as being compactly packed.

尚、燃料電池スタック1に掛ける積層方向の荷重は構成要素の高温クリープ等を考慮して各発電要素の電気的接触性とガスケットのシール性を確保可能な必要最小限に設定することが好ましく、本実施形態では、縁部のマニホールド部分8aは数百kgf程度に、中央部の発電部分8cは数kgf程度の荷重が設定されている。   The load in the stacking direction applied to the fuel cell stack 1 is preferably set to the minimum necessary to ensure the electrical contact property of each power generation element and the sealing property of the gasket in consideration of the high temperature creep of the constituent elements, In the present embodiment, a load of about several hundred kgf is set for the manifold portion 8a at the edge, and a load of about several kgf is set for the power generation portion 8c at the center.

また、図1、図2において、セパレータ8の連絡部分8bの表面に図示しない断熱材や断熱塗料を用いた断熱処理を施すこともできる。連絡部分8bに断熱処理を施すことにより、各マニホールドからの反応用ガスがこの連絡部分8bを流通・通過する間に加熱、または冷却されるのが抑制でき、よって、反応用ガスはマニホールド内に導入された好適温度の状態でマニホールド部分8aより発電セル5に供給されることになり、これにより、発電セル部分8cの温度が安定し、各発電要素の密着性は向上する。   1 and 2, the surface of the connecting portion 8b of the separator 8 can be subjected to a heat insulating process using a heat insulating material or a heat insulating paint (not shown). By heat-insulating the connecting portion 8b, it is possible to suppress the reaction gas from each manifold from being heated or cooled while flowing or passing through the connecting portion 8b. The power is supplied to the power generation cell 5 from the manifold portion 8a in the introduced preferable temperature state, whereby the temperature of the power generation cell portion 8c is stabilized and the adhesion of each power generation element is improved.

以上、本実施形態では円板状のセパレータ8を用いたが、セパレータ8の形状はこれに限定されるものではなく、例えば、図4に示すような四角形状のセパレータ8としても勿論構わない。本構成においても、図1(a)と同様に、マニホールド部分8aと発電セル5が位置する部分8cとの連絡部分8bを細長帯状として荷重に対する可撓性を持たせている。当連絡部分8bにおいても、上記した断熱処理を施すことは勿論可能である。   As described above, the disk-shaped separator 8 is used in the present embodiment, but the shape of the separator 8 is not limited to this, and for example, a rectangular separator 8 as shown in FIG. Also in this configuration, similarly to FIG. 1A, the connecting portion 8b between the manifold portion 8a and the portion 8c where the power generation cell 5 is located is formed in an elongated strip shape so as to be flexible with respect to a load. Of course, it is possible to perform the above-described heat insulation treatment also in the contact portion 8b.

尚、図4において、セパレータ8内部には、反応用ガスが流通する燃料ガス通路11と酸化剤ガス通路12がそれぞれ渦巻状に、且つ、それぞれが交差しないように入れ子状態に形成されている。従って、セパレータ8内に導入された反応用ガスは渦巻状に形成された各ガス通路11、12を通してセパレータ8内部の全域に流通する過程でセパレータ8と効率良く熱交換し、セパレータ8は面方向の全域に亘って均一に加熱される。よって、発電セル部分8cの温度はより安定し、各発電要素の密着性はより向上する。   In FIG. 4, the fuel gas passage 11 and the oxidant gas passage 12 through which the reaction gas flows are formed in the separator 8 in a spiral shape and nested so as not to cross each other. Accordingly, the reaction gas introduced into the separator 8 efficiently exchanges heat with the separator 8 in the process of flowing through the gas passages 11 and 12 formed in a spiral shape throughout the entire area of the separator 8. Are uniformly heated throughout. Therefore, the temperature of the power generation cell portion 8c is more stable, and the adhesion of each power generation element is further improved.

本発明が適用された平板積層型固体酸化物形燃料電池の構成を示し、(a)は上面図、(b)は側面図。The structure of the flat laminated type solid oxide fuel cell to which this invention was applied is shown, (a) is a top view, (b) is a side view. 本発明に係るセパレータの構造を示す図。The figure which shows the structure of the separator which concerns on this invention. 本発明に係る単セルの構成を示す図。The figure which shows the structure of the single cell which concerns on this invention. 本発明に係る図2とは別のセパレータの構造を示す図。The figure which shows the structure of the separator different from FIG. 2 which concerns on this invention. 従来のセパレータの構造を示す図。The figure which shows the structure of the conventional separator.

符号の説明Explanation of symbols

1 積層体(燃料電池スタック)
5 発電セル
8 セパレータ
8a マニホールド部分
8b 連絡部分
8c 発電セルが位置する部分
11、12 ガス通路(燃料ガス通路、酸化剤ガス通路)
1 Laminate (fuel cell stack)
5 Power generation cell 8 Separator 8a Manifold portion 8b Connection portion 8c Portion where power generation cell is located 11, 12 Gas passage (fuel gas passage, oxidant gas passage)

Claims (5)

発電セルと反応用ガスの通路を備えたセパレータを交互に積層すると共に、各セパレータのガス通路に連通して積層体内を積層方向に貫通する反応ガス導入用の内部マニホールドを設け、且つ、前記積層体を積層方向より加重して各構成要素を圧接して成る平板積層型燃料電池において、
前記セパレータのマニホールド部分と発電セルが位置する部分とを繋ぐ連絡部分に前記荷重に対する可撓性を持たせたことを特徴とする平板積層型燃料電池。
The power generation cells and the separators provided with the reaction gas passages are alternately stacked, and an internal manifold for introducing a reaction gas is provided that communicates with the gas passages of the separators and penetrates the stack in the stacking direction. In a flat plate stacked fuel cell in which the body is weighted from the stacking direction and each component is press-contacted,
A flat stacked fuel cell, characterized in that a connecting portion connecting a manifold portion of the separator and a portion where a power generation cell is located has flexibility with respect to the load.
前記連絡部分の少なくとも一部を幅狭・肉薄としたことを特徴とする請求項1に記載の平板積層型燃料電池。 2. The flat plate stacked fuel cell according to claim 1, wherein at least a part of the connecting portion is narrow and thin. 前記連絡部分をセパレータの周縁に沿う細長帯状としたことを特徴とする請求項1に記載の平板積層型燃料電池。 2. The flat plate stacked fuel cell according to claim 1, wherein the connecting portion is formed in an elongated strip shape along the periphery of the separator. 前記連絡部分に断熱材または断熱塗料を施したことを特徴とする請求項1から請求項3までの何れかに記載の平板積層型燃料電池。 The flat plate type fuel cell according to any one of claims 1 to 3, wherein a heat insulating material or a heat insulating paint is applied to the connecting portion. 前記セパレータのマニホールド部分と発電セルが位置する部分を前記積層体の両端より個々に加重することを特徴とする請求項1から請求項4までの何れかに記載の平板積層型燃料電池。 5. The flat plate stacked fuel cell according to claim 1, wherein the manifold portion of the separator and the portion where the power generation cells are located are individually weighted from both ends of the stacked body. 6.
JP2005011244A 2004-08-13 2005-01-19 Flat plate fuel cell Expired - Fee Related JP5023429B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005011244A JP5023429B2 (en) 2004-08-13 2005-01-19 Flat plate fuel cell
EP06711589A EP1855338A4 (en) 2005-01-19 2006-01-12 Flat laminate type fuel cell and fuel cell stack
PCT/JP2006/300266 WO2006077762A1 (en) 2005-01-19 2006-01-12 Flat laminate type fuel cell and fuel cell stack
US11/795,312 US20110151348A1 (en) 2005-01-19 2006-01-12 Flat plate laminated type fuel cell and fuel cell stack

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004235864 2004-08-13
JP2004235864 2004-08-13
JP2005011244A JP5023429B2 (en) 2004-08-13 2005-01-19 Flat plate fuel cell

Publications (2)

Publication Number Publication Date
JP2006120589A true JP2006120589A (en) 2006-05-11
JP5023429B2 JP5023429B2 (en) 2012-09-12

Family

ID=36538269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011244A Expired - Fee Related JP5023429B2 (en) 2004-08-13 2005-01-19 Flat plate fuel cell

Country Status (1)

Country Link
JP (1) JP5023429B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073359A (en) * 2005-09-07 2007-03-22 Mitsubishi Materials Corp Fuel cell
JP2007141815A (en) * 2005-11-17 2007-06-07 General Electric Co <Ge> Compliant feed tube for planar solid oxide fuel cell system
US20100209820A1 (en) * 2007-03-29 2010-08-19 Taner Akbay Fuel cell
WO2010110480A1 (en) 2009-03-26 2010-09-30 Honda Motor Co., Ltd. Fuel cell
WO2010113630A1 (en) 2009-04-02 2010-10-07 本田技研工業株式会社 Fuel cell
WO2011030769A1 (en) 2009-09-08 2011-03-17 Honda Motor Co., Ltd. Fuel cell stack
WO2011030770A1 (en) 2009-09-08 2011-03-17 Honda Motor Co., Ltd. Fuel cell
WO2012081321A1 (en) 2010-12-15 2012-06-21 Honda Motor Co., Ltd. Fuel cell
US8323853B2 (en) 2006-10-19 2012-12-04 Honda Motor Co., Ltd. Fuel cell stack
US8530107B2 (en) 2008-01-21 2013-09-10 Honda Motor Co., Ltd. Solid oxide fuel cell manifold and corresponding stack
US8557467B2 (en) 2007-10-04 2013-10-15 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
US8802313B2 (en) 2006-10-19 2014-08-12 Honda Motor Co., Ltd. Fuel cell
US8865363B2 (en) 2009-04-02 2014-10-21 Honda Motor Co., Ltd. Fuel cell
US8916308B2 (en) 2008-04-28 2014-12-23 Honda Motor Co., Ltd. Fuel cell
US8932778B2 (en) 2008-04-28 2015-01-13 Honda Motor Co., Ltd. Fuel cell with fuel gas outlets
US9252450B2 (en) 2011-03-02 2016-02-02 Honda Motor Co., Ltd. Fuel cell stack
US9406953B2 (en) 2011-03-02 2016-08-02 Honda Motor Co., Ltd. Fuel cell stack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275293A (en) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd Gas pipe structure for fuel cell
JPH1116581A (en) * 1997-06-20 1999-01-22 Fuji Electric Corp Res & Dev Ltd Solid oxide type fuel cell
JP2004146343A (en) * 2002-08-28 2004-05-20 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2005183087A (en) * 2003-12-17 2005-07-07 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2005209620A (en) * 2003-12-26 2005-08-04 Honda Motor Co Ltd Fuel cell and fuel cell stack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275293A (en) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd Gas pipe structure for fuel cell
JPH1116581A (en) * 1997-06-20 1999-01-22 Fuji Electric Corp Res & Dev Ltd Solid oxide type fuel cell
JP2004146343A (en) * 2002-08-28 2004-05-20 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2005183087A (en) * 2003-12-17 2005-07-07 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2005209620A (en) * 2003-12-26 2005-08-04 Honda Motor Co Ltd Fuel cell and fuel cell stack

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073359A (en) * 2005-09-07 2007-03-22 Mitsubishi Materials Corp Fuel cell
JP2007141815A (en) * 2005-11-17 2007-06-07 General Electric Co <Ge> Compliant feed tube for planar solid oxide fuel cell system
US8802313B2 (en) 2006-10-19 2014-08-12 Honda Motor Co., Ltd. Fuel cell
US8323853B2 (en) 2006-10-19 2012-12-04 Honda Motor Co., Ltd. Fuel cell stack
US20100209820A1 (en) * 2007-03-29 2010-08-19 Taner Akbay Fuel cell
US8557467B2 (en) 2007-10-04 2013-10-15 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
US8530107B2 (en) 2008-01-21 2013-09-10 Honda Motor Co., Ltd. Solid oxide fuel cell manifold and corresponding stack
US8932778B2 (en) 2008-04-28 2015-01-13 Honda Motor Co., Ltd. Fuel cell with fuel gas outlets
US8916308B2 (en) 2008-04-28 2014-12-23 Honda Motor Co., Ltd. Fuel cell
WO2010110480A1 (en) 2009-03-26 2010-09-30 Honda Motor Co., Ltd. Fuel cell
US8652700B2 (en) 2009-03-26 2014-02-18 Honda Motor Co., Ltd. Fuel cell
US8865363B2 (en) 2009-04-02 2014-10-21 Honda Motor Co., Ltd. Fuel cell
WO2010113630A1 (en) 2009-04-02 2010-10-07 本田技研工業株式会社 Fuel cell
US9017894B2 (en) 2009-04-02 2015-04-28 Honda Motor Co., Ltd. Fuel cell
US8652701B2 (en) 2009-09-08 2014-02-18 Honda Motor Co., Ltd. Fuel cell
WO2011030770A1 (en) 2009-09-08 2011-03-17 Honda Motor Co., Ltd. Fuel cell
WO2011030769A1 (en) 2009-09-08 2011-03-17 Honda Motor Co., Ltd. Fuel cell stack
US8980498B2 (en) 2009-09-08 2015-03-17 Honda Motor Co., Ltd. Fuel cell stack
JP2012129037A (en) * 2010-12-15 2012-07-05 Honda Motor Co Ltd Fuel cell
WO2012081321A1 (en) 2010-12-15 2012-06-21 Honda Motor Co., Ltd. Fuel cell
US8951692B2 (en) 2010-12-15 2015-02-10 Honda Motor Co., Ltd. Fuel cell
US9252450B2 (en) 2011-03-02 2016-02-02 Honda Motor Co., Ltd. Fuel cell stack
US9406953B2 (en) 2011-03-02 2016-08-02 Honda Motor Co., Ltd. Fuel cell stack

Also Published As

Publication number Publication date
JP5023429B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5023429B2 (en) Flat plate fuel cell
US7914937B2 (en) Fuel cell and fuel cell stack
JP4627406B2 (en) Separator and fuel cell
CA2549747C (en) Fuel cell and fuel cell stack
WO2006077762A1 (en) Flat laminate type fuel cell and fuel cell stack
JP2018533172A (en) Bipolar plate with polymer coating
EP1845580A1 (en) Solid oxide type fuel cell
JP2008218278A (en) Flat plate stacking type fuel cell
JP2007073359A (en) Fuel cell
JP2008251236A (en) Flat lamination type fuel cell
US20100304265A1 (en) Solid oxide fuel cell
JP4900364B2 (en) Fuel cell
JP4461949B2 (en) Solid oxide fuel cell
WO2009119108A1 (en) Fuel cell stack and flat-plate solid oxide fuel cell using same
JP2009283146A (en) Fuel cells
JP2006269409A (en) Solid oxide fuel cell, sofc
JP7236966B2 (en) Electrochemical reaction cell stack
JP4984374B2 (en) Fuel cell
JP5125376B2 (en) Fuel cell
JP4512845B2 (en) Fuel cell manifold mechanism
JP5727429B2 (en) Fuel cell with separator and fuel cell
JP5200318B2 (en) Fuel cell stack
JPWO2018167845A1 (en) Flat plate type electrochemical cell stack
JP2004311155A (en) Fuel cell stack
JP2006172906A (en) Fuel battery cell and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees