JP2006119864A - Velocity error vector analysis method - Google Patents

Velocity error vector analysis method Download PDF

Info

Publication number
JP2006119864A
JP2006119864A JP2004306510A JP2004306510A JP2006119864A JP 2006119864 A JP2006119864 A JP 2006119864A JP 2004306510 A JP2004306510 A JP 2004306510A JP 2004306510 A JP2004306510 A JP 2004306510A JP 2006119864 A JP2006119864 A JP 2006119864A
Authority
JP
Japan
Prior art keywords
speed
measurement
vector
actual
error vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004306510A
Other languages
Japanese (ja)
Other versions
JP2006119864A5 (en
Inventor
Masao Matsuura
正雄 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004306510A priority Critical patent/JP2006119864A/en
Publication of JP2006119864A publication Critical patent/JP2006119864A/en
Publication of JP2006119864A5 publication Critical patent/JP2006119864A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method of a target motion analysis in which the speed trap is not predicted by a commercially available radar receiver. <P>SOLUTION: When an actual velocity is unknown, a distance in which a ratio of change of a velocity error vector (analysis evaluation point) is obtained for each measurement direction on the basis of the object measurement starting point direction using the characteristics of the velocity error vector. The distance is the actual measurement distance. When the distance connecting a point at the intersection of the measurement starting point direction with the extended line of the direction of the actual velocity vector (known), and a point at the intersection of the measurement ending point direction with the extended line of the direction of the actual velocity vector (known) is divided by the measurement time, the actual velocity is determined. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、目標運動解析に関するものであり、速度超過違反を取り締まるためのレーダ
ーによる速度の測定方法は、市販の受信機があれば取り締まりを予知されてしまう可能性
があり、取り締まりを予知されないために速度誤差ベクトルの性質を利用した高精度の速
度解析を実現するものである。
The present invention relates to a target motion analysis, and the radar speed measurement method for cracking over speed violations may be forewarned if there is a commercially available receiver. In addition, it realizes high-accuracy speed analysis using the characteristics of the speed error vector.

現在の速度取り締まりはオービスのような固定装置や移動取り締まり機によるもので、
そのほとんどがレーダーによる速度測定方法となっている。
しかし、市販のレーダー受信機により、取り締まりを予知する事が可能であり、現在ま
で取り締まり機を予知されないような測定方法が考案されていない。
The current speed control is based on a fixing device such as Orbis and a mobile control machine.
Most of them are radar speed measurement methods.
However, it is possible to predict the crackdown with a commercially available radar receiver, and no measurement method has been devised so far that the cracker cannot be predicted.

従来の取り締まり機のように、速度測定のためにレーダー波を送信していたのでは、市
販のレーダー受信機を悪用した悪質な速度違反者に予知されてしまう可能性がある。
本発明は、違反者に予知されないように計測方位と計測時間を元に速度測定のために推
定速度設定し計測結果を定量的に評価し、違反者の実際の速度を求めるための目標運動解
析の評価法を開示し、予知されると言う問題点を解決する事を課題とする。
If a radar wave is transmitted for speed measurement as in a conventional cracker, there is a possibility that a vicious speed violator who abuses a commercially available radar receiver may foresee.
The present invention sets the estimated speed for speed measurement based on the measurement direction and measurement time so as not to be predicted by the violator, quantitatively evaluates the measurement result, and performs the target motion analysis for obtaining the actual speed of the violator It is an object to disclose the evaluation method and solve the problem of being predicted.

実際の速度を計測する場合、必要なデータとして、実際の速度ベクトルの方向(既知)
計測方位、計測時間、推定速度ベクトル(法定速度等)があり、これらのデータにより解
析する基準を設定する事ができる。
しかし、求められた解析の基準は実際の計測対象の運動と相似三角形の関係にあり、そ
の中の一意な解となり、(図1の△ABCと△ADFを参照)実際の速度ベクトルと推定
速度ベクトルが等しい場のみが正しい解であると言える。
推定速度ベクトルの始点を、計測始点方位線上に沿って平行移動させると、計測方位と
推定方位(推定速度ベクトルの先端方位)に方位差が生じる。
この時、計測方位と推定速度ベクトルの延長線上との交点及び推定方位と推定速度ベク
トルの延長線上との交点を結んだものが問題を解決するための速度誤差ベクトルとなる。
(図1 E、Fを参照)
When measuring the actual speed, the direction of the actual speed vector (known) as necessary data
There are measurement direction, measurement time, estimated speed vector (legal speed, etc.), and the reference for analysis can be set by these data.
However, the calculated analysis standard has a similar triangle relationship with the actual motion of the object to be measured, and it is a unique solution (see ΔABC and ΔADF in FIG. 1). Only when the vectors are equal is the correct solution.
When the start point of the estimated velocity vector is translated along the measurement start point azimuth line, a difference in direction occurs between the measurement azimuth and the estimated azimuth (the tip azimuth of the estimated velocity vector).
At this time, the intersection of the measured azimuth and the estimated velocity vector on the extension line and the intersection of the estimated azimuth and the estimated velocity vector on the extension line are the velocity error vectors for solving the problem.
(See Fig. 1 E and F)

速度誤差ベクトルを視覚的に評価しやすいように、速度誤差ベクトルを正規化表示する
場合、速度誤差ベクトルがプラスの場合は上に、マイナスの場合は下に90度回転させ、
速度誤差ベクトルの先端を速度誤差ベクトルの大きさを評価するための指標として解析評
価ポイントとする。
(図1の4,5を参照)
When the speed error vector is normalized and displayed so that the speed error vector can be easily visually evaluated, the speed error vector is rotated up by 90 degrees when the speed error vector is positive, and down when the speed error vector is negative.
The tip of the speed error vector is used as an analysis evaluation point as an index for evaluating the magnitude of the speed error vector.
(Refer to 4 and 5 in Fig. 1)

速度誤差ベクトルの性質上、実際の速度ベクトルと推定速度ベクトルの始点が同一位置
にあり、ベクトルの方向が同一であれば、二つのベクトルの差分である速度誤差ベクトル
は計測時間毎に一定の変化率を保持する。(図2を参照)
Due to the nature of the speed error vector, if the start point of the actual speed vector and the estimated speed vector are at the same position and the direction of the vector is the same, the speed error vector, which is the difference between the two vectors, will change at every measurement time. Hold rate. (See Figure 2)

速度誤差ベクトルの性質
前提条件
1 実際の速度ベクトルと推定速度ベクトルの方向が同一であること。
2 実際の速度ベクトルと推定速度ベクトルの計測始点座標位置が同一であること。
性質1
前提条件を満たす時、実際の速度ベクトルと推定速度ベクトルの大きさに誤差がある
場合、計測開始時間を基準に、経過時間に対応した速度誤差ベクトルの大きさは、一定
の変化率を保持する。
(計測時間毎の速度誤差ベクトルの解析評価ポイントは、ある傾きを持った直線状に位
置する。)
性質2
前提条件を満たす時、実際の速度ベクトルと推定速度ベクトルの大きさが一致した場
合、計測開始時間を基準に、経過時間に対応した速度誤差ベクトルの大きさは、零を保
持する。
(計測時間毎の速度誤差ベクトルの解析評価ポイントは、傾きのない直線状に位置する)
Properties of speed error vector Prerequisites 1 The direction of the actual speed vector and the estimated speed vector must be the same.
2 The measurement start point coordinate position of the actual velocity vector and the estimated velocity vector must be the same.
Property 1
When there is an error in the magnitude of the actual speed vector and the estimated speed vector when the precondition is satisfied, the magnitude of the speed error vector corresponding to the elapsed time maintains a constant rate of change based on the measurement start time. .
(The analysis evaluation point of the speed error vector for each measurement time is positioned in a straight line with a certain slope.)
Nature 2
If the actual velocity vector and the estimated velocity vector match when the precondition is met, the velocity error vector size corresponding to the elapsed time is kept at zero based on the measurement start time.
(The analysis evaluation point of the speed error vector for each measurement time is located in a straight line with no inclination.)

評価方法
解析評価ポイントが直線状になる計測距離を算出する。
評価方法1
性質1の状態の時、基準の法定速度が傾き0なので、解析評価ポイントの傾きを計算す
ると実際の超過速度を算出する事が可能である。
評価方法2
性質1を経て、解析評価ポイントの傾きが0となる推定速度を算出し(走行距離を計測
時間で割る)、性質2の状態に至った時、本発明が求める目標の真値(実際の計測位置、
実際の速度)と運動解析の推定速度が一致したと評価する。
(2次元、3次元でも性質は同じである。)
Evaluation method The measurement distance at which the analysis evaluation point is linear is calculated.
Evaluation method 1
When the property 1 is in the state, the reference legal speed is 0, so that the actual excess speed can be calculated by calculating the slope of the analysis evaluation point.
Evaluation method 2
The estimated speed at which the slope of the analysis evaluation point is 0 is calculated through property 1 (travel distance is divided by measurement time), and when the property 2 state is reached, the target true value (actual measurement) required by the present invention is reached. position,
Evaluate that the actual speed) and the estimated speed of motion analysis are consistent.
(The properties are the same in 2D and 3D.)

速度誤差ベクトルは、例えば実際の速度60km/hと推定速度50km/hであれば
その速度誤差は10km/hとなり、3分間で500m、6分間で1,000mと言うよ
うに定比例の関係にあり、更に絶対尺度と同等の精度となることから、誰でも定量的な評
価を実施する事ができる。
For example, if the actual speed is 60 km / h and the estimated speed is 50 km / h, the speed error is 10 km / h. The speed error vector is in a proportional relationship, such as 500 m for 3 minutes and 1,000 m for 6 minutes. Yes, since it has the same accuracy as the absolute scale, anyone can perform quantitative evaluation.

以上の事から実際の速度が不明であっても、速度誤差ベクトルの性質を利用し、目標計
側始点方位を基準に、計測方位毎の速度誤差ベクトル(解析評価ポイント)の変化の割合
が一定となる距離を求めれば、それが実際の計測距離となり、計測始点方位と実際の速度
ベクトルの方向(既知)の延長線との交点及び計測終点方位と実際の速度ベクトルの方向
(既知)の延長線との交点を結ぶ距離を計測時間で割れば実際の速度が判明し、本発明の
課題を解決する事が出来る。
From the above, even if the actual speed is unknown, the rate of change of the speed error vector (analysis evaluation point) for each measurement direction is constant based on the start point direction on the target meter side using the characteristics of the speed error vector. Is the actual measurement distance, the intersection of the measurement start point direction and the extension of the actual velocity vector direction (known), and the extension of the measurement end point direction and the actual speed vector direction (known). If the distance connecting the intersection with the line is divided by the measurement time, the actual speed can be determined, and the problem of the present invention can be solved.

実際の速度が不明でも、速度誤差ベクトルの性質を利用する事により、絶対尺度と同等
の精度が保証され、実際の速度と推定の速度を比較し定量的に評価する事が可能となり、
その結果、高精度な速度(真値)を瞬時に求める事が容易となる。
Even if the actual speed is unknown, the accuracy of the absolute scale is guaranteed by using the property of the speed error vector, and the actual speed and the estimated speed can be compared and quantitatively evaluated.
As a result, it becomes easy to instantaneously obtain a highly accurate speed (true value).

速度超過取り締まりのために、速度計測をしている事を予知されない。 It is not foreseeable that speed is being measured due to overspeed control.

本発明は走行中の車輌に対し、計測方位と計測時間を連続的に計測し、それらのデーターを元に速度測定のために推定速度設定し、計測結果を速度誤差ベクトルの性質を利用して定量的に評価・目標運動解析をする事により、違反者の実際の速度を瞬時に求め、違反者に予知される事無く速度違反を検挙する事が可能となる。   The present invention continuously measures the measurement direction and measurement time for a running vehicle, sets the estimated speed for speed measurement based on the data, and uses the characteristics of the speed error vector as the measurement result. By quantitatively evaluating and analyzing the target motion, the actual speed of the offender can be obtained instantaneously, and the speed offense can be cleared without being foreseen by the offender.

1 推定速度(法定速度)を設定する。
実際の速度ベクトルの方向は既知である。(図4を参照)
2 推定速度ベクトルの始点を計測始点方位線上に沿って距離を変化させ、各計測方位
毎の速度誤差ベクトルを算出し、得られた解析評価ポイントの傾きが直線状になる距
離を算出する。(図2を参照)
3 解析距離と解析ベクトルの方向がどの位当てはまっているのか評価をするために、
直線近似した解析評価ポイントの残差平方和の値又は、相関係数を評価対象とする事
も定量的で良い方法である。
4 解析距離と解析ベクトルの方向を微調整し更に精度を向上させる。
5 最も残差平方和が小さい(解析精度か高い)解析距離と解析ベクトルの方向が真値
であると評価する。
6 計測始点位置と計測終点位置を結ぶ距離を計測時間で割ったものが実際の速度とな
る。(図3 E,Gを参照)
7 最終的に求められた速度が本発明の解決する課題である目標運動解析による高精度
な速度となる。
解析評価ポイントを直線近似し、残差平方和が最も小さい距離とベクトルの方向を数学
的に回帰しながら解を自動的に求める事が可能である。
1 Set the estimated speed (legal speed).
The direction of the actual velocity vector is known. (See Figure 4)
2 Change the distance of the start point of the estimated velocity vector along the measurement start point azimuth line, calculate the velocity error vector for each measurement azimuth, and calculate the distance at which the slope of the obtained analysis evaluation point is linear. (See Figure 2)
3 To evaluate how much the analysis distance and the direction of the analysis vector fit,
It is also a quantitative and good method to use the value of the sum of squares of the residuals of the analysis evaluation points that are linearly approximated or the correlation coefficient as the evaluation target.
4 Finely adjust the analysis distance and the direction of the analysis vector to further improve accuracy.
5 Evaluate that the analysis distance with the smallest residual sum of squares (analysis accuracy is high) and the direction of the analysis vector are true values.
6 The actual speed is obtained by dividing the distance between the measurement start point and measurement end point by the measurement time. (See Fig. 3 E and G)
7 The finally obtained speed is a high-accuracy speed based on the target motion analysis, which is a problem to be solved by the present invention.
It is possible to obtain a solution automatically by mathematically regressing the distance and vector direction in which the residual sum of squares is the smallest, by approximating the analysis evaluation points linearly.

1 交通速度違反のステルス取り締まり。
(違反者は速度違反取り締まりの前兆を予知する事ができない)
2 産業上の目標運動解析(レーダーが故障した時の代替え利用)
3 1定点だけを計測する計測側の運動解析(1目標陸測による計測側の位置の極限)
1 Stealth control for traffic speed violations.
(The offender cannot foresee the signs of speed control.)
2 Industrial target motion analysis (alternative use when radar fails)
3. Measurement side motion analysis that measures only one fixed point (limit of the measurement side position by one target land survey)

速度誤差ベクトルの原理図Speed error vector principle diagram 解析評価ポイントの評価原理図Analysis principle diagram of analysis evaluation points 解析評価ポイントの評価図Evaluation chart of analysis evaluation points 交通速度違反のステルス取り締まりの原理図Principle diagram of stealth control for traffic speed violation

符号の説明Explanation of symbols

1 推定速度ベクトル
2 実際の速度ベクトル
3 速度誤差ベクトル
4 解析評価ポイント(+)
5 解析評価ポイント(−)
1 Estimated speed vector 2 Actual speed vector 3 Speed error vector 4 Analysis evaluation point (+)
5 Analysis evaluation points (-)

Claims (1)

実際の速度ベクトルと推定速度ベクトルとの差分である速度誤差ベクトルの性質を利用
した目標運動解析法
Target motion analysis method using the nature of velocity error vector, which is the difference between actual velocity vector and estimated velocity vector
JP2004306510A 2004-10-21 2004-10-21 Velocity error vector analysis method Pending JP2006119864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306510A JP2006119864A (en) 2004-10-21 2004-10-21 Velocity error vector analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306510A JP2006119864A (en) 2004-10-21 2004-10-21 Velocity error vector analysis method

Publications (2)

Publication Number Publication Date
JP2006119864A true JP2006119864A (en) 2006-05-11
JP2006119864A5 JP2006119864A5 (en) 2008-05-08

Family

ID=36537696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306510A Pending JP2006119864A (en) 2004-10-21 2004-10-21 Velocity error vector analysis method

Country Status (1)

Country Link
JP (1) JP2006119864A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218611A (en) * 1994-02-03 1995-08-18 Hitachi Ltd Mobile tracking system
JP2001343210A (en) * 2000-05-31 2001-12-14 Masahiro Nishikawa Method and apparatus for detection of position of object
JP2003329771A (en) * 2002-05-16 2003-11-19 Mitsubishi Electric Corp Tracking apparatus and tracking processing method
JP2004287473A (en) * 2001-10-30 2004-10-14 Internatl Business Mach Corp <Ibm> Information processor and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218611A (en) * 1994-02-03 1995-08-18 Hitachi Ltd Mobile tracking system
JP2001343210A (en) * 2000-05-31 2001-12-14 Masahiro Nishikawa Method and apparatus for detection of position of object
JP2004287473A (en) * 2001-10-30 2004-10-14 Internatl Business Mach Corp <Ibm> Information processor and program
JP2003329771A (en) * 2002-05-16 2003-11-19 Mitsubishi Electric Corp Tracking apparatus and tracking processing method

Similar Documents

Publication Publication Date Title
WO2018181974A1 (en) Determination device, determination method, and program
JP2016180980A (en) Information processing device, program, and map data updating system
JP2007270613A (en) Virtual profile graph for quality evaluation of roadway surface
RU2551355C1 (en) Method of coordinates determination of radio emission source
CN108802721A (en) A kind of lower method for tracking target of arbitrary line constraint
JP2009074930A (en) Positioning device, positioning system, computer program, and positioning method
US20220058307A1 (en) Equipment state detection device, equipment state detection method, and program
Buttlar et al. Integration of smart-phone-based pavement roughness data collection tool with asset management system
JP2023507560A (en) Method and system for generating traffic data
CN109470276A (en) Mileage meter calibration method and device based on zero-velocity curve
RU2013157331A (en) METHOD FOR ASSESSING RAILWAY VEHICLE SPEED
Luo et al. Automated pavement horizontal curve measurement methods based on inertial measurement unit and 3D profiling data
Du et al. A lifelong framework for data quality monitoring of roadside sensors in cooperative vehicle-infrastructure systems
CN1080413C (en) Process for stabilising direction indicated by magnetic compasses
Wegener et al. A measurement standard for vehicle localization and its ISO-compliant measurement uncertainty evaluation
Spindler et al. Low power and low cost sensor for train velocity estimation
CN107677247A (en) Road horizontal slope slope measuring and bearing calibration
JP2006119864A (en) Velocity error vector analysis method
US20190129040A1 (en) Method and apparatus for map inference signal reconstruction
WO2018074356A1 (en) Speed measuring device, position measuring device, speed measuring method, and program
RU2524482C1 (en) Method for single-position radar location of mobile objects on road network
Geréb Real-time updating of noise maps by source-selective noise monitoring
CN105022404A (en) Underground unmanned scraper running positioning system and method
JP7015234B2 (en) Arithmetic logic unit, arithmetic method, arithmetic program and recording medium
Niedermeier et al. Detection and mitigation of GNSS deception by combination of odometric dead reckoning and GNSS observations for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412