JP2006116981A - Vehicular air-conditioner - Google Patents

Vehicular air-conditioner Download PDF

Info

Publication number
JP2006116981A
JP2006116981A JP2004303640A JP2004303640A JP2006116981A JP 2006116981 A JP2006116981 A JP 2006116981A JP 2004303640 A JP2004303640 A JP 2004303640A JP 2004303640 A JP2004303640 A JP 2004303640A JP 2006116981 A JP2006116981 A JP 2006116981A
Authority
JP
Japan
Prior art keywords
heat exchanger
vehicle
indoor heat
indoor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303640A
Other languages
Japanese (ja)
Inventor
Masanao Kotani
正直 小谷
Yoshichika Fukushima
義親 福島
Haruo Hirakawa
治生 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004303640A priority Critical patent/JP2006116981A/en
Publication of JP2006116981A publication Critical patent/JP2006116981A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicular air-conditioner capable of continuously performing dehumidifying operation even at the low outside air temperature requiring defrosting operation. <P>SOLUTION: In the vehicular air-conditioner which is mounted on a vehicle, has two refrigerating cycles having compressors 1a, 1b, four-way valves 2a, 2b, outdoor heat exchangers 3a, 3b, decompression devices 4a, 4b, and indoor heat exchangers 5a, 5b, 5a', 5b', and performs dehumidifying operation by performing the cooling operation by one indoor fan and the heating operation by the other indoor fan with the indoor fans 8 being arranged substantially in the center of the vehicle width direction, an indoor heat exchanger of one refrigerating cycle and the indoor heat exchangers 5a, 5b, 5a', 5b' of the other refrigerating cycle are arranged on one side of the vehicle width direction of the vehicle with respect to the indoor fan 8, and air sucked in the indoor heat exchangers 5a, 5b, 5a', 5b' is mixed and blown inside the vehicle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電車、自動車などの車両の空気調和装置に関し、特に、低外気温度においても除湿運転を連続して行うものに好適である。   The present invention relates to an air conditioner for vehicles such as trains and automobiles, and is particularly suitable for an apparatus that continuously performs a dehumidifying operation even at a low outside air temperature.

鉄道車両は狭い空間に多数の乗客が乗車するため、乗客の発熱・発汗による潜熱負荷が高く、低外気温度時においても除湿運転が必要となり、車内空気温度を下げることなく、除湿することが要求される。そして、吹出し空気温度が低下しない除湿運転を可能とするために、冷房専用の冷凍サイクルと、暖房運転ができる冷凍サイクルとを車両内に設け、車幅方向の略中央に配置された室内ファンに対して、一方側に蒸発器として作用する室内熱交換器を、他方側に凝縮器として作用する室内熱交換器を配置し、除湿運転時には冷房運転と、暖房運転を同時に行うことが知られ、例えば特許文献1に記載されている。   Railcars have many passengers in a narrow space, so there is a high latent heat load due to passengers' heat generation and sweating, and dehumidification is required even at low outside air temperatures, requiring dehumidification without lowering the air temperature inside the vehicle. Is done. In order to enable a dehumidifying operation in which the temperature of the blown air does not decrease, a refrigeration cycle dedicated to cooling and a refrigeration cycle capable of heating operation are provided in the vehicle, and an indoor fan disposed at the approximate center in the vehicle width direction is provided. On the other hand, an indoor heat exchanger that acts as an evaporator on one side and an indoor heat exchanger that acts as a condenser on the other side are arranged, and during the dehumidifying operation, cooling operation and heating operation are performed simultaneously, For example, it is described in Patent Document 1.

特開昭64−44374号公報JP-A 64-44374

上記従来技術においては、除湿運転中に室内熱交換器が凝縮器として作用する側の一方の冷凍サイクルは暖房運転と同様の運転のため、室外熱交換器は蒸発器として作用し、低外気温度時において、この室外熱交換器が着霜する。他方、空気中の水分を取り除いている室内熱交換器の冷凍サイクルは冷房運転と同様であり、蒸発器として作用している。そして、それぞれの室内熱交換器を通過した空気は室内ファンに吸込まれ、室内ファンのケーシングで混合されて空調空気として吹出される。   In the above prior art, during the dehumidifying operation, one refrigeration cycle on the side where the indoor heat exchanger acts as a condenser is the same operation as the heating operation, so the outdoor heat exchanger acts as an evaporator, and the low outdoor temperature At times, this outdoor heat exchanger frosts. On the other hand, the refrigeration cycle of the indoor heat exchanger that removes moisture in the air is similar to the cooling operation and acts as an evaporator. And the air which passed each indoor heat exchanger is suck | inhaled by the indoor fan, is mixed with the casing of an indoor fan, and is blown off as conditioned air.

このような条件において、着霜した室外熱交換器の霜取り、除霜運転を行うためには、一方の冷凍サイクルを冷房運転と同様に、つまり、凝縮器として作用していた一方の室内熱交換器を蒸発器としなければならない。このため、吹出し空気温度が低下し、乗客に冷えすぎ感を与える。   Under such conditions, in order to perform defrosting and defrosting operation of the frosted outdoor heat exchanger, one refrigeration cycle is operated in the same manner as the cooling operation, that is, one indoor heat exchange functioning as a condenser. The vessel must be an evaporator. For this reason, blowing air temperature falls and it gives a passenger a feeling of being too cold.

そして、引き続いて、つまり連続して車内の除湿運転するためには、蒸発器として作用していた他方の室内熱交換器を凝縮器として作用させるように切り換える必要があり、室内温度を低下させないように吹出し空気温度で制御した場合、十分な冷却が行われないため、除湿量を確保できず、乗客にじめじめ感を与える。   Then, in order to perform dehumidifying operation in the vehicle continuously, that is, it is necessary to switch the other indoor heat exchanger that has acted as an evaporator to act as a condenser, so as not to lower the indoor temperature. When the temperature is controlled by the temperature of the blown air, sufficient cooling is not performed, so the amount of dehumidification cannot be secured, and passengers are given a sensation.

本発明の目的は上記従来技術の課題を解決し、除霜運転が必要な低外気温度時においても、除湿運転を停止させることなく連続して除湿運転を行うことができる車両用空調装置を得ることにある。   The object of the present invention is to solve the above-described problems of the prior art, and to obtain a vehicle air conditioner that can continuously perform a dehumidifying operation without stopping the dehumidifying operation even at a low outside air temperature that requires a defrosting operation. There is.

上記目的を達成するため、本発明は、車両に搭載され、圧縮機、四方弁、室外熱交換器、減圧装置、室内熱交換器を備えた二つの冷凍サイクルを有し、室内ファンが車幅方向の略中央に配置され、前記二つの冷凍サイクルの一方が冷房運転、他方が暖房運転を行うことにより除湿運転が行われる車両用空調装置において、前記室内ファンに対して前記車両の車幅方向の片側に、一方の前記冷凍サイクルの前記室内熱交換器と、他方の冷凍サイクルの前記室内熱交換器とが配置され、それぞれの前記室内熱交換器に吸込まれた空気が混合されて車内に吹出されるものである。   In order to achieve the above object, the present invention includes two refrigeration cycles mounted on a vehicle and provided with a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger, and the indoor fan has a vehicle width. In a vehicle air conditioner that is disposed substantially at the center of the direction and performs dehumidification operation by performing one of the two refrigeration cycles in cooling operation and the other in heating operation, the vehicle width direction of the vehicle with respect to the indoor fan The indoor heat exchanger of one of the refrigeration cycles and the indoor heat exchanger of the other refrigeration cycle are disposed on one side of the refrigeration cycle, and the air sucked into each of the indoor heat exchangers is mixed into the vehicle It will be blown out.

また、本発明は、車両に搭載され、圧縮機、四方弁、室外熱交換器、減圧装置、室内熱交換器をそれぞれ備えた二つの冷凍サイクルを有し、室内ファンが車幅方向の略中央に配置され、冷房運転と暖房運転を行うことにより除湿運転が行われる車両用空調装置において、それぞれの前記冷凍サイクルの室内熱交換器は、前記室内ファンを中心に点対称となるように配置され、一方の前記冷凍サイクルの前記室内熱交換器と、他方の冷凍サイクルの前記室内熱交換器に吸込まれた空気が混合されて車内に吹出されるものである。   Further, the present invention includes two refrigeration cycles mounted on a vehicle and each including a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger, and the indoor fan is substantially at the center in the vehicle width direction. In the vehicular air conditioner that is dehumidified by performing a cooling operation and a heating operation, the indoor heat exchanger of each refrigeration cycle is arranged to be point-symmetric about the indoor fan. The air sucked into the indoor heat exchanger of one of the refrigeration cycles and the indoor heat exchanger of the other refrigeration cycle are mixed and blown out into the vehicle.

さらに、上記のものにおいて、前記室内熱交換器のガスヘッダー及び液ヘッダーは、前記車両の長手方向と平行になるように配置されたことが望ましい。
さらに、上記のものにおいて、前記圧縮機は容量制御が可能とされて運転されることが望ましい。
Furthermore, in the above, it is desirable that the gas header and the liquid header of the indoor heat exchanger are arranged so as to be parallel to the longitudinal direction of the vehicle.
Furthermore, in the above, it is desirable that the compressor is operated with capacity control enabled.

さらに、上記のものにおいて、前記圧縮機と前記四方弁との間に前記室内熱交換器と前記減圧装置をバイパスするバイパス回路と、該バイパス回路に設けられた減圧装置と、を設けたことが望ましい。   Furthermore, in the above, a bypass circuit that bypasses the indoor heat exchanger and the pressure reducing device and a pressure reducing device provided in the bypass circuit are provided between the compressor and the four-way valve. desirable.

本発明によれば、それぞれの室内熱交換器に流入する空気の温度、湿度条件を一様とし、低外気温度で除湿運転しても蒸発器による冷却、除湿と、凝縮器による加熱をそれぞれ独立して行うことができるため、十分な除湿量と加熱量を確保することができ、冷えすぎ感やじめじめ感を与えることがない。   According to the present invention, the temperature and humidity conditions of the air flowing into each indoor heat exchanger are made uniform, and cooling by the evaporator, dehumidification, and heating by the condenser are independent from each other even when dehumidifying operation is performed at a low outside air temperature. Therefore, a sufficient amount of dehumidification and heating can be ensured, and the feeling of being too cold or bullying is not given.

図1、2は一実施の形態である冷凍サイクルを示したものであり、圧縮機1a、四方弁2a、室外熱交換器3a、減圧装置4a、室内熱交換器5a、5a'をそれぞれ冷媒が循環可能なように接続される第一の冷凍サイクルと、圧縮機1b、四方弁2b、室外熱交換器3b、減圧装置4b、室内熱交換器5b、5b'をそれぞれ冷媒が循環可能なように接続して形成される第二の冷凍サイクル及び室外ファン7及び室内ファン8を有している。   FIGS. 1 and 2 show a refrigeration cycle according to an embodiment, in which a compressor 1a, a four-way valve 2a, an outdoor heat exchanger 3a, a pressure reducing device 4a, and indoor heat exchangers 5a and 5a ′ are respectively supplied with refrigerant. The refrigerant can be circulated through the first refrigeration cycle connected so as to be circulated, the compressor 1b, the four-way valve 2b, the outdoor heat exchanger 3b, the pressure reducing device 4b, and the indoor heat exchangers 5b and 5b ′. A second refrigeration cycle and an outdoor fan 7 and an indoor fan 8 are formed to be connected.

第一の冷凍サイクルと第二の冷凍サイクルは独立して冷房及び暖房運転を行うことが可能であり、冷房負荷に応じて第一の冷凍サイクル及び第二の冷凍サイクルの運転を行う。車幅方向において、室内ファン8の一側に、一方の第一冷凍サイクルの室内熱交換器5aと、他方の第二冷凍サイクルの室内熱交換器5bとが配置される。さらには、室内熱交換器5a、5a'と5b、5b'は図1に示すようにファンモータを対称中心として、互いに点対称に配置される。   The first refrigeration cycle and the second refrigeration cycle can perform cooling and heating operations independently, and the first refrigeration cycle and the second refrigeration cycle are operated according to the cooling load. In the vehicle width direction, an indoor heat exchanger 5a of one first refrigeration cycle and an indoor heat exchanger 5b of the other second refrigeration cycle are arranged on one side of the indoor fan 8. Furthermore, the indoor heat exchangers 5a, 5a ′ and 5b, 5b ′ are arranged point-symmetrically with respect to the fan motor as the center of symmetry as shown in FIG.

また、図2に示すように室内熱交換器の吸込口には温度センサ9、9'、湿度センサ13、13'が設置されており、吹出し口には、温度センサ10、10'、湿度センサ14、14'が設置されている。さらに、室内ファン吐出口には、温度センサ11、湿度センサ15が設置されている。以上のセンサを設ける事により、除湿時における室内熱交換器通過後の被空調空気の除湿量を測定し、必要な冷却・除湿能力と必要な再加熱量の推定が可能となる。
さらに、図3に示すように室外ファン上流部には温度センサ16が設置され、室外熱交換器の吹出し空気温度を測定し、低外気温度での暖房運転もしくは、除湿運転時における除霜運転の必要・不要を判断する。
In addition, as shown in FIG. 2, temperature sensors 9, 9 'and humidity sensors 13, 13' are installed at the inlet of the indoor heat exchanger, and temperature sensors 10, 10 ', humidity sensors are installed at the outlet. 14, 14 'are installed. Further, a temperature sensor 11 and a humidity sensor 15 are installed at the indoor fan discharge port. By providing the above sensors, it is possible to measure the dehumidification amount of the air-conditioned air after passing through the indoor heat exchanger during dehumidification, and estimate the necessary cooling / dehumidifying capacity and the necessary reheating amount.
Further, as shown in FIG. 3, a temperature sensor 16 is installed upstream of the outdoor fan, and the temperature of the air blown from the outdoor heat exchanger is measured to perform a heating operation at a low outdoor temperature or a defrosting operation during a dehumidifying operation. Determine whether necessary or not.

通常の冷房運転の場合には、冷媒は図3の矢印で示されるような経路で循環する。この場合、圧縮機1a、1bで圧縮・加熱された冷媒は室外熱交換器3a、3bで室外空気と熱交換することによって冷却・凝縮される。その後、冷媒は減圧装置4a、4bで減圧され、室内熱交換器5a、5b、5a'、5b'で室内空気と熱交換し加熱・蒸発されて圧縮機1a、1bへ流入するサイクルを形成する。この時、室内熱交換器と熱交換することによって冷却された空気が室内ファン8によって室内へ吹出される。そして、圧縮機1a、1b及び減圧装置4a、4bはそれぞれ、温度センサ9、9'及び湿度センサ13、13'と温度センサ11、湿度センサ15によって検知される冷房負荷に対応した運転周波数と開度になるよう制御される。   In the case of normal cooling operation, the refrigerant circulates through a route as indicated by an arrow in FIG. In this case, the refrigerant compressed and heated by the compressors 1a and 1b is cooled and condensed by exchanging heat with outdoor air by the outdoor heat exchangers 3a and 3b. Thereafter, the refrigerant is decompressed by the decompression devices 4a and 4b, and heat is exchanged with the indoor air in the indoor heat exchangers 5a, 5b, 5a ′, and 5b ′ to form a cycle that is heated and evaporated and flows into the compressors 1a and 1b. . At this time, air cooled by exchanging heat with the indoor heat exchanger is blown into the room by the indoor fan 8. The compressors 1a, 1b and the decompression devices 4a, 4b are respectively operated at an operating frequency and an opening corresponding to the cooling load detected by the temperature sensors 9, 9 ′ and the humidity sensors 13, 13 ′, the temperature sensor 11, and the humidity sensor 15. Controlled to a degree.

通常の暖房運転の場合、冷媒は図4の矢印で示されるような経路で循環する。この時、圧縮機1a、1bで圧縮・加熱された冷媒は室内熱交換器5a、5b、5a'、5b'で室内空気と熱交換することによって冷却・凝縮する。この結果、室内熱交換器と熱交換することによって加熱された空気は、室内ファンによって室内へ吹出される。室内熱交換器5a、5b、5a'、5b'によって冷却・凝縮された冷媒は、減圧装置4a、4bで減圧され、室外熱交換3a、3bで室外空気と熱交換することによって加熱・蒸発して圧縮機1a、1bへ流入するサイクルを形成する。圧縮機1a、1b及び減圧装置4a、4bは、温度センサ9、9'と温度センサ11によって検知される暖房負荷に対応した運転周波数と開度になるよう制御される。そして、温度センサ16により室外熱交換器吹出し空気温度を検知し、室外吹出し温度が除霜を必要とする温度Tf以下となった場合、図示しないタイマーが作動し、遅延時間Dtを経過した後、四方弁2a、2bを逆転して除霜運転を行う。除霜運転開始から復帰時間Dr行った後、四方弁2a、2bを逆転して通常の暖房運転へと復帰する。   In a normal heating operation, the refrigerant circulates along a route as indicated by an arrow in FIG. At this time, the refrigerant compressed and heated by the compressors 1a and 1b is cooled and condensed by exchanging heat with indoor air in the indoor heat exchangers 5a, 5b, 5a ′, and 5b ′. As a result, the air heated by exchanging heat with the indoor heat exchanger is blown into the room by the indoor fan. The refrigerant cooled / condensed by the indoor heat exchangers 5a, 5b, 5a ′ and 5b ′ is heated and evaporated by being depressurized by the decompression devices 4a and 4b and exchanging heat with the outdoor air by the outdoor heat exchanges 3a and 3b. Thus, a cycle that flows into the compressors 1a and 1b is formed. The compressors 1a, 1b and the decompression devices 4a, 4b are controlled to have an operation frequency and an opening corresponding to the heating load detected by the temperature sensors 9, 9 ′ and the temperature sensor 11. And when the outdoor heat exchanger blown air temperature is detected by the temperature sensor 16 and the outdoor blown temperature is equal to or lower than the temperature Tf that requires defrosting, a timer (not shown) is activated, and after the delay time Dt has elapsed, The defrosting operation is performed by reversing the four-way valves 2a and 2b. After performing the return time Dr from the start of the defrosting operation, the four-way valves 2a and 2b are reversed to return to the normal heating operation.

除湿運転の場合、図1に示すように、第一の冷凍サイクルの冷媒は圧縮機1で圧縮・加熱されて、室外熱交換器3aで冷却・凝縮する。その後、減圧装置4aで減圧された冷媒は室内熱交換器5a、5a'で室内空気と熱交換し加熱・蒸発して再び圧縮機1aへ流入するサイクルを形成する。この結果、室内熱交換器5a、5a'で熱交換された室内空気は除湿・冷却されて吹出される。この時、圧縮機1a、減圧装置4aは温度センサ9、10と湿度センサ13、14により検知される除湿負荷に対応した圧縮機運転周波数と膨張弁開度で運転される。   In the dehumidifying operation, as shown in FIG. 1, the refrigerant in the first refrigeration cycle is compressed and heated by the compressor 1 and cooled and condensed by the outdoor heat exchanger 3a. Thereafter, the refrigerant decompressed by the decompression device 4a exchanges heat with the indoor air in the indoor heat exchangers 5a and 5a ′, forms a cycle in which it is heated and evaporated and flows into the compressor 1a again. As a result, the indoor air heat-exchanged by the indoor heat exchangers 5a and 5a ′ is dehumidified and cooled and blown out. At this time, the compressor 1a and the pressure reducing device 4a are operated at the compressor operating frequency and the expansion valve opening corresponding to the dehumidifying load detected by the temperature sensors 9, 10 and the humidity sensors 13, 14.

一方、第二の冷凍サイクルの冷媒は圧縮機2bで圧縮・加熱されて、室内熱交換器5b、5b'で室内空気と熱交換し冷却・凝縮する。この結果、室内熱交換器5b、5b'で熱交換された室内空気は加熱されて吹出される。その後、減圧装置4bで減圧された冷媒は室外熱交換器3bで室外空気と熱交換器し加熱・蒸発して再び圧縮機1bへと流入する暖房サイクルを形成する。蒸発器で冷却・除湿された被空調空気と凝縮器で加熱された被空調空気は室内ファン8で混合されて、室温程度の乾いた空気として吹出される。
圧縮機1b及び減圧装置4bは温度センサ9、11により検知される必要再加熱量と温度センサ10'、13'によって算出される加熱量に対応した運転周波数及び膨張弁開度で運転される。また、温度センサ16により室外熱交換器吹出し空気温度を検知し、室外吹出し温度が除霜を必要とする温度Tf以下となった場合、図示しないタイマーが作動し、遅延時間Dtを経過した後、四方弁2bを逆転させて第二の冷凍サイクルは除霜運転となる。同時に第一の冷凍サイクルの四方弁2aが逆転し、第一の冷凍サイクルが暖房運転となる。以上のように冷房(除霜)運転の冷凍サイクルと、暖房運転の冷凍サイクルを繰返し交互運転させるため、この除湿運転では、除霜が必要な低外気温度においても、除湿運転を停止させない連続運転が可能となる。この結果、被空調空気は一様の温度・湿度条件で各冷凍サイクルの室内熱交換器に流入し、蒸発器として作用する室内熱交換器を通過した被空調空気は冷却・除湿され、凝縮器として作用する室内熱交換器を通過した被空調空気は加熱されて、それぞれ、室内ファンに吸込まれ、室内ファンのケーシングで混合されて一様な空調空気として吹出される。したがって、除霜運転による、冷えすぎ感や、じめじめ感といった不快感を乗客に与えることのない除湿運転とすることができる。
On the other hand, the refrigerant in the second refrigeration cycle is compressed and heated by the compressor 2b, and is cooled and condensed by exchanging heat with indoor air in the indoor heat exchangers 5b and 5b ′. As a result, the indoor air heat-exchanged by the indoor heat exchangers 5b and 5b ′ is heated and blown out. After that, the refrigerant decompressed by the decompression device 4b forms a heating cycle in which heat is evaporated with the outdoor air in the outdoor heat exchanger 3b, and is heated and evaporated to flow into the compressor 1b again. The air-conditioned air cooled and dehumidified by the evaporator and the air-conditioned air heated by the condenser are mixed by the indoor fan 8 and blown out as dry air at about room temperature.
The compressor 1b and the pressure reducing device 4b are operated at an operation frequency and an expansion valve opening corresponding to the required reheating amount detected by the temperature sensors 9 and 11 and the heating amount calculated by the temperature sensors 10 ′ and 13 ′. In addition, when the outdoor heat exchanger blown air temperature is detected by the temperature sensor 16 and the outdoor blown temperature is equal to or lower than the temperature Tf that requires defrosting, a timer (not shown) is activated, and after the delay time Dt has elapsed, The second refrigeration cycle is defrosted by reversing the four-way valve 2b. At the same time, the four-way valve 2a of the first refrigeration cycle reverses, and the first refrigeration cycle enters the heating operation. As described above, since the refrigeration cycle for cooling (defrosting) operation and the refrigeration cycle for heating operation are alternately repeated, this dehumidifying operation does not stop the dehumidifying operation even at a low outside air temperature where defrosting is required. Is possible. As a result, the air to be conditioned flows into the indoor heat exchanger of each refrigeration cycle under uniform temperature and humidity conditions, and the air to be conditioned that has passed through the indoor heat exchanger acting as an evaporator is cooled and dehumidified. Air to be conditioned that has passed through the indoor heat exchanger acting as is heated, sucked into the indoor fan, mixed in the casing of the indoor fan, and blown out as uniform conditioned air. Therefore, it can be set as the dehumidification driving | operation which does not give a passenger unpleasant feeling, such as a feeling of being too cold and a feeling of bullying by defrost operation.

さらに、室内熱交換器のガスヘッダー及び液ヘッダーをレールと平行に配置、車両の長手方向とし、複数に分散する冷凍サイクルの液・ガスヘッダーを一列に纏めている。これにより、室内熱交換器の伝熱面積を拡大する事が可能となる。   Furthermore, the gas header and the liquid header of the indoor heat exchanger are arranged in parallel with the rails, and the vehicle is in the longitudinal direction, and the liquid / gas headers of the refrigeration cycle dispersed in a plurality are arranged in a row. Thereby, the heat transfer area of the indoor heat exchanger can be expanded.

つぎに、除湿運転の第二の実施例について説明する。この場合図5に示すように、第一の冷凍サイクルは冷房運転である。第二の冷凍サイクルの冷媒は圧縮機2bで圧縮・加熱された後、四方弁2b、バイパス回路18へ分岐して流入する。四方弁2bへ流入した冷媒は室内熱交換器5b、5b'で室内空気と熱交換し冷却・凝縮する。この結果、室内熱交換器5b、5b'で熱交換された室内空気は加熱されて吹出され、減圧装置4bで減圧される。
一方、バイパス回路18を通過した冷媒は減圧装置19で減圧され、室外熱交換器3b入口で、減圧装置4bで減圧された冷媒と合流し、減圧装置4bを通過した冷媒の温度を上昇させる。このとき、減圧装置4bを通過した冷媒のエンタルピーも増加するため、蒸発器で冷媒が空気と熱交換する事による吸熱量を減少させる事ができる。
Next, a second embodiment of the dehumidifying operation will be described. In this case, as shown in FIG. 5, the first refrigeration cycle is a cooling operation. The refrigerant of the second refrigeration cycle is compressed and heated by the compressor 2b, and then branches into the four-way valve 2b and the bypass circuit 18 and flows in. The refrigerant flowing into the four-way valve 2b exchanges heat with room air in the indoor heat exchangers 5b and 5b ′, and cools and condenses. As a result, the indoor air heat-exchanged by the indoor heat exchangers 5b and 5b ′ is heated and blown out, and the pressure is reduced by the pressure reducing device 4b.
On the other hand, the refrigerant that has passed through the bypass circuit 18 is depressurized by the decompression device 19, joins with the refrigerant decompressed by the decompression device 4b at the outdoor heat exchanger 3b inlet, and increases the temperature of the refrigerant that has passed through the decompression device 4b. At this time, since the enthalpy of the refrigerant that has passed through the decompression device 4b also increases, the amount of heat absorbed by the refrigerant exchanging heat with air can be reduced.

つまり、圧縮機と四方弁間にヒートポンプ運転をする際の凝縮器として作用する室内熱交換器と減圧装置をバイパスするバイパス回路を設け、バイパス回路には減圧装置が備えられる事から、夏期のヒートポンプ運転のような過負荷時において、バイパス回路の減圧装置を開放してバイパス回路を開くことにより、冷媒は凝縮器として作用する室内熱交換器とバイパス回路へ流入し、蒸発器として作用する室外熱交換器入口で合流する。したがって、バイパス回路を通過する冷媒は凝縮器をバイパスするのため冷却されない。この結果、蒸発器入口で合流する凝縮器を通過した冷媒を加熱し、昇温させる。このため、空気からの吸熱量が低減され、圧縮機の吐出圧力を低減させる事が可能となる。また、バイパス回路の減圧装置の抵抗を制御することでヒートポンプ能力を制御する事ができる。したがって、一定速の圧縮機とした場合においても、木目細かい除湿量と加熱量の制御を行うことができる。   In other words, an indoor heat exchanger that acts as a condenser between the compressor and the four-way valve and a bypass circuit that bypasses the decompression device are provided, and the bypass circuit is equipped with a decompression device. In an overload such as operation, by opening the bypass circuit and opening the bypass circuit, the refrigerant flows into the indoor heat exchanger acting as a condenser and the bypass circuit, and the outdoor heat acting as an evaporator. Merge at the exchanger entrance. Therefore, the refrigerant passing through the bypass circuit is not cooled because it bypasses the condenser. As a result, the refrigerant that has passed through the condenser that merges at the evaporator inlet is heated to raise the temperature. For this reason, the amount of heat absorbed from the air is reduced, and the discharge pressure of the compressor can be reduced. Further, the heat pump capability can be controlled by controlling the resistance of the decompression device of the bypass circuit. Therefore, even when a constant speed compressor is used, the fine dehumidification amount and the heating amount can be controlled.

また、室外熱交換器3bで室外空気と熱交換器し加熱・蒸発して再び圧縮機1bへと流入する暖房サイクルを形成する。以上のような冷凍サイクルを形成しているため、減圧装置19の絞り量を制御する事により、蒸発器での吸熱量を制御する事が可能となり、再加熱能力と圧縮機の吐出圧力の制御を行うことができる。蒸発器で冷却・除湿された被空調空気と凝縮器で加熱された被空調空気は室内ファン8で混合されて、室温程度の乾いた空気として吹出される。そして、圧縮機1b及び減圧装置4bは温度センサ9、11により検知される必要再加熱量と温度センサ10'、13'によって算出される加熱量に対応した運転周波数及び膨張弁開度で運転される。同時に、温度センサ16により室外熱交換器吹出し空気温度を検知し、室外吹出し温度が除霜温度をTf以下となった場合、図示しないタイマーが作動し、遅延時間Dtを経過した後、四方弁2bを逆転させて第二の冷凍サイクルは除霜運転となる。同時に第一の冷凍サイクルの四方弁2aが逆転し、第一の冷凍サイクルが暖房運転となる。
以上のように冷房(除霜)運転の冷凍サイクルと、暖房運転の冷凍サイクルを繰返し交互運転させるため、この除湿運転では、除霜が必要な低外気温度においても、除湿運転を停止させない連続運転が可能となる。
Further, the outdoor heat exchanger 3b forms a heating cycle in which heat is exchanged with outdoor air to heat and evaporate and flow into the compressor 1b again. Since the refrigeration cycle is formed as described above, it is possible to control the amount of heat absorbed by the evaporator by controlling the throttle amount of the decompression device 19, and control of the reheating capacity and the discharge pressure of the compressor It can be performed. The air-conditioned air cooled and dehumidified by the evaporator and the air-conditioned air heated by the condenser are mixed by the indoor fan 8 and blown out as dry air at about room temperature. The compressor 1b and the pressure reducing device 4b are operated at an operation frequency and an expansion valve opening corresponding to the required reheating amount detected by the temperature sensors 9 and 11 and the heating amount calculated by the temperature sensors 10 ′ and 13 ′. The At the same time, when the outdoor heat exchanger blown air temperature is detected by the temperature sensor 16 and the outdoor blown temperature falls below the defrost temperature Tf, a timer (not shown) is activated, and after the delay time Dt has elapsed, the four-way valve 2b And the second refrigeration cycle is defrosted. At the same time, the four-way valve 2a of the first refrigeration cycle reverses, and the first refrigeration cycle enters the heating operation.
As described above, since the refrigeration cycle for cooling (defrosting) operation and the refrigeration cycle for heating operation are alternately repeated, this dehumidifying operation does not stop the dehumidifying operation even at a low outside air temperature where defrosting is required. Is possible.

上記実施例では独立した2つの冷凍サイクルで記述してきたが、それ以上の複数の独立した冷凍サイクルにおいても同様である。圧縮機はインバータ式圧縮機、一定速圧縮機、スクロール式圧縮機、ロータリー式圧縮機等の圧縮機のいずれかとすることが良いが、インバータ式圧縮機の場合は、特に冷却、除湿と、凝縮器による加熱をそれぞれ独立して行うことができるため、木目細かい除湿量と加熱量の制御を行うことができる。   In the above embodiment, two independent refrigeration cycles have been described, but the same applies to a plurality of independent refrigeration cycles. The compressor may be one of an inverter type compressor, a constant speed compressor, a scroll type compressor, a rotary type compressor, etc., but in the case of an inverter type compressor, in particular, cooling, dehumidification and condensation Since the heating by the vessel can be performed independently, the fine dehumidification amount and the heating amount can be controlled.

また、ヒートポンプサイクルを少なくとも2台有するため、除霜運転の際に、少なくとも1台の冷凍サイクルの室内熱交換器は凝縮器として作用させることができる。このため、除霜運転時に除湿運転を停止させないで連続して除湿運転を行うことができる。また、冷凍サイクルを構成する圧縮機を容量制御が可能な圧縮機で構成すれば、夏期のヒートポンプ運転のような過負荷時においては、圧縮機の回転数を低下させて、負荷を低減し、冬季のヒートポンプ運転のような加熱量が必要な場合においては、圧縮機の回転数を増大させて、加熱量を増大させるといった制御が可能となる。   In addition, since at least two heat pump cycles are provided, the indoor heat exchanger of at least one refrigeration cycle can act as a condenser during the defrosting operation. For this reason, the dehumidifying operation can be continuously performed without stopping the dehumidifying operation during the defrosting operation. In addition, if the compressor that constitutes the refrigeration cycle is configured with a compressor capable of capacity control, in the case of an overload such as a heat pump operation in summer, the number of revolutions of the compressor is reduced to reduce the load, When a heating amount is required as in a heat pump operation in winter, it is possible to perform control such that the heating amount is increased by increasing the number of rotations of the compressor.

本発明に係わる一実施の形態による除湿運転を示すブロック図。The block diagram which shows the dehumidification driving | operation by one Embodiment concerning this invention. 一実施の形態による主要部の断面図。Sectional drawing of the principal part by one Embodiment. 一実施の形態による冷房運転を示すブロック図。The block diagram which shows the air_conditionaing | cooling operation by one Embodiment. 一実施の形態による暖房運転を示すブロック図。The block diagram which shows the heating operation by one embodiment. 本発明に係わる他の実施の形態による除湿運転を示すブロック図。The block diagram which shows the dehumidification driving | operation by other embodiment concerning this invention.

符号の説明Explanation of symbols

1a、1b…圧縮機、2a、2b…四方弁、3a、3b…室外熱交換器、4a、4b…減圧装置、5a、5b、5a'、5b'…室内熱交換器、6a、6b…液・ガスヘッダー、7…室外ファン、8…室内ファン、9、9'…室内温度センサ、10、10'…熱交吹出し温度センサ、11…空調吹出し温度センサ、13、13'…室内湿度センサ、14、14'…熱交吹出し湿度センサ、15…空調吹出し湿度センサ。
1a, 1b ... compressor, 2a, 2b ... four-way valve, 3a, 3b ... outdoor heat exchanger, 4a, 4b ... decompression device, 5a, 5b, 5a ', 5b' ... indoor heat exchanger, 6a, 6b ... liquid・ Gas header, 7 ... Outdoor fan, 8 ... Indoor fan, 9, 9 '... Indoor temperature sensor, 10, 10' ... Heat exchange outlet temperature sensor, 11 ... Air conditioning outlet temperature sensor, 13, 13 '... Indoor humidity sensor, 14, 14 '… Heat exchange blowout humidity sensor, 15… Air conditioning blowout humidity sensor.

Claims (5)

車両に搭載され、圧縮機、四方弁、室外熱交換器、減圧装置、室内熱交換器を備えた二つの冷凍サイクルを有し、室内ファンが車幅方向の略中央に配置され、前記二つの冷凍サイクルの一方が冷房運転、他方が暖房運転を行うことにより除湿運転が行われる車両用空調装置において、
前記室内ファンに対して前記車両の車幅方向の片側に、一方の前記冷凍サイクルの前記室内熱交換器と、他方の冷凍サイクルの前記室内熱交換器とが配置され、それぞれの前記室内熱交換器に吸込まれた空気が混合されて車内に吹出されることを特徴とする車両用空調装置。
It is mounted on a vehicle and has two refrigeration cycles including a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger, and an indoor fan is arranged at the approximate center in the vehicle width direction. In the vehicle air conditioner in which the dehumidifying operation is performed by performing one of the refrigeration cycles in the cooling operation and the other in the heating operation.
The indoor heat exchanger of one of the refrigeration cycles and the indoor heat exchanger of the other refrigeration cycle are arranged on one side of the vehicle width direction of the vehicle with respect to the indoor fan, and each of the indoor heat exchanges A vehicle air conditioner characterized in that the air sucked into the container is mixed and blown into the vehicle.
車両に搭載され、圧縮機、四方弁、室外熱交換器、減圧装置、室内熱交換器をそれぞれ備えた二つの冷凍サイクルを有し、室内ファンが車幅方向の略中央に配置され、冷房運転と暖房運転を行うことにより除湿運転が行われる車両用空調装置において、
それぞれの前記冷凍サイクルの室内熱交換器は、前記室内ファンを中心に点対称となるように配置され、一方の前記冷凍サイクルの前記室内熱交換器と、他方の冷凍サイクルの前記室内熱交換器に吸込まれた空気が混合されて車内に吹出されることを特徴とする車両用空調装置。
It has two refrigeration cycles mounted on a vehicle, each equipped with a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger. In a vehicle air conditioner where dehumidification operation is performed by performing heating operation with
The indoor heat exchanger of each refrigeration cycle is arranged so as to be point-symmetric about the indoor fan, and the indoor heat exchanger of one of the refrigeration cycles and the indoor heat exchanger of the other refrigeration cycle The vehicle air conditioner is characterized in that the air sucked into the air is mixed and blown into the vehicle.
請求項1又は2に記載のものにおいて、前記室内熱交換器のガスヘッダー及び液ヘッダーは、前記車両の長手方向と平行になるように配置されたことを特徴とする車両用空調装置。   3. The vehicle air conditioner according to claim 1, wherein the gas header and the liquid header of the indoor heat exchanger are arranged so as to be parallel to a longitudinal direction of the vehicle. 請求項1又は2に記載のものにおいて、前記圧縮機は容量制御が可能とされて運転されることを特徴とする車両用空調装置。   3. The vehicle air conditioner according to claim 1, wherein the compressor is operated with capacity control enabled. 請求項1又は2に記載のものにおいて、前記圧縮機と前記四方弁との間に前記室内熱交換器と前記減圧装置をバイパスするバイパス回路と、該バイパス回路に設けられた減圧装置と、を設けたことを特徴とする車両用空調装置。
The thing of Claim 1 or 2 WHEREIN: The bypass circuit which bypasses the said indoor heat exchanger and the said pressure reduction device between the said compressor and the said four-way valve, and the pressure reduction apparatus provided in this bypass circuit, A vehicle air conditioner characterized by being provided.
JP2004303640A 2004-10-19 2004-10-19 Vehicular air-conditioner Pending JP2006116981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303640A JP2006116981A (en) 2004-10-19 2004-10-19 Vehicular air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303640A JP2006116981A (en) 2004-10-19 2004-10-19 Vehicular air-conditioner

Publications (1)

Publication Number Publication Date
JP2006116981A true JP2006116981A (en) 2006-05-11

Family

ID=36535297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303640A Pending JP2006116981A (en) 2004-10-19 2004-10-19 Vehicular air-conditioner

Country Status (1)

Country Link
JP (1) JP2006116981A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194972A (en) * 2010-03-18 2011-10-06 Mitsubishi Electric Corp Air conditioner for vehicle
WO2012168971A1 (en) 2011-06-08 2012-12-13 三菱電機株式会社 Refrigeration air-conditioning device
WO2013038439A1 (en) * 2011-09-13 2013-03-21 三菱電機株式会社 Refrigeration and air-conditioning device
WO2013038438A1 (en) 2011-09-13 2013-03-21 三菱電機株式会社 Refrigeration and air-conditioning device
US20170365874A1 (en) * 2009-02-09 2017-12-21 Varta Microbattery Gmbh Button cells and method of producing same
JP2019074298A (en) * 2017-10-19 2019-05-16 株式会社デンソーエアクール Vehicular air conditioner

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170365874A1 (en) * 2009-02-09 2017-12-21 Varta Microbattery Gmbh Button cells and method of producing same
JP2011194972A (en) * 2010-03-18 2011-10-06 Mitsubishi Electric Corp Air conditioner for vehicle
EP3076094A1 (en) 2011-06-08 2016-10-05 Mitsubishi Electric Corporation Refrigeration and air-conditioning apparatus
EP2719966A4 (en) * 2011-06-08 2015-03-25 Mitsubishi Electric Corp Refrigeration air-conditioning device
EP2719966A1 (en) * 2011-06-08 2014-04-16 Mitsubishi Electric Corporation Refrigeration air-conditioning device
WO2012168971A1 (en) 2011-06-08 2012-12-13 三菱電機株式会社 Refrigeration air-conditioning device
US9726420B2 (en) 2011-06-08 2017-08-08 Mitsubishi Electric Corporation Apparatus for defrosting a plurality of heat exchangers having a common outdoor fan
JPWO2012168971A1 (en) * 2011-06-08 2015-02-23 三菱電機株式会社 Refrigeration air conditioner
CN103797309B (en) * 2011-09-13 2016-05-18 三菱电机株式会社 Refrigerating air-conditioning
JPWO2013038439A1 (en) * 2011-09-13 2015-03-23 三菱電機株式会社 Refrigeration air conditioner
JPWO2013038438A1 (en) * 2011-09-13 2015-03-23 三菱電機株式会社 Refrigeration air conditioner
WO2013038438A1 (en) 2011-09-13 2013-03-21 三菱電機株式会社 Refrigeration and air-conditioning device
WO2013038439A1 (en) * 2011-09-13 2013-03-21 三菱電機株式会社 Refrigeration and air-conditioning device
JP5661190B2 (en) * 2011-09-13 2015-01-28 三菱電機株式会社 Refrigeration air conditioner
US9797648B2 (en) 2011-09-13 2017-10-24 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus for use in a defrosting operation
US9835368B2 (en) 2011-09-13 2017-12-05 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus for use in a defrosting operation
CN103797309A (en) * 2011-09-13 2014-05-14 三菱电机株式会社 Refrigeration and air-conditioning device
JP2019074298A (en) * 2017-10-19 2019-05-16 株式会社デンソーエアクール Vehicular air conditioner
JP7024313B2 (en) 2017-10-19 2022-02-24 株式会社デンソーエアクール Vehicle air conditioner

Similar Documents

Publication Publication Date Title
JP5709993B2 (en) Refrigeration air conditioner
JP5005122B2 (en) Air conditioner for vehicles
JP4232463B2 (en) Air conditioner
JP4518998B2 (en) Heat pump air conditioner
JPH11132506A (en) Dehumidification air conditioner and operation thereof
JP5640485B2 (en) Air conditioner for vehicles
JP2006242402A (en) Refrigerant cycle device
WO2008069559A1 (en) Air conditioning system with heat recovery function
WO2020021838A1 (en) Air conditioning device for vehicle
JPH07232547A (en) Air conditioner for vehicle
JPH06143974A (en) Air conditioner
JP5316264B2 (en) Air conditioner for vehicles
JP3410859B2 (en) Air conditioner
JP2003106712A (en) Air conditioning device
JP2006242403A (en) Refrigerant cycle device
JP2017161172A (en) Cooling device
JP5113664B2 (en) Air conditioning system
JP2006116981A (en) Vehicular air-conditioner
JP4274886B2 (en) Heat pump air conditioner
JP2006057883A (en) Refrigerating/air-conditioning system
JP4325119B2 (en) Air conditioner
WO2015125251A1 (en) Air-conditioning device and method for controlling air-conditioning device
JP4039100B2 (en) Air conditioner
JP2003139436A (en) Air conditioner
JP7126611B2 (en) air conditioner

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425