JP2006116920A - Resin characteristic measuring method of injection molding machine and injection control method - Google Patents

Resin characteristic measuring method of injection molding machine and injection control method Download PDF

Info

Publication number
JP2006116920A
JP2006116920A JP2004310173A JP2004310173A JP2006116920A JP 2006116920 A JP2006116920 A JP 2006116920A JP 2004310173 A JP2004310173 A JP 2004310173A JP 2004310173 A JP2004310173 A JP 2004310173A JP 2006116920 A JP2006116920 A JP 2006116920A
Authority
JP
Japan
Prior art keywords
resin
injection
pressure
molding machine
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004310173A
Other languages
Japanese (ja)
Other versions
JP2006116920A5 (en
JP4166746B2 (en
Inventor
Takahito Shioiri
隆仁 塩入
Michihiro Tatsuno
道宏 龍野
Kazuki Hayashi
和樹 林
Hidenori Iwashita
英紀 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2004310173A priority Critical patent/JP4166746B2/en
Publication of JP2006116920A publication Critical patent/JP2006116920A/en
Publication of JP2006116920A5 publication Critical patent/JP2006116920A5/ja
Application granted granted Critical
Publication of JP4166746B2 publication Critical patent/JP4166746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance reliability by performing analysis or the like using injection molding CAE with high precision and to stably perform the setting or control of a fine part in an injection process with high precision. <P>SOLUTION: When the resin characteristics of a molten resin R in the injection molding machine M are measured, an injection nozzle 2 is set to a closed state while the molten resin R is set to a filled state in front of the screw 4 in a heating cylinder 3 and the screw position S and the resin temperature T, both of which correspond to a change in pressure P, are detected by successively changing the pressure P with respect to the molten resin R from the screw 4. The change characteristics of the compression ratio C (P, T) of the molten resin R with respect to the change in pressure P are calculated from the screw position S and the resin temperature T to the detected arbitrary pressure P. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、射出成形機における溶融樹脂の樹脂特性を測定する射出成形機の樹脂特性測定方法及び射出工程の制御を行う際の射出成形機の射出制御方法に関する。   The present invention relates to a method for measuring resin characteristics of an injection molding machine for measuring the resin characteristics of a molten resin in an injection molding machine and an injection control method for an injection molding machine when controlling an injection process.

一般に、射出成形機における成形条件の設定は、オペレータのノウハウや経験等に大きく依存する側面があるとともに、各種物理量が相互に影響し合うため、多くの試打ちや設定作業時間が必要となる。このため、射出成形CAE(射出成形コンピュータ支援技術)により仮想成形(シミュレーション)を行い、この仮想成形に基づいて成形条件等を設定することも行われている。   In general, the setting of molding conditions in an injection molding machine has a side that greatly depends on the know-how and experience of the operator, and various physical quantities affect each other, so that a lot of trial driving and setting work time are required. For this reason, virtual molding (simulation) is performed by injection molding CAE (injection molding computer support technology), and molding conditions and the like are set based on this virtual molding.

ところで、射出成形CAEにおいては、金型に射出充填する溶融樹脂の流動状況(樹脂特性)を正確に把握することが良好な仮想成形を実現する鍵となる。通常、射出成形CAEでは、溶融樹脂の樹脂特性として、圧力P,比容積V及び樹脂温度Tを含むPVT特性を用いるとともに、金型における溶融樹脂の流動状況を予測する際には、射出ノズルから金型に流入する溶融樹脂の流量、即ち、スクリュの移動量に基づく射出量と時間の変化から得る射出率を用いている。   By the way, in the injection molding CAE, accurately grasping the flow state (resin characteristics) of the molten resin injected and filled into the mold is the key to realizing good virtual molding. Usually, in injection molding CAE, PVT characteristics including pressure P, specific volume V and resin temperature T are used as the resin characteristics of the molten resin, and when predicting the flow state of the molten resin in the mold, from the injection nozzle The flow rate of the molten resin flowing into the mold, that is, the injection rate based on the change in the injection amount and time based on the moving amount of the screw is used.

従来、このようなPVT特性を測定する手段としては専用測定器が知られている。しかし、射出成形機の場合、熱履歴や強い剪断応力に起因する分子量の分布変化等が発生するため、専用測定器で測定したPVT特性は、実際の射出成形機におけるPVT特性とは一致しない場合が多く、結局、専用測定器を用いても射出成形機にとっての望ましいPVT特性を得れないとともに、射出成形CAEに必要な射出ノズルから金型に流入する溶融樹脂の流出量や流量を得ることもできず、的確で正確な射出成形CAEは実現できない。   Conventionally, a dedicated measuring instrument is known as a means for measuring such PVT characteristics. However, in the case of an injection molding machine, a change in molecular weight distribution caused by thermal history or strong shear stress occurs, so the PVT characteristics measured with a dedicated measuring device do not match the PVT characteristics of an actual injection molding machine After all, it is not possible to obtain the desired PVT characteristics for the injection molding machine even using a dedicated measuring instrument, and to obtain the outflow amount and flow rate of the molten resin flowing into the mold from the injection nozzle necessary for the injection molding CAE. Therefore, accurate and accurate injection molding CAE cannot be realized.

このため、実際の射出成形機によりPVT特性を測定し、測定したPVT特性を利用して射出成形機における射出制御を行うようにした射出成形機の射出制御方法も、特開平3−254922号公報で知られている。同公報で開示される射出制御方法は、成形品の目標重量,射出される溶融樹脂の温度,射出直前の樹脂圧力及び射出中の保圧について与えられた各値と、検出された射出前スクリュ位置の値とを演算装置へ入力し、射出後保圧中のスクリュ位置を、所定の計算式と、当該樹脂に基づき予め計測ずみのPVT関係式とに基づいて計算し、該計算により得られるストロークを該スクリュが移動した時点において金型キャビティへの溶融樹脂供給を中断するようにしたものであり、当該PVT関係式は、当該樹脂に基づき予め射出成形機のシリンダ内部から成形金型のキャビティ部に至るまでの間の溶融樹脂流路中の適宜個所に閉止手段を設けた射出成形機を用いて計測する。
特開平3−254922号
For this reason, an injection control method for an injection molding machine in which PVT characteristics are measured with an actual injection molding machine and injection control in the injection molding machine is performed using the measured PVT characteristics is also disclosed in Japanese Patent Laid-Open No. 3-254922. Is known. The injection control method disclosed in this publication includes the values given for the target weight of the molded product, the temperature of the molten resin to be injected, the resin pressure immediately before injection and the holding pressure during injection, and the detected pre-injection screw. The position value is input to the arithmetic unit, and the screw position during pressure holding after injection is calculated based on a predetermined calculation formula and a pre-measured PVT relational formula based on the resin, and obtained by the calculation. The molten resin supply to the mold cavity is interrupted when the screw moves in the stroke, and the PVT relational expression is based on the resin from the inside of the cylinder of the injection molding machine in advance. It measures using the injection molding machine which provided the closing means in the appropriate location in the molten resin flow path until it reaches a part.
JP-A-3-254922

しかし、上述した従来の射出成形機の射出制御方法は、次のような問題点があった。   However, the above-described injection control method of the conventional injection molding machine has the following problems.

第一に、樹脂特性としてはPVT特性に留まり、射出ノズルから射出される溶融樹脂の流量(流出量)等を考慮していないため、射出成形CAEにとって望ましい形での利用に供することができない。結局、射出成形CAEを利用した解析等を正確かつ高い信頼性により行うには不十分となる。   First, the resin characteristics are limited to the PVT characteristics, and the flow rate (outflow amount) of the molten resin injected from the injection nozzle is not taken into consideration, so that it cannot be used in a form desirable for the injection molding CAE. Eventually, the analysis using the injection molding CAE is insufficient for accurate and high reliability.

第二に、溶融樹脂の流動状況を把握する観点からも十分とは言えないため、実際の射出工程における細部の設定や制御、例えば、多段設定した射出速度又は射出圧力の各段に切換える際の切換点の設定や切換制御、更には充填工程から保圧工程に切換える際の切換点の設定や切換制御などを安定かつ高い精度で行うことができない。   Second, since it is not sufficient from the viewpoint of grasping the flow state of the molten resin, it is not sufficient to set and control details in the actual injection process, for example, when switching to each stage of injection speed or injection pressure set in multiple stages. Switching point setting and switching control, and further switching point setting and switching control when switching from the filling process to the pressure holding process cannot be performed stably and with high accuracy.

本発明は、このような背景技術に存在する課題を解決した射出成形機の樹脂特性測定方法及び射出制御方法の提供を目的とするものである。   An object of the present invention is to provide a resin characteristic measuring method and an injection control method for an injection molding machine that solve the problems existing in the background art.

本発明に係る射出成形機の樹脂特性測定方法は、上述した課題を解決するため、射出成形機Mにおける溶融樹脂Rの樹脂特性を測定するに際し、射出ノズル2を閉鎖状態にし、かつ加熱筒3内におけるスクリュ4の前方に溶融樹脂Rを充填状態にするとともに、スクリュ4からの溶融樹脂Rに対する圧力Pを順次変化させることにより、圧力Pの変化に対応するスクリュ位置S及び樹脂温度Tを検出し、検出した任意の圧力Pに対するスクリュ位置S及び樹脂温度Tから圧力Pの変化に対する溶融樹脂Rの圧縮率C(P,T)の変化特性を求めることを特徴とする。   In order to solve the above-described problems, the method for measuring resin characteristics of an injection molding machine according to the present invention sets the injection nozzle 2 in a closed state and measures the heating cylinder 3 when measuring the resin characteristics of the molten resin R in the injection molding machine M. The screw position R and the resin temperature T corresponding to the change of the pressure P are detected by changing the pressure P applied to the molten resin R from the screw 4 in order while the molten resin R is filled in front of the screw 4 inside. The change characteristic of the compression rate C (P, T) of the molten resin R with respect to the change of the pressure P is obtained from the screw position S and the resin temperature T with respect to the detected arbitrary pressure P.

この場合、発明の好適な態様により、圧縮率C(P,T)の変化特性は、圧力P及び樹脂温度Tに対する関数、例えば、圧縮率C(P,T)=ΔV/ΣV=a・Pbの関数に変換することができる。なお、ΔVは圧縮量、ΣVは圧縮前の樹脂量、aはc1・T+d1(c1,d1は樹脂の種類に対応した係数)、bはc2・T+d2(c2,d2は樹脂の種類に対応した係数)である。また、射出ノズル2を開放状態にし、かつスクリュ4を前進させた際に加熱筒3内から射出ノズル2を通して流出する任意の時刻t0,t1間における溶融樹脂Rの流出量Fは、圧縮率C(P,T)を用いて算出、即ち、F=〔(πr20+A)/(1−C(P0,T0))〕−〔(πr21+A)/(1−C(P1,T1))〕により求めることができる。なお、rはスクリュ半径、Aはスクリュ位置0における射出ノズル2及び加熱筒3内の樹脂量、S0は時刻t0におけるスクリュ位置、P0は時刻t0における圧力、T0は時刻t0における温度、S1は時刻t1におけるスクリュ位置、P1は時刻t1における圧力、T1は時刻t1における温度である。さらに、射出ノズル2から流出する溶融樹脂Rの単位時間当たりの流量Qを、Q=F/(t1−t0)により求めることができる。 In this case, according to a preferred aspect of the invention, the change characteristic of the compression rate C (P, T) is a function with respect to the pressure P and the resin temperature T, for example, the compression rate C (P, T) = ΔV / ΣV = a · P. can be converted to a function of b . ΔV is the compression amount, ΣV is the resin amount before compression, a is c 1 · T + d 1 (c 1 and d 1 are coefficients corresponding to the type of resin), and b is c 2 · T + d 2 (c 2 , d 2 is a coefficient corresponding to the type of resin). Further, when the injection nozzle 2 is opened and the screw 4 is advanced, the outflow amount F of the molten resin R between the arbitrary times t 0 and t 1 flowing out from the heating cylinder 3 through the injection nozzle 2 is compressed. Calculated using the rate C (P, T), that is, F = [(πr 2 S 0 + A) / (1-C (P 0 , T 0 ))] − [(πr 2 S 1 + A) / (1 -C (P 1 , T 1 ))]. Here, r is the screw radius, A is the amount of resin in the injection nozzle 2 and the heating cylinder 3 at the screw position 0, S 0 is the screw position at time t 0 , P 0 is the pressure at time t 0 , and T 0 is time t 0. , S 1 is the screw position at time t 1 , P 1 is the pressure at time t 1 , and T 1 is the temperature at time t 1 . Furthermore, the flow rate Q per unit time of the molten resin R flowing out from the injection nozzle 2 can be obtained by Q = F / (t 1 −t 0 ).

一方、本発明に係る射出成形機の射出制御方法は、上述した課題を解決するため、射出成形機Mの射出工程の制御を行うに際し、射出ノズル2を閉鎖状態にし、かつ加熱筒3内におけるスクリュ4の前方に溶融樹脂Rを充填状態にするとともに、スクリュ4からの溶融樹脂Rに対する圧力Pを順次変化させることにより、圧力Pの変化に対応するスクリュ位置S及び樹脂温度Tを検出し、検出した任意の圧力Pに対するスクリュ位置S及び樹脂温度Tから圧力Pの変化に対する溶融樹脂Rの圧縮率C(P,T)の変化特性を求め、さらに、射出ノズル2を開放状態にし、かつスクリュ4を前進させた際に加熱筒3内から射出ノズル2を通して流出する任意の時刻t0,t1間における溶融樹脂Rの流出量F及び/又は流量Qを圧縮率C(P,T)の変化特性を用いて求め、この流出量F及び/又は流量Qを用いて射出工程における切換点の設定及び切換制御を行うことを特徴とする。 On the other hand, the injection control method of the injection molding machine according to the present invention closes the injection nozzle 2 and controls the inside of the heating cylinder 3 when controlling the injection process of the injection molding machine M in order to solve the above-described problem. While the molten resin R is filled in front of the screw 4, the screw position S and the resin temperature T corresponding to the change in the pressure P are detected by sequentially changing the pressure P applied to the molten resin R from the screw 4, A change characteristic of the compression ratio C (P, T) of the molten resin R with respect to the change in the pressure P is obtained from the screw position S and the resin temperature T with respect to the detected arbitrary pressure P, and the injection nozzle 2 is opened, and the screw outflow of the molten resin R at an arbitrary time t 0, t 1 while flowing through the injection nozzle 2 from the heating cylinder inside 3 4 when the advancing the F and / or flow rate Q of the compression ratio C (P, It determined using the change characteristic of), and performs the setting and switching control of the switching point in the injection process using the outflow F and / or flow rate Q.

この場合、発明の好適な態様により、切換点としては、多段設定した射出速度又は射出圧力の各段への切換点に適用することができるとともに、充填工程から保圧工程への切換点に適用することができる。また、圧縮率C(P,T)の変化特性は、圧力P及び樹脂温度Tに対する関数、例えば、上述した圧縮率C(P,T)=ΔV/ΣV=a・Pbの関数に変換することができる。さらに、流出量Fは、上述したF=〔(πr20+A)/(1−C(P0,T0))〕−〔(πr21+A)/(1−C(P1,T1))〕により求めることができるとともに、射出ノズルから流出する溶融樹脂の単位時間当たりの流量Qは、上述したQ=F/(t1−t0)により求めることができる。 In this case, according to a preferred aspect of the invention, the switching point can be applied to the switching point to each stage of the injection speed or injection pressure set in multiple stages, and also applied to the switching point from the filling process to the pressure holding process. can do. The change characteristics of the compression ratio C (P, T) is a function with respect to the pressure P and the resin temperature T, for example, to convert the compression ratio C (P, T) mentioned above = a function of ΔV / ΣV = a · P b be able to. Furthermore, the outflow amount F is the above-mentioned F = [(πr 2 S 0 + A) / (1-C (P 0 , T 0 ))]-[(πr 2 S 1 + A) / (1-C (P 1 , T 1 ))] and the flow rate Q per unit time of the molten resin flowing out from the injection nozzle can be obtained by the above-described Q = F / (t 1 −t 0 ).

このような手法による本発明に係る射出成形機の樹脂特性測定方法及び射出制御方法によれば、次のような顕著な効果を奏する。   According to the resin characteristic measuring method and the injection control method of the injection molding machine according to the present invention by such a method, the following remarkable effects can be obtained.

(1) 実際の射出成形機Mから溶融樹脂Rの圧縮率C(P,T)の変化特性を得るため、射出ノズル2から射出される溶融樹脂Rの正確な流量Q及び流出量Fを算出することができ、射出成形CAEを用いる解析等を高い精度で行うことができるとともに、その信頼性を高めることができる。   (1) In order to obtain the change characteristic of the compression ratio C (P, T) of the molten resin R from the actual injection molding machine M, the accurate flow rate Q and outflow amount F of the molten resin R injected from the injection nozzle 2 are calculated. The analysis using the injection molding CAE can be performed with high accuracy and the reliability can be enhanced.

(2) 溶融樹脂Rの流動状況を的確かつ容易に把握できるため、実際の射出工程における細部の設定や制御、具体的には、多段設定した射出速度又は射出圧力の各段に切換える際の切換点の設定や切換制御、更には充填工程から保圧工程に切換える際の切換点の設定や切換制御などを安定かつ高い精度で行うことができる。   (2) Since the flow state of the molten resin R can be accurately and easily grasped, setting and control of details in the actual injection process, specifically, switching when switching to each stage of the injection speed or injection pressure set in multiple stages Point setting and switching control, and further, switching point setting and switching control when switching from the filling process to the pressure holding process can be performed stably and with high accuracy.

次に、本発明に係る最良の実施形態を挙げ、図面に基づき詳細に説明する。   Next, the best embodiment according to the present invention will be given and described in detail with reference to the drawings.

まず、本実施形態に係る射出成形機の樹脂特性測定方法及び射出制御方法の実施に利用できる測定装置1の構成について、図3を参照して説明する。   First, the configuration of the measuring apparatus 1 that can be used for carrying out the resin characteristic measuring method and injection control method of the injection molding machine according to the present embodiment will be described with reference to FIG.

測定装置1は、射出成形機Mと測定ユニット21を備え、射出成形機Mは、一般的なインラインスクリュ式射出成形機における射出装置Miをそのまま利用する。射出装置Miは、外周部に加熱ヒータ11…を付設した加熱筒3を備え、この加熱筒3の前端に射出ノズル2を備えるとともに、加熱筒3の後部にホッパ12を備える。また、加熱筒3の内部には、スクリュ4が挿通するとともに、加熱筒3の後端には、スクリュ4を駆動する駆動部13を備える。駆動部13は、スクリュ4を前進又は後退させる射出シリンダ14及びスクリュ4を回転させるオイルモータ15を備える。さらに、射出装置Miには、スクリュ位置Sを検出する位置検出器16を備えるとともに、射出ノズル2には、内部の溶融樹脂Rの圧力を検出する圧力検出器17及び溶融樹脂Rの温度を検出する温度検出器18を付設する。   The measuring apparatus 1 includes an injection molding machine M and a measurement unit 21. The injection molding machine M uses an injection apparatus Mi in a general inline screw type injection molding machine as it is. The injection device Mi includes a heating cylinder 3 provided with heaters 11 on the outer peripheral portion, and includes an injection nozzle 2 at the front end of the heating cylinder 3 and a hopper 12 at the rear of the heating cylinder 3. In addition, the screw 4 is inserted into the heating cylinder 3, and a drive unit 13 that drives the screw 4 is provided at the rear end of the heating cylinder 3. The drive unit 13 includes an injection cylinder 14 that moves the screw 4 forward or backward and an oil motor 15 that rotates the screw 4. Further, the injection device Mi includes a position detector 16 that detects the screw position S, and the injection nozzle 2 detects the temperature of the molten resin R and the pressure detector 17 that detects the pressure of the molten resin R inside. A temperature detector 18 is attached.

一方、測定ユニット21は、全体を一体化し、外面に加熱ヒータ23…を付設したユニットブロック22を備える。ユニットブロック22は、マニホールド部24とプランジャユニット部25を備える。マニホールド部24は、内部に樹脂路26を有し、この樹脂路26の一端は、射出ノズル2の先端に当接することにより、射出ノズル2の内部に連通するノズル接続口26nになるとともに、樹脂路26の他端は、プランジャユニット部25のバレル27の内部に連通する。マニホールド部24におけるノズル接続口26nの近傍には、樹脂路26を開閉するシャットオフバルブ28を配設する。このシャットオフバルブ28は、開閉駆動用の操作シリンダ29を備える。また、マニホールド部24には、樹脂路26における樹脂圧を検出する圧力検出器30及び樹脂路26における樹脂温度を検出する温度検出器31を備える。さらに、マニホールド部24には、樹脂路26から分岐して外部に臨むドレン路32を有し、このドレン路32には、このドレン路32を開閉するドレンバルブ33を配設する。このドレンバルブ33は、開閉駆動用の操作シリンダ34を備える。他方、プランジャユニット部25は、バレル27に内蔵するプランジャ35を備えるとともに、バレル27の端部に付設してプランジャ35を前進又は後退させる駆動シリンダ36を備える。   On the other hand, the measuring unit 21 includes a unit block 22 that is integrated as a whole and has heaters 23 attached to the outer surface. The unit block 22 includes a manifold part 24 and a plunger unit part 25. The manifold portion 24 has a resin passage 26 therein, and one end of the resin passage 26 abuts on the tip of the injection nozzle 2 to become a nozzle connection port 26n communicating with the inside of the injection nozzle 2, and the resin portion 26 The other end of the path 26 communicates with the inside of the barrel 27 of the plunger unit portion 25. In the vicinity of the nozzle connection port 26n in the manifold portion 24, a shutoff valve 28 for opening and closing the resin passage 26 is disposed. The shut-off valve 28 includes an operation cylinder 29 for opening / closing driving. The manifold portion 24 includes a pressure detector 30 that detects a resin pressure in the resin passage 26 and a temperature detector 31 that detects a resin temperature in the resin passage 26. Further, the manifold portion 24 has a drain passage 32 that branches off from the resin passage 26 and faces the outside, and a drain valve 33 that opens and closes the drain passage 32 is disposed in the drain passage 32. The drain valve 33 includes an operation cylinder 34 for opening / closing driving. On the other hand, the plunger unit 25 includes a plunger 35 built in the barrel 27 and a drive cylinder 36 attached to the end of the barrel 27 to move the plunger 35 forward or backward.

また、測定装置1には、油圧ポンプ等を内蔵する油圧回路41と各種制御を司るコントローラ42を備え、油圧回路41には、前述した射出シリンダ14、オイルモータ15、操作シリンダ29,34及び駆動シリンダ36を接続するとともに、コントローラ42には、油圧回路41、更には、前述した位置検出器16、圧力検出器17、温度検出器18、圧力検出器30及び温度検出器31を接続する。   The measuring device 1 includes a hydraulic circuit 41 incorporating a hydraulic pump and the like, and a controller 42 that controls various controls. The hydraulic circuit 41 includes the above-described injection cylinder 14, oil motor 15, operating cylinders 29 and 34, and driving. In addition to connecting the cylinder 36, the controller 42 is connected to the hydraulic circuit 41, and further to the position detector 16, pressure detector 17, temperature detector 18, pressure detector 30, and temperature detector 31 described above.

次に、測定装置1を用いた本実施形態に係る射出成形機の樹脂特性測定方法を含む射出制御方法について、図3〜図6を参照しつつ図1及び図2に示すフローチャートに従って説明する。   Next, an injection control method including a resin characteristic measurement method for an injection molding machine according to the present embodiment using the measuring apparatus 1 will be described according to the flowcharts shown in FIGS. 1 and 2 with reference to FIGS.

まず、測定装置1を用いて樹脂特性の測定を行う。具体的には、圧力P及び樹脂温度Tを変数とした溶融樹脂Rの圧縮率C(P,T)の変化特性を求めるとともに、射出ノズル2を通して流出する溶融樹脂Rの流出量F及び単位時間当たりの流量Qを求める。測定に際しては、測定対象となる樹脂材料を選定し、測定装置1におけるホッパ12に収容する(ステップS1)。本実施形態では、ポリプロピレンを使用した場合を例示する。   First, the resin characteristic is measured using the measuring device 1. Specifically, the change characteristic of the compression ratio C (P, T) of the molten resin R with the pressure P and the resin temperature T as variables is obtained, and the outflow amount F of the molten resin R flowing out through the injection nozzle 2 and unit time. The flow rate Q per hit is obtained. In the measurement, a resin material to be measured is selected and accommodated in the hopper 12 in the measuring apparatus 1 (step S1). In this embodiment, the case where polypropylene is used is illustrated.

次いで、樹脂特性に対する測定処理を行う(ステップS2)。図2は、測定処理の具体的な処理手順を示すフローチャートである。測定に際しては、シャットオフバルブ28を閉側に制御して射出ノズル2を閉鎖状態にする(ステップS21)。この後、スクリュ4を回転させて樹脂材料に対する可塑化処理を行う(ステップS22)。可塑化処理により加熱筒3内におけるスクリュ4の前方に溶融樹脂Rが充填されるため、所定量の溶融樹脂Rが計量されたなら可塑化処理を終了する(ステップS23)。これにより、スクリュ4の前方に溶融樹脂Rが充填状態となるため、圧抜きにより溶融樹脂Rに付加される圧力Pを大気圧に解放する(ステップS24)。そして、このときの圧力Pを圧力検出器17により検出するとともに、スクリュ位置Sを位置検出器16により検出する。また、樹脂温度Tを温度検出器18により検出する(ステップS25)。なお、樹脂温度Tの目標温度は、予め設定しておく。このときの検出結果は、圧力がP0、スクリュ位置がS0、樹脂温度がT0となる。 Next, a measurement process for resin characteristics is performed (step S2). FIG. 2 is a flowchart showing a specific processing procedure of the measurement process. At the time of measurement, the shutoff valve 28 is controlled to the closed side to close the injection nozzle 2 (step S21). Thereafter, the screw 4 is rotated to perform a plasticizing process on the resin material (step S22). Since the molten resin R is filled in front of the screw 4 in the heating cylinder 3 by the plasticizing process, the plasticizing process is finished when a predetermined amount of the molten resin R has been measured (step S23). Thereby, since molten resin R will be in the filling state ahead of screw 4, pressure P added to molten resin R by pressure release is released to atmospheric pressure (Step S24). The pressure P at this time is detected by the pressure detector 17 and the screw position S is detected by the position detector 16. Further, the resin temperature T is detected by the temperature detector 18 (step S25). The target temperature for the resin temperature T is set in advance. The detection results at this time are pressure P 0 , screw position S 0 , and resin temperature T 0 .

一方、検出が終了したなら、射出シリンダ14を駆動制御してスクリュ4を圧力P1により前方へ加圧する(ステップS26,S27)。そして、このときの圧力Pを圧力検出器17により検出するとともに、スクリュ位置Sを位置検出器16により検出する。また、樹脂温度Tを温度検出器18により検出する(ステップS28)。このときの検出結果は、圧力がP1、スクリュ位置がS1、樹脂温度がT1となる。検出が終了したなら、圧抜きを行い、溶融樹脂Rに付加される圧力Pを大気圧に解放する(ステップS29,S30)。そして、このときの圧力Pを圧力検出器17により検出するとともに、スクリュ位置Sを位置検出器16により検出する。また、樹脂温度Tを温度検出器18により検出する(ステップS31)。このときの検出結果は、圧力がP2、スクリュ位置がS2、樹脂温度がT2となる。 On the other hand, when the detection is completed, the injection cylinder 14 is driven and controlled, and the screw 4 is pressurized forward with the pressure P 1 (steps S26 and S27). The pressure P at this time is detected by the pressure detector 17 and the screw position S is detected by the position detector 16. Further, the resin temperature T is detected by the temperature detector 18 (step S28). As a result of detection at this time, the pressure is P 1 , the screw position is S 1 , and the resin temperature is T 1 . When the detection is completed, the pressure is released, and the pressure P applied to the molten resin R is released to the atmospheric pressure (steps S29 and S30). The pressure P at this time is detected by the pressure detector 17 and the screw position S is detected by the position detector 16. Further, the resin temperature T is detected by the temperature detector 18 (step S31). As a result of detection at this time, the pressure is P 2 , the screw position is S 2 , and the resin temperature is T 2 .

以上の検出結果が得られたなら、圧縮率の演算を行う(ステップS32)。この場合、圧縮率C(P1,T1)は、πr2S+A(r:スクリュ半径,A:スクリュ位置0における射出ノズル及び加熱筒内の樹脂量)をU(S,T)とすれば、
C(P1,T1)=〔U(S0(P0,T0))−U(S1(P1,T1))〕
/U(S0(P0,T0))
又は
C(P1,T1)=〔U(S2(P2,T2))−U(S1(P1,T1))〕
/U(S2(P2,T2))
のいずれかの式により算出できる。なお、必要により双方の平均値を求めてもよい。
If the above detection result is obtained, the compression rate is calculated (step S32). In this case, the compression rate C (P 1 , T 1 ) is determined by assuming that πr 2 S + A (r: screw radius, A: resin amount in the injection nozzle and the heating cylinder at screw position 0) is U (S, T). ,
C (P 1 , T 1 ) = [U (S 0 (P 0 , T 0 )) − U (S 1 (P 1 , T 1 ))]
/ U (S 0 (P 0 , T 0 ))
Or C (P 1 , T 1 ) = [U (S 2 (P 2 , T 2 )) − U (S 1 (P 1 , T 1 ))]
/ U (S 2 (P 2 , T 2 ))
It can be calculated by any of the following formulas. In addition, you may obtain | require the average value of both if necessary.

そして、得られた圧縮率C(P1,T1)はコントローラ42のメモリに登録する(ステップS33)。 The obtained compression ratio C (P 1 , T 1 ) is registered in the memory of the controller 42 (step S33).

全ての処理が終了したなら、スクリュ4に対して圧力P1とは異なる他の圧力Pnにより前方へ加圧し、同様に圧縮率C(P,T)を求めて登録する一連の処理を、目標圧力数になるまで順次圧力Pnを変化させて行う(ステップS34,S35,S28…S34)。このようにして得られた圧力Pに対する圧縮率C(P,T)の変化特性は、樹脂温度Tをパラメータとしてグラフ化することにより、図4に示すようになる。同図において、U1,U2,U3は、それぞれ樹脂温度Tが200〔℃〕,220〔℃〕,240〔℃〕の場合の変化特性を示す。 When all the processes are completed, a series of processes in which the screw 4 is pressurized forward with another pressure Pn different from the pressure P 1 and the compression rate C (P, T) is obtained and registered in the same manner is performed. The pressure Pn is sequentially changed until the number of pressures is reached (steps S34, S35, S28... S34). The change characteristic of the compression rate C (P, T) with respect to the pressure P obtained in this way is as shown in FIG. 4 by graphing the resin temperature T as a parameter. In the figure, U1, U2 and U3 indicate the change characteristics when the resin temperature T is 200 [° C.], 220 [° C.] and 240 [° C.], respectively.

一方、圧縮率C(P,T)の変化特性は、圧力P及び樹脂温度Tに対する関数に変換する。この場合、圧縮率C(P,T)は、
C(P,T)=ΔV/ΣV
=a・Pb
但し、ΔV:圧縮量
ΣV:圧縮前の樹脂量
a:c1・T+d1
b:c2・T+d2
の関数で表すことができる。なお、c1,d1,c2,d2は、樹脂材料の種類に対応した係数であり、ポリプロピレンの場合、
1= 0.00503
1=−0.59992
2=−0.00141
2= 0.97381(以上、単位:百分率)
を適用できる。これらの係数c1,d1,c2,d2は、樹脂材料の種類毎に予めデータベースとして設定しておく。これにより、圧縮率C(P,T)=a・Pbの関数に変換処理する際は、樹脂材料に対応する係数c1,d1,c2,d2をデータベースから読み出し、これに基づいて変換処理すればよい(ステップS3,S4)。図5は、ポリプロピレンにおける樹脂温度Tに対する係数a,bの値の変化特性を示す。
On the other hand, the change characteristic of the compression rate C (P, T) is converted into a function with respect to the pressure P and the resin temperature T. In this case, the compression rate C (P, T) is
C (P, T) = ΔV / ΣV
= A · P b
Where ΔV: compression amount
ΣV: Resin amount before compression
a: c 1 · T + d 1
b: c 2 · T + d 2
It can be expressed by the function of Note that c 1 , d 1 , c 2 , and d 2 are coefficients corresponding to the type of resin material. In the case of polypropylene,
c 1 = 0.00503
d 1 = −0.59992
c 2 = −0.00141
d 2 = 0.97381 (or more, unit: percentage)
Can be applied. These coefficients c 1 , d 1 , c 2 , d 2 are set in advance as a database for each type of resin material. Thereby, when converting into a function of compression ratio C (P, T) = a · P b , coefficients c 1 , d 1 , c 2 , d 2 corresponding to the resin material are read from the database, and based on this The conversion process may be performed (steps S3 and S4). FIG. 5 shows the change characteristics of the values of the coefficients a and b with respect to the resin temperature T in polypropylene.

次いで、射出ノズル2を開放状態にし、かつスクリュ4を前進させた際に加熱筒3内から射出ノズル2を通して流出する任意の時刻t0,t1間における溶融樹脂Rの流出量Fを算出する(ステップS5)。流出量Fは、圧縮率C(P,T)(=a・Pb)を用いることにより、
F=〔(U(S0)/(1−C(P0,T0))〕
−〔(U(S1)/(1−C(P1,T1))〕
=〔(πr20+A)/(1−C(P0,T0))〕
−〔(πr21+A)/(1−C(P1,T1))〕 …(1)
但し、r:スクリュ半径
A:スクリュ位置0における射出ノズル及び加熱筒内の樹脂量
0:時刻t0におけるスクリュ位置
0:時刻t0における圧力
0:時刻t0における温度
1:時刻t1におけるスクリュ位置
1:時刻t1における圧力
1:時刻t1における温度
により求めることができる。
Next, when the injection nozzle 2 is opened and the screw 4 is moved forward, the outflow amount F of the molten resin R between arbitrary times t 0 and t 1 flowing out from the heating cylinder 3 through the injection nozzle 2 is calculated. (Step S5). The outflow amount F is obtained by using the compression rate C (P, T) (= a · P b ).
F = [(U (S 0 ) / (1-C (P 0 , T 0 ))]
-[(U (S 1 ) / (1-C (P 1 , T 1 ))]
= [(Πr 2 S 0 + A) / (1-C (P 0 , T 0 ))]
− [(Πr 2 S 1 + A) / (1-C (P 1 , T 1 ))] (1)
Where r: screw radius
A: Resin amount in injection nozzle and heating cylinder at screw position 0
S 0 : Screw position at time t 0
P 0 : Pressure at time t 0
T 0 : temperature at time t 0
S 1 : Screw position at time t 1
P 1 : Pressure at time t 1
T 1 : It can be obtained from the temperature at time t 1 .

また、射出成形CAEの利用に供するため、射出ノズル2から流出する溶融樹脂Rの単位時間当たりの流量Qを、
Q=F/(t1−t0
により求める(ステップS6)。
Further, in order to use the injection molding CAE, the flow rate Q per unit time of the molten resin R flowing out from the injection nozzle 2 is
Q = F / (t 1 −t 0 )
(Step S6).

なお、流出量Fが(1)式により算出できる理由は次のとおりである。   The reason why the outflow amount F can be calculated by the equation (1) is as follows.

まず、圧縮のない体積V0の溶融樹脂Rが、圧力P0によりΔV0だけ圧縮したとすれば、圧縮率がC(P0)の場合、この圧縮量ΔV0は、
ΔV0=V0C(P0) …(2)
となる。一方、圧縮した溶融樹脂Rの体積W0は、スクリュ位置S0により未充填量U(S0)であるから、Dをスクリュ径とした場合、(3)〜(5)式が成立する。
圧力P0のときの溶融樹脂Rの体積W0は、
0=V0−ΔV0=V0(1−C(P0)) …(3)
未充填量U(S0)は、
U(S0)=W0=V0(1−C(P0))=(S02π)/4 …(4)
圧縮のない体積V0は、
0=U(S0)/(1−C(P0))
=(S02π)/4(1−C(P0)) …(5)
First, if the uncompressed volume V 0 of the molten resin R is compressed by ΔV 0 by the pressure P 0 , when the compression rate is C (P 0 ), the compression amount ΔV 0 is
ΔV 0 = V 0 C (P 0 ) (2)
It becomes. On the other hand, since the volume W 0 of the compressed molten resin R is the unfilled amount U (S 0 ) depending on the screw position S 0, the equations (3) to (5) are satisfied when D is the screw diameter.
The volume W 0 of the molten resin R at the pressure P 0 is
W 0 = V 0 −ΔV 0 = V 0 (1-C (P 0 )) (3)
The unfilled amount U (S 0 ) is
U (S 0 ) = W 0 = V 0 (1-C (P 0 )) = (S 0 D 2 π) / 4 (4)
The volume V 0 without compression is
V 0 = U (S 0) / (1-C (P 0))
= (S 0 D 2 π) / 4 (1-C (P 0 )) (5)

次に、数値解析上の単位時間Δt後には、圧縮のない体積V0の溶融樹脂Rが、圧力P1によりΔV1だけ圧縮されるため、圧縮率C(P1)を用いた圧力P1における溶融樹脂Rの体積W1は、
1=V0(1−C(P0)) …(6)
となる。
Next, after the unit time Δt in the numerical analysis, the uncompressed volume V 0 of the molten resin R is compressed by ΔV 1 by the pressure P 1, so the pressure P 1 using the compression ratio C (P 1 ). The volume W 1 of the molten resin R in
W 1 = V 0 (1-C (P 0 )) (6)
It becomes.

しかし、射出ノズル2から溶融樹脂Rが体積N1だけ流出するため、Δt間の流出量N1は、体積W1から体積N1を引いた未充填量U(S1)、即ち、
1=W1−U(S1
=V0(1−C(P1))−U(S1
=〔U(S0)(1−C(P1))/(1−C(P0))〕−U(S1) …(7)
となる。
However, since the molten resin R flows out from the injection nozzle 2 by the volume N 1 , the outflow amount N 1 during Δt is the unfilled amount U (S 1 ) obtained by subtracting the volume N 1 from the volume W 1 , that is,
N 1 = W 1 −U (S 1 )
= V 0 (1-C ( P 1)) - U (S 1)
= [U (S 0) (1- C (P 1)) / (1-C (P 0)) ] - U (S 1) ... ( 7)
It becomes.

そして、この流出量N1を圧縮のない溶融樹脂Rの体積となる非圧縮ノズル流出量F1に換算すれば、
1=N1/(1−C(P1))
=〔U(S0)/(1−C(P0))〕
−U(S1)/(1−C(P1)) …(8)
となり、この(8)式は(1)式と同じになる。
Then, when converted to uncompressed nozzle outflow F 1 of the outflow N 1 becomes the volume of no compression molten resin R,
F 1 = N 1 / (1-C (P 1 ))
= [U (S 0 ) / (1-C (P 0 ))]
-U (S 1 ) / (1-C (P 1 )) (8)
This equation (8) becomes the same as equation (1).

図6は、このようにして得られる流出量F(非圧縮ノズル流出量F1)の正確性を検証する実験結果(スクリュ位置・速度、射出圧(圧力)、プランジャ位置・速度、マニホールド圧力)と計算値(非圧縮ノズル射出率、マニホールド圧縮ノズル射出率)を示す。この場合、計算値は、Δt毎のスクリュ位置Sと実測した射出圧(圧力)Pから(1)式((8)式)を用いてΔt間の非圧縮ノズル流出量を求めるとともに、それを非圧縮ノズル射出率に変換したものである。さらに、その積算値に対して実測値のマニホールド圧力による圧縮があるとしてマニホールド圧縮ノズル射出率を計算した。図6中、Uaはスクリュ速度、Ubはプランジャ速度、Ucはスクリュ位置、Udはマニホールド圧力、Ueはマニホールド圧縮ノズル射出率、Ufは非圧縮ノズル射出率、Ugは射出圧、Uhはプランジャ位置を示す。 FIG. 6 shows experimental results (screw position / speed, injection pressure (pressure), plunger position / speed, manifold pressure) for verifying the accuracy of the outflow amount F (uncompressed nozzle outflow amount F 1 ) thus obtained. And calculated values (non-compression nozzle injection rate, manifold compression nozzle injection rate). In this case, the calculated value is obtained from the screw position S for each Δt and the actually measured injection pressure (pressure) P to obtain the non-compressed nozzle outflow amount during Δt using the equation (1) (equation (8)). This is converted to an uncompressed nozzle injection rate. Furthermore, the manifold compression nozzle injection rate was calculated on the assumption that there was compression by the actually measured manifold pressure with respect to the integrated value. In FIG. 6, Ua is screw speed, Ub is plunger speed, Uc is screw position, Ud is manifold pressure, Ue is manifold compression nozzle injection rate, Uf is uncompressed nozzle injection rate, Ug is injection pressure, and Uh is plunger position. Show.

なお、実験は、図3の測定装置1を使用して行なった。この場合、測定装置1のシャットオフバルブ28は開側に制御して射出ノズル2を開放状態にする。これにより、樹脂路26は、射出ノズル2及び加熱筒3の内部に連通した状態となる。また、プランジャ35は最前進位置にセットする。   The experiment was performed using the measuring apparatus 1 shown in FIG. In this case, the shut-off valve 28 of the measuring device 1 is controlled to the open side to open the injection nozzle 2. As a result, the resin path 26 communicates with the inside of the injection nozzle 2 and the heating cylinder 3. The plunger 35 is set at the most advanced position.

そして、スクリュ4を回転させることにより可塑化処理(計量工程)を行い、このときの背圧で樹脂路26の内部に溶融樹脂Rを充満させる。次いで、スクリュ4を前進させる射出工程を行い、このときのスクリュ位置、スクリュ速度、射出圧(圧力)、プランジャ位置、プランジャ速度、マニホールド圧力(樹脂路26内の樹脂圧)を検出する。以上の検出が終了したなら、ドレンバルブ33を制御してドレン路32を開き、プランジャ35を前進させてバレル27内の溶融樹脂Rをドレン路32から外部に排出する。この後、可塑化処理から同様の処理(検出)を繰り返して行う。   And the plasticizing process (measurement process) is performed by rotating the screw 4, and the inside of the resin path 26 is filled with the molten resin R by the back pressure at this time. Next, an injection process for moving the screw 4 forward is performed, and the screw position, screw speed, injection pressure (pressure), plunger position, plunger speed, and manifold pressure (resin pressure in the resin passage 26) at this time are detected. When the above detection is completed, the drain valve 33 is controlled to open the drain path 32, the plunger 35 is advanced, and the molten resin R in the barrel 27 is discharged from the drain path 32 to the outside. Thereafter, the same process (detection) is repeated from the plasticizing process.

この実験結果から明らかなように、溶融樹脂Rの圧縮率C(P,T)=a・Pbを用いて算出した流出量Fに基づく非圧縮ノズル射出率Ufと、マニホールド圧力により圧縮補正した結果であるマニホールド圧縮ノズル射出率Ueは、ほぼ一致した変化を示すことが分かる。したがって、任意の樹脂材料において、圧力Pに対する圧縮率C(P,T)の変化特性、即ち、C(P,T)=a・Pbが得られれば、金型における溶融樹脂Rの流動状況を容易かつ的確に把握できる。 As apparent from the experimental results, the compression ratio C (P, T) of the molten resin R = uncompressed nozzle injection factor Uf-based outflow amount F calculated using a · P b, compressed corrected by manifold pressure It can be seen that the resulting manifold compression nozzle injection rate Ue shows a substantially consistent change. Therefore, in any resin material, if the change characteristic of the compressibility C (P, T) with respect to the pressure P, that is, C (P, T) = a · P b is obtained, the flow state of the molten resin R in the mold Can be grasped easily and accurately.

なお、図6において、スクリュ速度Uaとプランジャ速度Ubを比較した場合、スクリュ4の前進により、射出圧はほぼ同時に上昇するが、プランジャ35はやや遅れて後退する。その後、スクリュ速度は、200〔mm/s〕まで上昇するが、プランジャ35は、180〔mm/s〕(飛び出し現象)まで上昇した後、一旦下降し、この後、0.16〔s〕で300〔mm/s〕(オーバシュート現象)に到達する。この現象は、溶融樹脂Rの圧縮性に基づく固有の現象と考えられる。したがって、射出ノズル2から流出する流量がスクリュ速度に追従しない原因は、溶融樹脂Rの圧縮性に基づくものであり、本実施形態に係る樹脂特性測定方法を利用して正確な射出率を実測値から算出すれば、射出成形CAEによる解析等の精度及び信頼性を格段に向上させることができる。   In FIG. 6, when the screw speed Ua is compared with the plunger speed Ub, the injection pressure rises almost simultaneously as the screw 4 moves forward, but the plunger 35 moves backward with a slight delay. Thereafter, the screw speed rises to 200 [mm / s], but the plunger 35 rises to 180 [mm / s] (the pop-out phenomenon) and then descends, and then 0.16 [s]. 300 [mm / s] (overshoot phenomenon) is reached. This phenomenon is considered to be an inherent phenomenon based on the compressibility of the molten resin R. Therefore, the reason why the flow rate flowing out from the injection nozzle 2 does not follow the screw speed is based on the compressibility of the molten resin R, and an accurate injection rate is measured using the resin characteristic measurement method according to the present embodiment. If it calculates from this, the precision and reliability of the analysis etc. by injection molding CAE can be improved significantly.

他方、本実施形態に係る樹脂特性測定方法により算出した流出量F(流量Q)を利用すれば、射出成形CAEを用いることにより、射出工程における切換点の設定及び切換制御を行うことができる(ステップS7)。即ち、射出工程において多段設定した射出速度又は射出圧力の各段への切換点の設定及び切換制御に利用できるととともに、充填工程から保圧工程への切換点の設定及び切換制御に利用できる。   On the other hand, if the outflow amount F (flow rate Q) calculated by the resin characteristic measuring method according to the present embodiment is used, the setting and switching control of the switching point in the injection process can be performed by using the injection molding CAE ( Step S7). That is, it can be used for setting and switching control of switching points for each stage of injection speed or injection pressure set in multiple stages in the injection process, and can be used for setting and switching control of switching points from the filling process to the pressure holding process.

例えば、図7に、一例となる多数の製品Zo…を有する多数個取り用の解析モデルZを示すとともに、図8に、この解析モデルZに対する射出ノズル2からの流量Q(算出値)、射出圧Um、スクリュ位置Unを示す。これにより、図8に示すように、特に、流量Qの変化を考慮して保圧Uoの設定を行うことができるとともに、充填工程から保圧工程への切換点Xcを設定することができる(ステップS8)。なお、Upは、成形機設定値による解析条件を示す。したがって、実成形時には、充填工程において順次算出する流量Q(積算)を監視し、設定した切換点に達したなら保圧工程に切換制御すればよい。これにより、精度の高い射出制御を行うことができる。さらに、流出量F及び流量Q、或いはこれらの積算値の変化をスクリュ位置に対して表示するようにすれば、溶融樹脂Rの流動状況を情報として的確に把握できる。   For example, FIG. 7 shows an analysis model Z for multi-cavity having a large number of products Zo as an example, and FIG. 8 shows a flow rate Q (calculated value) from the injection nozzle 2 for the analysis model Z and injection. The pressure Um and screw position Un are shown. As a result, as shown in FIG. 8, in particular, the holding pressure Uo can be set in consideration of the change in the flow rate Q, and the switching point Xc from the filling process to the holding process can be set ( Step S8). Note that Up indicates an analysis condition based on a setting value of the molding machine. Therefore, at the time of actual molding, the flow rate Q (integrated) sequentially calculated in the filling process is monitored, and if the set switching point is reached, switching control is performed in the pressure holding process. Thereby, highly accurate injection control can be performed. Furthermore, if the change in the outflow amount F and the flow rate Q or their integrated values is displayed with respect to the screw position, the flow state of the molten resin R can be accurately grasped as information.

このように、本実施形態に係る射出成形機Mの樹脂特性測定方法及び射出制御方法によれば、実際の射出成形機Mから溶融樹脂Rの圧縮率C(P,T)の変化特性を得るため、射出ノズル2から射出される溶融樹脂Rの正確な流量Q及び流出量Fを算出することができ、射出成形CAEを用いる解析等を高い精度で行うことができるとともに、その信頼性を高めることができる。また、溶融樹脂Rの流動状況を的確かつ容易に把握できるため、実際の射出工程における細部の設定や制御、具体的には、多段設定した射出速度又は射出圧力の各段に切換える際の切換点の設定や切換制御、更には充填工程から保圧工程に切換える際の切換点の設定や切換制御などを安定かつ高い精度で行うことができる。   As described above, according to the resin characteristic measuring method and the injection control method of the injection molding machine M according to the present embodiment, the change characteristic of the compression ratio C (P, T) of the molten resin R is obtained from the actual injection molding machine M. Therefore, it is possible to calculate the accurate flow rate Q and the outflow amount F of the molten resin R injected from the injection nozzle 2, and to perform analysis using the injection molding CAE with high accuracy and to enhance its reliability. be able to. In addition, since the flow state of the molten resin R can be accurately and easily grasped, the setting and control of details in the actual injection process, specifically, the switching point when switching to each stage of the injection speed or injection pressure set in multiple stages. And switching control, and further, switching point setting and switching control when switching from the filling process to the pressure holding process can be performed stably and with high accuracy.

以上、最良の実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,手法,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。例えば、圧縮率(C(P,T))の変化特性を変換する関数として、C(P,T)=a・Pbを示したが、必ずしもこの関数に限定されるものではなく、必要により変形することができる。 As described above, the best embodiment has been described in detail, but the present invention is not limited to such an embodiment, and the detailed configuration, method, numerical value, and the like are within the scope not departing from the gist of the present invention. It can be changed, added, or deleted arbitrarily. For example, C (P, T) = a · P b is shown as a function for converting the change characteristic of the compression rate (C (P, T)), but the function is not necessarily limited to this function, and is necessary. It can be deformed.

本発明の最良の実施形態に係る射出成形機の射出制御方法を説明するためのフローチャート、The flowchart for demonstrating the injection control method of the injection molding machine which concerns on the best embodiment of this invention, 同射出制御方法に用いる樹脂特性測定方法の処理手順を説明するためのフローチャート、A flow chart for explaining a processing procedure of a resin characteristic measuring method used for the injection control method, 同射出制御方法及び同樹脂特性測定方法の実施に利用できる測定装置の断面構成図、Cross-sectional configuration diagram of a measuring apparatus that can be used to implement the injection control method and the resin property measuring method, 同樹脂特性測定方法に用いる圧力に対する圧縮率の変化特性図、Change characteristic diagram of compressibility against pressure used in the resin property measurement method, 同樹脂特性測定方法に用いる樹脂温度に対する係数の値を示す特性図、The characteristic figure which shows the value of the coefficient to the resin temperature used for the resin characteristic measuring method, 同樹脂特性測定方法の効果を説明するための時間に対する各種物理量の実験結果と計算値の変化特性図、Experimental results of various physical quantities with respect to time for explaining the effect of the resin characteristic measurement method and change characteristic diagrams of calculated values, 同射出制御方法を用いた射出成形CAEの解析モデルの形状図、Shape diagram of analysis model of injection molding CAE using the same injection control method, 同射出制御方法を用いて切換点を設定する方法を説明するための時間に対する各種物理量の変化特性図、Variation characteristics diagram of various physical quantities with respect to time for explaining a method of setting a switching point using the injection control method,

符号の説明Explanation of symbols

M 射出成形機
R 溶融樹脂
2 射出ノズル
3 加熱筒
4 スクリュ
M injection molding machine R molten resin 2 injection nozzle 3 heating cylinder 4 screw

Claims (13)

射出成形機における溶融樹脂の樹脂特性を測定する射出成形機の樹脂特性測定方法において、射出ノズルを閉鎖状態にし、かつ加熱筒内におけるスクリュの前方に溶融樹脂を充填状態にするとともに、スクリュからの溶融樹脂に対する圧力を順次変化させることにより、圧力の変化に対応するスクリュ位置及び樹脂温度を検出し、検出した任意の圧力に対するスクリュ位置及び樹脂温度から圧力の変化に対する溶融樹脂の圧縮率の変化特性を求めることを特徴とする射出成形機の樹脂特性測定方法。   In the resin characteristic measuring method of an injection molding machine for measuring the resin characteristic of a molten resin in an injection molding machine, the injection nozzle is closed, and the molten resin is filled in front of the screw in the heating cylinder, and from the screw. By sequentially changing the pressure on the molten resin, the screw position and the resin temperature corresponding to the pressure change are detected, and the change characteristics of the compression ratio of the molten resin with respect to the pressure change from the screw position and the resin temperature for the detected arbitrary pressure. A method for measuring resin characteristics of an injection molding machine. 前記圧縮率(C(P,T))の変化特性は、圧力P及び樹脂温度Tに対する関数に変換して求めることを特徴とする請求項1記載の射出成形機の樹脂特性測定方法。   2. The method for measuring resin characteristics of an injection molding machine according to claim 1, wherein the change characteristic of the compression ratio (C (P, T)) is obtained by converting into a function with respect to the pressure P and the resin temperature T. 前記圧縮率C(P,T)は、
C(P,T)=ΔV/ΣV=a・Pb
但し、ΔV:圧縮量
ΣV:圧縮前の樹脂量
a:c1・T+d1(c1,d1は樹脂の種類に対応した係数)
b:c2・T+d2(c2,d2は樹脂の種類に対応した係数)
の関数に変換することを特徴とする請求項2記載の射出成形機の樹脂特性測定方法。
The compression rate C (P, T) is
C (P, T) = ΔV / ΣV = a · P b
Where ΔV: compression amount
ΣV: Resin amount before compression
a: c 1 · T + d 1 (c 1 and d 1 are coefficients corresponding to the type of resin)
b: c 2 · T + d 2 (c 2 and d 2 are coefficients corresponding to the type of resin)
The resin characteristic measuring method for an injection molding machine according to claim 2, wherein the resin characteristic is converted into a function of:
前記射出ノズルを開放状態にし、かつスクリュを前進させた際に前記加熱筒内から前記射出ノズルを通して流出する任意の時刻間における前記溶融樹脂の流出量Fを、前記圧縮率C(P,T)を用いて求めることを特徴とする請求項2又は3記載の射出成形機の樹脂特性測定方法。   When the injection nozzle is in the open state and the screw is advanced, the outflow amount F of the molten resin flowing out from the heating cylinder through the injection nozzle is expressed as the compression rate C (P, T). 4. The method for measuring resin characteristics of an injection molding machine according to claim 2, wherein the resin property is obtained by using the method. 前記流出量Fは、
F=〔(πr20+A)/(1−C(P0,T0))〕
−〔(πr21+A)/(1−C(P1,T1))〕
但し、r:スクリュ半径
A:スクリュ位置0における射出ノズル及び加熱筒内の樹脂量
0:時刻t0におけるスクリュ位置
0:時刻t0における圧力
0:時刻t0における温度
1:時刻t1におけるスクリュ位置
1:時刻t1における圧力
1:時刻t1における温度
により求めることを特徴とする請求項4記載の射出成形機の樹脂特性測定方法。
The outflow amount F is
F = [(πr 2 S 0 + A) / (1−C (P 0 , T 0 ))]
− [(Πr 2 S 1 + A) / (1-C (P 1 , T 1 ))]
Where r: screw radius
A: Resin amount in injection nozzle and heating cylinder at screw position 0
S 0 : Screw position at time t 0
P 0 : Pressure at time t 0
T 0 : temperature at time t 0
S 1 : Screw position at time t 1
P 1 : Pressure at time t 1
T 1: 4. Resin characteristic measuring method for an injection molding machine, wherein the determining the temperature at time t 1.
前記射出ノズルから流出する溶融樹脂の単位時間当たりの流量Qを、
Q=F/(t1−t0
により求めることを特徴とする請求項5記載の射出成形機の樹脂特性測定方法。
The flow rate Q per unit time of the molten resin flowing out from the injection nozzle,
Q = F / (t 1 −t 0 )
The resin characteristic measuring method for an injection molding machine according to claim 5, wherein
射出成形機の射出工程の制御を行う際における射出成形機の射出制御方法において、射出ノズルを閉鎖状態にし、かつ加熱筒内におけるスクリュの前方に溶融樹脂を充填状態にするとともに、スクリュからの溶融樹脂に対する圧力を順次変化させることにより、圧力の変化に対応するスクリュ位置及び樹脂温度を検出し、検出した任意の圧力に対するスクリュ位置及び樹脂温度から圧力の変化に対する溶融樹脂の圧縮率の変化特性を求め、さらに、前記射出ノズルを開放状態にし、かつ前記スクリュを前進させた際に前記加熱筒内から前記射出ノズルを通して流出する任意の時刻間における溶融樹脂の流出量F及び/又は流量Qを前記圧縮率の変化特性を用いて求め、この流出量F及び/又は流量Qを用いて前記射出工程における切換点の設定及び切換制御を行うことを特徴とする射出成形機の射出制御方法。   In the injection control method of the injection molding machine when controlling the injection process of the injection molding machine, the injection nozzle is closed, the molten resin is filled in front of the screw in the heating cylinder, and the melting from the screw is performed. By sequentially changing the pressure on the resin, the screw position and the resin temperature corresponding to the pressure change are detected, and the change characteristics of the compression ratio of the molten resin with respect to the pressure change from the screw position and the resin temperature for the detected arbitrary pressure. Further, when the injection nozzle is opened and the screw is advanced, the flow rate F and / or the flow rate Q of the molten resin from any time flowing out from the heating cylinder through the injection nozzle is calculated as described above. Using the change characteristic of the compression rate, the outflow amount F and / or the flow rate Q is used to set the switching point in the injection process. And an injection control method for an injection molding machine and performs switching control. 前記切換点は、多段設定した射出速度又は射出圧力の各段への切換点であることを特徴とする請求項7記載の射出成形機の射出制御方法。   8. The injection control method for an injection molding machine according to claim 7, wherein the switching point is a switching point to each stage of injection speed or injection pressure set in multiple stages. 前記切換点は、充填工程から保圧工程への切換点であることを特徴とする請求項7記載の射出成形機の射出制御方法。   8. The injection control method for an injection molding machine according to claim 7, wherein the switching point is a switching point from a filling process to a pressure holding process. 前記圧縮率(C(P,T))の変化特性は、圧力P及び樹脂温度Tに対する関数に変換することを特徴とする請求項7記載の射出成形機の射出制御方法。   8. The injection control method for an injection molding machine according to claim 7, wherein the change characteristic of the compression ratio (C (P, T)) is converted into a function with respect to the pressure P and the resin temperature T. 前記圧縮率C(P,T)は、
C(P,T)=ΔV/ΣV=a・Pb
但し、ΔV:圧縮量
ΣV:圧縮前の樹脂量
a:c1・T+d1(c1,d1は樹脂の種類に対応した係数)
b:c2・T+d2(c2,d2は樹脂の種類に対応した係数)
の関数であることを特徴とする請求項10記載の射出成形機の射出制御方法。
The compression rate C (P, T) is
C (P, T) = ΔV / ΣV = a · P b
Where ΔV: compression amount
ΣV: Resin amount before compression
a: c 1 · T + d 1 (c 1 and d 1 are coefficients corresponding to the type of resin)
b: c 2 · T + d 2 (c 2 and d 2 are coefficients corresponding to the type of resin)
The injection control method for an injection molding machine according to claim 10, wherein
前記流出量Fは、
F=〔(πr20+A)/(1−C(P0,T0))〕
−〔(πr21+A)/{1−C(P1,T1)}〕
但し、r:スクリュ半径
A:スクリュ位置0における射出ノズル及び加熱筒内の樹脂量
0:時刻t0におけるスクリュ位置
0:時刻t0における圧力
0:時刻t0における温度
1:時刻t1におけるスクリュ位置
1:時刻t1における圧力
1:時刻t1における温度
により求めることを特徴とする請求項11記載の射出成形機の射出制御方法。
The outflow amount F is
F = [(πr 2 S 0 + A) / (1−C (P 0 , T 0 ))]
− [(Πr 2 S 1 + A) / {1-C (P 1 , T 1 )}]
Where r: screw radius
A: Resin amount in injection nozzle and heating cylinder at screw position 0
S 0 : Screw position at time t 0
P 0 : Pressure at time t 0
T 0 : temperature at time t 0
S 1 : Screw position at time t 1
P 1 : Pressure at time t 1
T 1: the injection control method for an injection molding machine according to claim 11, wherein at time t 1 and obtaining the temperature.
前記射出ノズルから流出する溶融樹脂の単位時間当たりの流量Qは、
Q=F/(t1−t0
により求めることを特徴とする請求項12記載の射出成形機の射出制御方法。
The flow rate Q per unit time of the molten resin flowing out from the injection nozzle is:
Q = F / (t 1 −t 0 )
13. The injection control method for an injection molding machine according to claim 12, wherein the injection control method is obtained by:
JP2004310173A 2004-10-25 2004-10-25 Resin characteristic measurement method and injection control method for injection molding machine Expired - Fee Related JP4166746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004310173A JP4166746B2 (en) 2004-10-25 2004-10-25 Resin characteristic measurement method and injection control method for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004310173A JP4166746B2 (en) 2004-10-25 2004-10-25 Resin characteristic measurement method and injection control method for injection molding machine

Publications (3)

Publication Number Publication Date
JP2006116920A true JP2006116920A (en) 2006-05-11
JP2006116920A5 JP2006116920A5 (en) 2006-06-22
JP4166746B2 JP4166746B2 (en) 2008-10-15

Family

ID=36535256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310173A Expired - Fee Related JP4166746B2 (en) 2004-10-25 2004-10-25 Resin characteristic measurement method and injection control method for injection molding machine

Country Status (1)

Country Link
JP (1) JP4166746B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248437A (en) * 2008-04-04 2009-10-29 Fanuc Ltd Device for detecting pressure abnormality of injection molding machine
KR20180067556A (en) * 2015-10-09 2018-06-20 크라우스마파이 테크놀로지스 게엠베하 Method for determining the actual volume of an injection-moldable compound in an injection-molding process
CN110686816A (en) * 2019-10-30 2020-01-14 江苏理工学院 Early warning detection method for stress overload of high-pressure composite material gas cylinder
CN112172055A (en) * 2019-07-04 2021-01-05 发那科株式会社 Injection molding machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022154934A (en) 2021-03-30 2022-10-13 トヨタ自動車株式会社 Injection molding machine, lamination molding device and pressure control method
JP2022154938A (en) 2021-03-30 2022-10-13 トヨタ自動車株式会社 Three-dimensionally laminated object modeling apparatus and three-dimensionally laminated object modeling method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248437A (en) * 2008-04-04 2009-10-29 Fanuc Ltd Device for detecting pressure abnormality of injection molding machine
KR20180067556A (en) * 2015-10-09 2018-06-20 크라우스마파이 테크놀로지스 게엠베하 Method for determining the actual volume of an injection-moldable compound in an injection-molding process
JP2018529557A (en) * 2015-10-09 2018-10-11 クラウスマッファイ テクノロジーズ ゲーエムベーハーKraussMaffei Technologies GmbH Method for determining the actual volume of an injection moldable material in an injection molding process
US11213986B2 (en) 2015-10-09 2022-01-04 Kraussmaffei Technologies Gmbh Method for determining an actual volume of an injection moldable compound in an injection molding process
KR102538009B1 (en) * 2015-10-09 2023-05-30 크라우스마파이 테크놀로지스 게엠베하 Method for determining the actual volume of an injection-mouldable compound in an injection-molding process
CN112172055A (en) * 2019-07-04 2021-01-05 发那科株式会社 Injection molding machine
CN110686816A (en) * 2019-10-30 2020-01-14 江苏理工学院 Early warning detection method for stress overload of high-pressure composite material gas cylinder
CN110686816B (en) * 2019-10-30 2021-06-15 江苏理工学院 Early warning detection method for stress overload of high-pressure composite material gas cylinder

Also Published As

Publication number Publication date
JP4166746B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US4816197A (en) Adaptive process control for injection molding
EP1091842B1 (en) Automated molding technology for thermoplastic injection molding
EP3691855B1 (en) Real time material and velocity control in a molding system
JP3431138B2 (en) Control method and device for injection molding machine
US20150202815A1 (en) Control method and control device for injection molding machine
KR101894136B1 (en) Method for determining a value for the description of the compression of a mouldable material
JP2021535855A (en) A method for controlling the injection molding process based on the actual plastic melting pressure or cavity pressure
US5795509A (en) Injection method of preplasticization injection molding machine
JP2770131B2 (en) Injection molding method and injection molding machine
CN112218751A (en) Method for simultaneous closed-loop control of gas assist and gas back-pressure during injection molding in relation to plastic melt pressure and plastic melt flow position
WO1991013745A1 (en) Method of determining load in injection molding machine
JP4107780B2 (en) Injection molding method
TW202126463A (en) Melt pressure control of injection molding
JP4166746B2 (en) Resin characteristic measurement method and injection control method for injection molding machine
WO2000059705A1 (en) Injection compression molding method and injection compression molding device for embodying this method
JPH04336222A (en) Method for controlling injection of resin in nozzle
EP3421219B1 (en) Method and apparatus for molding an object according to a computational model
CN108656488B (en) Control method for injection molding machine
JP2007066320A (en) Method of analyzing injection molding condition and method for providing its analyzed result
JP3412419B2 (en) Method for optimizing molding conditions of injection molding machine
CN103192508B (en) System and method for controlling injection molding repeatability based on melt temperature and pressure maintaining position
JP4166747B2 (en) Injection molding machine characteristic measuring apparatus and characteristic measuring method
WO2021157737A1 (en) Injection molding assistance device and injection molding machine comprising same
JP3538896B2 (en) Control method of injection molding machine
JPS63209918A (en) Method for setting molding conditions of injection molder

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140808

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees