JP2006116705A - 液滴吐出装置及び液滴吐出制御方法 - Google Patents

液滴吐出装置及び液滴吐出制御方法 Download PDF

Info

Publication number
JP2006116705A
JP2006116705A JP2004303810A JP2004303810A JP2006116705A JP 2006116705 A JP2006116705 A JP 2006116705A JP 2004303810 A JP2004303810 A JP 2004303810A JP 2004303810 A JP2004303810 A JP 2004303810A JP 2006116705 A JP2006116705 A JP 2006116705A
Authority
JP
Japan
Prior art keywords
residual vibration
drive signal
signal
actuator
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004303810A
Other languages
English (en)
Inventor
Osamu Shinkawa
修 新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004303810A priority Critical patent/JP2006116705A/ja
Publication of JP2006116705A publication Critical patent/JP2006116705A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

【課題】記録媒体の無駄を確実に防止しながらインク粘度変化に応じて安定した液滴吐出量を確保して多階調の画像形成を行う。
【解決手段】アクチュエータに駆動信号を供給してインク滴の吐出を制御する駆動制御手段が、液滴の吐出制御用駆動信号を前記アクチュエータに出力する駆動信号発生手段と前記圧力室内に残留振動を発生させる残留振動発生用駆動信号を前記アクチュエータに出力する残留振動発生手段とを兼ねる駆動信号発生回路70と、残留振動発生手段で発生させた残留振動波形を検出する残留振動検出手段150と、この残留振動検出手段で検出した残留振動波形の波高値と目標波高値との偏差に基づいて前記吐出制御用駆動信号を補償する信号補償手段80とを備えている。
【選択図】 図5

Description

本発明は、インクジェットプリンタなどの液滴吐出装置及び液滴吐出制御方法に関するものである。
液滴吐出装置の1つであるインクジェットプリンタは、記録ヘッドに形成した複数のノズルからインク滴(液滴)を吐出して所定の記録媒体上に画像形成を行う。この記録ヘッドとして、アクチュエータによってノズルに連通する圧力室に圧力変動を発生させ、ノズル開口部からインク滴を吐出させるものが知られている。
このような記録ヘッドとしては、種々の方式が提案されている。これら方式は大きく分類するとピエゾ方式と膜沸騰インクジェット方式とに分類される。
ピエゾ方式は、アクチュエータであるピエゾ素子に駆動信号を与えることにより、圧力室となるキャビティ内の振動板が変位してキャビティ内に圧力変化を生じ、その圧力変化でインク滴をノズルから吐出させるようにしている。
一方、膜沸騰インクジェット方式は、キャビティ内に微小ヒータを設け、この微小ヒータによってキャビティ内のインクを瞬間的に300℃以上に加熱してインクを膜沸騰状態として気泡を生成し、この気泡による圧力変化によってノズルからインク滴を吐出させるようにしている。
このような記録ヘッドでは、各ノズルから吐出されるインク滴が記録媒体に着弾してドットを形成することにより印刷が行われる。1画素の階調表現を向上させるためには、互いに異なる複数種類のドットで1画素を記録する必要がある。多階調の印刷においては、小さいインク滴から段階的に大きなインク滴の複数種類のインク滴から選択して1画素が形成される。このような複数種類のインク滴を形成するため、記録ヘッドのアクチュエータであるピエゾ素子の駆動信号の波形を変えることによって制御することができる。しかし、インク滴を変化させると同時にインク滴の吐出速度も変化することによって制御することができる。しかし、インク滴を変化させると同時にインク滴の吐出速度も変化することや、記録ヘッドの製造バラツキや、プリンタの周囲温度の変化によって各サイズの吐出速度が変化してしまうことから、サイズの異なるドット位置が各要素において一致しなくなくなるという未解決の課題がある。
この未解決の問題を解決するために、階調ドットが記録用紙にインク滴の着弾が一致するようにするため、テストチャートに予備吐出印刷させ、これをイメージスキャナで読取りを行い自動的に駆動信号のタイミング調整するインクジェット装置が知られている(例えば、特許文献1参照)。
特開平9−109395号公報(第1頁、図1)
しかしながら、上記特許文献1に記載された従来例にあっては、テストチャートへの予備吐出印刷が必要であり、記録用紙を無駄に消費することになるという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、記録媒体の無駄を確実に防止しながらインク粘度変化に応じて安定した液滴吐出量を確保して多階調の画像形成を行うことができる液滴吐出装置及び液滴吐出制御方法を提供することを目的としている。
第1の発明は、内部に液体が充填された複数の圧力室と、該圧力室に個別に連通して前記液体を液滴として吐出する複数のノズルと、駆動信号の入力によって前記圧力室の圧力を変化させて前記ノズルから液滴を記録媒体に対して吐出させるアクチュエータと、該アクチュエータに駆動信号を供給して駆動制御する駆動制御手段とを有する液滴吐出ヘッドを備えた液滴吐出装置であって、前記駆動制御手段は、液滴の吐出制御用駆動信号を前記アクチュエータに出力する駆動信号発生手段と、前記圧力室内に残留振動を発生させる残留振動発生用駆動信号を前記アクチュエータに出力する残留振動発生手段と、該残留振動発生手段で発生させた残留振動波形を検出する残留振動検出手段と、該残留振動検出手段で検出した残留振動波形の波高値と目標波高値との偏差に基づいて前記吐出制御用駆動信号を補償する信号補償手段とを備えていることを特徴としている。
この第1の発明では、残留振動発生手段で液滴を吐出させるアクチュエータに対して残留振動発生用駆動信号を出力して、圧力室で残留振動を発生させ、この残留振動の波高値を残留振動検出手段で検出し、検出した波高値と目標波高値との偏差に基づいて信号補償手段で吐出制御用駆動信号を補償するようにしているので、残留振動の波高値が温度変化に比例し、インク粘度に比例していることから、インク粘度を加味した駆動信号の補償を行って安定した液滴吐出量を確保して多階調の画像形成を行うことができる。
第2の発明は、第1の発明において、前記残留振動発生手段は、前記残留振動発生用駆動信号が、前記ノズルからの液滴を非吐出状態で残留振動を発生させる電圧に設定されていることを特徴としている。
この第2の発明では、残留振動発生用駆動信号がノズルからの液滴を非吐出状態で残留振動を発生させる電圧に設定されているので、インク液滴による画像形成処理に影響を与えることなく吐出制御用駆動信号を補償する補償値を設定することができる。
第3の発明は、第1又は第2の発明において、前記残留振動発生用駆動信号は、液滴を吐出しないノズルの微振動用駆動信号を兼ねていることを特徴としている。
この第3の発明では、残留振動発生用駆動信号が液滴を吐出しないノズルの微振動用駆動信号を兼ねているので、液滴非吐出状態のノズルでのインクの固化を防止することができる。
第4の発明は、第1乃至第3の何れか1つの発明において、前記吐出制御用駆動信号は、1画素に対して時系列的に複数の階調ドットを形成し得る複数の駆動信号で形成され、各駆動信号を吐出速度が遅い順に時間順次に配列し、夫々の階調ドットの記録媒体への着弾時間が一致する吐出速度となるように各々の駆動信号の波高値が設定されていることを特徴としている。
この第4の発明では、吐出制御用駆動信号が1画素に対して複数の階調ドットを形成する複数の駆動信号を吐出速度が遅い順に時間順次に配列し、階調ドットの記録媒体への着弾時間を一致する吐出速度となるよう各々の駆動信号の波高値を設定したので、各階調ドットを形成する駆動信号を選択することにより、記録媒体に多階調ドットを形成することができる。
第5の発明は、第1乃至第4の何れか1つの発明において、前記残留振動検出手段は、前記アクチュエータのグランド端を接地に対して開閉するスイッチ手段と、前記グランド端の解放時に発生する残留振動の交流成分を増幅する交流増幅手段と、該交流増幅手段で増幅した残留振動のピーク波高値の保持するピークホールド手段と、該ピークホールド手段で保持されたピーク波高値をデジタルデータに変換するA/D変換手段とを備えていることを特徴としている。
この第5の発明では、残留振動検出手段が、アクチュエータのグランド端を接地に対して開閉するスイッチを配設し、このスイッチによるグランド端の開放時に発生する残留振動の交流成分を交流増幅手段で増幅し、その交流増幅出力のピーク波高値をピークホールド手段で保持し、保持したピーク波高値をA/D変換手段でデジタルデータに変換するようにしているので、残留振動の波高値を正確に検出することができる。
第6の発明は、第1乃至第5の何れか1つの発明において、前記信号補償手段は、目標波高値と検出された残留振動の波高値とを比較して両者の偏差量を算出する偏差演算手段と、該偏差演算手段で算出した偏差量に対して少なくとも比例及び積分演算を行って補償値を出力する補償演算手段と、該補償演算手段で算出した補償値の正負の符号を判断し、その判断結果を出力する符号判定手段とを備え、該符号判定手段の判定結果を吐出制御用駆動信号発生手段に出力するように構成されていることを特徴としている。
この第6の発明では、信号補償手段が、偏差演算手段で、残留振動検出手段で検出された残留振動の波高値と目標波高値とを比較して両者の偏差量を算出し、算出した偏差量に対して補償演算手段で少なくとも比例及び積分演算を行って補償値を算出し、算出した補償値の正負の符号を符号判定手段で判定し、その判定結果及び前記補償値を吐出制御用駆動信号発生手段に出力することにより、吐出制御用駆動信号を補償値によって加減算して容易に補償することができる。
第7の発明は、第6の発明において、前記吐出制御用駆動信号発生手段は、波形データ選択部で、基準となる制御用駆動信号の波形データからオフセット値と駆動信号の振幅変化を制御する波形部分とに分離し、加減算手段で、分離された波形部分に信号補償手段から入力される符号判定結果に基づいて補償値を加減算することにより、駆動信号の補償を正確且つ容易に行うことができる。
第8の発明は、第1乃至第7の何れかの発明において、圧電式アクチュエータで構成されていることを特徴としている。
この第8の発明では、アクチュエータが圧電式アクチュエータで構成されているので、残留振動の波高値を圧電式アクチュエータの起電圧を検出することにより、容易に検出することができる。
第9の発明は、第1乃至第7の何れかの発明において、静電式アクチュエータで構成されていることを特徴としている。
この第9の発明では、アクチュエータが静電式アクチュエータで構成されているので、残留振動の波高値を、駆動振動の印加電圧を静電式アクチュエータに残存させ、この静電式アクチュエータの電極間の変位を電圧変化として検出することにより、残留振動の波高値を容易に検出することができる。
第10の発明は、内部に液体が充填された複数の圧力室と、該圧力室に個別に連通して前記液体を液滴として吐出する複数のノズルと、駆動信号の入力によって前記圧力室の圧力を変化させて前記ノズルから液滴を記録媒体に吐出させるアクチュエータと、該アクチュエータを駆動制御する駆動制御手段とを備え、駆動制御手段によって前記アクチュエータを駆動制御することにより、前記複数のノズルから液滴を吐出するようにした液滴吐出制御方法であって、前記アクチュエータに残留振動発生用基準信号を出力して、発生する残留振動を残留振動検出手段で検出し、検出した残留振動の波高値と目標波高値との偏差に基づいて液滴を吐出制御する吐出制御用駆動信号を補償するようにしたことを特徴としている。
この第10の発明では、前述した第1実施形態と同様に、留振動の波高値が温度変化に比例し、インク粘度に比例していることから、インク粘度を加味した駆動信号の補償を行って安定した液滴吐出量を確保して多階調の画像形成を行うことができる。
第11の発明は、第10の発明において、前記残留振動検出手段による残留振動の検出タイミングは、通常の液滴吐出タイミングとは異なるタイミングで実行することを特徴としている。
この第11の発明では、ノズルからのインク液滴を吐出しない通常の液滴吐出タイミングとは異なるタイミングで残留振動の検出を行うので、吐出制御用駆動信号の補償値設定処理をインク液滴の吐出による画像形成処理に影響を与えることなく行うことができる。
第12の発明は、第10の発明において、前記残留振動検出手段による残留振動の検出タイミングは、電源投入時、電源投入後の一定時間経過毎及び一定枚数の記録媒体への画像形成が終了する毎の何れか1つに実施されることを特徴としている。
この第12の発明では、電源投入時、電源投入後の一定時間経過毎及び一定枚数の記録媒体への画像形成が終了する毎の少なくとも何れか1つに残留振動の検出タイミングが設定されているので、吐出制御用駆動信号の補償値設定処理を画像形成処理に影響を与えることなく、且つ確実に行うことができ、電源投入後の一定時間経過毎及び一定枚数の記録媒体への画像形成が終了する毎に行う場合には補償値設定処理を定期的に行うことができ、温度変化によるインク粘性変化に追従した正確な補償制御を行うことができる。
以下、本発明の液滴吐出装置及び液滴吐出制御方法の実施形態を図面に基づいて説明する。
図1は、本発明の第1実施形態における液滴吐出装置をインクジェットプリンタに適用した場合の概略構成を示す斜視図である。
図中、1はインクジェットプリンタであって、このインクジェットプリンタ1は、装置本体2備えており、上部後方に記録媒体としての記録用紙Pを載置するトレイ21と、下部前方に記録用紙Pを排出する排出口22と、上部面に操作パネル7とが設けられている。
操作パネル7は、例えば、液晶ディスプレイ、有機ELディスプレイ、LEDランプ等で構成され、液晶メッセージ等を表示する表示部(図示せず)と、各種スイッチ等で構成される操作部(図示せず)とを備えている。
また、装置本体2の内部には、主に、往復動する印字部3を備える印刷装置4と、記録用紙Pを1枚ずつ印刷装置4に送り込む給紙装置5と、印刷装置4及び給紙装置5を制御する制御装置6とを有している。
制御装置6の制御より、給紙装置5は、記録用紙Pを一枚ずつ間欠送りする。この記録用紙Pは、印字部3の下部近傍を通過する。このとき、印字部3が記録用紙Pの送り方向とは略直交する方向に往復移動して、記録用紙Pへの印刷が行われる。すなわち、印字手段3の往復動及び記録用紙Pの間欠送りが、印刷における主操作方向及び副操作方向となって、インクジェット方式の印刷が行われる。
印刷装置4は、印刷部3と、印字部3を主走査方向に移動させる駆動現となるキャリッジモータ41と、キャリッジモータ41の回転を受けて、印字部3を往復動させる往復動機構42とを備えている。
印字部3は、その下部に、多数のノズル110を備えるインクの種類に対応した複数のヘッドユニット35と、各ヘッドユニット35にインクを供給する複数のインクカートリッジ31と、各ヘッドユニット35及びインクカートリッジ31を搭載したキャリッジ32とを有している。
また、ヘッドユニット35は、図2に示すようにインクジェット式記録ヘッド(液滴吐出ヘッド)100を多数備えている。
このインクジェットヘッド100は、図2に示すように、振動板121と、この振動板121を変位させる圧電式アクチュエータ122と、内部に液体であるインクが充填され振動板121の変位により内部の圧力が増減されるキャビティ(圧力室)123と、このキャビティ123に連通しキャビティ123内の圧力の増減によりインクを液滴として吐出するノズル124とを少なくとも備えている。
さらに詳述すると、インクジェットヘッド100は、ノズル124が形成されたノズル基板125と、キャビティ基板126と、振動板121と、複数の圧電素子127を積層した積層型の圧電式アクチュエータ122とを備えている。
キャビティ基板126は、図示のように所定形状に形成され、これにより、キャビティ123と、これに連通するリザーバ128とが形成されている。また、リザーバ128は、インク供給チューブ129を介してインクカートリッジ31に接続されている。
圧電式アクチュエータ122は、対向して配置される櫛歯状の電極131、132と、その電極131、132の各櫛歯と交互に配置される圧電素子127とからなる。また、圧電式アクチュエータ122は、その一端側が図2に示すように中間層130を介して振動板121と接合されている。
このような構成からなる圧電式アクチュエータ122では、第1電極131と第2電極132との間に印加される駆動信号源からの駆動信号により、図2に示すように上下方向に伸び縮みするモードを利用している。この圧電式アクチュエータ122は、圧電素子127が積層されているために、大きな駆動力が得られるのが特徴である。
したがって、圧電式アクチュエータ122では、図2に示すような駆動信号が印加されると、振動板121に変位が生じてキャビティ内123内の圧力が変化して、ノズル124からインク滴が吐出される。
なお、図2に示すノズル基板126に形成されるインクジェットヘッド100毎のノズル124は、例えば図3に示すように配列されている。この図3の例では、4色のインク(イエローY,マゼンタM,シアンC,ブラックK)に適用した場合のノズル124の配列パターンを示している。
また、ヘッドユニット35は、図1ではインクカートリッジ31を含んだ構成を示しているが、このような構成に限定されない。例えば、インクカートリッジ31を別に固定し、チューブなどによってヘッドユニット35に供給されるようなものでもよい。したがって、以下において、印字部3とは別に、夫々一つの振動板121、静電アクチュエータ122、キャビティ123、ノズル124等で構成されたインクジェットヘッド100を複数設けたものをヘッドユニットと称するものとする。
なお、インクカートリッジ31として、イエロー、マゼンタ、シアン、ブラックの4色のインクを充填したものを用いることにより、フルカラー印刷が可能となる。この場合、印字部3には、各色に夫々対応したヘッドユニット35が設けられることになる。ここで、図1では、4色のインクに対応した4つのカートリッジ31を示しているが、印字部3はその他の色、例えばライトシアン、ライトマゼンタ、ダークイエロー等のインクカートリッジ31をさらに備えるように構成されていてもよい。
往復動機構42は、その両端をフレーム(図示せず)に支持されたキャリッジガイド軸422と、キャリッジガイド軸422と平行に延在するタイミングベルト421とを有している。
キャリッジ32は、往復動機構42のキャリッジガイド軸422に往復動自在に支持されると共に、タイミングベルト421の一部に固定されている。
キャリッジモータ41の作動により、プーリを介してタイミングベルト421を正逆走行させると、キャリッジガイド軸422に案内されて、印字部3が往復動する。そして、この往復動の際に、印刷されるイメージデータ(印刷データ、液滴吐出制御情報)に対応して、ヘッドユニット35内における複数のインクジェットヘッド100のノズル124から適宜インクが吐出され、記録用紙Pへの印刷が行われる。
給紙装置5は、その駆動源となる給紙モータ51と、給紙モータ51の作動により回転する給紙ローラ52とを有している。
給紙ローラ52は、記録用紙Pの送り経路で記録用紙Pを挟んで上下に対向する従動ローラ52aと駆動ローラ52bとで構成され、駆動ローラ52bは給紙モータ51に連結されている。これにより、給紙ローラ52は、トレイ21に設置した多数枚の記録用紙Pを、印刷装置4に向かって1枚ずつ送り込めるようになっている。なお、トレイ21に代えて、記録用紙Pを収容する給紙カセットを着脱自在に装着し得るような構成であってもよい。
制御装置6は、例えば、パーソナルコンピュータ、ディジタルカメラ等のホストコンピュータ60から入力された印刷データに基づいて、印刷装置4や給紙装置5等を制御することにより記録用紙Pに印刷処理を行うものである。
この制御装置6は、図4に示すように、ホストコンピュータ60から入力された印刷データなどを受け取る入力インタフェース部61と、この入力インタフェース部61から入力された印刷データに基づいて印刷処理を実行する例えばマイクロコンピュータで構成される制御部62と、キャリッジモータ41を駆動制御するキャリッジモータドライバ63と、給紙モータ51を駆動制御する給紙モータドライバ64と、ヘッドユニット35を駆動制御するヘッドドライバ65と、各ドライバ63、64及び65の出力信号を外部のキャリッジモータ41、給紙モータ51及びヘッドユニット35で使用する制御信号に変換して出力すると共に、ヘッドユニット35の残留振動波形を検出する残留振動検出回路150で検出した波高値を制御部62に入力する入出力インタフェース部67とを備えている。
ここで、制御部62は、印刷処理等の各種処理を実行するCPU(Central Processing Unit)62aと、ホストコンピュータ60から入力インタフェース部61を介して入力される印刷データを図示していないデータ格納領域に格納する不揮発性半導体メモリの一種であるEEPROM(Electrically Erasable Programmable Read-Only Memory)62bと、印刷データ印刷処理等を実行する際に各種データを一時的に格納し、或いは印刷処理等のアプリケーションプログラムを一時的に展開するRAM(Random Access Memory)62cと、CPU62aで実行する制御プログラム等を格納する不揮発性半導体メモリで構成されるROM(Read-Only Memory)62dとを少なくとも備えている。
また、制御部62には、図示しないが、例えばインクカートリッジ31のインク残量、印字部3の位置、温度、湿度等の印刷環境等を検出可能な各種センサが、夫々電気的に接続されている。
制御部62は、入力インタフェース部61を介してホストコンピュータ60から印刷データを入手すると、その印刷データをEEPROM62bに格納する。そして、CPU62aは、この印刷データに所定の処理を実行して、この処理データ及び各種センサからの入力データに基づいて、各ドライバ63〜65に制御信号を出力する。各ドライバ63、64及び65から制御信号が出力されると、これらが入出力インタフェース部67で駆動信号に変換されてヘッドユニット35の複数のインクジェットヘッド100に対応する圧電式アクチュエータ122、印刷装置4のキャリッジモータ41及び給紙装置5が夫々作動して、記録用紙Pに印刷処理が実行される。
また、制御部62は、後述する基準駆動信号及び階調信号を形成するための波形形成用データDATAを後述する波形メモリ701に書込むために、書込イネーブル信号DENと、書込クロック信号WCLKと波形メモリ701の書込アドレスデータA0〜A3とを出力して例えば16ビットの波形形成用データDATAを波形メモリ701に書込むと共に、この波形メモリ701に記憶された波形形成用データDATAを読出すための読出アドレスデータA0〜A3、波形メモリ701からの読出した波形形成用データをラッチするタイミングを設定する第1のクロック信号ACLK、ラッチした波形データを加算するためのタイミングを設定する第2のクロック信号CLK及びラッチデータをクリアするクリア信号CLERをヘッドドライバ65に出力する。
このヘッドドライバ65は、吐出制御用駆動信号及び残留振動発生用駆動信号を含む駆動信号COMを形成する駆動信号発生手段及び残留振動発生手段を兼ねる基準駆動信号発生回路70と、後述する残留振動検出手段で検出した残留振動波形の波高値PDATAと目標波高値との偏差に基づいて吐出制御用駆動信号COMを補償する信号補償手段としての信号補償回路80と、吐出制御用駆動信号COMを選択するためのクロック信号SCKを出力する発振回路90とを備えている。
駆動信号発生回路70は、図5に示すように、制御部62から入力される階調ドットに対応する複数例えば4つの吐出制御用駆動信号と、1つの残留振動発生用駆動信号とを生成するための波形形成用データDATAを所定のアドレスに対応する記憶素子に記憶する波形メモリ701と、この波形メモリ701から読出された波形形成用データWDを絶対値化する絶対値回路702と、波形メモリ701から読出された波形形成用データWDに基づいてオフセット部と波形部とに分離判定する波形データ選択部703と、この波形データ選択部703から出力されるオフセット部及び波形部の何れの状態であるかを表す選択データ信号Dsと信号補償回路80から供給される補償値CDATAとが入力されるアンドゲート704と、絶対値回路702から出力される波形形成用データWDの絶対値に対して補償値CDATAを信号補償回路80から供給される符号判定信号ASSELに基づいて加減算する加減算器705とを備えている。
また、駆動信号発生回路70は、波形メモリ701から出力される波形形成用データWDの正負の符号を判定する符号判定器706と、この符号判定器706の符号判定結果に基づいて加減算器705から出力される加減算値に例えば+1又は−1を乗算することにより符号を付加して波形補償データWDcを出力する符号付加器707と、この符号付加器707から出力される波形補償データWDcを前述した第1のクロック信号ACLKによってラッチするラッチ回路708と、このラッチ回路708の出力と後述するラッチ回路710から出力される波形生成データWDATAとを加算する加算器709と、この加算器709の加算出力を前述した第2のクロック信号CLKによってラッチするラッチ回路710と、このラッチ回路710から出力される波形生成データWDATAをアナログ信号に変換するD/A変換器711と、このD/A変換器711から出力されるアナログ信号を電圧増幅する電圧増幅部712と、この電圧増幅部712の出力信号を電流増幅して基準駆動信号COMを出力する電流増幅部713とを備えている。
ここで、ラッチ回路708及び710には制御部62から出力されるクリア信号CLERが入力され、このクリア信号CLERがオフ状態となったときに、ラッチデータがクリアされる。
また、波形データ選択部703は、図6に示すように、波形メモリ701からの読出しアドレス番号A0〜A3と制御部62で設定する所望の波形部を表すアドレス番号A0〜A3との一致を検出し、両者が一致したときに例えば論理値“1”の比較信号を出力する一致比較器721a〜721dと、これら一致比較器721a〜721dから出力される比較信号が入力されるオアゲート722と、このオアゲート722の出力信号が一方の入力側に入力され、他方の入力側に第1のクロック信号BCLKがインバータ723で反転されて入力されるアンドゲート724と、オアゲート722の出力信号が一方の入力側に他方の入力側に前述したインバータ723の出力信号が入力されたオアゲート725と、このオアゲート725の出力信号が一方の入力端に、他方の入力端にクリア信号CLERが入力されたアンドゲート726と、アンドゲート724の出力信号がクロック入力端CKに入力され、アンドゲート726の出力信号がリセット端子に入力されたD型フリップフロップで構成されるラッチ回路727とを備えている。そして、ラッチ回路727の出力端Qからオフセット部及び波形部の何れの状態であるかを表す選択データ信号Dsがアンドゲート704に出力される。
信号補償回路80は、図7に示すように、制御部62から入力される目標波高値TDATAと後述する残留振動検出回路150から入力される残留振動の波高値PDATAとが入力され、これらの偏差εを出力する比較偏差演算器81と、この比較偏差演算器81から出力される偏差εが入力されるPID演算器82と、このPID演算器から出力される補償値CDATAの符号を判定して符号判定信号ASSELを出力する符号判定器83とを備えている。
PID演算器82は、夫々偏差εが入力される比例演算を行う比例演算器82a、積分演算を行う積分演算器82b、及び微分演算を行う微分演算器82cと、これら各演算器82a、82b及び82cの演算出力に個別に比例ゲインKp、積分ゲインKi及び微分ゲインKdを乗算する乗算器82d、82e及び82eと、各乗算器82d乃至82eから出力される乗算出力を加算して補償値CDATAを算出する加算器82fとを備えている。加算器82fから出力される補償値CDATAは下記(1)式で表される。
CDATA=Kp・ε+(Ki/Ti)∫εdt+Kd・Td(dε/dt)……(1)
ここで、Tiは積分時間、Tpは微分時間である。
また、入出力インタフェース部67は、基準駆動信号発生回路70から出力される吐出制御用駆動信号COM及び発振回路90から出力されるクロック信号SCLKをそのままヘッドユニット35に出力すると共に、制御部62から印刷データに応じて出力される吐出制御用駆動信号COMに対するノズル毎の駆動信号選択信号SI、この駆動信号選択信号SIをラッチするためのラッチ信号LATをヘッドユニット35に出力すると共に、後述する残留振動検出回路150から出力される残留振動検出信号の波高値PDATAを信号補償回路80に出力する。
また、ヘッドユニット35は、図8に示すように、所定数のノズル単位で、各ノズル124に対応する圧電アクチュエータ122の第1の電極131に駆動信号COMを供給するか否かを選択する選択スイッチ201を有すると共に、この選択スイッチ201を選択制御する駆動信号選択制御回路210を有する。ここで、圧電アクチュエータ122の第2の電極132は後述する残留振動検出回路150に接続されている。
駆動信号選択制御回路210は、図8に示すように、入出力インタフェース部67から所定数の圧電アクチュエータ122に対する駆動信号選択信号SIがシリアルデータとして供給され、クロック信号SCKによって順次シフトするシフトレジスタ211と、このシフトレジスタ211に格納された駆動信号選択信号SLbをラッチ信号LATによってパラレル信号としてラッチするラッチ回路212と、このラッチ回路212のラッチ出力を第1の選択スイッチ201で必要とする電圧に変換するレベルシフタ213とで構成されている。
一方、前述したように、インクジェットヘッド100からインク液滴を吐出されるアクチュエータとして圧電式アクチュエータ122を適用した場合には、第1電極131と第2電極132との間に印加される駆動信号源からの駆動信号により、図2に示すように上下方向に伸び縮みするモードを利用して、図2に示すような駆動信号を印加すると、振動板121に変位が生じてキャビティ内123内の圧力が変化して、ノズル124からインク滴が吐出されるものであるが、このときの駆動信号によって振動板121に残留振動が発生し、この残留振動によって圧電式アクチュエータ122に残留振動に応じた起電圧が発生する。
この圧電式アクチュエータ122で生じる発生残留振動に応じた起電圧を残留振動検出手段としての残留振動検出回路150で検出する。この残留振動検出回路150は、図8に示すように、各圧電式アクチュエータ122の第2の電極132がコレクタに接続され、エミッタがグランド端に接地され、ベースに制御部62から供給される選択信号DSELが入力された開閉スイッチを構成するスイッチング素子151と、このスイッチング素子151のコレクタに接続された交流増幅器152と、この交流増幅器152の交流増幅出力のピーク波高値PVを保持するピークホールド回路153と、このピークホールド回路153に保持されたピーク波高値PVをデジタルデータに変換してピーク波高値データPDATAを出力するA/D変換器154とを備えている。
ここで、交流増幅器152は、圧電式アクチュエータ122の起電圧の直流分を除去する直流分除去用コンデンサCと、入力抵抗R1及び帰還抵抗R2及び参照電圧を与える直流電源DCとを備えたオペアンプOPとで構成されている。
そして、印刷データに基づいてインク液滴を吐出するための吐出制御用駆動信号及び残留振動発生用駆動信号を含む駆動信号COMを圧電式アクチュエータ122の第1の電極131に印加される状態では、制御部62から出力される選択信号DSELがハイレベルに制御されて、スイッチング素子151がオン状態となって各圧電式アクチュエータ122の第2の電極132がスイッチ素子151を介してグランド端に接続される。このため、インク液滴吐出制御時には圧電式アクチュエータ122への吐出制御用駆動信号の印加電圧に応じて振動板121が上下に振動してキャビティ123の容積変化によってノズル124からインク液滴が吐出され、残留振動検出時には残留振動発生用駆動信号がインク液滴がノズル124から吐出されない程度の電圧に設定されて、これによってキャビティ123内に圧力変化を生じる。
そして、残留振動発生用駆動信号の圧電式アクチュエータ122にする印加が終了した直後に制御部62で選択信号DSELをローレベルに反転されることにより、スイッチング素子151がオフ状態となり、残留振動発生用駆動信号によって発生される残留振動による圧電式アクチュエータ122の起電圧が交流増幅器152に供給され、この交流増幅器152で増幅されてピークホールド回路153に供給され、このピークホールド回路153でピーク波高値PVが保持され、保持されたピーク波高値PVがA/D変換器154でデジタルデータに変換されてピーク波高値データPDATAとして入出力インタフェース部67を介して信号補償回路80に供給される。
ここで、圧電式アクチュエータ122から出力される残留振動に基づく起電圧は、図9に示すように、インク温度に依存した波形を示し、インク温度が例えば5℃である状態では、ピーク波高値が一番低く、これからインク温度が20℃、30℃及び45℃に増加するに応じてピーク波高値も徐々に高くなる。したがって、残留振動を検出することにより、インク温度即ちインク粘度を検出することができ、残留振動検出回路150から出力されるピーク波高値データPDATAがインク粘度を表すことになる。このとき、インク温度が低いときにはインク粘度が高くなり、ノズル124から吐出されるインク液滴の吐出速度が遅くなり、逆インク温度が高いときにはインク粘度が低くなり、ノズル124から吐出されるインク液滴の吐出速度が速くなる。
ところで、圧電式アクチュエータ122に印加する駆動電圧とインク吐出重量との関係は、図10に示すように、駆動電圧が低いときにはインク吐出重量も軽く、駆動電圧が増加するにつれてインク吐出重量も増加する比例関係にある。
また、圧電式アクチュエータ122に印加する駆動電圧とインク吐出初速度との関係は、図11に示すように駆動電圧が低いときにはインク吐出初速度も遅く、駆動電圧が増加するにつれてインク吐出初速度も増加する比例関係にある。
さらに、圧電式アクチュエータ122に印加する駆動電圧と残留振動のピーク波高値(電圧)との関係は、図12に示すように、駆動電圧が低いときには残留振動のピーク波高値も低く、駆動電圧が増加するにつれて残留振動のピーク波高値も高くなる。
したがって、インク吐出重量で多階調ドットを形成するためには、例えば図13に示すように、駆動電圧が徐々に大きくなる4つの階調駆動信号を設定し、これら階調駆動信号は夫々駆動電圧が異なるためインク吐出初速度も異なることから、記録用紙Pへの着弾位置を一致させるためには、図13に示すように、1画素を構成する区間内で、インク吐出初速度の遅い順即ち駆動電圧が低い順に時系列的に配列し、これら4つの階調駆動信号の内1つ又は複数を選択することにより、8〜9段階の階調ドットを記録用紙P上に形成することができる。また、残留振動検出用の検出信号としてWeを設定している。Weは、キャビティ内に検出可能な残留振動が発生させる検出用の駆動波形である。場合によっては、インクを吐出させない程度の駆動波形でも良く、ノズルのインク増粘、乾燥を防止させるためキャビティ内を微振動させる微振動用の駆動波形と併用しても良い。
仮に、階調駆動信号を図13に示すように等配置間隔Tw(sec)で配置し、最初の初期駆動波形W0の液滴吐出初速度をV0(m/s)、ノズル124と記録用紙P間のギャップをg(m)とすると、各階調ドットを生成する駆動波形Wn(n:1〜kの整数)のインク吐出初速度Vnは下記(2)式で表すことができる。
Vn=g/{(g/V0)−(n×Tw)} …………(2)
このため、上記(2)式に基づいて各駆動波形W1〜W3のインク吐出初速度V1〜V3を算出し、これらインク吐出初速度V1〜V3に応じて階調駆動信号の電圧(振幅)を設定する。
そして、制御部62では、インクジェットプリンタ1の電源が投入されると、図14に示す印刷制御処理を実行する。この印刷制御処理では、先ず、ステップS1で、後述する補償処理タイミング監視処理で駆動信号の補償値を算出する補償処理を開始するタイミングであることを表す補償処理開始フラグFSが“1”にセットされているか否かを判定し、補償処理開始フラグFSが“0”にリセットされているときには後述するステップS5にジャンプし、補償処理開始フラグFSが“1”にセットされているときにはステップS2に移行して、ホストコンピュータ60から入力された印刷データが存在するか否かを判定し、印刷データが存在しないときには後述するステップS10に移行し、印刷データが存在する場合にはステップS3に移行する。
このステップS3では、1枚の印刷用紙Pの印刷が完了した時点であるか否かを判定し、印刷が完了した時点であるときには後述するステップS10に移行し、印刷用紙Pが印刷中であるときにはステップS4に移行して、1画素のドット形成周期における駆動信号の出力完了時であるか否かを判定し、駆動信号の出力完了時であるときには後述するステップS10に移行し、駆動信号の出力完了時ではないときにはステップS6移行する。
一方、ステップS1の判定結果が、補償処理開始フラグFSが“0”にリセットされているときにはステップS5に移行して、ホストコンピュータ60から入力された印刷データが存在するか否かを判定し、印刷データが存在しない場合には前記ステップS1に戻り、印刷データが存在する場合にはステップS6に移行する。
ステップS6では、残留振動検出回路150のスイッチング素子151に対する選択信号DSELをハイレベルとし、次いでステップS7に移行して、印刷処理を実行する。この印刷処理は、画像データに基づいてヘッドや、紙送り等を制御する一連の動作を示しており、ここでは、画像データに基づいて印刷処理が行われている。
次いで、ステップS8に移行して、印刷処理が終了したか否かを判定し、印刷処理が終了していないときには前記ステップS1に戻り、印刷処理が終了したときにはステップS9に移行して、電源がオフ状態となったか否かを判定し、電源がオン状態を継続しているときには前記ステップS1に戻り、電源がオフ状態であるときには印刷処理を終了する。
一方、前記ステップS2の判定結果が、印刷データが存在しないとき、ステップS3の判定結果が、1枚の印刷用紙の印刷完了時であるとき、ステップS4の判定結果が駆動信号の出力完了時であるときには、ステップS10に移行して、スイッチング素子151に対してハイレベルの選択信号DSELを出力し、次いでステップS11に移行して、残留振動を発生させるノズルを選択するためシリアルデータの選択信号SIをクロックSCKに同期して駆動信号選択制御回路210に入力してからステップ12に移行する。
このステップ12では、残留振動を発生させるための駆動信号を生成し、残留振動検出用の駆動波形Weを選択出力してステップ13に移行する。ステップ13では、検出信号Weの出力が終了した時点を判断し、終了したらステップ14に移行し、残留振動検出回路150のスイッチング素子151に対してローレベルの選択信号DSELを出力し、次いでステップS15に移行して、残留振動検出回路150によって残留振動波形を検出し、残留振動波形のピーク波高値をデジタルデータに変換してPDATAとして出力し、ステップ16に移行する。
このステップS16では、読込んだピーク波高値PDATAが目標ピーク波高値TDATAとの偏差εを算出し、次いでステップS17に移行して、算出した偏差εが所定の整定範囲内の値であるか否かを判定し、整定範囲内であるときには前記ステップS1に戻り、整定範囲外であるときには前記ステップS18に移行する。ステップS18では、偏差εをPID演算器で演算し演算結果として補償値CDATA、CDATAの正負の判定結果をAS_SELとして出力し、ステップS10に戻る。尚、CDATA、及びAS_SELはステップS12の駆動信号生成にフィードバックされ駆動信号の補償処理に使用される。
図15の駆動信号発生処理では、先ず、ステップS61で、クロック信号CLKに同期して波形メモリ701から波形データWDを読出し、次いでステップS22に移行して、波形データWDのアドレスが波形部のアドレスであるか否かを判定し、波形部のアドレスではなくオフセット部のアドレスであるときは後述するステップS66にジャンプし、波形部のアドレスであるときにはステップS63に移行して、図25の信号補償処理で算出される補償値データCDATAの符号判定フラグFCが“1”にセットされているか否かを判定し、符号判定フラグFCが“1”にセットされているときには符号が正であるものと判断してステップS64に移行して波形データWDの絶対値に補償値データCDATAの絶対値を加算した値に波形データWDの符号を付加した補償波形データWDcを算出してからステップS66に移行し、補償値データCDATAの符号判定フラグFCが“0”にリセットされているときには符号が負であるものと判断してステップS65に移行して、波形データWDの絶対値に補償値データCDATAの絶対値を加算した値に波形データWDの符号を付加した補償波形データWDcを算出してからステップS66に移行する。ステップS66では、オフセットデータ又は補償波形データWDcをD/A変換してアナログ駆動信号に変換し、これを電圧増幅器712に出力し、次いでステップS67に移行して全波形生成が終了したか否かを判定し、終了していないときには前記ステップS61に戻り、全波形生成が終了したときには1画素分の駆動信号の生成を終了する。
また、補償処理タイミング監視処理は、図16に示すように、電源が投入されたときに実行開始され、先ず、ステップS41で、補償処理開始フラグFSを“1”にセットしてからステップS42に移行し、信号補償回路80から補償値CDATAが出力されたか否かを判定し、補償値CDATAが出力されていないときにはこれが出力されるまで待機し、補償値CDATAが出力されたときにはステップS43に移行する。
このステップS43では、補償処理開始フラグFSを“0”にリセットしてからステップS44に移行し、次の補償処理開始までの設定時間をプリセットしたタイマをスタートさせ、次いでステップS45に移行して、印刷枚数をプリセットし記録用紙を1枚印刷する毎に減算カウントするカウンタをスタートさせてからステップS46に移行する。
このステップS46では、タイマがタイムアップしたか否かを判定しタイムアップしていないときにはステップS47に移行してカウンタのカウント値が“0”となったか否かを判定し、カウント値が“1”以上であるときには前記ステップS46に戻る。
一方、ステップS46の判定結果が、タイマがタイムアップしたものであるときにはステップS48に移行して、補償処理開始フラグFSを“1”にセットし、次いでステップS49に移行して、信号補償回路80から補償値CDATAが出力されたか否かを判定し、補償値CDATAが出力されていないときにはこれが出力されるまで待機し、補償値CDATAが出力されたときにはステップS50に移行して、補償処理開始フラグFSを“0”にリセットしてからステップS51に移行して、タイマを再スタートしてから前記ステップS46に戻る。
また、前記ステップS47の判定結果が、カウンタのカウント値が“0”となったものであるときにはステップS52に移行して、補償処理開始フラグFSを“1”にセットし、次いでステップS53に移行して、信号補償回路80から補償値CDATAが出力されたか否かを判定し、補償値CDATAが出力されていないときにはこれが出力されるまで待機し、補償値CDATAが出力されたときにはステップS54に移行して、補償処理開始フラグFSを“0”にリセットしてからステップS55に移行して、カウンタを再スタートさせてから前記ステップS46に移行する。
インクの温度変化による駆動信号の補正は、図14に示すように非印刷処理のタイミングで所望の整定範囲に入るまで、残留振動の検出結果が駆動信号の生成にフィードバックされる。尚、整定時の補償結果は、図7のPID演算器の積分器に保存されCDATAとして出力されている。従って、整定後ステップS7の印刷処理のインク吐出動作では、整定後の補償値で駆動波形が随時生成され印刷が行われている。
そして、図14の処理において、ステップS5〜S9の処理及び図15の処理と駆動信号発生回路70とが駆動信号発生手段に対応し、図14のステップS10〜S13の処理と駆動信号発生回路70とで残留振動発生手段に対応している。図14のステップS15〜S17の処理、図16の処理及び信号処理回路80が信号補償手段に対応している。
次に、上記第1の実施形態の動作を説明する。
今、インクジェットプリンタ1の電源を投入すると、先ず、制御部62のCPU62aで初期化処理が行われ、駆動信号発生回路70の波形メモリ701に対する駆動信号波形データの書込みが行われる。この駆動信号波形データの書込みは、図17に示すように、アドレスを指定した状態で、16ビットの波形データDATAを出力し、これと同時に書込クロック信号WCLKを出力し、イネーブル信号DENの発生により、波形メモリ701のアドレスA0〜A3に対応するメモリ素子に夫々波形データが格納される。このとき、波形データの最上位ビットMSBは正負の符号を表す符号ビットとして使用される。そして、この実施形態では、波形メモリ701のアドレスA0に“0”の波形データが格納され、アドレスA1に吐出制御用駆動信号の初期増加量を設定する+ΔV1が設定され、アドレスA2に吐出制御用駆動信号の初期増加を終了した後の減少量を設定する−ΔV2が設定され、アドレスA3には吐出制御用駆動信号の減少後の初期状態復帰増加量を設定する+ΔV3が設定され、これらが|ΔV1|=|ΔV2|、+ΔV1>+ΔV3の関係に設定されている。また、アドレスE0に“0”の波形データが格納され、アドレスE1に残留振動発生用駆動信号の初期増加量を設定する+ΔVE1が設定され、アドレスE2に残留振動発生用駆動信号の初期増加を終了した後の初期状態復帰減少量を設定する−ΔVE2が設定され、これらが|ΔVE1|=|ΔVE2|の関係に設定されている。
この初期化処理が完了した後に、制御部62のCPU62aで、図14の印刷制御処理及び図16の補償処理タイミング監視処理が実行開始される。
このとき、補償処理タイミング監視処理では、ステップS41で補償処理監視フラグFSが“1”にセットされることにより、図14の印刷制御処理では、ステップS1からステップS2を経てステップS10に移行して補償値算出処理が開始される。
この補償値算出処理では、先ず、信号補償回路80のスイッチング素子151に対してハイレベルの選択信号DSELを出力して、このスイッチング素子151をオン状態として各圧電式アクチュエータ122の第2の電極132をグランド端に接続する(ステップS10)。
この状態で、補償値算出のための残留振動を発生させるノズルを選択して選択信号SIをクロック信号SCKに同期させて駆動信号選択制御回路210のシフトレジスタ211に出力し、シフトレジスタ211への書込みが完了したらラッチ信号LATを出力して、必要な選択スイッチ201をオン状態とする(ステップS11)。
次いで、必要に応じてクリア信号CLERを駆動信号発生回路70に出力してから駆動信号発生回路70の波形メモリ701に対して残留振動発生用駆動信号の波形データを読出す読出アドレスA0〜A3を所定の駆動信号波形を形成するように順次出力すると共に、クロック信号CLK、第1のクロック信号ACLKを駆動信号発生回路70に出力して、この駆動信号発生回路70でインクジェットヘッド100のノズル124からインク滴が吐出されない程度の最大電圧となる残留振動発生用駆動信号(検出信号)を選択スイッチ201に出力する(ステップS12)。
このときの波形データの読出処理は、先ず、図18(a)に示すように、時点t1で、制御部62からクリア信号CLERを駆動信号発生回路70に出力して、駆動信号発生回路70のラッチ回路708及び710のラッチデータがクリアされた後、所定のアドレス指定が行われ駆動信号COMの所望のオフセット電圧V0FFに設定される。次いで、時点t2で、図18(d)に示すように、第2のクロック信号CLKが駆動信号発生回路70のラッチ回路710に供給されるが、この時点では新たなアドレス指定が行われていないので、電流増幅部713から出力される駆動信号COMは、図18(e)に示すようにオフセット電圧VOFFを維持している。
次いで、時点t3で、制御部62によってアドレスE1が指定され、その後、時点t4で図18(c)に示すように第1のクロック信号ACLKが立ち上がると、波形メモリ701から読出されたアドレスA1の波形データ+ΔV1の絶対値と初期状態で“0”を示す補償値CDATAとが加減算器705で加算され、その加算値に符号付加器707で波形メモリ701で読出した波形形成データWDの符号を付加して駆動補償波形データWDcとし、この駆動補償波形データWDcがラッチ回路708にラッチされ、これが加算器709に供給され、この加算器709に入力されているラッチ回路710のラッチ出力がオフセット電圧VOFFを維持しているので、加算器709の加算値はオフセット電圧VOFFに+ΔV1を加算した値となり、この加算値が第2のクロック信号CLKが立ち上がる時点t5でラッチ回路710にラッチされ、このラッチ回路710からVOFF+ΔV1の駆動信号波形データWDATAが出力される。
このため、駆動信号波形データWDATAがD/A変換器711でアナログ信号に変換され、電圧増幅部712で電圧増幅された後、電流増幅部713で電流増幅されて残留振動発生用駆動信号として出力され、これがアクチュエータ122の一方の入力端としての第1の電極131に供給される。
その後、時点t6で波形メモリ701のアドレスがA0に変更されるが、第1のクロック信号ACLKが立ち上がることはないので、ラッチ回路708は前回のラッチ信号を維持することにより、前述した時点t5のラッチ回路710のラッチ時点で基準駆動信号波形データがVOFF+ΔV1となった時点で、加算器708の加算値はVOFF+2ΔV1となっており、これが第2のクロック信号CLKが立ち上がる時点t7でラッチ回路710にラッチされて、このラッチ回路710から図18(e)に示すようにVOFF+2ΔV1の駆動信号波形データWDATAが出力される。
その後、第2のクロック信号CLKが立ち上がるt8でラッチ回路710がラッチすることにより、駆動信号波形データWDATAが図18(e)に示すようにVOFF+3ΔV1となり、その後、時点t9で第1のクロック信号ACLKが立ち上がることにより、アドレスE0の波形データ“0”がラッチ回路708にラッチされるが、波形データが“0”であるので、加算器709の加算値は変更されない。
その後、時点t10でアドレスデータE2が出力され、波形メモリ701から−ΔV2の波形データが読出され、これが時点t11で第1のクロック信号ACLKが立ち上がることによりラッチ回路708にラッチされる。
このため、加算器709の出力はVOFF+3ΔV1−ΔV2となり、これが第2のクロック信号CLKが立ち上がる時点t12でラッチ回路710にラッチされることにより、駆動信号波形データWDATAが図18(e)に示すように減少を開始する。
その後、時点t15まで基準駆動信号波形データWDATA及び残留振動発生用駆動信号の減少状態を継続して加算器709の出力はVOFF+3ΔV1−3ΔV2となって時点t1〜t4間と同じオフセット電圧VOFFに復帰する。
この時点t15で波形メモリ701のアドレスがA0に変更され、時点t16で第1のクロック信号ACLKが立ち上がるが、波形データが“0”であるので、オフセット電圧VOFFを維持する。
このように駆動信号発生回路70から残留振動発生用駆動信号Weが出力されるので、この残留振動発生用駆動信号Weがオン状態に制御されている選択スイッチ201を通じて圧電式アクチュエータ122に図19(a)に示すように供給される。
この残留振動発生用駆動信号Weの出力が完了すると、選択信号DSELが図19(b)に示すようにローレベルに反転される(ステップS14)。このため、スイッチング素子151がオフ状態となって、残留振動発生用駆動信号Weによって発生する残留振動に応じて圧電式アクチュエータ122で発生する起電圧が交流増幅器152に供給されて増幅され、この交流増幅器152から図19(c)に示すように残留振動検出信号の増幅信号VOUTが出力される。そして、この増幅信号VOUTがピークホールド回路153に供給されることにより、このピークホールド回路153で増幅信号VOUTのピーク波高値PVを保持し、保持したピーク波高値PVをA/D変換器154に供給することにより、このA/D変換器154からピーク波高値データPDATAが出力される(ステップS15)。
このA/D変化器154から出力されるピーク波高値データPDATAは、入出力インタフェース部67を介して信号補償回路80に入力される。このため、信号補償回路80では、比較偏差演算器81で目標波高値データTDATAからピーク波高値データPDATAを減算して偏差εを算出し(ステップS16)、算出した偏差εが仮に、インク温度が低く偏差εが正値で比較的大きな値である場合には整定範囲外となる、この場合は駆動信号を修正する必要があるため算出した偏差εをPID演算器82に供給することにより、前述した(1)式で表されるPID演算を行って補償値CDATAを算出する。
上述したように、インク温度が低いものとすると、残留振動検出回路150で検出されたピーク波高値データPDATAが目標波高値データTDATAより小さくなり、両者の偏差εは正値の比較的大きな値となる。このため、符号判定器83から正値を表す例えば論理値“1”の符号判定信号AS_SELを駆動信号発生回路70の加減算器705に加算指令として供給し、この加減算器705が加算処理に設定される。また、信号補償回路80から出力される補償値CDATAはその絶対値が駆動信号発生回路70のアンドゲート704に供給される。このように最適な補償値が得られるまで、ステップS10に戻って偏差εが整定範囲に入るまで行われる。
このとき、波形メモリ701に読出アドレスA0〜A3を所定順序で供給し、波形データWDを読み出す状態となると、波形データ選択部703から出力される選択データ信号Dsがハイレベルとなり、これによってアンドゲート704が開いて、信号補償回路80で算出された補償値データCDATAが加減算器705に供給されて波形メモリ701から読出された波形データWeに加算される。このため、残留振動発生用駆動信号Weは図18(f)に示すように、前述した電源投入直後の残留振動発生用駆動信号Weに対して補償値CDATA分増加され、これが選択スイッチ201を介して圧電式アクチュエータ122に供給されるので、この圧電式アクチュエータ122の伸縮量が増加し、これによって振動板121の変位が大きくなることから発生する残留振動も増加する。
このため、残留振動検出回路150で検出されるピーク波高値データPDATAが増加して、目標波高値データTDATAに近づいて、両者の偏差εが整定範囲内となると、図14の印刷制御処理でステップS14からステップS1に戻って、補償値算出処理を終了する。
このように、補償値算出処理が終了されると、図16に示す補償値処理タイミング監視処理で、信号補償回路80から補償値CDATAが出力された時点で補償処理開始フラグFSが“0”にリセットされるので(ステップS43)、図14に示す印刷制御処理で、ステップS1からステップS2に移行し、ホストコンピュータ60から印刷データが入力されているか否かを判定し、印刷データが入力されていないときにはステップS1に戻ることを繰り返す。
この状態で、ホストコンピュータ60から階調データを含む印刷データが入力インクジェット回路61を介して制御部62に入力されると、この印刷データがEEPROM62bに記憶される。
このように、印刷データがEEPROM62bに記憶されると、図14の印刷制御処理で、ステップS2からステップS3に移行して、印刷処理を開始する。この印刷処理では、先ず、図示しない給紙処理によって、給紙モータドライバ64に対して給紙指令を出力する。
これによって、給紙モータ51を回転駆動してトレイ21に載置された記録用紙Pを1枚だけ印刷部3に給紙を開始する。そして、記録用紙Pの印刷開始領域がヘッドユニット35のノズル位置に達すると、ノズルからインクが吐出し印刷動作が実行される。
このため、印刷データに含まれる階調データに基づいてインク滴を吐出するアクチュエータ122に必要な吐出制御駆動信号を選択する駆動信号選択信号SIがノズル毎に順次シリアルデータとして駆動信号選択制御回路210に出力されると共に、クロック信号SCKが基準駆動信号選択制御回路210に出力される。
このため、基準駆動信号選択制御回路210のシフトレジスタ211に駆動信号選択信号SIが順次格納され、全てのノズル124の駆動信号選択信号SIが格納されると、ラッチ信号LATが出力されて、ラッチ回路212に駆動信号選択信号SIがラッチされ、ラッチされた基準駆動信号選択信号SIがレベルシフタで第1の選択スイッチ201を作動させるために必要とする電圧に変換されて、第1の選択スイッチ201に供給されるので、印刷データに基づいてインク滴を吐出するノズル124に対応する第1の選択スイッチ201がオン状態に制御される。また、第1の選択スイッチ201は必要な駆動波形も同時に選択している。駆動信号選択信号SIは、ノズル数に対して数ビット分のデータが送信されており、ノズル毎に送信されたSIのビットデータにより、図13のような時系列的に連結された複数の駆動波形を含んだ駆動信号から必要な駆動波形を選択し各階調の駆動信号をヘッドアクチェータに出力している。
このようにして、駆動信号選択制御回路210に対する駆動信号選択信号SIの設定が完了すると、ヘッドドライバ65に対して吐出制御用駆動信号を出力する信号出力指令を出力する。
この信号出力指令がヘッドドライバ65に入力されると、駆動信号発生回路70で波形メモリ701に格納されている第1の階調駆動信号波形データの読出処理が行われる。こ第1の階調駆動信号波形データは、前述した残留振動検出用波形データと同様に波形メモリ701から読み出すものであるが、残留振動検出用波形データとは値が異なるだけであるので、説明を簡単にするために同一アドレスA0〜A3を使用して説明する。
ここで、駆動信号発生回路70から出力される吐出制御用駆動信号W0は、図20(a)に示すように、時点t1で、制御部62からクリア信号CLERを駆動信号発生回路70に出力して、駆動信号発生回路70のラッチ回路708及び710のラッチデータがクリアされた後、所定のアドレス指定が行われ吐出制御用駆動信号W0の所望のオフセット電圧V0FFに設定される。次いで、時点t2で、図20(d)に示すように、第2のクロック信号CLKが駆動信号発生回路70のラッチ回路710に供給されるが、この時点では新たなアドレス指定が行われていないので、電流増幅部713から出力される第1の階調駆動信号W0は、図20(e)〜(g)に示すようにオフセット電圧VOFFを維持している。
次いで、時点t3で、制御部62によってアドレスA1が指定され、その後、時点t4で図20(c)に示すように第1のクロック信号ACLKが立ち上がると、波形メモリ701から読出されたアドレスA1の波形データ+ΔV1が加減算器705及び波形データ選択部703に出力される。
この波形データ選択部703では、波形メモリ701から読出した波形データWDのアドレスA1と入力されている波形データのアドレスデータA0〜A3とが一致するので、ラッチ回路727がセットされ、このラッチ回路727の出力端Qから図20(h)に示すようにハイレベルとなる選択信号Dsが出力され、これがアンドゲート704に供給される。
このアンドゲート704には前述したように信号補償回路80から補償値CDATAが入力されているので、この補償値CDATAが加減算器705に入力される。この加減算器705にも前述したように信号補償回路80から加算指令となる論理値“1”の選択信号AS_SELが入力されているので、この加減算器705で波形メモリ701から読出された図20(e)に示す波形データΔV1に補償値CDATAが加算され、その加算値に符号付加器707で波形データ+ΔV1の符号が付加されて図20(f)に示すようにインク粘度補償された吐出制御用駆動信号に対応する補償波形データWDc(=+ΔV1+CDATA)が出力される。
この波形データWDcがラッチ回路708にラッチされ、これが加算器709に供給され、この加算器709に入力されているラッチ回路710のラッチ出力がオフセット電圧VOFFを維持しているので、加算器709の加算値はオフセット電圧VOFFに補償波形データWDc(=+ΔV1+CDATA)を加算した値VOFF +ΔV1+CDATAとなり、この加算値が第2のクロック信号CLKが立ち上がる時点t5でラッチ回路710にラッチされる。
さらに、時点t7で波形データ+ΔV1+CDATAを加算してVOFF +2(ΔV1+CDATA)とし、さらに時点t8で波形データ+ΔV1+CDATAを加算してVOFF +3(ΔV1+CDATA)とし、この状態を時点t14まで継続してから時点t15でアドレスA2の波形データ−(ΔV2+CDATA)を減算して、VOFF +3(ΔV1+CDATA)−(ΔV2+CDATA)とし、その後時点t17、時点t18及び時点t19で順次波形データ−(ΔV2+CDATA)を減算することにより、時点t19でVOFF +3(ΔV1+CDATA)−4(ΔV2+CDATA)となって最少値となり、この状態を時点t24まで継続してから時点t25でアドレスA3の波形データ+ΔV3を加算してVOFF +3(ΔV1+CDATA)−4(ΔV2+CDATA)+(ΔV3+CDATA)となり、次いで時点t27で波形データ+(ΔV3+CDATA)を加算してVOFF +3(ΔV1+CDATA)−4(ΔV2+CDATA)+2(ΔV3+CDATA)となり時点t1〜t4間と同じオフセット値VOFF に復帰する。
したがって、ラッチ回路710でラッチされた波形データがD/A変換器711でアナログ信号に変換され、電圧増幅部712で電圧増幅してから電流増幅部713で電流増幅されてヘッドユニット35の各記録ヘッド100の圧電式アクチュエータ122に第1の選択スイッチ201に印加される。
このため、印刷データの階調データに基づいて第1の階調駆動信号によってインク滴を吐出する記録ヘッド100の圧電式アクチュエータ122では第1の選択スイッチ201がオン状態に制御されているので、圧電式アクチュエータ122の第1の電極131に吐出制御用駆動信号W0が供給される。
したがって、圧電式アクチュエータ122に印加される駆動信号W0は、図13に示すように、圧電素子を使用したインクジェットヘッド100を想定した中間電位を設けたプル・プッシュ・プル駆動波形となる。
そして、アクチュエータ122の駆動信号の電圧とノズル124から吐出されるインク滴の吐出重量との関係は、図10に示すように、駆動電圧が増加するに応じてインク滴吐出重量が増加することになるので、最少の吐出重量のインク液滴がノズル124から吐出される。
その後、第1の階調駆動信号W0の周期Twが経過した時点で、第2の階調駆動信号W1が上記第1の階調駆動信号W0における波形メモリ701から読出される波形データより絶対値が大きな波形データが読出されることを除いては同様の処理を行うことにより、駆動信号発生回路70から図13に示す第2の階調駆動信号W1が出力され、これが選択スイッチ201で選択されている圧電式アクチュエータ122に印加されて、吐出重量が増加したインク液滴がノズル124から吐出される。
その後、順次駆動信号発生回路70から順次振幅が大きくなる第3の階調駆動信号W2及び第4の階調駆動信号W3が出力され、これらが選択スイッチ201で選択されている圧電式アクチュエータ122に印加されて、さらに吐出重量が増加したインク液滴がノズル124から吐出される。
このとき、第1〜第4の階調駆動信号W0〜W3によって吐出されるインク滴の吐出初速度が前記(2)式によって設定されているので、吐出された各インク滴が全て同時に記録用紙Pに到達して、選択された階調駆動信号W0〜W3の組み合わせによって8〜9階調の階調ドットを形成することができる。
そして、上記の印刷動作がホストコンピュータ60から入力される印刷データが存在しなくなるまで継続される。
この印刷動作中又は印刷データの印刷が終了した時点で、補償処理タイミング監視処理によって、設定されたタイマがタイムアップするか又は所定印刷枚数が設定された減算カウンタのカウント値が“0”となって、補償処理開始フラグFSが“1”にセットされると、印刷動作中である場合には、1枚の印刷用紙Pの印刷が終了した時点又は1画素分の駆動信号出力周期における第4の階調駆動信号W3の出力が完了した時点で、図14のステップS10に移行して前述した電源投入時と同様に補償処理を開始する。
このとき、記録用紙Pに対する印刷動作によるヘッドユニット35の周囲温度の上昇やインクジェットプリンタ1が設置されている空間の温度上昇によって、インク粘度が低下して適正粘度となると、信号補償回路80で算出された補償値データCDATAが変更されていないので、駆動信号発生回路70で、図18(f)に示す適正時の残留振動発生用波形データWeに補償値CDATAを加算した値となっているので、この残留振動発生用駆動信号が選択スイッチ201を介して圧電式アクチュエータ122に供給されることにより、この圧電式アクチュエータ122で比較的大きな残留振動が発生され、この残留振動が残留振動検出回路150で検出されて、そのピーク波高値データPDATAが信号補償回路80に出力される。
このとき、インク粘度が低下していることにより、残留振動のピーク波高値PDATAが目標ピーク波高値TDATAに比較して大きな値となり、比較偏差演算器81で算出される偏差εが例えば負値の比較的大きな値となる。このため、PID演算器82から出力される補償値CDATAの絶対値が大きくなって、これが駆動信号発生回路70のアンドゲート704に供給されると共に、符号判定器83から減算指令を表す論理値“0”となり、これが駆動信号発生回路70の加減算器705に供給される。
このとき、インク粘度の低下に対応しないインク粘度が高い状態の補償値CDATAに基づいて残留振動が発生されるので、その残留振動を残留振動検出回路150で検出したピーク波高値PDATAが高くなりすぎ、目標ピーク波高値TDATAとの偏差εが負値の大きな値となって整定範囲外となるので、図14の処理において、ステップS7に戻り、再度補償処理を実行する。
このため、波形メモリ701から読出される残留振動発生用波形データWeから補償値CDATAが減算されて、ラッチ回路710から例えば図18(g)に示す振幅の小さい波形データが出力され、これがA/D変換器711でアナログ信号に変換され、電圧増幅部712で電圧増幅され、さらに電流増幅部713で電流増幅されて、残留信号発生用駆動信号として選択スイッチ201を介して圧電式アクチュエータ122に供給される。
このため、圧電式アクチュエータ122がインク滴を吐出しない程度に駆動されて、その駆動後に残留振動が発生され、この残留振動のピーク波高値データPDATAが残留振動検出回路150で再度検出される。そして、このピーク波高値データPDATAと目標ピーク波高値データTDATAとの偏差εが整定範囲内に収まるまで、補償処理が繰り返され、偏差εが整定範囲となったときの補償値データCDATA及びその符号によって印刷動作時の吐出制御用駆動信号を構成する第1〜第4の階調駆動信号の波形データが加減算されてインク粘度に応じた適正な吐出制御用駆動信号を形成することができる。
このように、上記実施形態によると、インク滴を吐出しない程度の残留振動発生用駆動信号を圧電式アクチュエータ122に供給して、残留振動を発生させてそのピーク波高値を残留振動検出回路150で検出し、検出したピーク波高値データPDATAを信号補償回路80でPID演算を行うフィードバック処理することにより、補償値データCDATAを算出し、この補償値データCDATAによって駆動信号発生回路70で発生される吐出制御用波形データW0〜W3を補償するようにしているので、別途温度センサを設けることなく、また記録用紙Pに画像を形成することなく、実際のインク粘度に対応した正確な補償値データCDATAを算出することができる。
そして、補償値データCDATAに基づいて吐出制御用駆動信号の波形データを補償するので、インク粘度に対応した正確なインク滴の吐出制御を行うことができ、印刷品質を向上させることができる。
さらに、図16の補償処理タイミング監視処理におけるステップS44でスタートされるタイマのプリセット値を、インク液を吐出していないノズルでのインクの乾燥を防止するために必要な時間に対応する値に設定することにより、インク液を吐出していないノズル又は全てのノズルでインク滴を吐出しない程度の微振動を生じさせることができ、インクの固化を抑制することができる。
なお、上記実施形態においては、駆動信号発生回路70で第1〜第4の階調駆動信号を発生せて、これら第1〜第4の階調駆動信号を組み合わせることにより、8〜9階調のドットを形成する場合について説明したが、これに限定されるものではなく、1画素を構成する階調駆動信号数を任意数に設定することにより、任意数の順列組み合わせ数に応じて1以上の階調ドットを形成することができる。
また、上記実施形態においては、駆動信号発生回路70で複数の階調駆動信号を発生させる場合について説明したが、これに限定されるものではなく、駆動信号発生回路70で1つの基準駆動信号を発生して、これを選択スイッチ201を介して圧電式アクチュエータ122の第1の電極131に供給すると共に、圧電式アクチュエータ122の第2電極132に階調信号を供給して、基準駆動信号と階調信号との差分で圧電式アクチュエータ122を駆動することにより、階調データに応じた階調ドットを形成するようにしてもよい。
さらに、上記実施形態においては、駆動信号選択制御回路210に対して駆動信号選択信号SIをシリアルデータとして供給する場合について説明したが、これに限定されるものではなく、パラレル送信するようにしても良く、この場合には直並列変換用のシフトレジスタを省略することができる。
また、上記実施形態においては、圧電式(ピエゾ方式)による積層アクチュエータ127を有するインクジェットヘッド100を適用した場合について説明したが、これに限定されるものではなく、図21に示すように、圧電材料301を上下電極302,303で挟んだ簡単な構造のアクチュエータを使用して振動板121を振動させ、振動モードとして図21で上下方向に撓むモード利用したピエゾ方式のユニモルフアクチュエータ304を適用したり、図22に示すように圧電材料311の両端部に電極312が両端側にあって圧力室313形成し、アクチュエータはノズルを1つおきに駆動し、駆動信号が与えられると図22で破線図示のように圧力室313内の圧力が変化してノズル314からインク液が吐出される構成を有するピエゾ方式のシェアモード1アクチュエータ315を適用したり、図23に示すように、圧電材料321の表面に電極322,323が交互に設けられ、駆動信号が与えられると図23の破線のように変形して圧力室324内の圧力が変化してノズル325からインク滴が吐出される4ピエゾ方式のエアモード2アクチュエータを適用したりすることもできる。
また、ピエゾ方式に限らず、図24に示すように、インク取入口350から流入したインクがリザーバ351に入り、このリザーバ351から狭い流路352を通ってキャビティ353に入る。このキャビティ353は、共通電極354に接続された導電性を有する振動板355と、この振動板355とギャップを介して配設された個別電極356とを有し、共通電極354と個別電極356との間に静電容量を存在させた静電式アクチュエータ357を適用するようにしてもよい。この静電式アクチュエータ357では、共通電極及び個別電極356間に駆動信号を与えると振動板355が個別電極側に静電吸着力によって吸引され、振動板355に弾性エネルギが蓄えられ、駆動信号の供給が停止されると弾性エネルギが解放されて振動板355が個別電極とは反対側に戻されてキャビティ353内の圧力が増加してから減少することにより、ノズル孔358からインク滴が吐出される。この静電式アクチュエータ357でも振動板355はインク滴を吐出してから残留振動を生じ、この残留振動を静電式アクチュエータに残存する電荷によって共通電極254及び個別電極356間の変位を電圧変化として残留振動検出回路で検出し、ピーク波高値を求めるようにすればよい。
さらに、上記実施形態では、駆動信号発生回路70で吐出制御用駆動信号W0〜W3及び残留振動発生用駆動信号Weを発生する場合について説明したが、これに限定されるものではなく、駆動信号発生回路70を吐出制御用駆動信号W0〜W3を発生させる吐出制御用駆動信号発生回路とし、別途駆動信号発生回路70と同様の構成を有する残留振動発生用駆動回路を設けるようにしてもよい。
さらにまた、上記実施形態では、信号補償回路80を、PID演算器82を含んで構成した場合について説明したが、これに限定されるものではなく、微分演算器82c及びゲイン乗算器82fを省略してPI演算器としたり、比例演算器82a及びゲイン乗算器82dのみの比例演算器としたりすることもできる。
なおさらに、上記実施形態では、信号補償手段をハードウェア構成の信号補償回路80で構成した場合について説明したが、これに限定されるものではなく、制御部62のCPU62aで図25に示す信号補償処理を実行するようにしてもよい。
すなわち、図25の信号補償処理は、図16の補償処理タイミング監視処理で補償処理開始フラグFSが“1”にセットされたときに実行され、先ず、ステップS71で残留振動検出回路150から出力されるピーク波高値データPDATAを読込み、次いでステップS72に移行して、目標ピーク波高値TDATAから読込んだピーク波高PDATAを減算して偏差εを算出し、次いでステップS73に移行して、前述した(1)式の演算を行って補償値データCDATAを算出し、次いでステップS74に移行して、補償値データCDATAの符号を判定して符号判定フラグFCを“1”又は“0”に設定し、次いでステップS75に移行して、補償値データCDATA及び符号判定フラグFCを図15の駆動信号発生処理に出力してから処理を終了する。
本発明の第1実施形態におけるインクジェットプリンタの概略構成を示す斜視図である。 図1に示すインクジェットプリンタのインクジェットヘッドの構成を示す断面図である。 図2に示すヘッドのノズル基板の構成を示す平面図である。 第1の実施形態に適用し得る制御装置の一例を示すブロックである。 駆動信号発生回路一例を示すブロック図である。 波形データ選択部の一例を示すブロック図である。 信号補償回路の一例を示すブロック図である。 駆動信号選択制御回路及び残留振動検出回路を示すブロック図である。 インク温度と残留振動波形と関係を示す特性線図である。 駆動電圧とインク吐出重量との関係を示す特性線図である。 駆動電圧とインク吐出速度との関係を示す特性線図である。 駆動電圧と残留振動ピーク波高値との関係を示す特性線図である。 1画素分の駆動信号の時系列を示すタイムチャートである。 制御部で実行する印刷制御処理手順の一例を示すフローチャートである。 図14の駆動信号生成処理手順の一例を示すフローチャートである。 補償処理タイミング監視処理手順の一例を示すフローチャートである。 波形メモリへのデータ書込手順の説明に供するタイムチャートである。 残留振動発生用駆動信号の発生動作の説明に供するタイムチャートである。 残留振動検出動作の説明に供するタイムチャートである。 吐出制御用駆動信号の発生動作の説明に供するタイムチャートである。 ピエゾ式におけるユニモルフアクチュエータを示す断面図である。 ピエゾ式におけるシェアモード1アクチュエータを示す断面図である。 ピエゾ方式におけるシェアモード2アクチュエータを示す断面図である。 静電式アクチュエータを示す断面図である。 制御部で実行する信号補償処理手順の一例を示すフローチャートである。
符号の説明
1…インクジェットプリンタ、3…印字部、4…印刷装置、5…給紙装置、6…制御装置、31…インクカートリッジ、32…キャリッジ、35…ヘッドユニット、62…制御部、65…ヘッドドライバ、70…駆動信号発生回路、701…波形メモリ、702…絶対値回路、703…波形データ選択部、704…アンドゲート、705…加減算器、706…符号判定器、707…符号付加器、708,710…ラッチ回路、709…加算器、711…D/A変化器、712…電圧増幅部、713…電流増幅部、80…信号補償回路、81…比較偏差演算器、82…PID演算器、83…符号判定器、90…発振回路、100…インクジェットヘッド、120…静電アクチュエータ、121…振動板、122…圧電式アクチュエータ、123…キャビティ(圧力室)、124…ノズル、150…残留振動検出回路、151…スイッチング素子、152…交流増幅器、153…ピークホールド回路、154…A/D変換器、201…第1の選択スイッチ、210…駆動信号選択制御回路

Claims (12)

  1. 内部に液体が充填された複数の圧力室と、該圧力室に個別に連通して前記液体を液滴として吐出する複数のノズルと、駆動信号の入力によって前記圧力室の圧力を変化させて前記ノズルから液滴を記録媒体に対して吐出させるアクチュエータと、該アクチュエータに駆動信号を供給して駆動制御する駆動制御手段とを有する液滴吐出ヘッドを備えた液滴吐出装置であって、
    前記駆動制御手段は、液滴の吐出制御用駆動信号を前記アクチュエータに出力する駆動信号発生手段と、前記圧力室内に残留振動を発生させる残留振動発生用駆動信号を前記アクチュエータに出力する残留振動発生手段と、該残留振動発生手段で発生させた残留振動波形を検出する残留振動検出手段と、該残留振動検出手段で検出した残留振動波形の波高値と目標波高値との偏差に基づいて前記吐出制御用駆動信号を補償する信号補償手段とを備えていることを特徴とする液滴吐出装置。
  2. 前記残留振動発生手段は、前記残留振動発生用駆動信号が、前記ノズルからの液滴を非吐出状態で残留振動を発生させる電圧に設定されていることを特徴とする請求項1に記載の液滴吐出装置。
  3. 前記残留振動発生用駆動信号は、液滴を吐出しないノズルの微振動用駆動信号を兼ねていることを特徴とする請求項1又は2に記載の液滴吐出装置。
  4. 前記吐出制御用駆動信号は、1画素に対して時系列的に複数の階調ドットを形成し得る複数の駆動信号で形成され、各駆動信号を吐出速度が遅い順に時間順次に配列し、夫々の階調ドットの記録媒体への着弾時間が一致する吐出速度となるように各々の駆動信号の波高値が設定されていることを特徴とする請求項1乃至3の何れか1項に記載の液滴吐出装置。
  5. 前記残留振動検出手段は、前記アクチュエータのグランド端を接地に対して開閉するスイッチ手段と、前記グランド端の解放時に発生する残留振動の交流成分を増幅する交流増幅手段と、該交流増幅手段で増幅した残留振動のピーク波高値の保持するピークホールド手段と、該ピークホールド手段で保持されたピーク波高値をデジタルデータに変換するA/D変換手段とを備えていることを特徴とする請求項1乃至4の何れか1項に記載の液滴吐出装置。
  6. 前記信号補償手段は、目標波高値と検出された残留振動の波高値とを比較して両者の偏差量を算出する偏差演算手段と、該偏差演算手段で算出した偏差量に対して少なくとも比例及び積分演算を行って補償値を出力する補償演算手段と、該補償演算手段で算出した補償値の正負の符号を判断し、その判断結果を出力する符号判定手段とを備え、該符号判定手段の判定結果を吐出制御用駆動信号発生手段に出力するように構成されていることを特徴とする請求項1乃至5の何れか1項に記載の液滴吐出装置。
  7. 前記吐出制御用駆動信号発生手段は、基準となる吐出制御用駆動信号の波形データから、オフセット値と駆動信号の振幅変化を制御する波形部分とに分離する波形データ選択部と、前記信号補償手段から入力される符号判定結果に基づいて分離された波形部分に前記補償値の加減算を行う加減算手段とを備えていることを特徴とする請求項6に記載の液滴吐出装置。
  8. 前記アクチュエータは、圧電式アクチュエータで構成されていることを特徴とする請求項1乃至7の何れか1項に記載の液滴吐出装置。
  9. 前記アクチュエータは、静電式アクチュエータで構成されていることを特徴とする請求項1乃至7の何れか1項に記載の液滴吐出装置。
  10. 内部に液体が充填された複数の圧力室と、該圧力室に個別に連通して前記液体を液滴として吐出する複数のノズルと、駆動信号の入力によって前記圧力室の圧力を変化させて前記ノズルから液滴を記録媒体に吐出させるアクチュエータと、該アクチュエータを駆動制御する駆動制御手段とを備え、駆動制御手段によって前記アクチュエータを駆動制御することにより、前記複数のノズルから液滴を吐出するようにした液滴吐出制御方法であって、
    前記アクチュエータに残留振動発生用基準信号を出力して、発生する残留振動を残留振動検出手段で検出し、検出した残留振動の波高値と目標波高値との偏差に基づいて液滴を吐出制御する吐出制御用駆動信号を補償するようにしたことを特徴とする液滴吐出制御方法。
  11. 前記残留振動検出手段による残留振動の検出タイミングは、通常の液滴吐出タイミングとは異なるタイミングで実行することを特徴とする請求項10に記載の液滴吐出制御方法。
  12. 前記残留振動検出手段による残留振動の検出タイミングは、電源投入時、電源投入後の一定時間経過毎及び一定枚数の記録媒体への画像形成が終了する毎の少なくとも何れか1つに実施されることを特徴とする請求項10に記載の液滴吐出制御方法。
JP2004303810A 2004-10-19 2004-10-19 液滴吐出装置及び液滴吐出制御方法 Withdrawn JP2006116705A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303810A JP2006116705A (ja) 2004-10-19 2004-10-19 液滴吐出装置及び液滴吐出制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303810A JP2006116705A (ja) 2004-10-19 2004-10-19 液滴吐出装置及び液滴吐出制御方法

Publications (1)

Publication Number Publication Date
JP2006116705A true JP2006116705A (ja) 2006-05-11

Family

ID=36535058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303810A Withdrawn JP2006116705A (ja) 2004-10-19 2004-10-19 液滴吐出装置及び液滴吐出制御方法

Country Status (1)

Country Link
JP (1) JP2006116705A (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189656A (ja) * 2010-03-16 2011-09-29 Seiko Epson Corp 液体噴射装置およびその液体状態判定方法
JP2011189655A (ja) * 2010-03-16 2011-09-29 Seiko Epson Corp 液体噴射装置およびその液体状態判定方法
JP2011240563A (ja) * 2010-05-18 2011-12-01 Seiko Epson Corp 液体吐出装置、及び、吐出検査方法
JP2011240564A (ja) * 2010-05-18 2011-12-01 Seiko Epson Corp 液体吐出装置、及び、吐出検査方法
JP2011240560A (ja) * 2010-05-18 2011-12-01 Seiko Epson Corp 液体吐出装置、及び、吐出検査方法
JP2011240561A (ja) * 2010-05-18 2011-12-01 Seiko Epson Corp 液体吐出装置、及び、吐出検査方法
JP2012218375A (ja) * 2011-04-13 2012-11-12 Seiko Epson Corp 液体吐出装置、検査方法およびプログラム
JP2012218376A (ja) * 2011-04-13 2012-11-12 Seiko Epson Corp 液体吐出装置、検査方法およびプログラム
JP2014156129A (ja) * 2014-04-30 2014-08-28 Seiko Epson Corp 液体吐出装置、及び、吐出検査方法
JP2014177127A (ja) * 2014-04-24 2014-09-25 Seiko Epson Corp 液体吐出装置
JP2015047803A (ja) * 2013-09-03 2015-03-16 セイコーエプソン株式会社 ラインプリンター、及びその制御方法
US9039116B2 (en) 2012-11-07 2015-05-26 Seiko Epson Corporation Liquid ejecting apparatus
JP2015101048A (ja) * 2013-11-27 2015-06-04 セイコーエプソン株式会社 液体吐出装置
JP2016000527A (ja) * 2015-07-31 2016-01-07 セイコーエプソン株式会社 液体吐出装置
JP2016074100A (ja) * 2014-10-03 2016-05-12 株式会社リコー 液滴吐出装置、液滴吐出方法、及びプログラム
JP2016078251A (ja) * 2014-10-10 2016-05-16 株式会社リコー 液滴吐出装置、液滴吐出装置方法、及びプログラム
JP2018111318A (ja) * 2018-03-19 2018-07-19 株式会社リコー インク吐出装置、吐出量補正方法、及びプログラム
JP2019119192A (ja) * 2017-12-28 2019-07-22 セイコーエプソン株式会社 印刷装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189655A (ja) * 2010-03-16 2011-09-29 Seiko Epson Corp 液体噴射装置およびその液体状態判定方法
JP2011189656A (ja) * 2010-03-16 2011-09-29 Seiko Epson Corp 液体噴射装置およびその液体状態判定方法
JP2011240563A (ja) * 2010-05-18 2011-12-01 Seiko Epson Corp 液体吐出装置、及び、吐出検査方法
JP2011240564A (ja) * 2010-05-18 2011-12-01 Seiko Epson Corp 液体吐出装置、及び、吐出検査方法
JP2011240560A (ja) * 2010-05-18 2011-12-01 Seiko Epson Corp 液体吐出装置、及び、吐出検査方法
JP2011240561A (ja) * 2010-05-18 2011-12-01 Seiko Epson Corp 液体吐出装置、及び、吐出検査方法
US8708449B2 (en) 2010-05-18 2014-04-29 Seiko Epson Corporation Liquid ejection device and liquid testing method
JP2012218375A (ja) * 2011-04-13 2012-11-12 Seiko Epson Corp 液体吐出装置、検査方法およびプログラム
JP2012218376A (ja) * 2011-04-13 2012-11-12 Seiko Epson Corp 液体吐出装置、検査方法およびプログラム
US9039116B2 (en) 2012-11-07 2015-05-26 Seiko Epson Corporation Liquid ejecting apparatus
JP2015047803A (ja) * 2013-09-03 2015-03-16 セイコーエプソン株式会社 ラインプリンター、及びその制御方法
JP2015101048A (ja) * 2013-11-27 2015-06-04 セイコーエプソン株式会社 液体吐出装置
JP2014177127A (ja) * 2014-04-24 2014-09-25 Seiko Epson Corp 液体吐出装置
JP2014156129A (ja) * 2014-04-30 2014-08-28 Seiko Epson Corp 液体吐出装置、及び、吐出検査方法
JP2016074100A (ja) * 2014-10-03 2016-05-12 株式会社リコー 液滴吐出装置、液滴吐出方法、及びプログラム
JP2016078251A (ja) * 2014-10-10 2016-05-16 株式会社リコー 液滴吐出装置、液滴吐出装置方法、及びプログラム
JP2016000527A (ja) * 2015-07-31 2016-01-07 セイコーエプソン株式会社 液体吐出装置
JP2019119192A (ja) * 2017-12-28 2019-07-22 セイコーエプソン株式会社 印刷装置
JP7020228B2 (ja) 2017-12-28 2022-02-16 セイコーエプソン株式会社 印刷装置
JP2018111318A (ja) * 2018-03-19 2018-07-19 株式会社リコー インク吐出装置、吐出量補正方法、及びプログラム

Similar Documents

Publication Publication Date Title
JP2006116705A (ja) 液滴吐出装置及び液滴吐出制御方法
JP2007022073A (ja) インクジェットヘッドの駆動方法及び駆動装置
JP5035069B2 (ja) 液体噴射駆動装置並びにこれを具備する液体噴射ヘッド及び液体噴射装置
JP2000238262A (ja) インクジェット記録装置
JP5482336B2 (ja) 液体噴射装置およびその液体状態判定方法
JP2008302652A (ja) 圧電素子の特性情報付与方法、及び、液体噴射装置
JP4631488B2 (ja) 液滴吐出制御装置
JP2000326511A (ja) インクジェット記録ヘッドの駆動方法及びその回路
JP2006044129A (ja) 液滴吐出装置及び液滴吐出制御方法
JP2007203493A (ja) インクジェットプリンタ
JP4710643B2 (ja) インクジェットプリンタヘッドの駆動方法及びインクジェットプリンタ
JP4701967B2 (ja) インクジェットプリンタのヘッド駆動装置及びヘッド駆動方法
JP2007001028A (ja) インクジェットプリンタのヘッド駆動装置及び駆動方法
JP2003118113A (ja) インクジェット式記録装置、及び、その駆動方法
JP3006577B2 (ja) インクジェットヘッド
JP5115620B2 (ja) インクジェットプリンタのヘッド駆動装置、インクジェットプリンタのヘッド駆動方法
JP2007001027A (ja) インクジェットプリンタのヘッド駆動装置及び駆動方法
JP3659023B2 (ja) インクジェット記録装置
JP3885812B2 (ja) インクジェット記録装置及びインクジェット記録装置の駆動方法
US8960831B2 (en) Inkjet head and an inkjet recording device
JP2006076047A (ja) 液滴吐出装置及び液滴吐出制御方法
JP4725307B2 (ja) インクジェットプリンタ
US11633950B2 (en) Image forming apparatus, droplet discharge control method, and storage medium
JP4899592B2 (ja) インクジェットプリンタ及びインクジェットプリンタ駆動方法
JP2007118290A (ja) インクジェットプリンタの駆動装置及びその駆動方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108