JP2006116469A - Treatment method for selenium-containing water - Google Patents

Treatment method for selenium-containing water Download PDF

Info

Publication number
JP2006116469A
JP2006116469A JP2004308567A JP2004308567A JP2006116469A JP 2006116469 A JP2006116469 A JP 2006116469A JP 2004308567 A JP2004308567 A JP 2004308567A JP 2004308567 A JP2004308567 A JP 2004308567A JP 2006116469 A JP2006116469 A JP 2006116469A
Authority
JP
Japan
Prior art keywords
selenium
containing water
copper
added
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004308567A
Other languages
Japanese (ja)
Inventor
Tetsuo Fujita
哲雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2004308567A priority Critical patent/JP2006116469A/en
Publication of JP2006116469A publication Critical patent/JP2006116469A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method for selenium-containing water which can easily remove selenium from the selenium-containing water with a high removal rate at a low cost, and efficiently separate and recover selenium-containing compounds from the selenium-containing water. <P>SOLUTION: In this treatment method, a copper powder or a copper compound is added to selenium-containing wastewater in a refinement process to perform leaching/reduction by copper, and then H<SB>2</SB>S gas is injected to precipitate and recover sulfides, thereby removing selenium together with copper. By using the recovered precipitate as a raw material of an automated furnace, selenium is recovered. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、セレン含有水の処理方法に関し、特に、製錬工程やセレンの製造・加工工程から排出されたセレン含有排水などのセレン含有水を処理する方法に関する。   The present invention relates to a method for treating selenium-containing water, and more particularly, to a method for treating selenium-containing water such as selenium-containing wastewater discharged from a smelting process or a selenium production / processing process.

従来、セレン含有水の処理方法として、鉄粉置換処理法、2価鉄を用いた還元処理法、3価鉄を用いた共沈法などが知られているが、平成5年8月の水質汚濁防止法施行令の一部改正によりセレンに関する排水基準が0.1mg/L以下と規定されたことに伴い、セレンの除去能力の高い処理技術の開発が進められてきた。   Conventionally, as a method for treating selenium-containing water, there are known an iron powder replacement treatment method, a reduction treatment method using divalent iron, a coprecipitation method using trivalent iron, and the like. With the revision of the Ordinance on Enforcement of the Pollution Control Act, the selenium drainage standard was stipulated to be 0.1 mg / L or less, and the development of treatment technology with high selenium removal capability has been promoted.

近年、セレンの除去能力の高い方法として、セレン含有排水に弱酸性下で2価鉄イオンを添加し、さらに還元剤を用いて液の酸化還元電位を極低電位レベルまで低下させ、次いで急速に中和処理して2価鉄イオンを水酸化鉄として晶出させ、中和処理した後、固液分離することによりセレンを除去する方法が提案されている(例えば、特許文献1参照)。また、その他の方法として、セレンと反応して難溶性塩を生成する金属塩をセレン含有水に添加する方法、セレン含有水を生物汚泥と嫌気状態で接触させてセレン化合物を沈殿除去する方法、Feなどの金属を排煙脱硫排水に接触させて排煙脱硫排水中の酸化性物質とセレンを除去する方法、イオン交換樹脂またはキレート樹脂にセレンを吸着させる方法、セレン含有液に銅塩を添加した後にアルカリを添加して凝集物を分離することによりセレンを除去する方法、6価セレン含有排水を遷移金属化合物と還元剤との存在下でセレンを沈殿として除去する方法などが提案されている(例えば、特許文献2〜7参照)。   In recent years, as a method having a high ability to remove selenium, divalent iron ions are added to selenium-containing wastewater under weak acidity, and the redox potential of the liquid is lowered to a very low potential level using a reducing agent, and then rapidly. There has been proposed a method of removing selenium by performing neutralization treatment to crystallize divalent iron ions as iron hydroxide, neutralization treatment, and solid-liquid separation (see, for example, Patent Document 1). In addition, as another method, a method of adding a metal salt that reacts with selenium to form a hardly soluble salt to selenium-containing water, a method of bringing selenium-containing water into contact with biological sludge in an anaerobic state, and precipitating and removing selenium compounds, A method of removing metal and selenium from the flue gas desulfurization wastewater by contacting a metal such as Fe with the flue gas desulfurization wastewater, a method of adsorbing selenium to an ion exchange resin or a chelate resin, and adding a copper salt to the selenium-containing liquid After that, a method for removing selenium by adding an alkali to separate aggregates and a method for removing selenium as a precipitate from a hexavalent selenium-containing wastewater in the presence of a transition metal compound and a reducing agent have been proposed. (For example, refer to Patent Documents 2 to 7).

特開平8−224585号公報(段落番号0006−0007)JP-A-8-224585 (paragraph numbers 0006-0007) 特開平5−78105号公報(段落番号0010)JP-A-5-78105 (paragraph number 0010) 特開平8−323392号公報(段落番号0004−0006)JP-A-8-323392 (paragraph numbers 0004-0006) 特開平9−47790号公報(段落番号0010−0011)JP-A-9-47790 (paragraph numbers 0010-0011) 特開平10−137753号公報(段落番号0006)Japanese Patent Application Laid-Open No. 10-137753 (paragraph number 0006) 特開平11−57746号公報(段落番号0008)JP 11-57746 A (paragraph number 0008) 特開平8−132074号公報(段落番号0007)JP-A-8-132074 (paragraph number 0007)

このように、排水中のセレンを安全に分離し且つ厳しい排出規制に沿って無害化する様々な方法が提案されている。しかし、これらの方法には、セレン以外の多くの沈殿物が残留したり、対象排水の制限により所望のセレンの除去率を得ることができない場合にセレンの回収効率を高めるために過剰な設備が必要であったり、使用する試薬が高価であったり、プロセスが煩雑であったりするなどの問題がある。また、回収したセレンを非鉄金属製錬の原料として使用可能な状態に分離できないという問題もある。   As described above, various methods for safely separating selenium in waste water and detoxifying it in accordance with strict emission regulations have been proposed. However, these methods have excessive facilities to increase the recovery efficiency of selenium when a large amount of precipitate other than selenium remains or the desired selenium removal rate cannot be obtained due to restrictions on the target wastewater. There are problems such as being necessary, expensive reagents used, and complicated processes. There is also a problem that the recovered selenium cannot be separated into a usable state as a raw material for non-ferrous metal smelting.

したがって、本発明は、このような従来の問題点に鑑み、セレン含有水から高い除去率で簡単且つ安価にセレンを除去することができるとともに、セレン含有水からセレンを含む化合物を効率的に分離して回収することができる、セレン含有水の処理方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention can easily and inexpensively remove selenium from selenium-containing water at a high removal rate, and efficiently separate selenium-containing compounds from selenium-containing water. It is an object of the present invention to provide a method for treating selenium-containing water that can be recovered.

本発明者らは、上記課題を解決するために鋭意研究した結果、セレン含有水に銅、鉄または亜鉛の金属またはこれらの金属の化合物を添加した後、硫化して沈殿物を生成させることにより、セレン含有水から高い除去率で簡単且つ安価にセレンを除去することができるとともに、セレン含有水からセレンを含む化合物を効率的に分離して回収することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have added copper, iron or zinc metal or a compound of these metals to selenium-containing water, and then sulfidized to produce a precipitate. The present inventors have found that selenium can be easily and inexpensively removed from selenium-containing water at a high removal rate and that selenium-containing compounds can be efficiently separated and recovered from selenium-containing water, thereby completing the present invention. It came to.

すなわち、本発明によるセレン含有水の処理方法は、セレン含有水に銅、鉄または亜鉛の金属またはこれらの金属の化合物を添加した後、硫化して沈殿物を生成させることを特徴とする。このセレン含有水の処理方法において、セレン含有水中にHS、NaSHまたはNaSを供給することにより硫化を行うのが好ましい。また、セレン含有水に添加する銅、鉄または亜鉛の当量がセレン含有水中のセレンの当量以上であるのが好ましい。また、銅、鉄または亜鉛の金属またはこれらの金属の化合物が、銅、鉄または亜鉛の金属粉末またはこれらの金属の硫酸塩、硝酸塩または塩化物、あるいは、製錬工程で使用される電解液であるのが好ましい。また、硫化の際に酸化還元電位(Ag/AgCl電極)を200mV以下にするのが好ましい。さらに、セレン含有水中のSe濃度が5mg/L以上であるのが好ましい。 That is, the method for treating selenium-containing water according to the present invention is characterized in that after adding a metal of copper, iron or zinc or a compound of these metals to selenium-containing water, it is sulfided to produce a precipitate. In this method for treating selenium-containing water, it is preferable to perform sulfidation by supplying H 2 S, NaSH, or Na 2 S to the selenium-containing water. Moreover, it is preferable that the equivalent of copper, iron or zinc added to the selenium-containing water is equal to or more than the equivalent of selenium in the selenium-containing water. In addition, copper, iron or zinc metal or a compound of these metals may be copper, iron or zinc metal powder, sulfate, nitrate or chloride of these metals, or an electrolyte used in the smelting process. Preferably there is. Further, it is preferable to set the oxidation-reduction potential (Ag / AgCl electrode) to 200 mV or less during sulfidation. Furthermore, the Se concentration in the selenium-containing water is preferably 5 mg / L or more.

本発明によれば、セレン含有水から高い除去率で簡単且つ安価にセレンを除去することができるとともに、セレン含有水からセレンを含む化合物を効率的に分離して回収することができる。   According to the present invention, selenium can be easily and inexpensively removed from selenium-containing water at a high removal rate, and a compound containing selenium can be efficiently separated and recovered from selenium-containing water.

以下、添付図面を参照して、本発明によるセレン含有水の処理方法の実施の形態について説明する。   Embodiments of a method for treating selenium-containing water according to the present invention will be described below with reference to the accompanying drawings.

図1は、本発明によるセレン含有水の処理方法の一実施の形態を説明する工程図である。図1に示すように、まず、処理対象であるセレン含有水として、製錬工程から排出されたセレン含有排水を用意する。このセレン含有排水は、Seイオンとして、例えば90%程度の4価のSeイオンと10%程度の6価のSeイオンを含んでいる。   FIG. 1 is a process diagram illustrating one embodiment of a method for treating selenium-containing water according to the present invention. As shown in FIG. 1, first, selenium-containing wastewater discharged from the smelting process is prepared as selenium-containing water to be treated. This selenium-containing wastewater contains, for example, about 90% of tetravalent Se ions and about 10% of hexavalent Se ions as Se ions.

次に、セレン含有排水にCu粉またはCuSOを添加する。Cu粉を添加すると、セレンが還元されてセレン含有排水中のSe濃度が約50%になる。一方、CuSOを添加すると、セレンが多少還元されてセレン含有排水中のSe濃度が若干下がる。Cu粉の代わりにZn粉やFe粉を添加しても同様の効果が得られる。また、PbSのように浸出し易い化合物を添加してもセレン含有排水中のSe濃度をかなり低下させることができる。しかし、Ag粉やHgを添加してもセレン含有排水中のSe濃度をほとんど低下させることができない。 Next, Cu powder or CuSO 4 is added to the selenium-containing waste water. When Cu powder is added, selenium is reduced and the Se concentration in the selenium-containing wastewater becomes about 50%. On the other hand, when CuSO 4 is added, selenium is somewhat reduced and the Se concentration in the selenium-containing wastewater is slightly reduced. The same effect can be obtained by adding Zn powder or Fe powder instead of Cu powder. In addition, the Se concentration in the selenium-containing wastewater can be considerably reduced even by adding a compound such as PbS that is easily leached. However, even if Ag powder or Hg is added, the Se concentration in the selenium-containing wastewater can hardly be reduced.

次に、セレン含有排水にHSガスを吹き込んで硫化すると、黒色のCuSの沈殿物が生成する。この硫化には、HSを使用するのが好ましいが、NaSHやNaSを使用してもよい。また、Cu粉の代わりにFe粉を添加した場合には、黄色い沈殿物が生成する。これは、製錬工程から排出されたセレン含有排水中に存在するAsがAsとして沈殿したり、セレン含有排水中に溶存しているSOとHSとの反応による硫黄元素が生成するためである。この黄色い沈殿物は、Cu粉を添加した場合にも生成すると考えられるが、黒色のCuSの沈殿物の存在により識別することができない。なお、沈殿物が生成しても酸化還元電位(ORP)(Ag/AgCl電極)は直ぐには下がらず、200mV付近で止まっている。これは、溶存しているイオンがまだ相当量存在しているためであると考えられる。ORPが200mV以下になると、ORPが急激に下降し始め、一気に負の電位になる。溶存している金属イオンが無くなると、HSが過剰になり、液中に溶け込んで電位を下げるためである。HSの流量にもよるが、直ぐにHSガスの供給を停止しても制御できない程に電位が下がる。その場合、暴気によって液中からHSを追い出す必要がある。 Next, when H 2 S gas is blown into the selenium-containing wastewater and sulfided, a black CuS precipitate is generated. For this sulfurization, H 2 S is preferably used, but NaSH or Na 2 S may be used. Moreover, when Fe powder is added instead of Cu powder, a yellow precipitate is generated. This is because As present in the selenium-containing wastewater discharged from the smelting process precipitates as As 2 S 3 , or elemental sulfur due to the reaction between SO 2 and H 2 S dissolved in the selenium-containing wastewater. It is for generating. This yellow precipitate is considered to be generated even when Cu powder is added, but cannot be identified due to the presence of black CuS precipitate. Even if the precipitate is generated, the oxidation-reduction potential (ORP) (Ag / AgCl electrode) does not decrease immediately but stops at around 200 mV. This is considered to be because there is still a considerable amount of dissolved ions. When the ORP becomes 200 mV or less, the ORP starts to drop rapidly and becomes a negative potential all at once. This is because when the dissolved metal ions disappear, H 2 S becomes excessive and dissolves in the liquid to lower the potential. Depending on the flow rate of H 2 S, but immediately the potential drops to the extent that can not be controlled even by stopping the supply of the H 2 S gas. In that case, it is necessary to expel H 2 S from the liquid by storm.

なお、セレン含有排水にCu粉などを添加せずに直接HSを吹き込んで硫化させた場合には、僅かな量のセレンが除去されるだけで、ほとんどのセレンが除去されずに液中に残っている。これは、SeS2−の溶解度が高いからであり、セレン含有排水にCu粉などを添加せずに直接硫化するのは好ましくない。また、セレン含有排水にHgを溶解して硫化によりSeを共沈させようとしても、そのような反応は室温では50%程度しか起こらない。これは、理論上考えられるHgSe化合物の生成が室温では起こり難いからであると考えられる。 In addition, when H 2 S is blown directly into selenium-containing wastewater without adding Cu powder or the like and is sulfurized, only a small amount of selenium is removed, and most of the selenium is not removed. To remain. This is because the solubility of SeS 2− is high, and it is not preferable to directly sulfidize the selenium-containing wastewater without adding Cu powder or the like. Even if Hg is dissolved in selenium-containing wastewater and Se is coprecipitated by sulfurization, such a reaction occurs only at about 50% at room temperature. This is probably because the formation of a theoretically considered HgSe compound hardly occurs at room temperature.

上記の硫化後に固液分離してもよい(図2を参照)。生成した黒色の沈殿物は、CuSを主成分とするSeを含んだ澱物である。この生成物は、製錬のバージン原料として処理されるCuSやCuFeSに近い組成であり、自溶炉に投入してCuを完全に回収することができる。また、Seについては、粗銅から電解精製を経て銅スライムになった後、精銀工程において得られたSe液をSO還元して、Seメタルを回収することができる。このようにしてセレン含有排水からセレンを回収することができる。なお、ここで固液分離せず、後工程で生成される沈殿物と共に固液分離し、回収して自溶炉により処理してもよい。 Solid-liquid separation may be performed after the above sulfurization (see FIG. 2). The produced black precipitate is a starch containing Se containing CuS as a main component. This product has a composition close to CuS or CuFeS processed as a smelting virgin raw material, and can be put into a flash furnace to completely recover Cu. Moreover, about Se, after converting from crude copper to copper slime through electrolytic purification, the Se solution obtained in the refined silver step can be SO 2 reduced to recover Se metal. In this way, selenium can be recovered from the selenium-containing wastewater. Here, solid-liquid separation may be performed together with the precipitate generated in the subsequent step, without being separated into solid and liquid, and recovered and processed in a flash furnace.

上記の硫化後にCuやSeなどを沈殿させた液は、pHが低い酸性の液である。HSを吹き込んだ場合はそれだけで酸性になる。また、セレン含有排水中のSe濃度が極端に高い場合や、妨害元素(NaSOなど)の存在のために除去できないSeイオンがある場合や、何らかの処理により6価のSeが生成された場合には、硫化によってセレンが除去されずに液中にセレンが残存している場合がある。このような場合には、CaOなどを添加してpHを高くして酸化させ、4価または6価のSeを完全に6価のSeにするのが好ましい。ここで添加するアルカリとしては、CaまたはMgが好ましい。このようにして、石膏(CaSO・2HO)を生成させて、溶存するSOイオンの量を少なくすることができる。 The liquid in which Cu, Se, or the like is precipitated after the sulfurization is an acidic liquid having a low pH. When H 2 S is blown, it becomes acidic by itself. In addition, when the Se concentration in the selenium-containing wastewater is extremely high, there are Se ions that cannot be removed due to the presence of interfering elements (such as Na 2 SO 4 ), or hexavalent Se was generated by some treatment. In some cases, selenium may remain in the liquid without being removed by sulfuration. In such a case, it is preferable to add CaO or the like to raise the pH and oxidize to completely convert tetravalent or hexavalent Se to hexavalent Se. The alkali added here is preferably Ca or Mg. In this way, gypsum (CaSO 4 .2H 2 O) can be generated and the amount of dissolved SO 4 ions can be reduced.

次に、液中にBaClなどのBa塩を添加して、難溶性のBa塩を生成することにより、Seを沈殿させて除去することができる。過剰に投入したBaClは、液のpHを中性に戻すためにHSOやNaSOを添加することよって、BaSO塩として除去することができる。沈殿物は、スラグ原料として自溶炉に戻すことができる。このように、硫化工程で生成される沈殿物と共に固液分離することにより、自溶炉に投入する原料が分離される。 Next, Se can be removed by precipitation by adding a Ba salt such as BaCl 2 to the solution to form a hardly soluble Ba salt. The excessively charged BaCl 2 can be removed as a BaSO 4 salt by adding H 2 SO 4 or Na 2 SO 4 to return the pH of the solution to neutral. The precipitate can be returned to the flash furnace as a slag raw material. Thus, the raw material thrown into a flash smelting furnace is isolate | separated by carrying out solid-liquid separation with the precipitate produced | generated by a sulfidation process.

なお、Baイオンの添加量は、Se濃度とSO濃度によって決定される。これらのイオン濃度が不明である場合には、電気伝導度を測定することにより、過剰なBaイオンの添加量を最小限にすることができる。例えば、BaClを添加する場合には、最初にBa塩が沈殿するため、電気伝導度が大きく上昇することはないが、過剰のBaClが添加されるとBa2+イオンとClイオンのために電気伝導度が上昇する。 The addition amount of Ba ions is determined by the Se concentration and the SO 4 concentration. When the concentration of these ions is unknown, the amount of excess Ba ions added can be minimized by measuring the electrical conductivity. For example, when BaCl 2 is added, since the Ba salt is precipitated first, the electrical conductivity does not increase greatly. However, when excess BaCl 2 is added, it is due to Ba 2+ ions and Cl ions. The electrical conductivity increases.

以下、本発明によるセレン含有水の処理方法の実施例について詳細に説明する。   Hereinafter, the Example of the processing method of selenium containing water by this invention is described in detail.

[実施例1]
まず、表1に示すようにSe115.8mg/L、Cu1.34mg/L、Pb1.38mg/L、Zn1.67mg/L、Fe4.91mg/L、As327.8mg/L、Hg8.2μg/Lを含み、pH0.7、酸化還元電位(ORP)(Ag/AgCl電極)320mVのセレン含有排水(セレン含有排水A)1Lを計量してビーカーに入れた。
次に、このセレン含有排水に試薬(特級)の銅粉10gを添加し、室温において直径30mmのプロペラ羽根を400rpmで回転させて60分間撹拌した。
[Example 1]
First, as shown in Table 1, Se115.8 mg / L, Cu1.34 mg / L, Pb1.38 mg / L, Zn1.67 mg / L, Fe4.91 mg / L, As327.8 mg / L, Hg8.2 μg / L. In addition, 1 L of selenium-containing wastewater (selenium-containing wastewater A) having a pH of 0.7 and an oxidation-reduction potential (ORP) (Ag / AgCl electrode) of 320 mV was weighed into a beaker.
Next, 10 g of reagent (special grade) copper powder was added to the selenium-containing wastewater, and a propeller blade having a diameter of 30 mm was rotated at 400 rpm at room temperature and stirred for 60 minutes.

次に、5Cのろ紙を用いて吸引ろ過により固液分離した後、HS純度99%の圧縮ボンベを用いて、ろ液1Lに対して0.2L/分の流量でHSガスを吹き込み、ORPが−100mV付近になったときに吹き込みを止めて、熟成のために10分間撹拌し続けて反応させた。その後、5Cのろ紙を用いて吸引ろ過により沈殿物を固液分離し、ろ液を分析した。その結果、本実施例では99.9%のセレンを除去することができた。本実施例のろ液の分析結果を表1に示す。 Next, after solid-liquid separation by suction filtration using 5C filter paper, H 2 S gas was supplied at a flow rate of 0.2 L / min with respect to 1 L of filtrate using a compression cylinder with 99% H 2 S purity. Blowing was stopped when the ORP was near -100 mV, and the reaction was continued with stirring for 10 minutes for aging. Thereafter, the precipitate was solid-liquid separated by suction filtration using 5C filter paper, and the filtrate was analyzed. As a result, 99.9% of selenium could be removed in this example. The analysis results of the filtrate of this example are shown in Table 1.

Figure 2006116469
Figure 2006116469

[比較例1]
実施例1と同様のセレン含有排水1Lをビーカーに入れて撹拌し、HS純度99%の圧縮ボンベを用いて、0.2L/分の流量でHSガスをセレン含有排水に吹き込み、ORP(Ag/AgCl電極)が−100mV付近になったときに吹き込みを止めて、熟成のために10分間撹拌し続けた。この時、電位が若干上がったので、電位を一定に保つように時々HSガスを吹き込んだ。次いで、生成した黄色の沈殿物を除去するため、5Cのろ紙を用いて吸引ろ過により固液分離し、ろ液を分析した。その結果、本比較例ではセレンを28.7%しか除去することができず、実施例1のように銅紛を添加しないで単純な硫化を行っただけの場合には、セレンをほとんど除去することができないことがわかった。本比較例のろ液の分析結果を表1に示す。
[Comparative Example 1]
1 L of selenium-containing wastewater similar to that in Example 1 was placed in a beaker and stirred, and H 2 S gas was blown into the selenium-containing waste water at a flow rate of 0.2 L / min using a compression cylinder with an H 2 S purity of 99%. Blowing was stopped when ORP (Ag / AgCl electrode) was around -100 mV, and stirring was continued for 10 minutes for aging. At this time, since the potential slightly increased, H 2 S gas was sometimes blown to keep the potential constant. Subsequently, in order to remove the produced yellow precipitate, solid-liquid separation was performed by suction filtration using 5C filter paper, and the filtrate was analyzed. As a result, in this comparative example, only 28.7% of selenium can be removed, and when only simple sulfidation is performed without adding copper powder as in Example 1, selenium is almost removed. I found it impossible. Table 1 shows the analysis results of the filtrate of this comparative example.

[比較例2〜9]
実施例1と同様のセレン含有排水1Lを計量して8個のビーカーの各々に入れ、それぞれに試薬(特級)の銀粉、銅粉、還元鉄粉、亜鉛粉、HgCl、HgCl、硫酸鉛、酸化鉛10gを添加し、室温において直径30mmのプロペラ羽根を400rpmで回転させて60分間撹拌した。次いで、未溶解成分と固体分を除去するため、5Cのろ紙を用いて吸引ろ過を行い、ろ液を分析した。その結果、これらの比較例では、それぞれセレンを0.3%、53.5%、51.8%、59.2%、19.9%、1.8%、21.2%および23.1%しか除去することができなかった。これらの比較例のろ液の分析結果を表2に示す。
[Comparative Examples 2 to 9]
The same selenium-containing wastewater 1L as in Example 1 was weighed and placed in each of eight beakers, and each of the reagent (special grade) silver powder, copper powder, reduced iron powder, zinc powder, Hg 2 Cl 2 , HgCl 2 , Lead sulfate and 10 g of lead oxide were added, and a propeller blade having a diameter of 30 mm was rotated at 400 rpm at room temperature and stirred for 60 minutes. Next, in order to remove undissolved components and solid components, suction filtration was performed using 5C filter paper, and the filtrate was analyzed. As a result, in these comparative examples, selenium was 0.3%, 53.5%, 51.8%, 59.2%, 19.9%, 1.8%, 21.2% and 23.1, respectively. % Could only be removed. Table 2 shows the analysis results of the filtrates of these comparative examples.

Figure 2006116469
Figure 2006116469

[比較例10、11]
セレン含有排水に添加する銅粉の量を20gとした以外は比較例3と同様の方法により得られたろ液について分析し(比較例10)、セレン含有排水に銅粉10gを添加して60分間撹拌し、固液分離した後、そのろ液1Lに銅粉10gをさらに添加して60分間撹拌し、固液分離した以外は比較例3と同様の方法により得られたろ液について分析した(比較例11)。その結果、これらの比較例では、それぞれセレンを52.9%および52.0%しか除去することができなかった。これらの比較例のろ液の分析結果を表2に示す。
[Comparative Examples 10 and 11]
The filtrate obtained by the same method as Comparative Example 3 was analyzed except that the amount of copper powder added to the selenium-containing wastewater was 20 g (Comparative Example 10), and 10 g of copper powder was added to the selenium-containing wastewater for 60 minutes. After stirring and solid-liquid separation, the filtrate obtained in the same manner as in Comparative Example 3 was analyzed except that 10 g of copper powder was further added to 1 L of the filtrate and stirred for 60 minutes, followed by solid-liquid separation (Comparison) Example 11). As a result, in these comparative examples, only 52.9% and 52.0% of selenium could be removed, respectively. Table 2 shows the analysis results of the filtrates of these comparative examples.

[比較例12、13]
銅粉の代わりに、それぞれ試薬(特級)のPbS1.15gおよびAs2gを添加した以外は比較例3と同様の方法により得られたろ液について分析した。その結果、これらの比較例では、それぞれセレンを88.6%および22.3%しか除去することができなかった。これらの比較例のろ液の分析結果を表2に示す。
[Comparative Examples 12 and 13]
The filtrate obtained by the same method as Comparative Example 3 was analyzed except that 1.15 g of reagent (special grade) PbS and 2 g of As 2 O 3 were added instead of copper powder. As a result, in these comparative examples, only 88.6% and 22.3% of selenium could be removed, respectively. Table 2 shows the analysis results of the filtrates of these comparative examples.

[比較例14〜19]
銅粉の代わりに、試薬(特級)のCuSO・5HOをそれぞれ0.393g、1.179g、1.965g、3.93g、11.79gおよび19.65g計量してセレン含有排水に添加し、撹拌時間を10分間とした以外は比較例3と同様の方法により得られたろ液について分析した。なお、撹拌時間を10分間にしたのは、10分間の撹拌によって明らかに溶解しており、それ以上撹拌しても変化しないと判断したからであり、また、撹拌後のごく少量の固体分を除去するために吸引ろ過した。その結果、これらの比較例では、それぞれセレンを27.0%、27.1%、27.3%、27.5%、29.1%および29.3%しか除去することができなかった。これらの比較例のろ液の分析結果を表3に示す。
[Comparative Examples 14 to 19]
Instead of copper powder, 0.393 g, 1.179 g, 1.965 g, 3.93 g, 11.79 g, and 19.65 g of the reagent (special grade) CuSO 4 · 5H 2 O are weighed and added to the selenium-containing wastewater. The filtrate obtained by the same method as in Comparative Example 3 was analyzed except that the stirring time was 10 minutes. The reason why the stirring time was 10 minutes was that it was clearly dissolved by stirring for 10 minutes, and it was judged that the stirring did not change even after further stirring. Suction filtered to remove. As a result, in these comparative examples, only 27.0%, 27.1%, 27.3%, 27.5%, 29.1% and 29.3% of selenium could be removed, respectively. Table 3 shows the analysis results of the filtrates of these comparative examples.

Figure 2006116469
Figure 2006116469

[比較例20〜22]
CuSO・5HOの代わりに、それぞれ試薬(特級)のZnSO・7HO4.4gおよびFeSO・7HO4.98gをセレン含有排水に添加した以外は比較例14〜19と同様の方法により得られたろ液について分析した(比較例20、21)。また、CuSO・5HOの代わりに、銅電解でブリードオフされた脱銅電解液67mLをセレン含有排水に添加した以外は比較例14〜19と同様の方法により得られたろ液について分析した(比較例22)。なお、この時の脱銅電解液中のCu濃度は18g/Lであった。その結果、これらの比較例では、それぞれセレンを23.9%、28.6%および36.1%しか除去することができなかった。これらの比較例のろ液の分析結果を表3に示す。
[Comparative Examples 20-22]
Comparative Examples 14 to 19 except that 4.4 g of reagent (special grade) ZnSO 4 · 7H 2 O and 4.98 g of FeSO 4 · 7H 2 O were added to the selenium-containing wastewater instead of CuSO 4 · 5H 2 O, respectively. The filtrate obtained by the method was analyzed (Comparative Examples 20 and 21). Further, instead of CuSO 4 · 5H 2 O, except that the de-copper electrolyte 67mL that are bleed-off of copper electrolyte was added to the selenium-containing wastewater were analyzed for the filtrate obtained by the same manner as in Comparative Example 14 to 19 (Comparative Example 22). At this time, the Cu concentration in the copper removal electrolytic solution was 18 g / L. As a result, in these comparative examples, only 23.9%, 28.6% and 36.1% of selenium could be removed, respectively. Table 3 shows the analysis results of the filtrates of these comparative examples.

比較例2〜22からわかるように、セレン含有排水に若干の金属または化合物を添加して固液分離しただけでセレンが若干除去されている。金属系の添加物の場合は約50%のセレンが除去され、硫酸塩化合物の場合は約30%のセレンが除去されている。Agの場合は効果がなく、Hgの場合も溶解性のHgでは効果がない。Pb化合物の場合は、PbSOやPbOでは効果が若干であるが、PbSでは非常に大きな効果があり、セレンの除去率が約89%である。これは、PbSが浸出されてPb2+になり、このPbイオンがセレン酸と化合して難溶性の塩を作るためと考えられる。PbSOやPbOでは、溶解度そのものが低く且つ反応性に乏しいため、セレンをそれ程除去することができないと推測される。 As can be seen from Comparative Examples 2 to 22, selenium is slightly removed simply by adding some metal or compound to the selenium-containing wastewater and solid-liquid separation. About 50% selenium is removed in the case of metal-based additives, and about 30% selenium is removed in the case of sulfate compounds. In the case of Ag, there is no effect, and even in the case of Hg, soluble Hg has no effect. In the case of a Pb compound, PbSO 4 or PbO has a slight effect, but PbS has a very large effect, and the selenium removal rate is about 89%. This is thought to be because PbS is leached to Pb 2+ , and this Pb ion combines with selenic acid to form a hardly soluble salt. In PbSO 4 or PbO, since poor and the reactive low solubility itself is presumed to be unable to significantly remove selenium.

[実施例2〜7]
銅粉の代わりに、試薬(特級)のCuSO・5HOをそれぞれ0.393g、1.179g、1.965g、3.93g、11.79gおよび19.65g計量してセレン含有排水に添加し、撹拌時間を10分間とした以外は実施例1と同様の方法により得られたろ液について分析した。その結果、これらの実施例では、それぞれ98.9%のセレンを除去することができた。これらの実施例のろ液の分析結果を表1に示す。
[Examples 2 to 7]
Instead of copper powder, 0.393 g, 1.179 g, 1.965 g, 3.93 g, 11.79 g, and 19.65 g of the reagent (special grade) CuSO 4 · 5H 2 O are weighed and added to the selenium-containing wastewater. The filtrate obtained by the same method as in Example 1 was analyzed except that the stirring time was 10 minutes. As a result, in each of these examples, 98.9% of selenium could be removed. The analysis results of the filtrates of these examples are shown in Table 1.

[実施例8〜10]
CuSO・5HOの代わりに、それぞれ試薬(特級)のZnSO・7HO4.4g、FeSO・7HO4.98gおよび銅電解でブリードオフされた脱銅電解液67mLをセレン含有排水に添加した以外は実施例2〜7と同様の方法により得られたろ液について分析した。なお、脱銅電解液中のCu濃度は18g/Lであった。その結果、これらの実施例では、それぞれ98.9%、98.9%および99.0%のセレンを除去することができた。これらの実施例のろ液の分析結果を表1に示す。
[Examples 8 to 10]
Instead of CuSO 4 · 5H 2 O, 4.4 g of reagent (special grade) ZnSO 4 · 7H 2 O, 4.98 g of FeSO 4 · 7H 2 O and 67 mL of decopperized electrolyte bleed-off by copper electrolysis are drained with selenium. The filtrate obtained by the same method as in Examples 2 to 7 except that it was added to was analyzed. In addition, Cu density | concentration in a copper removal electrolyte solution was 18 g / L. As a result, in these examples, 98.9%, 98.9% and 99.0% selenium could be removed, respectively. The analysis results of the filtrates of these examples are shown in Table 1.

[比較例23〜26]
銅粉の代わりに、それぞれに試薬(特級)のHgCl10g、HgCl10g、PbS1.15gおよびAs2gをセレン含有排水に添加した以外は実施例1と同様の方法により得られたろ液について分析した。その結果、これらの比較例では、それぞれセレンを56.2%、59.3%、88.6%および61.5%しか除去することができなかった。これらの比較例のろ液の分析結果を表1に示す。
[Comparative Examples 23 to 26]
Obtained instead of copper powder, Hg 2 Cl 2 10g of reagent (special grade) to each, HgCl 2 10 g, in the same manner as in Example 1 except for adding the selenium-containing wastewater to PbS1.15g and As 2 O 3 2 g The obtained filtrate was analyzed. As a result, in these comparative examples, only 56.2%, 59.3%, 88.6% and 61.5% of selenium could be removed, respectively. Table 1 shows the analysis results of the filtrates of these comparative examples.

比較例2〜22と実施例1との比較から、実施例1のように銅粉を添加した後にHSを吹き込むと、セレンが劇的に除去されることがわかる。また、実施例2〜7のようにCuSO・5HOを添加、すなわちCu2+イオンを添加した後にHSを吹き込んだ場合も、銅粉を添加した場合よりもセレンの除去率が若干劣るが、非常に良くセレンを除去していることがわかる。但し、CuSO系の場合は、セレンの排出基準0.1mg/Lを満たしていないので、この排出基準を満たすためには、さらに処理を行うか、あるいは後述する実施例12および13のように、実施例1〜10で使用したセレン含有排水よりもセレンの含有量が少ないセレン含有排水に適用すればよい。また、SO 2−イオンの制御などによって、実施例1〜10で使用したようなセレンの含有量が多いセレン含有排水にも適用できると考えられる。なお、セレン含有排水に添加するCuの濃度は、セレンの当量と同等以上であれば、充分にセレンを除去することができる。また、実施例8〜10のように、ZnやFeの硫酸塩を添加してもセレンを十分に除去することができ、また、銅製錬で使用されている電解液を添加してもセレンを十分に除去することができる。一方、比較例23、24および26のように、HgやAsを添加した後に硫化した場合は、セレンの除去率が50%程度であり、セレン含有排水に金属粉を添加しただけの場合とほぼ同等であり、硫化を行ってもセレンの除去率が低い。 From comparison between Comparative Examples 2 to 22 and Example 1, it can be seen that selenium is dramatically removed when H 2 S is blown after copper powder is added as in Example 1. Further, when CuSO 4 .5H 2 O was added as in Examples 2 to 7, that is, when H 2 S was blown after Cu 2+ ions were added, the selenium removal rate was slightly higher than when copper powder was added. Although it is inferior, it turns out that selenium is removed very well. However, in the case of the CuSO 4 system, since the selenium emission standard of 0.1 mg / L is not satisfied, in order to satisfy this emission standard, further processing is performed or as in Examples 12 and 13 described later. What is necessary is just to apply to the selenium containing waste_water | drain with less selenium content than the selenium containing waste water used in Examples 1-10. It is also considered that the present invention can be applied to selenium-containing wastewater containing a large amount of selenium as used in Examples 1 to 10 by controlling SO 4 2− ions. In addition, if the density | concentration of Cu added to a selenium containing waste water is more than the equivalent of a selenium, selenium can fully be removed. In addition, as in Examples 8 to 10, selenium can be sufficiently removed even by adding Zn or Fe sulfate, and selenium can also be added by adding an electrolytic solution used in copper smelting. It can be removed sufficiently. On the other hand, as in Comparative Examples 23, 24 and 26, when sulfided after adding Hg or As, the selenium removal rate is about 50%, almost the same as when only adding metal powder to the selenium-containing wastewater. The selenium removal rate is low even when sulfuration is performed.

[実施例11]
実施例1で得られたろ液にpH=11になるようにCaO(北上石灰(株)製)のスラリーを添加した。このCaOのパルプ濃度は150g/Lになるようにイオン交換水でパルプ調整した。また、CaOのスラリーの添加量は約6mLであった。この添加時間は10分間であり、その後30分間熟成させて反応させた(合計40分間)。この反応物を固液分離し、ろ液1Lに試薬(特級)のBaCl・2HO10gを添加し、10分間撹拌した後、固液分離し、ろ液を分析した。その結果、セレンの除去率は100%であり、完全に除去できなかったセレンを難溶性のBa塩として沈殿させて分離除去することができた。この実施例のろ液の分析結果を表4に示す。
[Example 11]
A slurry of CaO (manufactured by Kitakami Lime Co., Ltd.) was added to the filtrate obtained in Example 1 so that pH = 11. The pulp was adjusted with ion-exchanged water so that the CaO pulp concentration was 150 g / L. The amount of CaO slurry added was about 6 mL. This addition time was 10 minutes, and then aged for 30 minutes for reaction (total 40 minutes). This reaction product was subjected to solid-liquid separation, and 10 g of reagent (special grade) BaCl 2 .2H 2 O was added to 1 L of the filtrate, followed by stirring for 10 minutes, followed by solid-liquid separation and analysis of the filtrate. As a result, the selenium removal rate was 100%, and selenium that could not be completely removed was precipitated as a hardly soluble Ba salt and separated and removed. The analysis results of the filtrate of this example are shown in Table 4.

Figure 2006116469
Figure 2006116469

[比較例27、28]
表5に示すようにSe12.19mg/L、Cu4.61mg/L、Pb2mg/L、Zn6.25mg/L、Fe1.62mg/L、As1.41mg/L、Hg2.2μg/Lを含み、pH4.5、酸化還元電位(ORP)(Ag/AgCl電極)273mVのセレン含有排水(セレン含有排水B)1Lを使用した以外は、比較例14(セレン含有排水にCuSO・5HOを0.393g添加した比較例)および比較例22(銅電解でブリードオフされた脱銅電解液67mLをセレン含有排水に添加した比較例)と同様の方法により得られたろ液について分析した。これらの比較例では、それぞれセレンの除去率が4.4%と20.4%であり、使用したセレン含有排水のセレン濃度が低いために、Cuイオンの添加によりセレンがほとんど除去されなかった。これらの比較例のろ液の分析結果を表5に示す。
[Comparative Examples 27 and 28]
As shown in Table 5, Se 12.19 mg / L, Cu 4.61 mg / L, Pb 2 mg / L, Zn 6.25 mg / L, Fe 1.62 mg / L, As 1.41 mg / L, Hg 2.2 μg / L, pH 4. 5. Oxidation-reduction potential (ORP) (Ag / AgCl electrode) Comparative Example 14 (except for using 1 L of selenium-containing waste water (Selenium-containing waste water B)) of 273 mV 0.393 g of CuSO 4 .5H 2 O The filtrate obtained by the same method as Comparative Example) and Comparative Example 22 (Comparative Example in which 67 mL of copper removal electrolytic solution bleed-off by copper electrolysis was added to selenium-containing wastewater) was analyzed. In these comparative examples, the selenium removal rates were 4.4% and 20.4%, respectively, and since the selenium concentration in the used selenium-containing wastewater was low, selenium was hardly removed by the addition of Cu ions. Table 5 shows the analysis results of the filtrates of these comparative examples.

Figure 2006116469
Figure 2006116469

[実施例12、13]
比較例27および28で得られたそれぞれのろ液1Lに、HS純度99%の圧縮ボンベを用いて、ORP(Ag/AgCl電極)が−100mV付近になるように0.2L/分の流量でHSガスを吹き込んだが、結果的にORPが−150mVまで下がった。吹き込みを止めた後、熟成のために10分間撹拌し続けて反応させた。その後、5Cのろ紙を用いて吸引ろ過により沈殿物を固液分離し、ろ液を分析した。その結果、これらの実施例では、それぞれ99.3%および99.2%のセレンを除去することができ、セレンの含有量が少ないセレン含有排水Bでも、Cuイオンの添加後に硫化を行うことにより、セレンを十分に除去することができた。これらの実施例のろ液の分析結果を表6に示す。
[Examples 12 and 13]
For each 1 L of the filtrate obtained in Comparative Examples 27 and 28, using a compression cylinder with 99% H 2 S purity, 0.2 L / min so that the ORP (Ag / AgCl electrode) is around −100 mV. H 2 S gas was blown in at a flow rate, and as a result, the ORP dropped to −150 mV. After stopping the blowing, the reaction was continued for 10 minutes with stirring for aging. Thereafter, the precipitate was solid-liquid separated by suction filtration using 5C filter paper, and the filtrate was analyzed. As a result, in these examples, 99.3% and 99.2% selenium can be removed, respectively, and even selenium-containing wastewater B having a low selenium content can be sulfurized after addition of Cu ions. Selenium could be removed sufficiently. Table 6 shows the analysis results of the filtrates of these examples.

Figure 2006116469
Figure 2006116469

本発明によるセレン含有水の処理方法の一実施の形態の工程図である。It is process drawing of one Embodiment of the processing method of selenium containing water by this invention. 本発明によるセレン含有水の処理方法の他の実施の形態の工程図である。It is process drawing of other embodiment of the processing method of selenium containing water by this invention.

Claims (7)

セレン含有水に銅、鉄または亜鉛の金属またはこれらの金属の化合物を添加した後、硫化して沈殿物を生成させることを特徴とする、セレン含有水の処理方法。 A method for treating selenium-containing water, comprising adding a metal of copper, iron or zinc or a compound of these metals to selenium-containing water, and then sulfiding to produce a precipitate. 前記硫化が、前記セレン含有水中にHS、NaSHまたはNaSを供給することにより行われることを特徴とする、請求項1に記載のセレン含有水の処理方法。 The method for treating selenium-containing water according to claim 1, wherein the sulfurization is performed by supplying H 2 S, NaSH, or Na 2 S to the selenium-containing water. 前記セレン含有水に添加する銅、鉄または亜鉛の当量が前記セレン含有水中のセレンの当量以上であることを特徴とする、請求項1または2に記載のセレン含有水の処理方法。 The method for treating selenium-containing water according to claim 1 or 2, wherein the equivalent of copper, iron or zinc added to the selenium-containing water is equal to or greater than the equivalent of selenium in the selenium-containing water. 前記銅、鉄または亜鉛の金属またはこれらの金属の化合物が、銅、鉄または亜鉛の金属粉末またはこれらの金属の硫酸塩、硝酸塩または塩化物であることを特徴とする、請求項1乃至3のいずれかに記載のセレン含有水の処理方法。 The copper, iron or zinc metal or a compound of these metals is a metal powder of copper, iron or zinc or a sulfate, nitrate or chloride of these metals. The processing method of the selenium containing water in any one. 前記銅、鉄または亜鉛の金属またはこれらの金属の化合物が、製錬工程で使用される電解液であることを特徴とする、請求項1乃至3のいずれかに記載のセレン含有水の処理方法。 The method for treating selenium-containing water according to any one of claims 1 to 3, wherein the metal of copper, iron or zinc or a compound of these metals is an electrolytic solution used in a smelting process. . 前記硫化の際に酸化還元電位(Ag/AgCl電極)を200mV以下にすることを特徴とする、請求項1乃至5のいずれかに記載のセレン含有水の処理方法。 The method for treating selenium-containing water according to any one of claims 1 to 5, wherein an oxidation-reduction potential (Ag / AgCl electrode) is set to 200 mV or less during the sulfidation. 前記セレン含有水中のSe濃度が5mg/L以上であることを特徴とする、請求項1乃至6のいずれかに記載のセレン含有水の処理方法。

The method for treating selenium-containing water according to any one of claims 1 to 6, wherein the Se concentration in the selenium-containing water is 5 mg / L or more.

JP2004308567A 2004-10-22 2004-10-22 Treatment method for selenium-containing water Pending JP2006116469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308567A JP2006116469A (en) 2004-10-22 2004-10-22 Treatment method for selenium-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308567A JP2006116469A (en) 2004-10-22 2004-10-22 Treatment method for selenium-containing water

Publications (1)

Publication Number Publication Date
JP2006116469A true JP2006116469A (en) 2006-05-11

Family

ID=36534852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308567A Pending JP2006116469A (en) 2004-10-22 2004-10-22 Treatment method for selenium-containing water

Country Status (1)

Country Link
JP (1) JP2006116469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142650A (en) * 2006-12-12 2008-06-26 Sumitomo Metal Mining Co Ltd Method for removing selenium from selenate-containing liquid
EP2036866A1 (en) * 2006-07-04 2009-03-18 Kurita Water Industries Ltd. Method and apparatus for treating selenium-containing wastewater
JP2014161802A (en) * 2013-02-26 2014-09-08 Taiheiyo Cement Corp Apparatus and method for removing selenium
KR20200125461A (en) 2019-04-25 2020-11-04 가부시키가이샤 고베 세이코쇼 Removal method of selenium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131649A (en) * 1976-04-27 1977-11-04 Kotobuki Kakoki Method of removing heavy metal in waste liquid
JPH0947790A (en) * 1995-08-04 1997-02-18 Chiyoda Corp Treatment of waste stack gas desulfurization effluent
US6214238B1 (en) * 1998-07-27 2001-04-10 Tosco Corporation Method for removing selenocyanate ions from waste water
JP2003340465A (en) * 2002-05-30 2003-12-02 Ngk Insulators Ltd Method for cleaning waste water, groundwater or soil leachate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131649A (en) * 1976-04-27 1977-11-04 Kotobuki Kakoki Method of removing heavy metal in waste liquid
JPH0947790A (en) * 1995-08-04 1997-02-18 Chiyoda Corp Treatment of waste stack gas desulfurization effluent
US6214238B1 (en) * 1998-07-27 2001-04-10 Tosco Corporation Method for removing selenocyanate ions from waste water
JP2003340465A (en) * 2002-05-30 2003-12-02 Ngk Insulators Ltd Method for cleaning waste water, groundwater or soil leachate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036866A1 (en) * 2006-07-04 2009-03-18 Kurita Water Industries Ltd. Method and apparatus for treating selenium-containing wastewater
EP2036866A4 (en) * 2006-07-04 2012-06-20 Kurita Water Ind Ltd Method and apparatus for treating selenium-containing wastewater
JP2008142650A (en) * 2006-12-12 2008-06-26 Sumitomo Metal Mining Co Ltd Method for removing selenium from selenate-containing liquid
JP4529969B2 (en) * 2006-12-12 2010-08-25 住友金属鉱山株式会社 Method for removing selenium from selenate-containing liquid
JP2014161802A (en) * 2013-02-26 2014-09-08 Taiheiyo Cement Corp Apparatus and method for removing selenium
KR20200125461A (en) 2019-04-25 2020-11-04 가부시키가이샤 고베 세이코쇼 Removal method of selenium

Similar Documents

Publication Publication Date Title
CN102765831B (en) Purification method of wastewater containing heavy metal and arsenic
JP2011206757A (en) Method for wastewater treatment for wastewater containing aluminum, magnesium and manganese
CN103030233A (en) Treatment method for high-concentration arsenic waste water
JP4710034B2 (en) Arsenic-containing material treatment method
US20080274026A1 (en) Selective precipitation of metal sulfides
CN107532228A (en) The method of selective recovery parent&#39;s chalcogen
EA023142B1 (en) Method for producing a poorly soluble calcium-arsenic compound
JP6364716B2 (en) Heavy metal removal method
JP2017213507A (en) Waste acid treatment method
JP4826532B2 (en) Processing method of molten fly ash
JP2011058016A (en) Method for separating rhenium from solution containing perrhenic acid
JP2009179841A (en) Method for treating molten fly ash
JP2012167334A (en) METHOD OF RECOVERING Ir FROM PLATINUM GROUP-CONTAINING SOLUTION
JP7015002B2 (en) How to treat heavy metal-containing wastewater
JPH1147764A (en) Treatment of arsenic-containing waste water
JPH11314094A (en) Method for treating drainage containing arsenic and other heavy metals
JP4614093B2 (en) Arsenic wastewater treatment method
WO2017110572A1 (en) Method for removing sulfidizing agent
JP2006116469A (en) Treatment method for selenium-containing water
JP4670004B2 (en) Method for treating selenium-containing water
JP6233177B2 (en) Method for producing rhenium sulfide
JP4862191B2 (en) Method for treating selenium-containing water
JP6555182B2 (en) Wastewater treatment method
JP7275905B2 (en) Method for treating dust containing heavy metals
JP4045332B2 (en) Treatment of wastewater containing Sb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322