JP2006114535A - Method of manufacturing nitride semiconductor element - Google Patents

Method of manufacturing nitride semiconductor element Download PDF

Info

Publication number
JP2006114535A
JP2006114535A JP2004297322A JP2004297322A JP2006114535A JP 2006114535 A JP2006114535 A JP 2006114535A JP 2004297322 A JP2004297322 A JP 2004297322A JP 2004297322 A JP2004297322 A JP 2004297322A JP 2006114535 A JP2006114535 A JP 2006114535A
Authority
JP
Japan
Prior art keywords
functional layer
semiconductor functional
substrate
layer
growth substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004297322A
Other languages
Japanese (ja)
Inventor
Toshiharu Yamabayashi
稔治 山林
Yoshinobu Ono
善伸 小野
Sadanori Yamanaka
貞則 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004297322A priority Critical patent/JP2006114535A/en
Publication of JP2006114535A publication Critical patent/JP2006114535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which a nitride semiconductor element having a semiconductor functional layer and a high-temperature conductive substrate can be manufactured in a short time. <P>SOLUTION: In the method of manufacturing the nitride semiconductor element having the semiconductor functional layer and high-temperature conductive substrate, the high-temperature conductive substrate is bonded to the surface of the semiconductor functional layer after the functional layer is grown on a grown substrate. Then the grown substrate and semiconductor functional layer are separated from each other by irradiating an ultrasonic wave upon the interface between the grown substrate and functional layer. In the method, in addition, the semiconductor functional layers is grown on the grown substrate by providing a vacant space in the interface between the grown substrate and functional layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は窒化物半導体素子の製造方法に関する。   The present invention relates to a method for manufacturing a nitride semiconductor device.

窒化物半導体素子は、サファイアからなる成長基板の上に、バッファ層、電子輸送層、発光層、正孔輸送層等からなる半導体機能層を成長させ、電極を設置して製造される。しかし、サファイアは熱伝導度が低いため、窒化物半導体素子の中でも、例えば高輝度の発光ダイオード素子を前記製造方法で製造すると、電流密度を増加させた時、半導体素子の寿命が短くなるなどの問題点が生じる。   A nitride semiconductor element is manufactured by growing a semiconductor functional layer made of a buffer layer, an electron transport layer, a light emitting layer, a hole transport layer, and the like on a growth substrate made of sapphire, and installing electrodes. However, since sapphire has a low thermal conductivity, among the nitride semiconductor elements, for example, when a light-emitting diode element with high brightness is manufactured by the above-described manufacturing method, the life of the semiconductor element is shortened when the current density is increased. Problems arise.

そこで、熱伝導度の高い物質からなる高熱伝導基板と半導体機能層を有してなる窒化物半導体の製造方法として、サファイアからなる成長基板上に半導体機能層を成長させ、その窒化物半導体機能層に高熱伝導基板を貼り付け、成長基板と半導体機能層の界面に集光するようにして強いレーザー光を照射することにより成長基板を窒化物半導体機能層から分離し(この分離方法を「レーザーリフトオフ法」という。)、電極を設置することにより、半導体機能層と高熱伝導基板とを有する窒化物半導体素子を製造する方法が提案されている(例えば、特許文献1参照。)。   Therefore, as a method of manufacturing a nitride semiconductor having a high thermal conductivity substrate made of a material having high thermal conductivity and a semiconductor functional layer, a semiconductor functional layer is grown on a growth substrate made of sapphire, and the nitride semiconductor functional layer A high thermal conductivity substrate is attached to the substrate, and the growth substrate is separated from the nitride semiconductor functional layer by irradiating strong laser light so that the light is focused on the interface between the growth substrate and the semiconductor functional layer. And a method of manufacturing a nitride semiconductor device having a semiconductor functional layer and a high thermal conductive substrate by installing electrodes (see, for example, Patent Document 1).

しかしながら、レーザーリフトオフ法を用いた製造は、半導体機能層が熱衝撃で破損しないようにレーザー光の強さを調節して行う必要があるため時間がかかるので、半導体機能層と高熱伝導基板とを有する窒化物半導体素子をより短時間で製造することができる方法が求められていた。   However, manufacturing using the laser lift-off method takes time because it is necessary to adjust the intensity of the laser beam so that the semiconductor functional layer is not damaged by thermal shock. There has been a demand for a method capable of producing a nitride semiconductor device having a shorter time.

特開2003−347587号公報Japanese Patent Laid-Open No. 2003-347587

本発明の目的は、半導体機能層と高熱伝導基板とを有する窒化物半導体素子を、短時間で製造する方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a nitride semiconductor device having a semiconductor functional layer and a high thermal conductive substrate in a short time.

本発明者らは、上記問題を解決するために、窒化物半導体素子の製造方法について鋭意検討した結果、成長基板とその上に成長させた半導体機能層の界面に超音波を照射することにより、成長基板と半導体機能層を分離することができ、その分離に要する時間が短く、この分離方法を用いることにより、半導体機能層と高熱伝導基板とを有する窒化物半導体素子を、従来より短時間で製造することができることを見出し、本発明を完成させるに到った。   In order to solve the above problems, the present inventors have intensively studied a method for manufacturing a nitride semiconductor device, and as a result, by irradiating the interface between the growth substrate and the semiconductor functional layer grown on the growth substrate, The growth substrate and the semiconductor functional layer can be separated, and the time required for the separation is short. By using this separation method, the nitride semiconductor element having the semiconductor functional layer and the high thermal conductive substrate can be obtained in a shorter time than before. The inventors have found that it can be manufactured, and have completed the present invention.

すなわち本発明は、成長基板上に半導体機能層を成長させた後に、半導体機能層上に高熱伝導基板を接合し、次に、成長基板と半導体機能層の界面に超音波を照射して成長基板と半導体機能層を分離することを特徴とする半導体機能層と高熱伝導基板とを有する窒化物半導体素子の製造方法を提供する。   That is, according to the present invention, after a semiconductor functional layer is grown on a growth substrate, a high thermal conductive substrate is bonded onto the semiconductor functional layer, and then an ultrasonic wave is applied to the interface between the growth substrate and the semiconductor functional layer to grow the growth substrate. And a method of manufacturing a nitride semiconductor device having a semiconductor functional layer and a high thermal conductivity substrate.

本発明の窒化物半導体素子の製造方法は、従来の製造方法に比べて短時間で効率良く窒化物半導体素子を製造することができ、歩留まりも高く、本発明の製造方法は発光ダイオード素子、レーザダイオード素子の製造に好適であるので、工業的に極めて有用である。   The method for manufacturing a nitride semiconductor device of the present invention can manufacture a nitride semiconductor device efficiently in a short time compared with the conventional manufacturing method, and the yield is high. Since it is suitable for manufacturing a diode element, it is extremely useful industrially.

本発明の窒化物半導体素子の製造方法は、成長基板上に半導体機能層を成長させた後に、半導体機能層上に高熱伝導基板を接合し、次に、成長基板と半導体機能層に超音波を照射して成長基板と半導体機能層を分離することを特徴とする。   In the method for manufacturing a nitride semiconductor device of the present invention, after a semiconductor functional layer is grown on a growth substrate, a high thermal conductive substrate is bonded onto the semiconductor functional layer, and then ultrasonic waves are applied to the growth substrate and the semiconductor functional layer. Irradiation separates the growth substrate and the semiconductor functional layer.

以下、本発明を工程の順に説明する。
まず、成長基板上に半導体機能層を気相成長させる。本発明において用いる成長基板としては、サファイア、シリコン単結晶、炭化ケイ素単結晶、酸化亜鉛単結晶、硼化ジルコニウム単結晶、硼化クロム単結晶からなる成長基板が挙げられる。
Hereinafter, the present invention will be described in the order of steps.
First, a semiconductor functional layer is vapor-phase grown on a growth substrate. Examples of the growth substrate used in the present invention include growth substrates made of sapphire, silicon single crystal, silicon carbide single crystal, zinc oxide single crystal, zirconium boride single crystal, and chromium boride single crystal.

本発明において、半導体機能層としては、通常用いられている窒化物半導体発光素子の構成を用いることができる。すなわち、n型の導電性を有する層、p型の導電性を有する層、これらの間に発光層を有するものであり、例えば、GaN、AlN、AlGaN、InGaN等からなるバッファ層;SiまたはGeをドープしたn−GaN、SiまたはGeをドープしたn−AlGaN等からなるクラッド層;InGaN、GaN、AlGaN、AlInGaN等からなる発光層;アンドープGaN、p−GaNからなるクラッド層;MgドープAlGaN、Mgドープp−GaNからなるキャップ層が順次積層されてなる層構造が挙げられる(例えば、特開平6−260682号公報、特開平7−15041号公報、特開平9−64419号公報、特開平9−36430号公報を参照。)   In the present invention, as the semiconductor functional layer, a commonly used configuration of a nitride semiconductor light emitting device can be used. That is, an n-type conductive layer, a p-type conductive layer, and a light emitting layer between them, for example, a buffer layer made of GaN, AlN, AlGaN, InGaN, etc .; Si or Ge Cladding layer made of n-GaN, Si or Ge doped n-AlGaN, etc .; light-emitting layer made of InGaN, GaN, AlGaN, AlInGaN, etc .; cladding layer made of undoped GaN, p-GaN; Mg-doped AlGaN, Examples include a layer structure in which cap layers made of Mg-doped p-GaN are sequentially stacked (for example, Japanese Patent Laid-Open Nos. 6-260682, 7-15041, 9-64419, and 9). (See No. 36430)

半導体機能層を成長基板上に成長させる方法としては、通常のMOVPE法、MBE法を用いることができる。   As a method for growing the semiconductor functional layer on the growth substrate, a normal MOVPE method or MBE method can be used.

例えば、MOVPE法においては、前記成長基板を加熱し、窒素原料ガス、ガリウム原料ガス、アルミニウム原料ガス、インジウム原料ガス等を流して化合物半導体機能層の結晶を成長させる(例えば、特開平7−249795号公報、特開平9−116130号公報を参照。)。窒素原料ガスとしては通常はアンモニア(NH3)が用いられる。ガリウム原料ガス、アルミニウム原料ガス、インジウム原料ガスとしては、各金属原子に炭素数が1から3のアルキル基もしくは水素が結合した、トリアルキル化物もしくは三水素化物が、通常用いられる。 For example, in the MOVPE method, the growth substrate is heated and a nitrogen source gas, a gallium source gas, an aluminum source gas, an indium source gas, or the like is supplied to grow a crystal of the compound semiconductor functional layer (for example, Japanese Patent Laid-Open No. 7-249795). No., JP-A-9-116130). As the nitrogen source gas, ammonia (NH 3 ) is usually used. As the gallium source gas, aluminum source gas, and indium source gas, trialkylates or trihydrides in which an alkyl group having 1 to 3 carbon atoms or hydrogen is bonded to each metal atom are usually used.

成長基板上と半導体機能層の分離を容易にするため、成長基板上に、SiO2、Al23、MgO、TiO2、HfO2、ZnO、Cr23、B23、ZrO2等の酸化物、SiC、TiC、ZrC,WC、MoC、Cr32等の炭化物、AlN、Si34、TiN、BN、NbN、ZrN、CrN等の窒素化物、Mo、Ti、V、Ta、W、Zr、Hf等の金属粒子のディスパージョンを作製し、成長基板上に塗布した後、乾燥させて粒子が付着した成長基板を用いることによって、成長基板とバッファ層の接合面積を減少させることができる。用いる粒子の平均粒径は0.1nm以上100μm未満で、好ましくは1nm以上10μm未満、さらに好ましくは5nm以上5μm未満である。平均粒径が0.1nm未満では粒子が凝集物を作り成長基板上に均一に塗布することが困難となる傾向がある。また、平均粒径が100μm以上では半導体機能層の成長により粒子を半導体機能層内に埋め込むことが困難となる傾向がある。 In order to facilitate separation of the growth substrate and the semiconductor functional layer, SiO 2 , Al 2 O 3 , MgO, TiO 2 , HfO 2 , ZnO, Cr 2 O 3 , B 2 O 3 , ZrO 2 are formed on the growth substrate. Oxides such as SiC, TiC, ZrC, WC, MoC, carbides such as Cr 3 C 2 , nitrides such as AlN, Si 3 N 4 , TiN, BN, NbN, ZrN, CrN, Mo, Ti, V, A dispersion of metal particles such as Ta, W, Zr, and Hf is prepared, applied on the growth substrate, and then dried to reduce the bonding area between the growth substrate and the buffer layer by using the growth substrate to which the particles are attached. Can be made. The average particle size of the particles used is 0.1 nm or more and less than 100 μm, preferably 1 nm or more and less than 10 μm, more preferably 5 nm or more and less than 5 μm. If the average particle size is less than 0.1 nm, the particles tend to form aggregates, making it difficult to uniformly coat the growth substrate. Further, when the average particle size is 100 μm or more, it tends to be difficult to embed particles in the semiconductor functional layer due to the growth of the semiconductor functional layer.

成長基板と半導体機能層の分離を容易に行うための別の方法として、FACELO(Facet Controlled Epitaxial Lateral Overgrowth)を用いて半導体機能層を成長させてもよい。すなわち、成長基板上にWやSiO2等を100〜10μmの厚さで蒸着した後、所定形状にエッチングすることにより、部分的にWやSiO2等が付着した成長基板を作製して用いる方法が挙げられる。前記した方法により半導体機能層を成長させた場合、WやSiO2等のマスク上で横方向成長(Epitaxial Lateral Overgrowth)して生成した半導体機能層と成長基板の界面に空隙が発生する。また、前記した通常の半導体機能層の成長においても、500℃付近でバッファ層を成長してから1000℃程度での本成長に入る付近でIII族原料のNH3の供給を、例えば、10分程度、一時的に停止することでバッファ層に空隙が入る。これらの処理を行うことにより、次の工程で行う成長基板と半導体機能層の分離を容易に行うことができる。 As another method for easily separating the growth substrate and the semiconductor functional layer, the semiconductor functional layer may be grown using FACELO (Facet Controlled Epitaxial Lateral Overgrowth). That is, after depositing W, SiO 2 or the like on the growth substrate to a thickness of 100 to 10 μm, and etching it into a predetermined shape, a growth substrate partially having W or SiO 2 or the like attached thereto is produced and used. Is mentioned. When the semiconductor functional layer is grown by the method described above, voids are generated at the interface between the semiconductor functional layer and the growth substrate generated by lateral growth on a mask of W, SiO 2 or the like (Epitaxial Lateral Overgrowth). In addition, in the growth of the normal semiconductor functional layer described above, the supply of the group III raw material NH 3 is performed for about 10 minutes, for example, after the buffer layer is grown at about 500 ° C. and the main growth is started at about 1000 ° C. By temporarily stopping to some extent, voids enter the buffer layer. By performing these processes, the growth substrate and the semiconductor functional layer can be easily separated in the next step.

次に半導体機能層物に高熱伝導基板を接合する。高熱伝導基板としては、La、Ta、Ir、Hf、Mo、W、Os、Ru、Nb、Cr、Ti、Ni、Co、CuおよびFeから選ばれる1種以上であって、それらのうち、1種類の成分を90重量%以上含有する金属材料からなるものが挙げられる。高熱伝導性基板の300K(27℃)での熱伝導度は、45W/(m・K)以上が好ましく、100W/(m・K)以上がさらには好ましい。熱伝導度の上限は特にないが、通常は450W/(m・K)程度である。接合は通常は接合層にハンダ金属を用いた熱圧着により実施するが、超音波接合によって接合することもできる。   Next, a high thermal conductive substrate is bonded to the semiconductor functional layer. The high thermal conductive substrate is at least one selected from La, Ta, Ir, Hf, Mo, W, Os, Ru, Nb, Cr, Ti, Ni, Co, Cu and Fe, and of these, 1 What consists of a metal material which contains 90 weight% or more of a kind of component is mentioned. The thermal conductivity at 300 K (27 ° C.) of the high thermal conductivity substrate is preferably 45 W / (m · K) or more, and more preferably 100 W / (m · K) or more. There is no particular upper limit on the thermal conductivity, but it is usually about 450 W / (m · K). Joining is usually performed by thermocompression bonding using a solder metal for the joining layer, but can also be joined by ultrasonic joining.

窒化物半導体素子を構成する電極としては、通常用いられているAu、Pt、Pd等からなる電極を用いることができる。   As the electrode constituting the nitride semiconductor element, a commonly used electrode made of Au, Pt, Pd or the like can be used.

本発明の次の工程において、超音波を用いて成長基板と半導体機能層の分離を行う。超音波は可聴周波数より高い周波数の音波であり、本発明においては、超音波の周波数を15kHz以上とする。超音波を用いた成長基板と半導体機能層の剥離挙動は明らかではないが、超音波振動により成長基板と半導体機能層の界面で半導体機能層が受ける圧縮せん断応力の繰り返しによって、半導体機能層が発熱して分解し剥離に到るものと考えられる。   In the next step of the present invention, the growth substrate and the semiconductor functional layer are separated using ultrasonic waves. The ultrasonic wave is a sound wave having a frequency higher than the audible frequency. In the present invention, the frequency of the ultrasonic wave is 15 kHz or more. Although the peeling behavior between the growth substrate and the semiconductor functional layer using ultrasonic waves is not clear, the semiconductor functional layer generates heat due to repeated compressive shear stress applied to the semiconductor functional layer at the interface between the growth substrate and the semiconductor functional layer due to ultrasonic vibration. It is considered that it decomposes and results in peeling.

例えば、サファイアからなる成長基板では周波数が20kHz〜100kHzの超音波を照射することで剥離が可能となる。一般的に用いる超音波の周波数は15kHz以上10GHz未満の範囲内である。好ましくは20kHz以上10MHz未満、さらに好ましくは20kHz以上500kHz未満である。周波数が15kHz未満では超音波のエネルギーが小さく、分離が困難となる傾向がある。また、周波数が10GHz以上ではエネルギーが大きすぎるために半導体機能層中に微小クラックが発生する傾向がある。   For example, a growth substrate made of sapphire can be peeled off by irradiating ultrasonic waves having a frequency of 20 kHz to 100 kHz. The frequency of ultrasonic waves generally used is in the range of 15 kHz or more and less than 10 GHz. Preferably they are 20 kHz or more and less than 10 MHz, More preferably, they are 20 kHz or more and less than 500 kHz. If the frequency is less than 15 kHz, the ultrasonic energy is small and separation tends to be difficult. In addition, when the frequency is 10 GHz or more, the energy is too large, so that microcracks tend to be generated in the semiconductor functional layer.

超音波の波長を選択することにより、半導体機能層の損傷を最小限に留めることができる。超音波はレーザーに比べて物質中の伝播速度は遅く、減衰しやすいという性質があるため、成長基板と半導体機能層の界面に焦点を絞ることにより、その上に成長した半導体機能層にはダメージを殆ど無くすることができる。   By selecting the wavelength of the ultrasonic wave, damage to the semiconductor functional layer can be minimized. Ultrasound has a property that the propagation speed in a substance is slower than that of a laser and is easily attenuated. Therefore, by focusing on the interface between the growth substrate and the semiconductor functional layer, damage to the semiconductor functional layer grown on the substrate is possible. Can be almost eliminated.

以下本発明を、実施例を挙げてさらに詳しく説明する。本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.

実施例1
大きさ2インチ、厚さ430μmのサファイア板からなり、(0001)面を主面とする成長基板上に、MOVPE法を用いて次に示すLED構造を有する半導体機能層を結晶成長させる。すなわち、GaNバッファ層500Å、n型キャリア濃度5×1018/cm3のSiドープn型GaN層4μm、n型キャリア濃度5×1018でAl組成15%のAlGaN(Al0.15Ga0.75N)層0.3μm、n型キャリア濃度1×1017のSiドープn型GaN層0.3μm、アンドープGaNの15nmの層とInGaNの2.5nmの層の繰り返し10回からなり発光波長470nmの多重量子井戸活性層(発光層)、アンドープGaN層15nm、MgドープAl組成5%のAlGaN層25nm、MgドープGaN層0.2μmを順次積層して成長させてなるLED構造である。
Example 1
A semiconductor functional layer having the following LED structure is crystal-grown using a MOVPE method on a growth substrate made of a sapphire plate having a size of 2 inches and a thickness of 430 μm and having a (0001) plane as a main surface. That is, a GaN buffer layer 500 層, an Si-doped n-type GaN layer 4 μm with an n-type carrier concentration of 5 × 10 18 / cm 3 , an AlGaN (Al 0.15 Ga 0.75 N) layer with an n-type carrier concentration of 5 × 10 18 and an Al composition of 15% 0.3 μm, n-type carrier concentration 1 × 10 17 Si-doped n-type GaN layer 0.3 μm, undoped GaN 15 nm layer and InGaN 2.5 nm layer repeated 10 times, multiple quantum well with emission wavelength 470 nm This is an LED structure in which an active layer (light emitting layer), an undoped GaN layer 15 nm, an MgGaN-doped Al composition 5% AlGaN layer 25 nm, and an Mg-doped GaN layer 0.2 μm are sequentially stacked.

成長後の半導体層機能層の表面上に形成する膜厚3μmのフォトレジスト膜から素子分離用のマスクパターンをフォトリソグラフィにより作製し、ICPドライエッチング法により分離溝がサファイア基板に到達するまでエッチングして分離溝を形成する。ICPドライエッチングに用いたエッチングガスは、Cl2、CH2Cl2、Arの混合ガスであり、ガス流量は各々20、10、40sccm、圧力2Pa、ICPパワー200W、バイアスパワー100Wである。ドライエッチング終了後、マスクパターンを有機溶剤で溶解させ除去する。 A mask pattern for element isolation is produced by photolithography from a 3 μm-thick photoresist film formed on the surface of the grown semiconductor layer functional layer, and etching is performed by ICP dry etching until the separation groove reaches the sapphire substrate. To form a separation groove. The etching gas used for ICP dry etching is a mixed gas of Cl 2 , CH 2 Cl 2 , and Ar, and the gas flow rates are 20, 10, 40 sccm, pressure 2 Pa, ICP power 200 W, and bias power 100 W, respectively. After the dry etching is finished, the mask pattern is dissolved and removed with an organic solvent.

次に素子分離された半導体機能層の表面にオーミックp電極を形成するために、エピ基板をN2中800℃で20分保持して熱処理を行い、Mgドープ層を低抵抗のp型にする。つぎに、半導体機能層表面を熱王水(60℃)を用いて表面処理し、オーミックp電極となるNiAu電極を形成するために、真空蒸着装置にてNiを150Å、続いてAuを300Å蒸着し、リフトオフ法により電極パターンを形成する。続いてO2を5体積%含むN2雰囲気中で500℃10分間の熱処理を行うことによりNiAuオーミックp電極を作製する。 Next, in order to form an ohmic p-electrode on the surface of the separated semiconductor functional layer, the epitaxial substrate is kept in N 2 at 800 ° C. for 20 minutes and heat-treated to make the Mg-doped layer p-type with low resistance. . Next, the surface of the semiconductor functional layer is surface-treated with hot aqua regia (60 ° C.) to form a NiAu electrode to be an ohmic p electrode. Then, an electrode pattern is formed by a lift-off method. Subsequently, a NiAu ohmic p-electrode is produced by performing a heat treatment at 500 ° C. for 10 minutes in an N 2 atmosphere containing 5% by volume of O 2 .

次に表面鏡面研磨した、Mo(300Kでの熱伝導率は138W/(m・K))からなり厚さ100μmで直径2インチの板を高熱伝導基板として準備し、この表面に接合層の密着性を向上させる層としてTi/Ptを真空蒸着法により、それぞれ500Å/500Å形成し、N2雰囲気中で350℃で30分保持して熱処理を行う。さらに、接合層であるAu−Sn合金層(Au80重量%−Sn20重量%)を厚さ5000Åとなるように真空蒸着法で形成する。高熱伝導性基板上に形成するものと同じ層構造の密着性向上層と接合層を、エピ基板のNiAuオーミックp電極の形成された領域の上に、リフトオフ法を用いたフォトリソグラフィと真空蒸着法により形成する。 Next, a surface mirror-polished Mo (having a thermal conductivity at 300 K of 138 W / (m · K)) and a thickness of 100 μm and a diameter of 2 inches was prepared as a high thermal conductive substrate. As a layer for improving the properties, Ti / Pt is formed in a thickness of 500/500 by vacuum deposition, respectively, and heat treatment is performed by holding at 350 ° C. for 30 minutes in an N 2 atmosphere. Further, an Au—Sn alloy layer (Au 80 wt% -Sn 20 wt%), which is a bonding layer, is formed by vacuum deposition so as to have a thickness of 5000 mm. The adhesion improving layer and the bonding layer having the same layer structure as those formed on the high thermal conductive substrate are formed on the region where the NiAu ohmic p-electrode is formed on the epitaxial substrate by photolithography and vacuum deposition using the lift-off method. To form.

さらに接合層の形成された半導体機能層と、同じく接合層の形成された高熱伝導基板とを、接合層同士で向かい合わせ、真空熱圧着法により貼り合わせて接合し、接合基板を作製する。接合における圧力、温度、時間、荷重の条件は各々、1×10-3Torr以下、300℃、5分間、6000Nとする。 Further, the semiconductor functional layer in which the bonding layer is formed and the high thermal conductive substrate in which the bonding layer is also formed are faced to each other and bonded together by a vacuum thermocompression bonding method to manufacture the bonding substrate. The conditions of pressure, temperature, time, and load in joining are 1 × 10 −3 Torr or less, 300 ° C., 5 minutes, and 6000 N, respectively.

次に超音波工業(株)製の超音波加工機(USM−60Z25S型、周波数25kHz、出力60W)を用いて、超音波を接合基板のサファイア成長基板側から入射させ、サファイア/半導体機能層界面に焦点位置が来るようにして照射を行う。超音波を照射しながら試料を移動させるようにスキャンして、試料全面に超音波を約20分間照射させる。その後、超音波照射の終わった半導体機能層/高熱伝導度基板貼り合せ基板を60℃の温湯の中に入れて、サファイア成長基板/半導体機能層界面に発生しているGaメタルをメルトさせることにより、サファイア成長基板を剥離させる。   Next, using an ultrasonic processing machine (USM-60Z25S type, frequency 25 kHz, output 60 W) manufactured by Ultrasonic Industry Co., Ltd., ultrasonic waves are incident from the sapphire growth substrate side of the bonding substrate, and the sapphire / semiconductor functional layer interface Irradiate so that the focal position comes to. The sample is scanned so as to move while being irradiated with ultrasonic waves, and the entire surface of the sample is irradiated with ultrasonic waves for about 20 minutes. Then, the semiconductor functional layer / high thermal conductivity substrate bonded substrate after ultrasonic irradiation is put in hot water at 60 ° C., and Ga metal generated at the sapphire growth substrate / semiconductor functional layer interface is melted. Then, the sapphire growth substrate is peeled off.

以上の工程により、Moからなる高熱伝導基板上に接合層を介して半導体機能層が貼り合わされた窒化物半導体素子を作製することができる。窒化物半導体素子にクラック等の欠陥は見られなく、短時間で剥離が良好に実施できる。こうして高熱伝導性基板と半導体機能層からなる窒化物半導体素子が得られる。   Through the above-described steps, a nitride semiconductor element in which a semiconductor functional layer is bonded to a high thermal conductive substrate made of Mo via a bonding layer can be manufactured. Defects such as cracks are not seen in the nitride semiconductor element, and peeling can be carried out satisfactorily in a short time. In this way, a nitride semiconductor device comprising a high thermal conductivity substrate and a semiconductor functional layer is obtained.

実施例2
サファイアからなる成長基板のオリフラと平行方向に幅3μm、高さ1μmのSiO2パターン膜をピッチ3μmで蒸着を行うことにより作製する。それ以外は実施例1と同等の処理を行うことによって、Mo高熱伝導基板に接合層を介して半導体機能層が接合された接合基板を作製する。SiO2パターン膜上にFACELO法で成長したGaN層においては、SiO2膜上にはGaN層は成長せず、空隙部が存在するので、サファイア成長基板と半導体機能層のGaN層との接合面積が著しく減少し、サファイア成長基板の剥離が超音波により容易に実施できる。実施例1より超音波の出力を低下させて剥離が行えるため、マイクロクラックの発生がなく製品の歩留まりは向上する。
Example 2
An SiO 2 pattern film having a width of 3 μm and a height of 1 μm is deposited in a direction parallel to the orientation flat of the growth substrate made of sapphire at a pitch of 3 μm. Otherwise, the same process as in Example 1 is performed to produce a bonded substrate in which the semiconductor functional layer is bonded to the Mo high thermal conductivity substrate via the bonding layer. In the GaN layer grown by the FACELO method on the SiO 2 pattern film, the GaN layer does not grow on the SiO 2 film, and there is a void, so the junction area between the sapphire growth substrate and the GaN layer of the semiconductor functional layer Is significantly reduced, and the sapphire growth substrate can be easily peeled off by ultrasonic waves. Since peeling can be performed by lowering the output of the ultrasonic wave as compared with Example 1, there is no generation of microcracks and the yield of products is improved.

比較例1
実施例1と同様にして、Moからなる高熱伝導基板上に接合層を介して半導体機能層(サファイア成長基板が付いたもの)が接合された接合基板を用意する。次にレーザー照射により成長基板であるサファイア板を剥離する。レーザーはCW発振YV04レーザーの3倍高調波(波長355nm)をチョッパーにより周波数15kHzのパルスにしたものであり、3倍高調波の出力は0.47W、レーザビーム径40μmである。レーザパルスの1ショットごとに、試料を30μm移動させるようにスキャンしながら、試料全面にレーザーを照射させて約30分後に照射を終了する。照射後の接合基板を60℃の温湯の中に入れて、成長基板/半導体機能層界面に発生しているGaメタルをメルトさせることにより、サファイア成長基板を剥離させる。出力の小さいレーザーを用いているため窒化物半導体素子にクラック等の欠陥は見られなく、剥離は良好に実施できているが、レーザーの照射時間は実施例1の超音波照射時間に比べ長くなる。
Comparative Example 1
In the same manner as in Example 1, a bonded substrate is prepared in which a semiconductor functional layer (with a sapphire growth substrate) is bonded to a high thermal conductive substrate made of Mo via a bonding layer. Next, the sapphire plate as a growth substrate is peeled off by laser irradiation. The laser is a third harmonic (wavelength 355 nm) of a CW oscillation YV04 laser that is pulsed with a frequency of 15 kHz by a chopper. The output of the third harmonic is 0.47 W and the laser beam diameter is 40 μm. While scanning the sample so that the sample is moved by 30 μm for each shot of the laser pulse, the entire surface of the sample is irradiated with the laser, and the irradiation is terminated after about 30 minutes. The sapphire growth substrate is peeled off by putting the irradiated bonded substrate in hot water at 60 ° C. and melting Ga metal generated at the growth substrate / semiconductor functional layer interface. Defects such as cracks are not seen in the nitride semiconductor element because a low-power laser is used, and the peeling can be performed well, but the laser irradiation time is longer than the ultrasonic irradiation time of Example 1. .

Claims (3)

成長基板上に半導体機能層を成長させた後に、半導体機能層上に高熱伝導基板を接合し、次に、成長基板と半導体機能層の界面に超音波を照射して成長基板と半導体機能層を分離することを特徴とする半導体機能層と高熱伝導基板とを有する窒化物半導体素子の製造方法。   After the semiconductor functional layer is grown on the growth substrate, a high thermal conductive substrate is bonded onto the semiconductor functional layer, and then the ultrasonic wave is irradiated to the interface between the growth substrate and the semiconductor functional layer to connect the growth substrate and the semiconductor functional layer. A method for manufacturing a nitride semiconductor device having a semiconductor functional layer and a high thermal conductive substrate, wherein the semiconductor functional layer is separated. 成長基板と半導体機能層の界面に空隙を設けるようにして成長基板上に半導体機能層を成長させる請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the semiconductor functional layer is grown on the growth substrate so as to provide a gap at the interface between the growth substrate and the semiconductor functional layer. 超音波の周波数が15kHz以上10GHz未満の範囲内である請求項1または2に記載の製造方法。
The manufacturing method according to claim 1 or 2, wherein an ultrasonic frequency is in a range of 15 kHz or more and less than 10 GHz.
JP2004297322A 2004-10-12 2004-10-12 Method of manufacturing nitride semiconductor element Pending JP2006114535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297322A JP2006114535A (en) 2004-10-12 2004-10-12 Method of manufacturing nitride semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297322A JP2006114535A (en) 2004-10-12 2004-10-12 Method of manufacturing nitride semiconductor element

Publications (1)

Publication Number Publication Date
JP2006114535A true JP2006114535A (en) 2006-04-27

Family

ID=36382832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297322A Pending JP2006114535A (en) 2004-10-12 2004-10-12 Method of manufacturing nitride semiconductor element

Country Status (1)

Country Link
JP (1) JP2006114535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008458A (en) * 2014-07-14 2016-01-22 가부시기가이샤 디스코 Lift-off method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008458A (en) * 2014-07-14 2016-01-22 가부시기가이샤 디스코 Lift-off method
JP2016021464A (en) * 2014-07-14 2016-02-04 株式会社ディスコ Lift-off method and ultrasonic horn
KR102187139B1 (en) 2014-07-14 2020-12-04 가부시기가이샤 디스코 Lift-off method

Similar Documents

Publication Publication Date Title
TWI345315B (en)
JP3525061B2 (en) Method for manufacturing semiconductor light emitting device
JP5556657B2 (en) Group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
JP4883991B2 (en) Laser lift-off method and laser lift-off device
JP5612336B2 (en) Manufacturing method of semiconductor light emitting device
JP4451846B2 (en) Method of manufacturing nitride semiconductor device
JP2004281863A (en) Nitride semiconductor element and manufacturing method thereof
KR100926319B1 (en) Light emitting diode device having advanced light extraction efficiency and preparation method thereof
WO2007069651A1 (en) Gallium nitride compound semiconductor light-emitting device and method for manufacturing same
JP2010093186A (en) Method of manufacturing gallium nitride-based compound semiconductor light-emitting element, layered structure of gallium nitride-based compound semiconductor element, gallium nitride-based compound semiconductor light-emitting element, and lamp
JP4937599B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2005268581A (en) Gallium nitride family compound semiconductor light emitting device
JP2007116110A (en) Method for manufacturing nitride semiconductor device
US7572652B2 (en) Light emitting element and production method thereof
JP3087829B2 (en) Method for manufacturing nitride semiconductor device
JP2009021638A (en) Nitride gallium based compound semiconductor luminous element
JP5128335B2 (en) GaN-based semiconductor substrate, manufacturing method thereof, and semiconductor device
JP2007221051A (en) Manufacturing method of nitride-based semiconductor element
JP2003046201A (en) Semiconductor laser element and method of manufacturing the same
WO2017101520A1 (en) Nitride bottom layer and manufacturing method therefor
JPWO2009147822A1 (en) Light emitting element
JP2005340762A (en) Group iii nitride semiconductor light-emitting element
EP1873880A1 (en) Process for producing gallium nitride-based compound semiconductor laser element and gallium nitride-based compound semiconductor laser element
JP3642199B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JP2002009003A (en) Semiconductor substrate, its manufacturing method, and light emitting device