JP2006114456A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2006114456A
JP2006114456A JP2004303380A JP2004303380A JP2006114456A JP 2006114456 A JP2006114456 A JP 2006114456A JP 2004303380 A JP2004303380 A JP 2004303380A JP 2004303380 A JP2004303380 A JP 2004303380A JP 2006114456 A JP2006114456 A JP 2006114456A
Authority
JP
Japan
Prior art keywords
fuel cell
pressure
voltage
stack
clogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303380A
Other languages
Japanese (ja)
Inventor
Takahiro Kakiuchi
孝宏 垣内
Shinsuke Higashikura
伸介 東倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004303380A priority Critical patent/JP2006114456A/en
Publication of JP2006114456A publication Critical patent/JP2006114456A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell capable of recovering voltage when cell voltage is dropped as a gas diffusion layer of a fuel cell stack is clogged due to dust or the like. <P>SOLUTION: Pressure adjusting mechanisms 6 optionally adjust surface pressure at the surface of laminated fuel cell stacks. A control device 9 judges whether the voltage drop is caused by the clogging of the gas diffusion layer or not when a volt meter 20 detects the voltage drop of the fuel dell. When it is judged that the voltage drop is caused by the clogging of the gas diffusion layer, a gas permeability restoring operation, operating the fuel cell with the surface pressure lowered by the pressure adjusting mechanisms 6, is carried out. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池スタック積層面の面圧が可変である燃料電池システムに関する。   The present invention relates to a fuel cell system in which the surface pressure of a fuel cell stack layer is variable.

燃料電池は、水素ガスなどの燃料ガスと酸素を有する酸化ガスとを電解質を介して電気化学的に反応させ、電解質両面に設けた電極間から電気エネルギを直接取り出すものである。特に固体高分子電解質を用いた固体高分子型燃料電池は、動作温度が低く、取り扱いが容易なことから電動車両用の電源として注目されている。すなわち、燃料電池車両は、水素貯蔵装置や燃料改質装置を車両に搭載し、そこから供給される水素と、酸素を含む空気とを燃料電池に送り込んで反応させ、燃料電池から取り出した電気エネルギで駆動輪につながるモータを駆動するものであり、大気汚染物質の排出がなく究極のクリーン車両である。   In a fuel cell, a fuel gas such as hydrogen gas and an oxidizing gas containing oxygen are electrochemically reacted through an electrolyte, and electric energy is directly taken out between electrodes provided on both surfaces of the electrolyte. In particular, a polymer electrolyte fuel cell using a polymer electrolyte has attracted attention as a power source for electric vehicles because of its low operating temperature and easy handling. That is, a fuel cell vehicle has a hydrogen storage device and a fuel reformer mounted on the vehicle, and hydrogen supplied from the vehicle and oxygen-containing air are sent to the fuel cell to react with each other, and the electric energy extracted from the fuel cell is obtained. It drives the motor connected to the drive wheels, and it is the ultimate clean vehicle without the emission of air pollutants.

固体高分子型燃料電池の発電要素は、電解質である固体高分子膜の両面に電極触媒層を形成した膜電極接合体(MEA)と、MEAの両面にそれぞれ設けられた導電性多孔質のガス拡散層からなる。   The power generation element of the polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) in which an electrode catalyst layer is formed on both sides of a solid polymer membrane as an electrolyte, and a conductive porous gas provided on each side of the MEA. It consists of a diffusion layer.

この発電要素に、アノードセパレータから燃料ガスとしての水素を供給し、カソードセパレータから酸素を含む空気を供給すると、アノード、カソードそれぞれのガス拡散層を経て電極触媒に達した反応ガスは、以下に示す電気化学反応を生じる。   When hydrogen as a fuel gas is supplied from the anode separator to this power generation element and oxygen-containing air is supplied from the cathode separator, the reaction gas that has reached the electrode catalyst through the gas diffusion layers of the anode and cathode is shown below. Causes an electrochemical reaction.

アノードでは、水素ガスが水素イオンと電子とに電離し、カソードでは、電解質膜を透過した水素イオンと、外部回路を通った電子と、酸素とが反応して水が生成される。これを化学式で示すと式(1)〜(3)となる。   At the anode, hydrogen gas is ionized into hydrogen ions and electrons, and at the cathode, hydrogen ions that have passed through the electrolyte membrane, electrons that have passed through the external circuit, and oxygen react to generate water. This is expressed by chemical formulas (1) to (3).

〔化1〕
〔アノード〕 H2 → 2H+ +2e- …(1)
〔カソード〕 2H+ +2e- + 1/2 O2 → H2O …(2)
〔全体〕 H2 +1/2 O2 → H2O …(3)
[Chemical formula 1]
[Anode] H 2 → 2H + + 2e (1)
[Cathode] 2H + + 2e +1/2 O 2 → H 2 O (2)
[Overall] H 2 +1/2 O 2 → H 2 O (3)

ガス拡散層での凝縮水排水が十分に行なわれなくなったり、塵埃詰まりによりMEAの反応面へのガス供給が妨げられたりした場合、ガス流量を一時的に増やして動圧により凝縮水排出を促すという方法が特許文献1に開示されている。しかし、この方法では、スタッキング圧力が高いままのため、ガス拡散層の細孔径が小さく、塵埃、凝縮水の排出は容易ではない。
特開平7−235324号公報(第5頁、図1)
When the condensate drainage in the gas diffusion layer is not sufficiently performed or the gas supply to the reaction surface of the MEA is hindered due to dust clogging, the gas flow rate is temporarily increased and the condensate discharge is promoted by the dynamic pressure. This method is disclosed in Patent Document 1. However, in this method, since the stacking pressure remains high, the pore diameter of the gas diffusion layer is small, and it is not easy to discharge dust and condensed water.
JP-A-7-235324 (5th page, FIG. 1)

地上で使用される燃料電池は、酸化剤ガスとして空気中の酸素を利用するのが一般的である。このため、エアフィルタにより空気中の塵埃を除去しているが、燃料電池車両が塵埃の多い経路を長時間走行することが多くなるにつれて、エアフィルターにより取り除くことのできない微小径の塵埃がガス拡散層に詰まって、反応面へのガス供給が妨げられたり、塵埃詰まりに起因する凝縮水排水が十分に行なわれなくなったりする問題点が発生する。   A fuel cell used on the ground generally uses oxygen in the air as an oxidant gas. For this reason, dust in the air is removed by the air filter. However, as the fuel cell vehicle frequently travels on a dusty route for a long time, dust of minute diameter that cannot be removed by the air filter is diffused. There is a problem that the layer is clogged and gas supply to the reaction surface is hindered and the condensed water drainage due to dust clogging is not sufficiently performed.

従来の技術では、燃料電池の電圧低下が起きたとき、ガス流量を一時的に増やしたり、ガス流路を反転させたりしてガス拡散層に詰まった塵埃を吹きとばしていたが、燃料電池スタックの積層面の面圧を運転中に変化させる構造を持たず、ガス拡散層の細孔径が小さいままなのでガス流量を増やしたり、流路を反転させても詰まった塵埃を排出することができないという問題点があった。   In the conventional technology, when the voltage drop of the fuel cell occurs, the gas flow rate is temporarily increased or the gas flow path is reversed to blow out the dust stuck in the gas diffusion layer. It does not have a structure that changes the surface pressure of the laminated surface during operation, and the pore diameter of the gas diffusion layer remains small, so it is impossible to discharge clogged dust even if the gas flow rate is increased or the flow path is reversed There was a problem.

上記問題点を解決するために、本発明は、燃料電池スタック積層面の面圧を任意に調整する圧力調整機構と、燃料電池の電圧を検出する電圧検出手段と、前記電圧検出手段が燃料電池電圧の低下を検出したときに、該電圧低下がガス拡散層の目詰まりによるものか否かを判定する目詰まり判定手段と、該目詰まり判定手段がガス拡散層の目詰まりと判定した場合に、前記圧力調整機構により前記面圧を低下させた状態で燃料電池を運転するガス透過性回復運転を行うように制御する制御装置と、を備えたことを要旨とする燃料電池システムである。   In order to solve the above problems, the present invention provides a pressure adjustment mechanism for arbitrarily adjusting the surface pressure of the fuel cell stack surface, voltage detection means for detecting the voltage of the fuel cell, and the voltage detection means is a fuel cell. Clogging determining means for determining whether or not the voltage drop is caused by clogging of the gas diffusion layer when the voltage drop is detected, and when the clogging determining means determines that the gas diffusion layer is clogged And a control device that performs control so as to perform a gas permeability recovery operation in which the fuel cell is operated in a state where the surface pressure is reduced by the pressure adjusting mechanism.

本発明によれば、ガス拡散層の目詰まりが生じたとき、燃料電池積層面の面圧を低下させて燃料電池を運転することで、運転中にガス拡散層の細孔径を大きくすることが可能となり、ガス拡散層の細孔に詰まった塵埃を容易に排出することができる。   According to the present invention, when the gas diffusion layer is clogged, the pore pressure of the gas diffusion layer can be increased during operation by reducing the surface pressure of the fuel cell stack surface and operating the fuel cell. It becomes possible, and the dust clogged in the pores of the gas diffusion layer can be easily discharged.

次に図面を参照して、本発明の実施の形態を詳細に説明する。
図1は、本発明に係る燃料電池システムの一実施例を説明するシステム概略構成図である。図1において、燃料電池システム1は、燃料電池スタック2と、燃料電池スタック2へそれぞれ燃料ガス、空気を供給する図示しない燃料ガス供給装置及び空気供給装置と、制御装置9と、燃料電池スタック2の発電電圧を検出して制御装置9に検出値を送る電圧計20とを備えている。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic system configuration diagram illustrating an embodiment of a fuel cell system according to the present invention. In FIG. 1, a fuel cell system 1 includes a fuel cell stack 2, a fuel gas supply device and an air supply device (not shown) that supply fuel gas and air to the fuel cell stack 2, a control device 9, and a fuel cell stack 2, respectively. And a voltmeter 20 that sends a detected value to the control device 9.

燃料電池スタック2は、フレーム3と、フレーム3の両端部に固着されたそれぞれのエンドプレート4、5と、エンドプレート4に設けられ燃料電池スタック積層面の面圧(以下、単にスタック圧力とも略す)を加圧板7を介して任意に調整する圧力調整機構6と、加圧板7と、セル積層部8とを備えている。   The fuel cell stack 2 includes a frame 3, end plates 4 and 5 fixed to both ends of the frame 3, and a surface pressure of the fuel cell stack stack surface provided on the end plate 4 (hereinafter also simply referred to as stack pressure). ) Is optionally adjusted via the pressure plate 7, the pressure plate 7, and the cell stack 8.

圧力調整機構6は、1つでもよいが、本実施例では、均等に加圧するため、方形のエンドプレート4の対角線上に5つ配置され、そのうち1つは、対角線の交点に配置されている。   In the present embodiment, five pressure adjusting mechanisms 6 are arranged on the diagonal line of the rectangular end plate 4, and one of them is arranged at the intersection of the diagonal lines. .

図2は、圧力調整機構6の詳細を説明する燃料電池スタックの要部断面図である。圧力調整機構6は、エンドプレート4に固着された正逆回転可能なモータ10と、モータ10の回転軸に形成された雄ネジ11と、雄ネジ11に螺合し且つ加圧板7に固定された雌ネジ12と、加圧板7がスタック積層面に印加する面圧を検出する圧力センサ13とを備えている。   FIG. 2 is a cross-sectional view of the main part of the fuel cell stack for explaining the details of the pressure adjusting mechanism 6. The pressure adjusting mechanism 6 includes a motor 10 fixed to the end plate 4 and capable of rotating in the forward and reverse directions, a male screw 11 formed on a rotating shaft of the motor 10, and a screw screwed to the male screw 11 and fixed to the pressure plate 7. The female screw 12 and a pressure sensor 13 for detecting the surface pressure applied to the stack lamination surface by the pressure plate 7 are provided.

モータ10の正逆回転により雄ネジ11が正逆回転し、雄ネジ11に螺合する雌ネジ12がモータ10に接近したり離隔したりする。これにより雌ネジ12が固定された加圧板7がセル積層部8へ印加する面圧を減少したり増加したりすることができるようになっている。   As the motor 10 rotates forward and backward, the male screw 11 rotates forward and backward, and the female screw 12 engaged with the male screw 11 approaches or moves away from the motor 10. Thereby, the pressure plate 7 to which the female screw 12 is fixed can reduce or increase the surface pressure applied to the cell stack portion 8.

モータ10及び圧力センサ13は、制御装置9に接続されている。電圧計20及び圧力センサ13の検出値に基づいて制御装置9は、モータ10を正回転または逆回転駆動することにより、セル積層部8の面圧を減少または増加するように制御できる。   The motor 10 and the pressure sensor 13 are connected to the control device 9. Based on the detection values of the voltmeter 20 and the pressure sensor 13, the control device 9 can control the surface pressure of the cell stack portion 8 to decrease or increase by driving the motor 10 to rotate forward or backward.

図3は、制御装置による燃料電池の運転制御を説明する制御フローチャートである。制御装置による運転制御の概略は、所定の運転条件で燃料電池を運転中に、セル電圧か許容値より低下した場合、反応ガス流量を増加させてセル電圧が回復するか否かを判定し、回復しない場合にはガス拡散層の目詰まりと判定して、燃料電池スタック積層面の面圧を低下させてガス拡散層の塵埃を排出するガス透過性回復運転を行うことである。   FIG. 3 is a control flowchart for explaining operation control of the fuel cell by the control device. The outline of the operation control by the control device is to determine whether or not the cell voltage is recovered by increasing the flow rate of the reaction gas when the cell voltage falls below the allowable value during operation of the fuel cell under the predetermined operation condition, If the gas diffusion layer does not recover, it is determined that the gas diffusion layer is clogged, and the gas permeability recovery operation is performed in which the surface pressure of the fuel cell stack stack surface is reduced to discharge dust from the gas diffusion layer.

図3において、制御装置9は、まずステップ(以下、ステップをSと略す)10において、水素及び空気の供給量を所定の運転条件で燃料電池を運転する。次いで、制御装置9は、S12で電圧計20が検出したセル電圧を読み込み、S14でセル電圧が許容値未満であるか否かを判定する。S14の判定でセル電圧が許容値以上であれば、S10へ戻って、通常の運転を継続する。   In FIG. 3, the control device 9 first operates the fuel cell in step (hereinafter, step is abbreviated as “S”) 10 under the predetermined operating conditions with the supply amounts of hydrogen and air. Next, the control device 9 reads the cell voltage detected by the voltmeter 20 in S12, and determines whether or not the cell voltage is less than an allowable value in S14. If the cell voltage is greater than or equal to the allowable value in the determination in S14, the process returns to S10 and normal operation is continued.

S14の判定でセル電圧が許容値未満であれば、S16へ進み、制御装置9はセル電圧低下の原因を調査するために、水素及び空気の流量を増加させる。このとき供給する水素及び空気は、加湿装置をバイパスした乾燥水素及び乾燥空気である。もしセル電圧低下の原因が過剰な水分によるフラッディングであれば、この乾燥した反応ガスの供給で電圧低下が解消するので、セル電圧低下の原因がフラッディングか塵埃の詰まりかを判別することができる。   If the cell voltage is less than the allowable value in the determination of S14, the process proceeds to S16, and the control device 9 increases the flow rates of hydrogen and air in order to investigate the cause of the cell voltage drop. The hydrogen and air supplied at this time are dry hydrogen and dry air that bypass the humidifier. If the cause of the cell voltage drop is flooding due to excessive moisture, the supply of the dry reaction gas eliminates the voltage drop, so that it can be determined whether the cell voltage drop is caused by flooding or dust clogging.

次いで、S18でセル電圧が回復したか否かを判定する。セル電圧の回復判定は、例えば、水素及び空気の流量増加以前に比べて、所定の電圧以上セル電圧が増加したか否か、或いは一定比率以上のセル電圧増加があったか否かにより判定する。S18の判定で、セル電圧が回復していればS10へ戻って、通常の運転を継続する。   Next, in S18, it is determined whether or not the cell voltage has been recovered. The cell voltage recovery determination is made by, for example, whether or not the cell voltage has increased by a predetermined voltage or more, or whether or not the cell voltage has increased by a certain ratio, compared to before the increase of hydrogen and air flow rates. If it is determined in S18 that the cell voltage has recovered, the process returns to S10, and normal operation is continued.

S18の判定でセル電圧が回復していなければ、塵埃によるガス拡散層の目詰まりによるセル電圧低下であると判断して、S20以下のガス透過性回復運転を行う。図4は、燃料電池の初期状態における電流密度−セル電圧特性と、ガス拡散層が塵埃等による目詰まりを生じた場合の電流密度−セル電圧特性を示す図である。図4に示すように、規定電流密度におけるセル電圧がセル電圧下限値を下回った場合に、ガス透過性回復運転を行う。   If the cell voltage is not recovered in the determination in S18, it is determined that the cell voltage is reduced due to the clogging of the gas diffusion layer due to dust, and the gas permeability recovery operation in S20 and below is performed. FIG. 4 is a diagram showing current density-cell voltage characteristics in the initial state of the fuel cell and current density-cell voltage characteristics when the gas diffusion layer is clogged with dust or the like. As shown in FIG. 4, when the cell voltage at the specified current density falls below the cell voltage lower limit value, the gas permeability recovery operation is performed.

S20では、圧力調整機構6により燃料電池スタック積層面の面圧を低下させる。このとき、一度に面圧を低下させるとスタック接触抵抗が増加し上限値を超えてしまう虞があるので、圧力センサ13による検出値を参照して一定の圧力ずつ面圧を低下させる。燃料電池スタック積層面の面圧を低下させると、図5(a)に示すように、カーボンペーパ、カーボン不織布等で構成されたガス拡散層の空孔径が増加する。   In S20, the pressure adjustment mechanism 6 reduces the surface pressure of the fuel cell stack stack surface. At this time, if the surface pressure is reduced at once, the stack contact resistance may increase and exceed the upper limit value. Therefore, the surface pressure is decreased by a certain pressure with reference to the detection value by the pressure sensor 13. When the surface pressure of the fuel cell stack lamination surface is reduced, as shown in FIG. 5 (a), the pore diameter of the gas diffusion layer composed of carbon paper, carbon nonwoven fabric or the like increases.

次いで、制御装置9は、S22で燃料電池スタック2の接触抵抗を検出する。この接触抵抗の検出には、燃料電池スタックの特定のセル或いはセル群に交流電圧を印加して、セルまたはセル群のインピーダンスを測定することにより接触抵抗を検出する方法がある。また簡易な方法としては、出力電流Iを一定に保持し、出力電圧の低下分ΔEを接触抵抗の増加分ΔRによるものとして次の式(4)から求める方法がある。   Next, the control device 9 detects the contact resistance of the fuel cell stack 2 in S22. For detecting the contact resistance, there is a method of detecting the contact resistance by applying an AC voltage to a specific cell or a group of cells of the fuel cell stack and measuring the impedance of the cell or the group of cells. As a simple method, there is a method in which the output current I is kept constant, and the decrease ΔE of the output voltage is determined from the following equation (4) as the contact resistance increase ΔR.

〔数1〕
ΔE=ΔR×I …(4)
[Equation 1]
ΔE = ΔR × I (4)

次いで、制御装置9は、S24で接触抵抗が上限値以下か否かを判定する。この接触抵抗の上限値は、図5(b)に示すように、通常運転時のスタック積層面の面圧から面圧を下げていった場合に、急激な接触抵抗の増加が始まる手前の接触抵抗値に設定する。これにより拙速抵抗の増加に起因する過剰なセル電圧の低下を防止することができる。   Next, the control device 9 determines whether or not the contact resistance is equal to or lower than the upper limit value in S24. As shown in FIG. 5 (b), the upper limit value of the contact resistance is the contact immediately before the sudden increase in contact resistance starts when the surface pressure is lowered from the surface pressure of the stack laminated surface during normal operation. Set to resistance value. As a result, it is possible to prevent an excessive decrease in the cell voltage due to an increase in the slow speed resistance.

S24で接触抵抗値が上限値以下であれば、さらに積層面圧を低下させるために、S20へ戻る。S24の判定で、接触抵抗値が上限値を超えていれば十分面圧を低下させたとして、S26へ進み、水素及び空気の供給量を増加して、燃料電池を運転する。これにより、供給ガスの動圧が増加するので、ガス拡散層から塵埃の排出を促進させることができる。次いで、制御装置9は、S28で、スタック積層面の面圧低下運転の継続時間が所定の許容時間以下か否かを判定し、許容時間を超えていれば、S34へ進む。   If the contact resistance value is equal to or lower than the upper limit value in S24, the process returns to S20 in order to further reduce the lamination surface pressure. If it is determined in S24 that the contact resistance value exceeds the upper limit value, it is determined that the surface pressure has been sufficiently reduced, and the process proceeds to S26, where the supply amount of hydrogen and air is increased, and the fuel cell is operated. Thereby, since the dynamic pressure of supply gas increases, discharge of dust from a gas diffusion layer can be promoted. Next, in S28, the control device 9 determines whether or not the duration time of the surface pressure reducing operation on the stack laminated surface is equal to or shorter than a predetermined allowable time, and if it exceeds the allowable time, the process proceeds to S34.

S28の判定で、継続時間が許容時間以下であれば、S30へ進む。制御装置9は、S30で燃料電池のセル電圧を検出し、S32でセル電圧が許容値以上となったか否かを判定する。セル電圧が許容値未満であれば、スタック積層面の面圧を低下したガス透過性回復運転を継続するために、S26へ戻る。   If it is determined in S28 that the duration time is equal to or shorter than the allowable time, the process proceeds to S30. The control device 9 detects the cell voltage of the fuel cell in S30, and determines in S32 whether or not the cell voltage has exceeded the allowable value. If the cell voltage is less than the allowable value, the process returns to S26 in order to continue the gas permeability recovery operation in which the surface pressure of the stack laminated surface is reduced.

S32の判定でセル電圧が許容値以上となっていれば、S34へ進み、空気及び水素の供給量を所定の標準状態に復帰させる。これにより、燃費性能の悪い状態での運転を短時間に抑制することができる。次いで、制御装置9は、S36で圧力調整機構6による燃料電池スタック2の積層面面圧を通常運転時の標準状態に復帰させ、以下、通常運転状態に戻る。   If the cell voltage is equal to or higher than the allowable value in the determination in S32, the process proceeds to S34, and the supply amount of air and hydrogen is returned to a predetermined standard state. Thereby, the driving | running | working in a state with bad fuel consumption performance can be suppressed in a short time. Next, in S36, the control device 9 returns the stack surface pressure of the fuel cell stack 2 by the pressure adjusting mechanism 6 to the normal state during normal operation, and returns to the normal operation state hereinafter.

本発明に係る燃料電池システムの一実施例の構成を説明するシステム構成図である。1 is a system configuration diagram illustrating the configuration of an embodiment of a fuel cell system according to the present invention. 圧力調整機構の詳細を説明する燃料電池スタックの要部断面図である。It is principal part sectional drawing of the fuel cell stack explaining the detail of a pressure adjustment mechanism. 制御装置によるガス透過性回復運転の制御フローチャートである。It is a control flowchart of the gas-permeability recovery operation by a control device. 電流密度−セル電圧特性曲線の例を示す図である。It is a figure which shows the example of a current density-cell voltage characteristic curve. (a)スタック積層面圧力−ガス拡散層空孔平均径特性曲線、(b)スタック積層面圧力−接触抵抗特性曲線の例を示す図である。It is a figure which shows the example of (a) stack lamination surface pressure-gas diffusion layer hole average diameter characteristic curve, (b) stack lamination surface pressure-contact resistance characteristic curve.

符号の説明Explanation of symbols

1…燃料電池システム
2…燃料電池スタック
3…フレーム
4、5…エンドプレート
6…圧力調整機構
7…加圧板
8…セル積層部
9…制御装置
20…電圧計
DESCRIPTION OF SYMBOLS 1 ... Fuel cell system 2 ... Fuel cell stack 3 ... Frame 4, 5 ... End plate 6 ... Pressure adjustment mechanism 7 ... Pressure plate 8 ... Cell lamination | stacking part 9 ... Control apparatus 20 ... Voltmeter

Claims (6)

燃料電池スタック積層面の面圧を任意に調整する圧力調整機構と、
該圧力調整機構の圧力を受けて燃料電池スタック積層面を加圧する加圧板と、
燃料電池の電圧を検出する電圧検出手段と、
前記電圧検出手段が燃料電池電圧の低下を検出したときに、該電圧低下がガス拡散層の目詰まりによるものか否かを判定する目詰まり判定手段と、
該目詰まり判定手段がガス拡散層の目詰まりと判定した場合に、前記圧力調整機構により前記面圧を低下させた状態で燃料電池を運転するガス透過性回復運転を行うように制御する制御装置と、
を備えたことを特徴とする燃料電池システム。
A pressure adjustment mechanism for arbitrarily adjusting the surface pressure of the fuel cell stack surface;
A pressure plate that pressurizes the stack surface of the fuel cell stack under the pressure of the pressure adjustment mechanism;
Voltage detection means for detecting the voltage of the fuel cell;
Clogging determining means for determining whether the voltage drop is due to clogging of the gas diffusion layer when the voltage detecting means detects a decrease in the fuel cell voltage;
When the clogging determination means determines that the gas diffusion layer is clogged, the control device controls to perform a gas permeability recovery operation in which the fuel cell is operated in a state where the surface pressure is reduced by the pressure adjusting mechanism. When,
A fuel cell system comprising:
前記圧力調整機構は、
前記加圧板に組みつけられた圧力調整雌ネジと、
燃料電池スタックフレームに固定された正逆転可能なモータと、
該モータの回転軸に形成され前記圧力調整雌ネジに螺合する雄ネジと、
を備えたことを特徴とする請求項1に記載の燃料電池システム。
The pressure adjustment mechanism is
A pressure adjusting female screw assembled to the pressure plate;
A forward and reverse motor fixed to the fuel cell stack frame;
A male screw formed on the rotating shaft of the motor and screwed into the pressure adjusting female screw;
The fuel cell system according to claim 1, further comprising:
前記目詰まり判定手段は、
燃料電池電圧低下時に、加湿しない反応ガスを燃料電池に供給して燃料電池電圧の変化を測定し、燃料電池電圧が回復しない場合に前記目詰まりであると判定することを特徴とする請求項1に記載の燃料電池システム。
The clogging determining means includes
2. When the fuel cell voltage is lowered, a non-humidified reactive gas is supplied to the fuel cell, the change in the fuel cell voltage is measured, and if the fuel cell voltage does not recover, the clogging is determined. The fuel cell system described in 1.
前記燃料電池スタック積層面の面圧低下時、燃料電池スタックの接触抵抗値が所定値を超えたら面圧低下を停止することを特徴とする請求項1に記載の燃料電池システム。   2. The fuel cell system according to claim 1, wherein when the contact pressure value of the fuel cell stack stack surface decreases, the contact pressure value of the fuel cell stack exceeds a predetermined value, and the surface pressure decrease is stopped. 前記ガス透過性回復運転中は、反応ガス流量を通常運転時より増加することを特徴とする請求項1に記載の燃料電池システム。   2. The fuel cell system according to claim 1, wherein during the gas permeability recovery operation, the reaction gas flow rate is increased from that during normal operation. 前記ガス透過性回復運転を行っても燃料電池電圧が回復しないときは、前記面圧を通常運転時の面圧に戻し、燃料電池出力を制限することを特徴とする請求項1に記載の燃料電池システム。   2. The fuel according to claim 1, wherein when the fuel cell voltage does not recover even after performing the gas permeability recovery operation, the surface pressure is returned to the surface pressure during normal operation to limit the fuel cell output. Battery system.
JP2004303380A 2004-10-18 2004-10-18 Fuel cell system Pending JP2006114456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303380A JP2006114456A (en) 2004-10-18 2004-10-18 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303380A JP2006114456A (en) 2004-10-18 2004-10-18 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2006114456A true JP2006114456A (en) 2006-04-27

Family

ID=36382784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303380A Pending JP2006114456A (en) 2004-10-18 2004-10-18 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2006114456A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148766A1 (en) * 2006-06-20 2007-12-27 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2009087568A (en) * 2007-09-27 2009-04-23 Sanyo Electric Co Ltd Fuel cell system
KR101102177B1 (en) 2009-08-13 2012-01-02 두산중공업 주식회사 Surface pressure control apparatus for fuel cell
KR101113642B1 (en) * 2009-06-25 2012-02-14 기아자동차주식회사 Device and method for inspecting defective MEA of fuel cell
KR101134426B1 (en) 2009-11-27 2012-04-09 기아자동차주식회사 Device and method for adjusting jointing pressure fuel cell stack
KR101209678B1 (en) 2009-11-25 2012-12-10 기아자동차주식회사 Device for jointing fuel cell stack
KR20140077353A (en) * 2012-12-14 2014-06-24 현대자동차주식회사 Fastning apparatus for fuel cell stack
KR101822286B1 (en) 2016-06-30 2018-01-26 현대자동차주식회사 Apparatus for adjusting jointing pressure of fuel cell stack

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148766A1 (en) * 2006-06-20 2007-12-27 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2009087568A (en) * 2007-09-27 2009-04-23 Sanyo Electric Co Ltd Fuel cell system
KR101113642B1 (en) * 2009-06-25 2012-02-14 기아자동차주식회사 Device and method for inspecting defective MEA of fuel cell
KR101102177B1 (en) 2009-08-13 2012-01-02 두산중공업 주식회사 Surface pressure control apparatus for fuel cell
KR101209678B1 (en) 2009-11-25 2012-12-10 기아자동차주식회사 Device for jointing fuel cell stack
KR101134426B1 (en) 2009-11-27 2012-04-09 기아자동차주식회사 Device and method for adjusting jointing pressure fuel cell stack
KR20140077353A (en) * 2012-12-14 2014-06-24 현대자동차주식회사 Fastning apparatus for fuel cell stack
KR101887704B1 (en) * 2012-12-14 2018-08-10 현대자동차주식회사 Fastning apparatus for fuel cell stack
KR101822286B1 (en) 2016-06-30 2018-01-26 현대자동차주식회사 Apparatus for adjusting jointing pressure of fuel cell stack

Similar Documents

Publication Publication Date Title
US8241800B2 (en) Fuel cell system and fuel cell control method
JP5347253B2 (en) Fuel cell starting method, fuel cell starting device and vehicle equipped with the starting device
WO2005053075A1 (en) Fuel cell system and method of starting it
US7655330B2 (en) Method of operating fuel cell and power supply system
JP4852854B2 (en) Fuel cell system
JP2004199988A (en) Fuel cell system
JP6133365B2 (en) Operation method of fuel cell system
US20070154743A1 (en) Micro-energy re-activating method to recover PEM fuel cell performance
WO2020138338A1 (en) Fuel cell activation method and apparatus
JP2010182589A (en) Fuel cell system
JP2006114456A (en) Fuel cell system
JP2008218051A (en) Control method of fuel cell
JP2010027297A (en) Fuel battery system, operation method of fuel battery, and fuel battery vehicle
JP2010040285A (en) Fuel cell system, fuel cell operating method, and fuel-cell automobile
JP4637448B2 (en) Fuel cell power generation system and method of operating fuel cell power generation system
JP2007280892A (en) Fuel cell system
JP5403874B2 (en) Polymer electrolyte fuel cell and method for recovering its characteristics
JP2005322577A (en) Fuel cell system
JP7207360B2 (en) Fuel cell system and method for determining reusability of fuel cell stack
JP2010073497A (en) Fuel cell system and operation method of fuel cell
JP2021174671A (en) Fuel cell system
JP2021166151A (en) Fuel cell system
JP5158407B2 (en) Fuel cell system and control method thereof
JP2010003586A (en) Fuel cell system, operation method of fuel cell, and fuel cell automobile
JP2008004431A (en) Fuel cell system