JP2006114448A - Cable-in-conduit type superconductor - Google Patents

Cable-in-conduit type superconductor Download PDF

Info

Publication number
JP2006114448A
JP2006114448A JP2004303228A JP2004303228A JP2006114448A JP 2006114448 A JP2006114448 A JP 2006114448A JP 2004303228 A JP2004303228 A JP 2004303228A JP 2004303228 A JP2004303228 A JP 2004303228A JP 2006114448 A JP2006114448 A JP 2006114448A
Authority
JP
Japan
Prior art keywords
wire
stranded wire
aluminum
superconducting
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303228A
Other languages
Japanese (ja)
Inventor
Fumikazu Hosono
史一 細野
Katsumi Miyashita
克己 宮下
Katsuhiko Asano
克彦 浅野
Mitsuhiro Ariyoshi
光宏 有可
Shunji Taniguchi
俊二 谷口
Hidemi Hayashi
秀美 林
Kanichi Terazono
完一 寺薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Kyushu Electric Power Co Inc
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Hitachi Cable Ltd, Hitachi Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2004303228A priority Critical patent/JP2006114448A/en
Publication of JP2006114448A publication Critical patent/JP2006114448A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CIC type superconductor with high stability hardly generating drift current on an elemental wire in the conductor even if a conduit having a cable space part with a rectangular cross section. <P>SOLUTION: A primary stranded wire 11 is formed by twisting six pieces of aluminum-coated superconducting wire rods 9 around an SUS wire 10, and a secondary stranded wire 21 is formed by twisting six pieces of primary stranded wires 11 around an aluminum stranded wire 15 or a spiral tube, and winding an SUS tape 17 thereon. The secondary stranded wire 21 is inserted into the SUS conduit 23 so that a compression ratio of the secondary stranded wire gets into a range of 0%≤C≤5%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ケーブル・イン・コンジット(以下、CICと記す)型超電導導体に関し、特に、電気的安定性を向上させ、超電導マグネットに適したCIC型超電導導体に関するものである。   The present invention relates to a cable-in-conduit (hereinafter referred to as CIC) type superconducting conductor, and more particularly to a CIC type superconducting conductor that improves electrical stability and is suitable for a superconducting magnet.

従来のCIC型超電導導体は、一般的に、図8に示すような工程で製造される。
まず、銅製の管の中にNb−Ti合金バーを挿入して複合ビレットとし、静水圧押出しでCu/Nb−Tiシングル線を製造する。次いで伸線加工によって縮径後、さらに、Cu/Nb−Tiシングル線を複数本束ねて再度銅製もしくは銅合金の管の中に充填してマルチビレットを形成する。さらに前述の工程と同様にして、超電導線マルチビレットを静水圧押出し後に伸線加工を行なう。以上の超電導線材製造工程により、超電導線材が製造される。
A conventional CIC type superconducting conductor is generally manufactured by a process as shown in FIG.
First, an Nb—Ti alloy bar is inserted into a copper tube to form a composite billet, and a Cu / Nb—Ti single wire is manufactured by hydrostatic extrusion. Subsequently, after diameter reduction by wire drawing, a plurality of Cu / Nb-Ti single wires are bundled and filled again into a copper or copper alloy tube to form a multi billet. Further, in the same manner as described above, the superconducting wire multi-billette is subjected to drawing after isostatic pressing. A superconducting wire is manufactured by the above-described superconducting wire manufacturing process.

次に、撚線工程においては、複数ステージで超電導線材の撚線を行い、最終撚線工程においては撚線外周にステンレステープを巻く。   Next, in the stranded wire process, the superconducting wire is stranded in a plurality of stages, and in the final stranded wire process, a stainless tape is wound around the outer periphery of the stranded wire.

最終工程でジャケット加工が行われる。このジャケット加工においては、コンジットの形状に応じて2通りの方法がある。
まず、図9(a)のように、コンジット外形の断面形状が矩形でかつケーブルスペース部53の断面形状も矩形の場合は、コンジット51となるステンレス板材をロールフォーミングにより成形し、撚線を挿入後、付き合せ部をTIG溶接にて長手方向に連続溶接し、フォーミングロールとタークスヘッドにより、撚線を強制的に圧縮して矩形状に成形する(非特許文献1参照)。
一方、図9(b)のように、コンジット外形の断面形状が矩形でかつケーブルスペース部57の断面形状が円形の場合は、コンジット55内の円形中空部に撚線を嵌挿し、コンジット材の突合せ溶接を行って長尺導体を製造する(非特許文献2参照)。
Jacket processing is performed in the final process. In the jacket processing, there are two methods depending on the shape of the conduit.
First, as shown in FIG. 9A, when the cross-sectional shape of the conduit outer shape is rectangular and the cross-sectional shape of the cable space portion 53 is also rectangular, the stainless steel plate material to be the conduit 51 is formed by roll forming, and a stranded wire is inserted. Thereafter, the attached portion is continuously welded in the longitudinal direction by TIG welding, and the stranded wire is forcibly compressed by a forming roll and a turks head to form a rectangular shape (see Non-Patent Document 1).
On the other hand, as shown in FIG. 9B, when the cross-sectional shape of the conduit outer shape is rectangular and the cross-sectional shape of the cable space portion 57 is circular, a stranded wire is inserted into the circular hollow portion in the conduit 55, and the conduit material A long conductor is manufactured by butt welding (see Non-Patent Document 2).

しかしながら、非特許文献1のような構造のCIC型超電導導体では、均一に撚線したものを矩形状に成形しているため、撚線内で乱れが生じてしまう。このような場合、導体内の個々の素線に流れる電流が異なって偏流が生じ、安定性が著しく低下してしまう(非特許文献3参照)。
また、交流損失の結合損失時定数が非常に長くなってしまう(長時定数となる)という不都合がある(非特許文献4)。
However, in the CIC type superconducting conductor having a structure as described in Non-Patent Document 1, since a uniformly twisted wire is formed into a rectangular shape, disturbance is generated in the twisted wire. In such a case, the current flowing through the individual wires in the conductor is different, causing a drift, and the stability is significantly reduced (see Non-Patent Document 3).
In addition, there is a disadvantage that the coupling loss time constant of AC loss becomes very long (becomes a long time constant) (Non-patent Document 4).

一方、非特許文献2のような構造のCIC型超電導導体では、定尺のコンジットを準備した後に、撚線を嵌挿しながらコンジットと接続しているため、撚線形状は維持される。
しかし、(1)矩形の断面形状のコンジットの内側に円形の断面形状のケーブルスペース部を加工して形成する必要があるので、コンジット材の単価が高くなる、(2)定尺コンジットを接続するためにライン長が数百mにも及ぶが、このため工業的に設備コストが高くなる等、のコスト面での問題が生じてしまう。
資源エネルギー庁受託事業「超電導電力貯蔵システム要素技術開発調査」 SMESプロジェクト成果発表会、平成11年3月17日、財団法人国際超電導産業技術研究センター、p26−27 IEEE TRANSACTIONS ON MAGNETICS. VOL.32.No.4.JULY 1996 p2300−2303 小泉ら、「30kA−NbTi実証ポロイダル・コイル(DPC−U)の不安定現象と安定性実験結果」、低温工学、平成5年、第28巻、第3号、p150−159 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. VOL.12.No.1.MARCH 2002 p1616−1619
On the other hand, in the CIC type superconducting conductor having a structure as described in Non-Patent Document 2, after preparing a fixed-size conduit, it is connected to the conduit while inserting the twisted wire, so that the twisted wire shape is maintained.
However, since (1) it is necessary to process and form a cable space part with a circular cross-sectional shape inside a conduit with a rectangular cross-sectional shape, the unit price of the conduit material becomes high. (2) Connecting a regular conduit For this reason, although the line length reaches several hundreds of meters, this causes a problem in terms of cost such as an increase in industrial equipment cost.
Agency for Natural Resources and Energy, “Superconducting Power Storage System Element Technology Development Survey” SMES Project Results Presentation, March 17, 1999, International Superconductivity Technology Research Center, p26-27 IEEE TRANSACTIONS ON MAGNETICS. VOL. 32. No. 4). JULY 1996 p2300-2303 Koizumi et al., “Instability Phenomenon and Stability Experiment Results of 30 kA-NbTi Demonstration Poloidal Coil (DPC-U)”, Low Temperature Engineering, 1993, Vol. 28, No. 3, p150-159 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. VOL. 12 No. 1. MARCH 2002 p1616-1619

このように、非特許文献1のような構造のCIC型超電導導体では、断面矩形状のケーブルスペース内で断面円形状の撚線が矩形状に圧縮されているので、撚線の形状が崩れたり、撚線の乱れを生じたりして、素線に偏流を生じ、特性が不安定なものとなってしまうという課題があった。
一方、非特許文献2のような構造のCIC型超電導導体では、コンジットの加工費や設備コストがかさみ、工業的なコスト面での問題が生じてしまうという課題があった。
Thus, in the CIC type superconducting conductor having the structure as described in Non-Patent Document 1, the twisted wire having a circular cross section is compressed into a rectangular shape in a cable space having a rectangular cross section. There has been a problem that the twisted wire is disturbed, the strand is drifted, and the characteristics become unstable.
On the other hand, in the CIC type superconducting conductor having the structure as described in Non-Patent Document 2, there is a problem that the processing cost and equipment cost of the conduit are increased, and there are problems in terms of industrial costs.

さらには、従来の銅を安定化材として用いた超電導電線では、擾乱による常電導転移時の発熱により、特性が不安定になるという課題もあった。   Furthermore, the conventional superconducting wire using copper as a stabilizing material has a problem that its characteristics become unstable due to heat generation during normal conduction transition due to disturbance.

従って、本発明の目的は、上記課題を解決し、工業的に安価な断面矩形状のケーブルスペース部を有するコンジットを用いても導体内の素線に偏流が生じにくく、高い安定性を有するCIC型超電導導体を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, and even if a conduit having a cable space portion having a rectangular cross-sectional shape that is industrially inexpensive is used, it is difficult for the strands in the conductor to drift, and the CIC has high stability. It is to provide a type superconducting conductor.

また、本発明の他の目的は、擾乱による常電導転移時の発熱により、特性が不安定になることを防止することにある。   Another object of the present invention is to prevent the characteristics from becoming unstable due to heat generated during normal conduction transition due to disturbance.

上記課題を解決するため、本発明のケーブル・イン・コンジット型超電導導体は、複数の超電導線からなる撚線を、断面矩形状の金属管内に前記撚線の圧縮率Cが0%<C≦5%の範囲となるように内挿したことを特徴とする。   In order to solve the above-described problems, the cable-in-conduit superconducting conductor of the present invention has a twisted wire composed of a plurality of superconducting wires, and the compression rate C of the twisted wire is 0% <C ≦ It is characterized by being interpolated so as to be in the range of 5%.

また、上記課題を解決するため、本発明のケーブル・イン・コンジット型超電導導体は、アルミニウム被覆層が表面に形成された超電導線をSUS線の周りに6本撚合わせて1次撚線とし、該1次撚線をアルミニウム撚線又はスパイラル管の周りに6本撚合わせ、SUSテープを巻付けて2次撚線とし、該2次撚線を、断面矩形状の金属管内に前記撚線の圧縮率Cが0%<C≦5%の範囲となるように内挿したことを特徴とする。   In order to solve the above problems, the cable-in-conduit type superconducting conductor of the present invention is a primary stranded wire obtained by twisting six superconducting wires with an aluminum coating layer formed around the SUS wire. Six strands of the primary stranded wire are twisted around an aluminum stranded wire or a spiral tube, and a SUS tape is wound to form a secondary stranded wire. The secondary stranded wire is placed in a metal tube having a rectangular cross section. It is characterized in that the compression rate C is interpolated so as to be in a range of 0% <C ≦ 5%.

前記超電導線は、銅又は銅合金マトリックス中にNb−Ti系材料からなる超電導フィラメントを埋設したものとすることができる。   The superconducting wire may be a copper or copper alloy matrix in which a superconducting filament made of an Nb—Ti-based material is embedded.

本発明によれば、工業的に安価な断面矩形状のケーブルスペース部を有するコンジットを用いても、個々の素線間で偏流が生じにくくなり、安定性に優れたものとなる。   According to the present invention, even if a conduit having a cable space portion having a rectangular cross section that is industrially inexpensive is used, it is difficult for drift to occur between individual strands, and the stability is excellent.

また、極低温においては銅と比較して電気抵抗の小さいアルミニウムを安定化材として用いることにより、擾乱により常電導に転移しても発熱量が小さく超電導に回復し易くなり、銅を安定化材とした超電導導体と比較して、高い安定性が得られる。   In addition, by using aluminum, which has a lower electrical resistance than copper, as a stabilizing material at extremely low temperatures, it can easily recover to superconductivity even if it is transferred to normal conduction due to disturbance. Compared to the superconducting conductor, high stability can be obtained.

これより、電気的安定性に優れ、超電導マグネットに適したCIC型超電導導体を提供できる。   As a result, a CIC type superconducting conductor excellent in electrical stability and suitable for a superconducting magnet can be provided.

以下、本発明の実施形態について添付図面を参照しつつ説明する。
(アルミ安定化CIC型超電導導体の構造)
図1に、本実施形態に係るアルミ安定化CIC型超電導導体の構造を示す。
このアルミ安定化CIC型超電導導体は、7本のアルミニウム線13を撚合わせたアルミニウム撚線15を中心とし、その周りに1次撚線11(SUS線10を中心とし、その周りにアルミ被覆超電導線材9を6本撚合わせたもの)を6本撚合わせ、更にSUSテープ17を巻付け、外形及びケーブルスペース部共に断面矩形状のSUSコンジット23に内挿されたものである。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(Structure of aluminum stabilized CIC type superconducting conductor)
FIG. 1 shows the structure of an aluminum stabilized CIC type superconducting conductor according to this embodiment.
This aluminum-stabilized CIC type superconducting conductor is centered on an aluminum stranded wire 15 in which seven aluminum wires 13 are twisted, and a primary stranded wire 11 (centered on the SUS wire 10 around which is an aluminum-coated superconductor). 6 wires are twisted together, and SUS tape 17 is wound, and both the outer shape and the cable space portion are inserted into a SUS conduit 23 having a rectangular cross section.

(アルミ安定化CIC型超電導導体の製造方法)
次に、図2を参照して、このアルミ安定化CIC型超電導導体の製造方法を、超電導線材の製造工程、撚線工程、ジャケット加工工程の3つに分けて説明する。
(Aluminum-stabilized CIC superconductor production method)
Next, with reference to FIG. 2, the manufacturing method of this aluminum stabilization CIC type | mold superconducting conductor is divided into three steps, a superconducting wire manufacturing process, a stranded wire process, and a jacket processing process.

(超電導線材の製造工程)
まず、Cu−Ni合金パイプ、NbTiインゴット、及び無酸素銅パイプを用意し、Cu−Ni合金パイプ内に、無酸素銅パイプを被覆したNb−Ti合金インゴットを充填してシングルビレットを組立て、静水圧押出しによりシングル線とする。
これより、図3(a)に示すように、Nb−Ti合金インゴット2の外周に、順に、無酸素銅パイプ3、Cu−Ni合金パイプ1が被覆されたシングル線4が得られる。
(Manufacturing process of superconducting wire)
First, a Cu-Ni alloy pipe, an NbTi ingot, and an oxygen-free copper pipe are prepared. A single billet is assembled by filling the Cu-Ni alloy pipe with an Nb-Ti alloy ingot coated with an oxygen-free copper pipe. Single wire by hydraulic extrusion.
Thereby, as shown to Fig.3 (a), the single wire 4 by which the outer periphery of the Nb-Ti alloy ingot 2 was coat | covered with the oxygen free copper pipe 3 and the Cu-Ni alloy pipe 1 in order is obtained.

次に、このシングル線4を伸線後、矯正・切断して六角形状線5とする(図3(b))。   Next, the single wire 4 is drawn and then straightened and cut to form a hexagonal wire 5 (FIG. 3B).

更に、Cu−Ni合金パイプ、銅バー、無酸素銅パイプを用意し、図3(c)に示すようなマルチ線7を製造する。具体的には、銅バー6を充填したCu−Ni合金パイプ1と無酸素銅パイプ3/Cu−Ni合金パイプ1との間に、3700本の六角形状線5を充填した超電導フィラメント群5’を形成してマルチビレットを組立て、静水圧押出しにて押出した後に、複数回の時効熱処理と伸線加工によってφ1.26mmのマルチ線7とする。   Furthermore, a Cu—Ni alloy pipe, a copper bar, and an oxygen-free copper pipe are prepared, and a multi-wire 7 as shown in FIG. Specifically, a superconducting filament group 5 ′ filled with 3700 hexagonal wires 5 between the Cu—Ni alloy pipe 1 filled with the copper bar 6 and the oxygen-free copper pipe 3 / Cu—Ni alloy pipe 1. After forming the multi billet and extruding by isostatic pressing, the multi wire 7 having a diameter of 1.26 mm is formed by multiple aging heat treatment and wire drawing.

次に、製造した素線をコンフォーム装置によって外径φ1.93mmとなるようにアルミニウム被覆層8を形成し、その後にφ1.84mmの伸線を施しアルミ被覆超電導線材9とする(図3(d))。   Next, an aluminum coating layer 8 is formed so that the manufactured wire has an outer diameter of 1.93 mm by a conforming device, and thereafter, a wire of φ1.84 mm is drawn to obtain an aluminum-coated superconducting wire 9 (FIG. 3 ( d)).

(撚線工程)
次に、図1に示すように、中心にSUS線10、その周りに超電導線材9を撚合わせた1次撚線11を形成後、アルミニウム撚線15(線径φ1.84mmのアルミニウム線13を7本撚り)を中心に配しその外周に1次撚線11を6本を撚線し、外周に厚さ25μmのSUS304のSUSテープ17をラップして2次撚線21を製造する。このときの2次撚線21の外径は、φ16.5mmである。
(Stranded wire process)
Next, as shown in FIG. 1, after forming a primary stranded wire 11 in which a SUS wire 10 is twisted at the center and a superconducting wire 9 is twisted around it, an aluminum stranded wire 15 (with an aluminum wire 13 having a wire diameter of φ1.84 mm) is formed. A secondary stranded wire 21 is manufactured by arranging six primary stranded wires 11 on the outer periphery thereof and wrapping a SUS304 17 of SUS304 having a thickness of 25 μm on the outer periphery. The outer diameter of the secondary stranded wire 21 at this time is φ16.5 mm.

(ジャケット加工工程)
最後に、SUS316L板材をロールフォーミングにより円形に成形し、その過程にて2次撚線21を挿入し、その後TIG溶接によって板材突き合わせ部を溶接し、最後に矩形に成形加工を施し、撚線21を圧縮しつつ固定する。
(Jacket processing process)
Finally, the SUS316L plate material is formed into a circular shape by roll forming, the secondary stranded wire 21 is inserted in the process, the plate material butt portion is then welded by TIG welding, and finally the rectangular shape is formed, and the stranded wire 21 Compress and fix.

このようにして、図1に示すように、外形及びケーブルスペース部共に断面矩形状のSUSコンジット23に2次撚線21を内挿したアルミ安定化CIC型超電導導体が得られる。   In this way, as shown in FIG. 1, an aluminum-stabilized CIC superconducting conductor in which the secondary stranded wire 21 is inserted into the SUS conduit 23 having a rectangular cross section in both the outer shape and the cable space portion is obtained.

(撚線の圧縮率)
上記アルミ安定化CIC型超電導導体において、撚線21の圧縮率Cは0%<C≦5%の範囲に好ましく設定される。なお、撚線の圧縮率Cは、以下の式から算出できる。
撚線の圧縮率={(勘合前の撚線の外径)−(コンジットの内径)}/(勘合前の撚線の外径)×100(%)・・・・・・・・・・・・・(1)
(Strong wire compressibility)
In the aluminum stabilized CIC type superconducting conductor, the compression rate C of the stranded wire 21 is preferably set in the range of 0% <C ≦ 5%. In addition, the compression rate C of a twisted wire can be calculated from the following formula.
Compressed rate of stranded wire = {(outer diameter of stranded wire before fitting)-(inner diameter of conduit)} / (outer diameter of stranded wire before fitting) x 100 (%) ... (1)

(撚線の圧縮率Cを0%<C≦5%の範囲とした理由)
撚線の圧縮率Cとして5%以下が好ましいとしたのは、後述する「CIC型導体の安定性評価」の欄で説明するように、サンプル導体に100Hzの交流定常波を印加した際にそのインピーダンスが200μΩ以下であれば、電流偏流下でも変わらぬ安定性を確保できると評価できること、及び、後述する実施例1の結果より、撚線の圧縮率が5%以下のときにインピーダンスが200μΩ以下となり、この安定性確保の条件を満たすことによる。
一方、撚線の圧縮率Cが0%を超えることとしたのは、撚線のコンジットへの内挿時は、圧縮しないと内挿後の撚線がルーズになり、ワイヤームーブメントを容易に引き起こす原因となりうることによる。
(Reason why the compression rate C of the stranded wire is in the range of 0% <C ≦ 5%)
The reason why the compression rate C of the stranded wire is preferably 5% or less is that the impedance when the AC standing wave of 100 Hz is applied to the sample conductor, as will be described later in the section “Stability evaluation of CIC type conductor”. If it is 200 μΩ or less, it can be evaluated that it is possible to ensure the same stability even under current drift, and from the results of Example 1 described later, the impedance becomes 200 μΩ or less when the compression rate of the stranded wire is 5% or less. By satisfying the conditions for ensuring stability.
On the other hand, the reason why the compression rate C of the stranded wire exceeds 0% is that when the stranded wire is inserted into the conduit, if the stranded wire is not compressed, the stranded wire after the insertion becomes loose and easily causes wire movement. It depends on what can cause it.

(CIC型導体の安定性評価)
素線間の電流再配分を伴うCIC型導体の安定性は、対象導体の特性インピーダンスを測定することで評価できるとされている。即ち、超電導導線の常伝導転移時の発生抵抗に対し、超伝導から常伝導へ転移する速さ(周波数)に対応する導体全体としての特性インピーダンスが十分小さければ常伝導に転移する前に導体内素線間の電流分布が均一となる電流再配分が行われ、クエンチしなくなることになる。
一般に、常伝導転移の発生原因となる外乱は10ms程度であり、これを周波数換算すると100Hzに相当する。また、7T/s〜20T/sの高速励磁試験が可能であったUS−DPCコイルやDPC−EXコイルは、その導体の1m長さ当りのインピーダンスはおおよそ200μΩであるとされている。
よって、サンプル導体に100Hzの交流定常波を印加して、そのインピーダンスが200μΩ以下であれば、電流偏流下でも変わらぬ安定性を確保できると評価できる。
(Stability evaluation of CIC type conductor)
It is said that the stability of a CIC type conductor with current redistribution between strands can be evaluated by measuring the characteristic impedance of the target conductor. That is, if the characteristic impedance of the entire conductor corresponding to the speed (frequency) of transition from superconducting to normal conduction is sufficiently small compared to the resistance generated at the time of normal conduction transition of the superconducting wire, the inside of the conductor before transitioning to normal conduction Current redistribution is performed so that the current distribution between the strands becomes uniform, and no quenching occurs.
In general, the disturbance that causes the normal conduction transition is about 10 ms, which corresponds to 100 Hz in terms of frequency. In addition, the US-DPC coil and DPC-EX coil, which have been capable of a high-speed excitation test of 7 T / s to 20 T / s, are said to have an impedance of about 200 μΩ per 1 m length of the conductor.
Therefore, it can be evaluated that when a 100 Hz alternating current wave is applied to the sample conductor and the impedance is 200 μΩ or less, the same stability can be secured even under current drift.

(アルミ安定化CIC型超電導導体の効果)
本実施形態に係るアルミ安定化CIC型超電導導体の効果を以下に示す。
(1)圧縮率を所定の範囲に調整しているので、従来の断面矩形状のケーブルスペース部を有するSUSコンジット23を用いても、2次撚線21の形状が崩れたり、2次撚線21に乱れを生じたりすることがない。このため、1次撚線11内に偏流が生じにくく、特性が安定化したものとなる。
(2)従来の銅を安定化材として用いた超電導電線では、擾乱による常電導転移時の発熱により、特性が不安定になることがあったが、極低温においては銅と比較して電気抵抗の小さいアルミニウムを安定化材としたアルミ被覆超電導線材9を用いているので、擾乱による常電導転移時の発熱量を小さくし、超電導状態にいち早く回復させることができる。よって、銅を安定化材とした超電導導体と比較して、高い安定性が得られる。
(3)SUSコンジット23の形成が容易であり、加工コストの上昇を抑えることができる。
(Effect of aluminum stabilized CIC type superconducting conductor)
The effects of the aluminum-stabilized CIC type superconducting conductor according to this embodiment are shown below.
(1) Since the compression ratio is adjusted to a predetermined range, the shape of the secondary stranded wire 21 is broken or the secondary stranded wire is used even when the SUS conduit 23 having a cable space portion having a rectangular cross section is used. 21 is not disturbed. For this reason, the drift is not easily generated in the primary stranded wire 11, and the characteristics are stabilized.
(2) With conventional superconducting wires using copper as a stabilizer, the characteristics may become unstable due to heat generated during normal conduction transition due to disturbance, but electrical resistance is lower than copper at very low temperatures. Since the aluminum-coated superconducting wire 9 is made of a small aluminum as a stabilizing material, the amount of heat generated during normal conduction transition due to disturbance can be reduced, and the superconducting state can be quickly recovered. Therefore, high stability is obtained as compared with a superconducting conductor using copper as a stabilizing material.
(3) The SUS conduit 23 can be easily formed, and an increase in processing cost can be suppressed.

(インピーダンス測定試験)
図4に示すようなインピーダンス測定装置を用いて、サンプル導体31中の任意の超電導線30間に可変周波数電源33により交流定常波(100Hz)を印加して、その際の電圧と電流をそれぞれ電圧計35及び電流計37により測定し、インピーダンスを算出した。
(Impedance measurement test)
Using an impedance measuring apparatus as shown in FIG. 4, an AC standing wave (100 Hz) is applied between arbitrary superconducting wires 30 in the sample conductor 31 by a variable frequency power source 33, and the voltage and current at that time are respectively voltmeters. 35 and an ammeter 37, and the impedance was calculated.

サンプル導体は、図5に示すように、コンジット41にケーブル(撚線)43を内挿した構造で、表1に示すように、種々の撚線圧縮率を有するサンプル1〜4を用意した。表1における撚線圧縮率は上記(1)式により算出し、コンジット外寸、内寸はそれぞれ、図5に示したように、コンジット41のW1、W2の寸法とした。 As shown in FIG. 5, the sample conductor has a structure in which a cable (twisted wire) 43 is inserted into a conduit 41. As shown in Table 1, samples 1 to 4 having various stranded wire compression ratios were prepared. The stranded wire compression ratio in Table 1 was calculated by the above equation (1), and the outer and inner dimensions of the conduit were respectively the dimensions of W 1 and W 2 of the conduit 41 as shown in FIG.

図4のインピーダンス測定装置により、種々の撚線の圧縮率(撚線の撚り乱れ)とインピーダンスの関係を測定した結果を表1に併せて記載する。   Table 1 also shows the results of measuring the relationship between the compression rate of various stranded wires (twisted wire turbulence) and the impedance using the impedance measuring apparatus shown in FIG.

Figure 2006114448
Figure 2006114448

表1の結果より、撚線の圧縮率が5%を超えるとインピーダンスが200μΩ以上となることが分かる。「CIC型導体の安定性評価」の欄で記述したようにインピーダンスが200μΩ以上では偏流による安定性の低下を引き起こすと考えられるため、安定性確保の点から撚線の圧縮率は5%以下がよいといえる。   From the results in Table 1, it can be seen that when the compression rate of the stranded wire exceeds 5%, the impedance is 200 μΩ or more. As described in the column of “CIC-type conductor stability evaluation”, if the impedance is 200 μΩ or more, it is considered that the stability decreases due to drift. Therefore, the compression rate of the stranded wire should be 5% or less from the viewpoint of ensuring stability. It's good.

(安定性マージン測定試験)
図6に、安定性マージンの測定試験回路を示す。この回路では、超電導導体サンプルに巻きつけられた誘導コイルL0を介して交流電流が流され、その際発生する交流磁界によって、超電導導体サンプルに外部エネルギーが投入される。
交流電流は、直流電源39によってコンデンサC1を充電し、ゲートG1〜G4のオン、オフによって発生させる。図6で試験回路の下にその交流波形の一例を示す。
なお、C0は誘導コイルL0と導体との間に発生する静電容量である。
(Stability margin measurement test)
FIG. 6 shows a measurement test circuit for the stability margin. In this circuit, an alternating current is passed through the induction coil L 0 wound around the superconducting conductor sample, and external energy is input to the superconducting conductor sample by the alternating magnetic field generated at that time.
The AC current is generated by charging the capacitor C 1 by the DC power source 39 and turning on and off the gates G 1 to G 4 . FIG. 6 shows an example of the AC waveform below the test circuit.
C 0 is a capacitance generated between the induction coil L 0 and the conductor.

測定に際しては、誘導コイルL0内に超電導サンプルを収納し、誘導コイルL0に電流を流して電流を振幅させ、サンプル内に誘導電流を流す。この誘導電流を流す時間をthで表す。この誘導電流は誘導コイルL0に電流を流したときの外乱を意味する。
測定の条件は、温度4.2K、外部磁界6Tとした。超電導導体サンプルが、クエンチする限界の投入エネルギーを最小クエンチエネルギーMQEと称する。
In the measurement, induces superconducting sample accommodated in the coil L in 0, the induction coil L 0 current is amplitude current flowing to flow a induced current in the sample. The time for which this induced current is applied is represented by t h . This induced current means a disturbance when a current is passed through the induction coil L 0 .
The measurement conditions were a temperature of 4.2K and an external magnetic field of 6T. The limit input energy at which the superconducting conductor sample is quenched is referred to as the minimum quench energy MQE.

超電導導体サンプルとしては、図3(d)に示した線径φ1.84mmのアルミ被覆超電導線(サンプルA)と、図3(c)に示したφ1.26の超電導線(サンプルB:アルミ被覆無し)とした。   As a superconducting conductor sample, an aluminum-coated superconducting wire (sample A) having a diameter of φ1.84 mm shown in FIG. 3D and a φ1.26 superconducting wire (sample B: aluminum-coating shown in FIG. 3C). None).

図7に超電導導体サンプルにおける通電電流とMQEとの関係を示す。
この結果から、サンプルAのようにアルミニウムを安定化材として用いることによって、サンプルBのように安定化銅を安定化材とした場合と比較して、通電電流値267Aにおいて約20倍高いMQEが得られることが分かる。
サンプルAとサンプルBの制限電流値に大きな差が生じた理由は、サンプルAの安定化材であるアルミの比抵抗がサンプルBの場合の安定化銅と比較して大きく異なることによると考えられる。即ち、部分的にクエンチした場合、アルミニウムの方が比抵抗が小さいため、銅線の場合と比較して撚線内に熱がこもりにくく、超電導状態にいち早く回復させることができるためと考えられる。
FIG. 7 shows the relationship between the energization current and MQE in the superconducting conductor sample.
From this result, by using aluminum as a stabilizing material as in sample A, compared to the case where stabilizing copper is used as a stabilizing material as in sample B, the MQE is about 20 times higher at an energization current value of 267A. You can see that
The reason for the large difference in the limiting current values between sample A and sample B is considered to be that the specific resistance of aluminum, which is the stabilizing material of sample A, is greatly different from that of the stabilized copper in the case of sample B. . That is, it is considered that when partially quenched, aluminum has a lower specific resistance, so that heat is less likely to be trapped in the stranded wire than in the case of copper wire, and it can be quickly recovered to a superconducting state.

(制限電流の計算値)
ステックレーによる制限電流値の式を以下に示す。
Ilim=(ρ・Iop2/(A・P・(TC−Tb))1/2・・・・・・・・(2)
ここで、
ρ[Ωm]:極低温における安定化材の比抵抗
Iop[A]:運転電流値
A[m2]:安定化材の断面積
P[m]:冷却周長
C[K]:臨界温度
Tb[K]:冷媒温度
(Calculated value of current limit)
The formula of the limit current value by Stickley is shown below.
Ilim = (ρ · Iop 2 / (A · P · (T C -T b)) 1/2 ········ (2)
here,
ρ [Ωm]: Specific resistance of stabilizing material at cryogenic temperature Iop [A]: Operating current value A [m 2 ]: Cross sectional area of stabilizing material P [m]: Cooling circumference T C [K]: Critical temperature Tb [K]: Refrigerant temperature

表2に、サンプルAおよびサンプルBの各パラメータおよび上記(2)式による制限電流値(計算値)を示す。   Table 2 shows each parameter of sample A and sample B and the limit current value (calculated value) according to the above equation (2).

Figure 2006114448
Figure 2006114448

表2の結果より、サンプルAの制限電流値は410Aとなるが、この値は、実施例2の結果により、図7のwell-coo1領域とil1-cool領域の境界値から算出した制限電流値の450Aと良い一致を示した。計算値と実験値がほぼ一致していることにより、両者の値はほぼ正しい値と推定される。   From the results of Table 2, the limit current value of sample A is 410 A. This value is the limit current value calculated from the boundary value between the well-coo1 region and the il1-cool region of FIG. It was in good agreement with 450A. Since the calculated value and the experimental value are almost the same, both values are estimated to be almost correct.

(他の実施形態)
上記実施形態では、7本撚り1次撚線11の中心線をSUS線10としたが、この代わりにCu又はCu−Ni系合金線を用いても同様の効果を得ることができる。
(Other embodiments)
In the above embodiment, the center line of the seven-stranded primary stranded wire 11 is the SUS wire 10, but the same effect can be obtained even if a Cu or Cu—Ni alloy wire is used instead.

また、上記実施形態では、2次撚線21の中心線をアルミニウム撚線15としたが、この代わりに、Cu合金線/アルミニウム線/アルミニウム合金線を撚線したものやスパイラル管を用いても同様の効果を得ることができる。   Moreover, in the said embodiment, although the center line of the secondary twisted wire 21 was the aluminum twisted wire 15, you may use what twisted the Cu alloy wire / aluminum wire / aluminum alloy wire, and the spiral tube instead. Similar effects can be obtained.

上記実施形態では、コンジット23として使用する金属管の材質をSUS316Lとしたが、この代わりに、SUS316L以外のSUS系材料、Ti、インコロイなど他の金属を用いても同様の効果が得られる。   In the above embodiment, the material of the metal tube used as the conduit 23 is SUS316L. However, the same effect can be obtained by using other metals such as SUS-based materials other than SUS316L, Ti, incoloy, or the like instead.

上記実施形態では、超電導線材としてNb−Ti系材料を用いたが、他の超電導材であるNb3Sn系、(Nb3Sn)3Sn系、Nb3Al系超電導材に代えても同様の効果が得られる。 In the above embodiment, the Nb—Ti-based material is used as the superconducting wire. However, the same can be applied to other superconducting materials such as Nb 3 Sn-based, (Nb 3 Sn) 3 Sn-based, and Nb 3 Al-based superconducting materials. An effect is obtained.

本実施形態に係るアルミ安定化CIC型超電導導体の構造を示す断面図である。It is sectional drawing which shows the structure of the aluminum stabilization CIC type | mold superconducting conductor which concerns on this embodiment. 本実施形態に係るアルミ安定化CIC型超電導導体の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the aluminum stabilization CIC type | mold superconducting conductor which concerns on this embodiment. 本実施形態に係るアルミ安定化CIC型超電導導体の製造途中で得られる線材の断面図であり、(a)はシングル線、(b)は六角形状線、(c)はマルチ線、(d)はアルミ被覆超電導線材である。It is sectional drawing of the wire obtained in the middle of manufacture of the aluminum stabilization CIC type superconducting conductor which concerns on this embodiment, (a) is a single wire, (b) is a hexagonal wire, (c) is a multi wire, (d) Is an aluminum-coated superconducting wire. インピーダンス測定装置を示す概略図である。It is the schematic which shows an impedance measuring apparatus. 実施例1で使用するサンプル導体の断面図である。2 is a cross-sectional view of a sample conductor used in Example 1. FIG. 安定性マージンの測定試験回路を示す概略図である。It is the schematic which shows the measurement test circuit of a stability margin. 通電電流とMQEとの関係を示すグラフである。It is a graph which shows the relationship between an energization current and MQE. 従来のCIC型超電導導体の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the conventional CIC type | mold superconducting conductor. 従来のコンジットの形状を示す断面図であり、(a)はケーブルスペース部が矩形なもの、(b)はケーブルスペース部が円形なものである。It is sectional drawing which shows the shape of the conventional conduit, (a) is a thing with a rectangular cable space part, (b) is a thing with a circular cable space part.

符号の説明Explanation of symbols

1 Cu−Ni合金パイプ
2 Nb−Ti合金インゴット
3 無酸素銅パイプ
4 シングル線
5 六角形状線
5’ 超電導フィラメント群
6 銅バー
7 マルチ線
8 アルミニウム被覆層
9 アルミ被覆超電導線材
10 SUS線
11 1次撚線
13 アルミニウム撚線
17 SUSテープ
21 2次撚線
23 SUSコンジット
30 超電導線
31 サンプル導体
33 可変周波数電源
35 電圧計
37 電流計
39 直流電源
41 コンジット
43 ケーブル
51 コンジット
53 ケーブルスペース部
55 コンジット
57 ケーブルスペース部
DESCRIPTION OF SYMBOLS 1 Cu-Ni alloy pipe 2 Nb-Ti alloy ingot 3 Oxygen-free copper pipe 4 Single wire 5 Hexagonal shape wire 5 'Superconducting filament group 6 Copper bar 7 Multi wire 8 Aluminum coating layer 9 Aluminum coating superconducting wire 10 SUS wire 11 Primary Twisted wire 13 Aluminum twisted wire 17 SUS tape 21 Secondary twisted wire 23 SUS conduit 30 Superconducting wire 31 Sample conductor 33 Variable frequency power supply 35 Voltmeter 37 Ammeter 39 DC power supply 41 Conduit 43 Cable 51 Conduit 53 Cable space 55 Conduit 57 Cable Space section

Claims (2)

複数の超電導線からなる撚線を、断面矩形状の金属管内に前記撚線の圧縮率Cが0%<C≦5%の範囲となるように内挿したことを特徴とするケーブル・イン・コンジット型超電導導体。   A cable-in-wire in which a stranded wire composed of a plurality of superconducting wires is inserted into a metal tube having a rectangular cross section so that the compression rate C of the stranded wire is in the range of 0% <C ≦ 5%. Conduit type superconducting conductor. アルミニウム被覆層が表面に形成された超電導線をSUS線の周りに6本撚合わせて1次撚線とし、該1次撚線をアルミニウム撚線又はスパイラル管の周りに6本撚合わせ、SUSテープを巻付けて2次撚線とし、該2次撚線を、断面矩形状の金属管内に前記撚線の圧縮率Cが0%<C≦5%の範囲となるように内挿したことを特徴とするケーブル・イン・コンジット型超電導導体。

Six superconducting wires with an aluminum coating layer formed on the surface are twisted around a SUS wire to form a primary twisted wire, and the primary twisted wire is twisted around an aluminum twisted wire or spiral tube, and a SUS tape. Is wound into a secondary stranded wire, and the secondary stranded wire is inserted into a metal tube having a rectangular cross section so that the compression rate C of the stranded wire is in the range of 0% <C ≦ 5%. Characteristic cable-in-conduit type superconducting conductor.

JP2004303228A 2004-10-18 2004-10-18 Cable-in-conduit type superconductor Pending JP2006114448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303228A JP2006114448A (en) 2004-10-18 2004-10-18 Cable-in-conduit type superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303228A JP2006114448A (en) 2004-10-18 2004-10-18 Cable-in-conduit type superconductor

Publications (1)

Publication Number Publication Date
JP2006114448A true JP2006114448A (en) 2006-04-27

Family

ID=36382778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303228A Pending JP2006114448A (en) 2004-10-18 2004-10-18 Cable-in-conduit type superconductor

Country Status (1)

Country Link
JP (1) JP2006114448A (en)

Similar Documents

Publication Publication Date Title
JP4791309B2 (en) Nb3Sn superconducting wire and precursor therefor
JP5000252B2 (en) NbTi superconducting wire
US6510604B1 (en) Superconducting cables experiencing reduced strain due to bending
JP5097526B2 (en) Method for manufacturing MgB2 superconducting wire
US4857675A (en) Forced flow superconducting cable and method of manufacture
JPS5840286B2 (en) Method for manufacturing high tensile strength aluminum stabilized superconducting wire
JP2009211880A (en) Nb3Sn SUPERCONDUCTING WIRE ROD MADE BY USING INTERNAL Sn METHOD, AND PRECURSOR THEREFOR
JP2008300337A (en) Nb3Sn SUPERCONDUCTING WIRE AND PRECURSOR FOR THE SAME
WO2007099820A1 (en) PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE ROD, AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP2014035860A (en) NbTi-BASED SUPERCONDUCTING WIRE
JP5100469B2 (en) NbTi superconducting wire and method for manufacturing the same
JP2006114448A (en) Cable-in-conduit type superconductor
JP3646059B2 (en) Aluminum stabilized superconducting conductor
JPS60199522A (en) Manufacture of superconductive alloy wire
JP2023041520A (en) MgB2 SUPERCONDUCTIVE WIRE MATERIAL AND METHOD FOR MANUFACTURING THE SAME
Berriaud et al. Conductor R&D for the Iseult/INUMAC whole body 11.7 T MRI magnet
JPS63216212A (en) Nb3sn-based superconductive wire and production of it
JP2008147175A (en) Nbti superconducting multi-core for pulse, and nbti superconduting molded stranded wire for pulse
Painter et al. Recent progress of the series-connected hybrid magnet projects
Tronza et al. Russia's contribution to the ITER TF magnets
Wang et al. Study on critical current of a flexible quasi-isotropic HTS conductor with high engineering current density
Bottura et al. Strand and cable R&D for fast cycled magnets at CERN
JPS6340003B2 (en)
RU2456696C2 (en) Superconductive wire of &#34;cable-conduit&#34; type for magnetic systems winding
Spadoni A review of conductor development for large fusion magnets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124