JP2006112988A - Probe type light measuring device - Google Patents

Probe type light measuring device Download PDF

Info

Publication number
JP2006112988A
JP2006112988A JP2004302496A JP2004302496A JP2006112988A JP 2006112988 A JP2006112988 A JP 2006112988A JP 2004302496 A JP2004302496 A JP 2004302496A JP 2004302496 A JP2004302496 A JP 2004302496A JP 2006112988 A JP2006112988 A JP 2006112988A
Authority
JP
Japan
Prior art keywords
light
probe
optical
sample
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004302496A
Other languages
Japanese (ja)
Other versions
JP2006112988A5 (en
Inventor
Tatsu Murashita
達 村下
Yoshihiro Kobayashi
慶裕 小林
Akio Tokura
明雄 登倉
Koji Sumitomo
弘二 住友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004302496A priority Critical patent/JP2006112988A/en
Publication of JP2006112988A publication Critical patent/JP2006112988A/en
Publication of JP2006112988A5 publication Critical patent/JP2006112988A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for enabling measurement of light emission by photoexcitation and light emission by current excitation without varying the probe position with the same device, though a method or the like of performing the both measurements is conventionally known as a measuring method of measuring the electrical and optical characteristics of a material in the same fine region near the material surface and it is difficult to perform the both measurements in the same fine region. <P>SOLUTION: This probe type light measuring device comprises a probe of which tip has light transmission property and conductivity; an optical system that has a light transmission line for guiding radiated light and light emitted by a sample, separates the light emitted by an incident system of the radiated light to the sample, a reflection system, and the sample from the light from these radiation systems, and guides the light to a photodetector; and an optical band pass filter for removing an unnecessary light wavelength component. An optical demultiplexer is inserted into a midway of the light transmission line. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、材料表面近傍の微小な同一領域に光の照射や電流の注入を行うことにより、当該材料の微小領域における電気的・光学的特性を高精度・光分解能で測定するプローブ型光測定装置に関する。   The present invention provides probe-type optical measurement that measures the electrical and optical characteristics of a minute region of the material with high accuracy and optical resolution by irradiating light or injecting current into the minute region near the surface of the material. Relates to the device.

近年、物質のナノメータサイズ領域の特性を利用した、いわゆるナノテクノロジーが進展している。半導体分野では量子構造等の研究開発がすでに進んでいるが、近年では微小電子回路への応用が期待されるカーボンナノチューブや、フラットパネルディスプレー等への使用が期待される有機エレクトロルミネッセンス(EL)材料、あるいは生体への適用が期待されるバイオ材料等が注目されている。このような構造や材料の開発や性能改善等には原子・分子からナノメータサイズの微小領域における電気的・光学的特性を精密に測定することが重要である。これらの特性は、微小領域における光照射や電流注入によって試料の情報を持って生じる散乱光や発光等の光(以下、信号光と呼ぶ)を測定することによって調べることができる。そのため、個々の単一原子や分子あるいはナノ構造の光特性や電気特性を測定できる極限的に高い空間分解能を持ち、かつ分光や画像化ができる光測定装置が強く求められていた。   In recent years, so-called nanotechnology utilizing the properties of a material in the nanometer size region has been developed. In the semiconductor field, research and development on quantum structures has already progressed, but in recent years, carbon nanotubes that are expected to be applied to microelectronic circuits and organic electroluminescence (EL) materials that are expected to be used in flat panel displays, etc. In addition, biomaterials that are expected to be applied to living bodies have attracted attention. In order to develop such structures and materials, improve performance, etc., it is important to accurately measure the electrical and optical characteristics in atoms and molecules to nanometer-sized microscopic regions. These characteristics can be examined by measuring light such as scattered light or light emission (hereinafter referred to as signal light) generated with light of sample information by light irradiation or current injection in a minute region. For this reason, there has been a strong demand for a light measuring device capable of measuring optical properties and electrical properties of individual single atoms, molecules, or nanostructures and having extremely high spatial resolution and capable of performing spectroscopy and imaging.

光照射や電流注入により信号光を検出する方法では、試料の信号光の発生過程によってそれぞれ多くの手法に分類されている。たとえば、光照射ではフォトルミネッセンス(PL:Photoluminecsence)やラマン散乱等、電流注入ではカソードルミネッセンス(CL:Cathodeluminescense)やエレクトロルミネッセンス(EL:Electroluminescense)等である。ただし、これらは光の照射あるいは電流の注入によって信号光が生じるという点では同じであるが、以下の説明において光の発生過程の区別をする場合は、それぞれ光照射光測定および電流注入光測定と総称することにする。   The methods of detecting signal light by light irradiation or current injection are classified into many methods depending on the generation process of the signal light of the sample. For example, photoluminescence (PL: Photoluminecsence) or Raman scattering is used for light irradiation, and cathode luminescence (CL: Cathodeluminescense) or electroluminescence (EL) is used for current injection. However, these are the same in that signal light is generated by light irradiation or current injection. However, in the following explanation, when distinguishing the light generation process, the light irradiation light measurement and the current injection light measurement are respectively referred to collectively. I will do it.

従来から、光測定の空間分解能や測定領域に光の波長サイズよりも小さいナノメータレベルが要求される場合には、光の波長サイズより小さな微小開口を持つプローブから光を照射する走査型近接場光顕微鏡(SNOM)(例えば参考文献1)や導電性プローブから微小領域へ電流を注入するトンネル発光顕微鏡(TL)(例えば参考文献2)がそれぞれ使用されていた。   Conventionally, when a nanometer level smaller than the light wavelength size is required for the spatial resolution and measurement area of light measurement, scanning near-field light that irradiates light from a probe having a minute aperture smaller than the light wavelength size A microscope (SNOM) (for example, Reference 1) and a tunnel emission microscope (TL) (for example, Reference 2) for injecting a current from a conductive probe into a minute region have been used.

トンネル発光顕微鏡(TL)装置では集光効率を改善するため、光を収集する機能と電流を供給する機能とを合わせ持つ導電透明プローブが用いられている。この導電透明プローブは光ファイバの先端を先鋭化して、その表面に導電加工したものである。この導電透明プローブを用いれば、プローブ先端から試料の微小領域に大きな電流を注入し、それによって試料から発せられた光を光源の直近に位置する同じプローブ先端で高効率に受光することができる。そのため、トータルで高効率の光測定が可能である。(例えば参考文献3)
光照射光測定と電流注入光測定にはそれぞれ特徴がある。光照射の場合、通常の照射光源で利用できるレーザ光は紫外線から赤外線にわたる領域にあり、エネルギーの単色性は非常に高いが調整可能なエネルギー範囲が1〜3電子ボルト(eV)程度とわずかなため、数eVの範囲にわたる物質のエネルギー帯にわたって広範囲に同調させることは困難である。一方、電流注入の場合、電流のエネルギーの単色性はあまり高くないが、バイアス電圧の調整により電流のエネルギーをほとんどの物質のエネルギー帯が存在する0〜10eV程度の範囲にわたって容易に同調できる。さらに高いエネルギーも簡単に与えることができる。
In a tunnel emission microscope (TL) apparatus, a conductive transparent probe having both a function of collecting light and a function of supplying current is used in order to improve the light collection efficiency. This conductive transparent probe is obtained by sharpening the tip of an optical fiber and conducting a conductive process on the surface thereof. When this conductive transparent probe is used, a large current is injected from the probe tip into the micro area of the sample, whereby the light emitted from the sample can be received with high efficiency by the same probe tip located in the immediate vicinity of the light source. Therefore, total and highly efficient light measurement is possible. (For example, Reference 3)
Each of the light irradiation light measurement and the current injection light measurement has characteristics. In the case of light irradiation, the laser light that can be used with a normal irradiation light source is in the range from ultraviolet to infrared, and the monochromaticity of energy is very high, but the adjustable energy range is as small as 1 to 3 electron volts (eV). Therefore, it is difficult to tune in a wide range over the energy band of a material over a range of several eV. On the other hand, in the case of current injection, the monochromaticity of the current energy is not so high, but the current energy can be easily tuned over a range of about 0 to 10 eV where the energy band of most substances exists by adjusting the bias voltage. Higher energy can be easily applied.

また、電流注入の場合、原子レベルが高い空間分解能を持つモホロジー(STM像)像と光像とを同時に取ることが可能である。したがって、同一点で光照射と電流注入で生じる信号光の両方を相補的に測定できる装置が実現できれば、原子からナノメータレベルの微小領域で物質の多様な特性を精密に測定することが可能となる。
ところが、現状では電流注入で生じる信号光を測定するTL装置と光照射で生じる信号光を測定するSNOM装置はそれぞれ独立した別の装置となっており、両方の測定を同一微小位置について高効率で両立できる装置はなかった。別々の装置では同じ微小領域を測定することは極めて困難である。そのため、電流注入光測定と光照射光測定との両方の動作を同一装置で可能とする高効率のプローブ型光測定装置の実現が求められていた。
In the case of current injection, a morphology (STM image) image having a high spatial resolution at an atomic level and an optical image can be taken simultaneously. Therefore, if a device capable of measuring both light irradiation and signal light generated by current injection at the same point can be realized in a complementary manner, it becomes possible to precisely measure various characteristics of a substance in a minute region from an atom to a nanometer level. .
However, at present, the TL device that measures the signal light generated by current injection and the SNOM device that measures the signal light generated by light irradiation are separate and independent devices, and both measurements can be performed at the same minute position with high efficiency. No device was compatible. It is extremely difficult to measure the same minute area with different apparatuses. Therefore, realization of a highly efficient probe-type light measurement device that enables both the current injection light measurement and the light irradiation light measurement with the same device has been demanded.

R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation” Appl. Phys. Lett. 60 (24), 15 June 1992R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation” Appl. Phys. Lett. 60 (24), 15 June 1992 村下 達、「探針集光型トンネル電子発光顕微鏡による半導体ナノメートル領域評価」応用物理 第70巻 第10号 2001Toru Murashita, "Semiconductor nanometer region evaluation by probe-condensing tunneling electron emission microscope" Applied Physics Vol.70 No.10 2001 T. Murashita, “Novel conductive transparent tip for low-temperature tunneling-electron luminescence microscopy using tip collection” J. Vac. Sci. Technol. B 15(1), Jan/Feb 1997T. Murashita, “Novel conductive transparent tip for low-temperature tunneling-electron luminescence microscopy using tip collection” J. Vac. Sci. Technol. B 15 (1), Jan / Feb 1997

本発明が解決しようとする主要な技術的課題は、試料の同一領域で電流注入で生じる信号光と光照射で生じる信号光との両方の測定を可能にするTL装置の新しい装置構成を実現することにある。すなわち、本発明の目的は導電透明プローブの性質を活用して、同一の装置で同一の微小領域において確実かつ容易に電流注入光測定と光照射光測定との両方を行うことができるプローブ型光測定装置を提供せんとするものである。   The main technical problem to be solved by the present invention is to realize a new device configuration of a TL device that enables measurement of both signal light generated by current injection and signal light generated by light irradiation in the same region of the sample. There is. That is, an object of the present invention is to make use of the properties of a conductive transparent probe, and probe-type optical measurement that can perform both current injection light measurement and light irradiation light measurement reliably and easily in the same micro area with the same apparatus. The device is intended to be provided.

前記目的を達成するために同一プローブで光照射および電流注入の両方法で信号光の発生と検出を可能とする構成としている。このため、
請求項1においては、先端が光透過性と導電性とを有するプローブを有し、該プローブの先端は被測定試料表面の直近に配置され、かつ、前記プローブと前記被測定試料表面との間に所定の電位を与えるための電圧を印加する電源を有し、前記所定の電位の印加により発生した前記被測定試料表面の光を検出する光検出器を有し、前記プローブと前記光検出器とは光ファイバ等の光伝送路により光学的に接続されており、前記被測定試料表面の所定の領域に光を照射する照射光源と、該照射光源からの光を前記被測定試料表面に導光し、該照射光源からの光により発生した前記被測定試料表面の材料情報を含む信号光を前記光検知器に選択的に導光する光分波器とを有し、前記光伝送路を第1および第2の光伝送路に2分割し、該第1の光伝送路の1端を前記プローブに他端を前記光分波器の第1のコネクタにそれぞれ接続し、該第2の光伝送路の1端を前記光分波器の第2のコネクタに他端を前記光検知器に接続し、前記照射光源を第3の光伝送路を介して前記光分波器の第3のコネクタに接続し、前記光分波器は、前記信号光の光成分の中から前記照射光源の光成分を選択的に低減する光バンドパス・フィルタと、前記照射光源からの光を前記プローブに導光する光伝送路とを有するプローブ型光測定装置について規定している。
In order to achieve the object, signal light can be generated and detected by both light irradiation and current injection methods using the same probe. For this reason,
According to a first aspect of the present invention, the tip has a probe having light transmittance and conductivity, the tip of the probe is disposed in the immediate vicinity of the surface of the sample to be measured, and between the probe and the surface of the sample to be measured. A power source for applying a voltage for applying a predetermined potential to the light source, a light detector for detecting light on the surface of the sample to be measured generated by the application of the predetermined potential, and the probe and the light detector Is optically connected by an optical transmission line such as an optical fiber, and irradiates a predetermined region of the surface of the sample to be measured with light, and guides the light from the light source to the surface of the sample to be measured. An optical demultiplexer for selectively guiding signal light including material information on the surface of the sample to be measured, generated by light from the irradiation light source, to the photodetector. The first optical transmission line is divided into two parts, and the first optical transmission line is divided. One end of the path is connected to the probe and the other end is connected to the first connector of the optical demultiplexer, and one end of the second optical transmission path is connected to the second connector of the optical demultiplexer. Is connected to the optical detector, the irradiation light source is connected to a third connector of the optical demultiplexer via a third optical transmission line, and the optical demultiplexer A probe-type optical measurement device having an optical bandpass filter that selectively reduces the light component of the irradiation light source from the inside and an optical transmission path that guides light from the irradiation light source to the probe is defined. .

請求項2においては、プローブ電流励起による発光を測定する場合に、照射光による発光が生じることがないように照射光源の光強度を低減または停止させる機能を有する請求項1に記載のプローブ型光測定装置について規定している。   The probe-type light according to claim 1, which has a function of reducing or stopping the light intensity of the irradiation light source so that the light emission by the irradiation light does not occur when the light emission by the probe current excitation is measured. It defines the measuring device.

請求項3においては、照射光励起による発光を測定する場合に、プローブ電流励起による発光が生ずることがなく、かつ安定なプローブ走査を確保できるようにプローブ電流あるいはプローブバイアス電圧を低減または零とする機能を有する請求項1に記載のプローブ型光測定装置について規定している。   The function of reducing or reducing the probe current or the probe bias voltage so that the emission of light due to the excitation of the probe current does not occur and stable probe scanning can be secured when measuring the light emission due to the irradiation light excitation. The probe-type optical measurement device according to claim 1 is defined.

以上述べたように、本発明においては、先端部が透明で導電性を有するプローブと光検出器および照射光源を設置し、これらを結ぶ光伝送系の経路中に照射光のみを反射または減衰させ、信号光を低損失で透過させる光バンドパス・フィルタを設置する構成とすることにより、試料上の任意の同一微小領域において光照射で生じる信号光と電流注入で生じる信号光との両方の測定を同一プローブで効率良く実行することを可能にしている。   As described above, in the present invention, a probe having a transparent tip and conductivity, a photodetector, and an irradiation light source are installed, and only the irradiation light is reflected or attenuated in the path of the optical transmission system connecting them. By installing an optical bandpass filter that transmits signal light with low loss, measurement of both signal light generated by light irradiation and signal light generated by current injection in any same minute region on the sample Can be executed efficiently with the same probe.

本発明によるこの構成により、試料上の同一の微小領域において光照射で生じる信号光と電流注入で生じる信号光との両信号光を、プローブを交換することなく同一プローブで検出することを可能としている。この際、プローブを交換したり試料を移動したりすることがないので、両者の測定位置をナノメータ以下の精度で正確に重ねることができる。また、測定位置を試料上の任意の位置へ移動させてもプローブから電流を注入する位置と、光を照射する位置とは常に同一位置で重なるので、各測定毎のプローブ位置調整が不要で正確かつ迅速な測定が実現できるようになる。   With this configuration according to the present invention, it is possible to detect both signal light generated by light irradiation and signal light generated by current injection in the same minute region on the sample with the same probe without exchanging the probe. Yes. At this time, since the probe is not exchanged or the sample is not moved, both measurement positions can be accurately overlapped with accuracy of nanometer or less. Even if the measurement position is moved to an arbitrary position on the sample, the position where the current is injected from the probe and the position where the light is irradiated always overlap at the same position, so there is no need to adjust the probe position for each measurement. And quick measurement can be realized.

以下、本発明の実施の形態を図面に沿って説明する。図1は本実施の形態における装置構成を説明する図である。図1において、1はプローブ、2は試料、3は容器、4a、4bおよび4cはそれぞれ光ファイバ、5は照射光源(レーザ)、6は光検出器、7は光分波器、8はハーフミラー、9は光バンドパス・フィルタ、10は照射光となるレーザ光、11は信号光、12は電流注入のプローブ電流、13はプローブバイアス用電源、14は照射光10が試料2の表面で反射された照射光10の反射成分である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining an apparatus configuration according to the present embodiment. In FIG. 1, 1 is a probe, 2 is a sample, 3 is a container, 4a, 4b and 4c are optical fibers, 5 is an irradiation light source (laser), 6 is a photodetector, 7 is an optical demultiplexer, and 8 is a half. Mirror, 9 is an optical bandpass filter, 10 is a laser beam to be irradiated light, 11 is signal light, 12 is a probe current for current injection, 13 is a probe bias power source, and 14 is a surface of the sample 2 where the irradiated light 10 is This is a reflection component of the reflected irradiation light 10.

プローブ1はピエゾ効果を有する材料等を用いた特に図示しないが精密駆動機構に搭載され、この精密駆動機構は容器3に固定されている。プローブ1の先端は試料2上の直近に配置してある。
プローブ1の後端には、光伝送用の光ファイバ4aが取り付けられている。一方、容器3の外には照射光源5となるレーザと光検出器6が設置されている。光検出器6は図示しないが分光器と光電変換器等とから構成されている。光検出器6および照射光源5には光の入出力用として光ファイバ4bおよび4cがそれぞれ接続されている。
The probe 1 is mounted on a precision drive mechanism (not shown) using a material having a piezo effect or the like, but this precision drive mechanism is fixed to the container 3. The tip of the probe 1 is arranged in the immediate vicinity on the sample 2.
At the rear end of the probe 1, an optical fiber 4a for optical transmission is attached. On the other hand, a laser serving as the irradiation light source 5 and a photodetector 6 are installed outside the container 3. Although not shown, the photodetector 6 includes a spectroscope and a photoelectric converter. Optical fibers 4b and 4c are connected to the photodetector 6 and the irradiation light source 5 for light input / output, respectively.

プローブ1、光検出器6および照射光源5に接続されている光ファイバは光分波器7のコネクタc1,c2,c3のそれぞれ対応する位置に接続されている。このようにプローブ1と光検出器6の間の光伝送路中に照射光源5と、照射光10が光検出器6へ入るのを阻止し、かつ信号光11を低損失で透過させる機能を持つ光分波器7を設置したことが、本発明の特徴である。   Optical fibers connected to the probe 1, the photodetector 6, and the irradiation light source 5 are connected to corresponding positions of the connectors c 1, c 2, and c 3 of the optical demultiplexer 7. As described above, the irradiation light source 5 and the irradiation light 10 are prevented from entering the photodetector 6 in the optical transmission path between the probe 1 and the photodetector 6 and the signal light 11 is transmitted with low loss. It is a feature of the present invention that the optical demultiplexer 7 is installed.

光励起の発光を測定する場合には、光励起発光が生じる程度に強い照射光10を照射光源5であるレーザからの光で照射する一方で、プローブ電流12による発光が生じないようにプローブ電流を弱め、あるいはプローブバイアス電源13の電圧を低くする。なお、ここでプローブバイアス電源13の極性としては、プローブ1を正極あるいは負極の何れに設定するものであってもよい。
また、プローブ電流励起の発光を測定する場合は、プローブ電流励起発光が生じる程度に大きなプローブ電流12で、かつ高いプローブバイアス電源13の電圧を供給する一方で、照射光10による発光が生じないように照射光源5におけるレーザ光の強度を低くしたりあるいは停止したりする。
When measuring photo-excited luminescence, the irradiation light 10 that is strong enough to generate photo-excitation luminescence is irradiated with light from the laser that is the illuminating light source 5, while the probe current is weakened so that no light is emitted by the probe current 12. Alternatively, the voltage of the probe bias power supply 13 is lowered. Here, as the polarity of the probe bias power supply 13, the probe 1 may be set to either a positive electrode or a negative electrode.
When measuring emission of probe current excitation, a probe current 12 that is large enough to generate probe current excitation emission and a high probe bias power supply 13 voltage are supplied, but emission of irradiation light 10 does not occur. In addition, the intensity of the laser beam in the irradiation light source 5 is lowered or stopped.

まず、光励起の発光を測定する場合の実施の形態について述べる。
この場合には光励起発光が生じる程度に強い照射光(レーザ光)10を照射するとともに、プローブ電流12による発光が生じないようにプローブ電流12を弱めあるいはプローブバイアス電源13の電圧を低くする。また、光分波器7には、プローブ1、照射光源5および光検出器6の3方向に光ファイバを接続するためのコネクタc1、c2およびc3が取り付けられており、コネクタc1にはプローブ1を、コネクタc2には光検出器6を、c3には照射光源5をそれぞれ光ファイバ4a,4b,4cを介して接続する。
First, an embodiment in the case of measuring light emission by photoexcitation will be described.
In this case, irradiation light (laser light) 10 that is strong enough to generate photoexcitation light is emitted, and the probe current 12 is weakened or the voltage of the probe bias power supply 13 is lowered so that light emission by the probe current 12 does not occur. Further, the optical demultiplexer 7 is provided with connectors c1, c2 and c3 for connecting optical fibers in three directions of the probe 1, the irradiation light source 5, and the photodetector 6, and the probe 1 is attached to the connector c1. Are connected to the connector c2 through the optical fiber 4a, 4b, and 4c, respectively.

コネクタc1、c2およびc3の延長線が交差する位置および光検出器に向かうコネクタc2の前の位置にハーフミラー8と光バンドパス・フィルタ9を設置する。光バンドパス・フィルタ9は照射光を選択的に減衰させ、信号光成分は高効率で透過させる。ハーフミラー8は光路に対して45°の角度で設置されていて、照射光源5からコネクタc3を経由して出射された照射10はハーフミラー8で反射され直角に光路を曲げられてコネクタc1に入る。コネクタc1に入った照射光10は光ファイバ4aを通ってプローブ1に伝送されプローブ1から試料2に向かって放射される。また、光バンドパス・フィルタ9はコネクタc1を経由して導光されてきた信号光11と、試料2の表面で反射され戻ってきた照射光10の反射成分14とが混合した光がコネクタc2に入る直前に、この光のうち照射光10の反射成分14のみを減衰させ信号光11の成分を透過させる働きをする。   The half mirror 8 and the optical bandpass filter 9 are installed at a position where the extension lines of the connectors c1, c2 and c3 intersect and a position in front of the connector c2 toward the photodetector. The optical bandpass filter 9 selectively attenuates the irradiated light and transmits the signal light component with high efficiency. The half mirror 8 is installed at an angle of 45 ° with respect to the optical path, and the irradiation 10 emitted from the irradiation light source 5 via the connector c3 is reflected by the half mirror 8 and is bent at a right angle to the connector c1. enter. Irradiation light 10 entering the connector c1 is transmitted to the probe 1 through the optical fiber 4a and emitted from the probe 1 toward the sample 2. Further, the optical bandpass filter 9 is configured so that light obtained by mixing the signal light 11 guided through the connector c1 and the reflection component 14 of the irradiation light 10 reflected and returned from the surface of the sample 2 is the connector c2. Immediately before entering, it functions to attenuate only the reflection component 14 of the irradiation light 10 and transmit the component of the signal light 11.

次に、試料2から発せられた信号光11はプローブ1で集光され光ファイバ4aを介してコネクタc1に照射光10である入射光とは逆方向に伝送される。コネクタc1から出た信号光11は特に図示しないが光分波器7内でレンズにより平行光にコリメートされてから直進してハーフミラー8に達する。ハーフミラー8は、反射光の波長に対しては反射率が、信号光11の波長に対しては透過率が高くなるように設定されているため、信号光11はハーフミラー8を透過してコネクタc2に入り、光ファイバー4bを介して光検出器6に至る。   Next, the signal light 11 emitted from the sample 2 is collected by the probe 1 and transmitted to the connector c1 through the optical fiber 4a in the direction opposite to the incident light as the irradiation light 10. Although not shown, the signal light 11 emitted from the connector c1 is collimated into parallel light by a lens in the optical demultiplexer 7 and then travels straight to reach the half mirror 8. Since the half mirror 8 is set to have a high reflectance with respect to the wavelength of the reflected light and a high transmittance with respect to the wavelength of the signal light 11, the signal light 11 is transmitted through the half mirror 8. It enters the connector c2 and reaches the photodetector 6 through the optical fiber 4b.

一方、プローブ1からは信号光11と共に、試料2から反射した照射光10の反射成分14の一部も入ってくる。この混入した反射光14は信号光11に比べてはるかに強いのでこのまま光検出器6に入れると信号光11の測定に悪影響を与えるため除去しなくてはならない。試料2で反射してプローブ1を経由して戻ってくる照射光10の反射成分14も信号光11と同様にコネクタc1から出てハーフミラー8に到達するが、ハーフミラー8は照射光10であるレーザ光に対しては高い反射率を持つので、ハーフミラー8によってこの反射成分14はコネクタc3の方向に反射され、コネクタc2の方向には透過せず、これにより、信号光11のみが光検出器6に伝送される。ここで、バンドパス・フィルタ9は前記のようにハーフミラー8を透過した信号光11以外の不要光成分を除去するためのものである。   On the other hand, a part of the reflection component 14 of the irradiation light 10 reflected from the sample 2 enters from the probe 1 together with the signal light 11. Since the mixed reflected light 14 is much stronger than the signal light 11, if it is put in the photodetector 6 as it is, the measurement of the signal light 11 is adversely affected and must be removed. The reflection component 14 of the irradiation light 10 reflected from the sample 2 and returning via the probe 1 exits from the connector c1 and reaches the half mirror 8 similarly to the signal light 11, but the half mirror 8 is irradiated with the irradiation light 10. Since a certain laser beam has a high reflectivity, the reflection component 14 is reflected by the half mirror 8 in the direction of the connector c3 and does not transmit in the direction of the connector c2, so that only the signal light 11 is transmitted. It is transmitted to the detector 6. Here, the band-pass filter 9 is for removing unnecessary light components other than the signal light 11 transmitted through the half mirror 8 as described above.

ハーフミラー8の効果により信号光11を主成分とする光がコネクタc2に入り、光ファイバ4bで光検出器6に導かれる。光検出器6に入った信号光は光検出器6に内蔵の分光器でスペクトルに分光され、高感度の光検出器に入射して測定信号に変換され、測定回路へ送られる。
一方、電流注入で生じる信号光11を測定する場合は、レーザ光励起による発光が生じない程度に同じ測定位置でレーザ光の照射を弱めあるいは停止させたのち、信号光11の強度が十分になるまでプローブバイアス電源13からのプローブ電流12を大きくする。この場合、信号光11は光照射測定の場合と同様にハーフミラー8を透過してコネクタc2を経由して光検出器6に入るが、照射光10は無いので高感度に信号光の検出ができる。すなわち、この光分波器7が組み込まれたプローブ型光測定装置では光照射と電流注入の両方の場合で信号光の高感度の測定が可能となる。
Due to the effect of the half mirror 8, the light mainly composed of the signal light 11 enters the connector c2, and is guided to the photodetector 6 by the optical fiber 4b. The signal light that has entered the light detector 6 is split into a spectrum by a spectroscope built in the light detector 6, is incident on a highly sensitive light detector, is converted into a measurement signal, and is sent to a measurement circuit.
On the other hand, when measuring the signal light 11 generated by current injection, after the irradiation of the laser light is weakened or stopped at the same measurement position to the extent that light emission due to laser light excitation does not occur, the intensity of the signal light 11 becomes sufficient. The probe current 12 from the probe bias power supply 13 is increased. In this case, the signal light 11 passes through the half mirror 8 and enters the photodetector 6 via the connector c2 as in the case of the light irradiation measurement. However, since there is no irradiation light 10, the signal light can be detected with high sensitivity. it can. That is, the probe-type optical measuring device incorporating the optical demultiplexer 7 can measure signal light with high sensitivity in both cases of light irradiation and current injection.

本発明による装置をカーボンナノチューブ(CNT)の測定に用いた場合の測定例を以下に説明する。
CNTは太さが数ナノメータから数十ナノメータ程度と細く、発光特性は太さや周囲の環境に大きく影響される。一般的にCNTを調べる試料は平坦な基板上に多数のCNTを散布したものである。個々のCNTは太さや層構造などにばらつきがあり、着目した同一のCNTを測定しないと正確な特性は得られない。したがって、同一のCNTに対してPL(フォトルミネッセンス)とTL(トンネル電子ルミネッセンス)を行うにはナノメータ・レベルの精度で位置合わせをしなくてはならない。ところが従来のようにPLとTLを別々の測定状置で測定した場合には、このような精度の位置合わせは事実上不可能である。例えば、測定されたPLスペクトルとTLスペクトルの間の関連性は保証されない。
An example of measurement when the apparatus according to the present invention is used for measuring carbon nanotubes (CNT) will be described below.
CNTs are as thin as several nanometers to several tens of nanometers, and the light emission characteristics are greatly influenced by the thickness and surrounding environment. In general, a sample for examining CNTs is a sample in which a large number of CNTs are dispersed on a flat substrate. Individual CNTs vary in thickness, layer structure, and the like, and accurate characteristics cannot be obtained unless the same focused CNTs are measured. Therefore, in order to perform PL (photoluminescence) and TL (tunnel electron luminescence) on the same CNT, alignment must be performed with nanometer level accuracy. However, when PL and TL are measured with different measurement positions as in the prior art, such an accurate alignment is virtually impossible. For example, the relationship between the measured PL spectrum and TL spectrum is not guaranteed.

しかし、本発明を用いることによりプローブ1の位置を変えることなくPL測定とTL測定を実行することが可能になる。そのため、測定されたPLスペクトルとTLスペクトルは同一のCNTに対するものであることが保証される。それゆえその結果を用いて意味のある分析ができる。また、本発明では同一環境で両測定を実施することができるので、別々の装置で測定した時に問題となる試料表面の汚染や試料温度の差異等も生じない利点がある。
なお、「背景技術」の項で述べたように信号光11の発生過程としては光照射の場合はフォトルミネッセンスあるいはラマン散乱等があり、電流注入の場合でもカソードルミネッセンス、エレクトロルミネッセンス等があるが、これら発光過程に差があっても、何れも本発明に同様に適用可能となるものである。
However, by using the present invention, it is possible to execute PL measurement and TL measurement without changing the position of the probe 1. Therefore, it is guaranteed that the measured PL spectrum and TL spectrum are for the same CNT. Therefore, the results can be used for meaningful analysis. Further, in the present invention, since both measurements can be performed in the same environment, there is an advantage that the contamination of the sample surface, the difference in the sample temperature, and the like, which are problems when measured by different apparatuses, do not occur.
As described in the “Background Art” section, the generation process of the signal light 11 includes photoluminescence or Raman scattering in the case of light irradiation, and includes cathode luminescence and electroluminescence even in the case of current injection. Even if there is a difference in these light emission processes, any of them can be similarly applied to the present invention.

本発明によるプローブ型光測定装置の構成図。The block diagram of the probe type | mold optical measurement apparatus by this invention.

符号の説明Explanation of symbols

1:プローブ 2:試料 3:容器
4a:光ファイバ(プローブ−光分波器間)
4b:光ファイバ(光検出器−光分波器間)
4c:光ファイバ(照射光源−光分波器間)
5:照射光源(レーザ光源) 6:光検出器
7:光分波器 8:ハーフミラー(バンドパス・フィルタ効果あり)
9:光バンドパス・フィルタ 10:照射光(レーザ光)
11:信号光 12:プローブ電流
13:プローブバイアス電源 14:照射光反射成分
c1,c2,c3:光ファイバのコネクタ
1: Probe 2: Sample 3: Container 4a: Optical fiber (between probe and optical demultiplexer)
4b: Optical fiber (between photodetector and optical demultiplexer)
4c: Optical fiber (between irradiation light source and optical demultiplexer)
5: Irradiation light source (laser light source) 6: Photo detector 7: Optical demultiplexer 8: Half mirror (with band-pass filter effect)
9: Optical bandpass filter 10: Irradiation light (laser light)
11: Signal light 12: Probe current 13: Probe bias power supply 14: Irradiation light reflection component c1, c2, c3: Optical fiber connector

Claims (3)

先端が光透過性と導電性とを有するプローブを有し、
該プローブの先端は被測定試料表面の直近に配置され、
かつ、前記プローブと前記被測定試料表面との間に所定の電位を与えるための電圧を印加する電源を有し、
前記所定の電位の印加により発生した前記被測定試料表面の光を検出する光検出器を有し、
前記プローブと前記光検出器とは光伝送路により光学的に接続されており、
前記被測定試料表面の所定の領域に光を照射する照射光源と、
該照射光源からの光を前記被測定試料表面に導光し、該照射光源からの光により発生した前記被測定試料表面の材料情報を含む信号光を前記光検知器に選択的に導光する光分波器とを有し、
前記光伝送路を第1および第2の光伝送路に2分割し、該第1の光伝送路の1端を前記プローブに他端を前記光分波器の第1のコネクタにそれぞれ接続し、該第2の光伝送路の1端を前記光分波器の第2のコネクタに他端を前記光検知器に接続し、前記照射光源を第3の光伝送路を介して前記光分波器の第3のコネクタに接続し、
前記光分波器は、前記信号光の光成分の中から前記照射光源の光成分を選択的に低減する光バンドパス・フィルタと、前記照射光源からの光を前記プローブに導光する光伝送路とを有していることを特徴とするプローブ型光測定装置。
The tip has a probe that is light transmissive and conductive,
The tip of the probe is arranged in the immediate vicinity of the surface of the sample to be measured,
And a power source for applying a voltage for applying a predetermined potential between the probe and the surface of the sample to be measured,
A photodetector for detecting light on the surface of the sample to be measured generated by application of the predetermined potential;
The probe and the photodetector are optically connected by an optical transmission path,
An irradiation light source for irradiating a predetermined region of the surface of the sample to be measured;
Light from the irradiation light source is guided to the surface of the sample to be measured, and signal light including material information on the surface of the sample to be measured generated by the light from the irradiation light source is selectively guided to the photodetector. An optical demultiplexer,
The optical transmission line is divided into two parts, a first optical transmission line and a second optical transmission line, and one end of the first optical transmission line is connected to the probe and the other end is connected to the first connector of the optical demultiplexer. One end of the second optical transmission line is connected to a second connector of the optical demultiplexer and the other end is connected to the optical detector, and the irradiation light source is connected to the optical demultiplexer via a third optical transmission line. Connect to the third connector of the waver,
The optical demultiplexer includes an optical bandpass filter that selectively reduces a light component of the irradiation light source among light components of the signal light, and an optical transmission that guides light from the irradiation light source to the probe. And a probe-type optical measuring device.
プローブ電流励起による発光を測定する場合に、照射光による発光が生じることがないように照射光源の光強度を低減または停止させる機能を有することを特徴とする請求項1に記載のプローブ型光測定装置。   2. The probe-type optical measurement according to claim 1, which has a function of reducing or stopping the light intensity of the irradiation light source so that the light emission by the irradiation light does not occur when the light emission by the probe current excitation is measured. apparatus. 照射光励起による発光を測定する場合に、プローブ電流励起による発光が生ずることがなく、かつ安定なプローブ走査を確保できるようにプローブ電流あるいはプローブバイアス電圧を低減または零とする機能を有することを特徴とする請求項1に記載のプローブ型光測定装置。   When measuring light emission due to irradiation light excitation, there is no light emission due to probe current excitation, and the probe current or probe bias voltage is reduced or zeroed to ensure stable probe scanning. The probe-type optical measurement device according to claim 1.
JP2004302496A 2004-10-18 2004-10-18 Probe type light measuring device Pending JP2006112988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302496A JP2006112988A (en) 2004-10-18 2004-10-18 Probe type light measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302496A JP2006112988A (en) 2004-10-18 2004-10-18 Probe type light measuring device

Publications (2)

Publication Number Publication Date
JP2006112988A true JP2006112988A (en) 2006-04-27
JP2006112988A5 JP2006112988A5 (en) 2007-03-08

Family

ID=36381604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302496A Pending JP2006112988A (en) 2004-10-18 2004-10-18 Probe type light measuring device

Country Status (1)

Country Link
JP (1) JP2006112988A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680433A (en) * 2012-04-18 2012-09-19 贵州大学 Method and device for compound detecting of luminescent properties of luminescent materials
WO2014081971A1 (en) * 2012-11-21 2014-05-30 Roukes Michael L Highly multiplexed optogenetic neural stimulation using integrated optical technologies
US10638933B2 (en) 2011-09-26 2020-05-05 California Institute Of Technology Brain-machine interface based on photonic neural probe arrays

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10638933B2 (en) 2011-09-26 2020-05-05 California Institute Of Technology Brain-machine interface based on photonic neural probe arrays
CN102680433A (en) * 2012-04-18 2012-09-19 贵州大学 Method and device for compound detecting of luminescent properties of luminescent materials
WO2014081971A1 (en) * 2012-11-21 2014-05-30 Roukes Michael L Highly multiplexed optogenetic neural stimulation using integrated optical technologies

Similar Documents

Publication Publication Date Title
Berthelot et al. Three-dimensional manipulation with scanning near-field optical nanotweezers
Sapienza et al. Deep-subwavelength imaging of the modal dispersion of light
Lucas et al. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science
US7760364B1 (en) Systems and methods for near-field heterodyne spectroscopy
CN102405107B (en) Optical probing in electron microscopes
US10175295B2 (en) Optical nanoprobing of integrated circuits
JP2010197208A (en) Scanning probe microscope and sample observation method using same
WO2021129267A1 (en) Tip-enhanced raman spectroscope microscopic imaging device
JP2016040547A (en) Plasmon evaluation method, plasmon evaluation device and optical pickup
CN113008849B (en) Ultraviolet-near infrared broadband micro-region photoluminescence spectrum testing device
KR20130032088A (en) Scanning absorption nanoscopy system with supercontinuum light sources and spectroscoping method thereof
JP2006112988A (en) Probe type light measuring device
JP2012088283A (en) Probe type light measuring device, and light measuring method
Colas des Francs et al. Energy transfer in near-field optics
Kato et al. Near-field absorption imaging by a Raman nano-light source
Girard et al. Imaging surface photonic states with a circularly polarized tip
Bachelot et al. Probing the Optical Near-Field
Conradt et al. Electric-field fluctuations as the cause of spectral instabilities in colloidal quantum dots
Song Surface plasmon propagation in metal nanowires
Dragnea Near-Field Scanning Optical Microscopy: Chemical Imaging
Klein et al. Near-field Raman spectroscopy using a tetrahedral SNOM tip
SAWANT Study of single nanoparticle spectroscopy and Exciton-plasmon coupling
Dominguez et al. Toward surface plasmon polariton quantum-state tomography
JP2009210357A (en) Near-field probe, cantilever of near-field raman spectroscopic system, near-field raman spectroscopic system and method of controlling near-field raman spectroscopic system
Kato et al. Near-field visible light absorption imaging by Raman-nano-light source

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20070119

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20070119

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Effective date: 20081201

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A02