JP2006112960A - Ultrasonic vortex flowmeter - Google Patents

Ultrasonic vortex flowmeter Download PDF

Info

Publication number
JP2006112960A
JP2006112960A JP2004301717A JP2004301717A JP2006112960A JP 2006112960 A JP2006112960 A JP 2006112960A JP 2004301717 A JP2004301717 A JP 2004301717A JP 2004301717 A JP2004301717 A JP 2004301717A JP 2006112960 A JP2006112960 A JP 2006112960A
Authority
JP
Japan
Prior art keywords
ultrasonic
piezoelectric element
vortex
propagation
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004301717A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshikura
博史 吉倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico System Solutions Co Ltd
Original Assignee
Tokico Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Technology Ltd filed Critical Tokico Technology Ltd
Priority to JP2004301717A priority Critical patent/JP2006112960A/en
Publication of JP2006112960A publication Critical patent/JP2006112960A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic vortex flowmeter, which is easily assembled and in which the width of the propagation route for ultrasonic beam for stably detecting Karman vortices, while stably fixing a piezoelectric element, is controlled so as to suppress variations in the flowmeters. <P>SOLUTION: In the ultrasonic vortex flowmeter, an ultrasonic transmitter 6 (ultrasonic receiver 7) is composed of the piezoelectric element 6a (7a) and a tube-wall section (propagation section) 33 (34), wherein a gap section and a propagation limiting section are formed. As a result, transmission (reception) of ultrasonic waves having sharp directivity can be achieved through the propagation limiting section in the tube-wall section (propagating section) 33. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カルマン渦の発生周期に基づいて管路内を流れる被測流体の流量を計測する超音波渦流量計に関する。   The present invention relates to an ultrasonic vortex flowmeter that measures the flow rate of a fluid to be measured that flows in a pipeline based on the generation period of Karman vortices.

超音波渦流量計は、被測流体の流れ方向と直交する方向に延在する渦発生体を流路内に設け、この渦発生体の下流に、少なくとも一対の超音波送信器及び超音波受信器からなる渦検出センサを設けて構成される。超音波渦流量計は、この渦発生体の下流側流路に被測流体の流量(流速)に応じて発生するカルマン渦を渦検出センサにより検出し、検出したカルマン渦の発生周期に基づいて被測流体の流量(流速)を計測する。渦検出センサは、少なくとも一対の超音波を送信する超音波送信器と超音波を受信する超音波受信器とを、流路を挟んでそれぞれの送信面と受信面とが互いに対向するように配置して構成される。この渦検出センサは、渦発生体の下流側流路に被測流体の流量(流速)に応じて交番発生するカルマン渦を、送信側から発信された超音波と受信側で受信された超音波との間の位相変調量に基づいて検出する。   The ultrasonic vortex flowmeter is provided with a vortex generator extending in a direction orthogonal to the flow direction of the fluid to be measured in the flow path, and at least a pair of ultrasonic transmitter and ultrasonic receiver downstream of the vortex generator. A vortex detection sensor comprising a vessel is provided. The ultrasonic vortex flowmeter uses a vortex detection sensor to detect Karman vortices generated according to the flow rate (velocity) of the fluid to be measured in the downstream flow path of the vortex generator, and based on the detected Karman vortex generation period Measure the flow rate (flow velocity) of the fluid to be measured. The vortex detection sensor has an ultrasonic transmitter that transmits at least a pair of ultrasonic waves and an ultrasonic receiver that receives ultrasonic waves, with each transmission surface and reception surface facing each other across the flow path. Configured. This vortex detection sensor generates Karman vortices that alternately generate in the downstream flow path of the vortex generator according to the flow rate (flow velocity) of the fluid to be measured. The ultrasonic wave transmitted from the transmission side and the ultrasonic wave received on the reception side. Detection is based on the phase modulation amount between

このように構成される超音波渦流量計において、安定した超音波の送受信を行うためには、超音波送信器又は超音波受信器において超音波を発生又は検出するために設けられている圧電素子の振動面(圧電面)を大きくして、その超音波ビーム幅を広くすることが有効である。一方、渦発生体の下流側流路に交番発生するカルマン渦を安定して検出するためには、被測流体中を伝播して超音波受信器により受信される超音波ビームの伝播経路幅を、カルマン渦のピッチP(同一方向にできるn番目のカルマン渦の頭と(n+1)番目のカルマン渦の頭との間隔であり、渦発生体の幅dによって決定され、一般に、P/2=(1/0.56)d、又はP/2=1.6d〜1.8d程度である)よりも小さくする必要がある。   In the ultrasonic vortex flowmeter configured as described above, in order to perform stable ultrasonic wave transmission / reception, a piezoelectric element provided for generating or detecting ultrasonic waves in an ultrasonic transmitter or ultrasonic receiver It is effective to widen the ultrasonic beam width by increasing the vibration surface (piezoelectric surface). On the other hand, in order to stably detect the Karman vortex generated alternately in the downstream flow path of the vortex generator, the propagation path width of the ultrasonic beam that propagates through the measured fluid and is received by the ultrasonic receiver is set. Karman vortex pitch P (the distance between the head of the nth Karman vortex and the head of the (n + 1) th Karman vortex formed in the same direction, determined by the width d of the vortex generator, and generally P / 2 = (1 / 0.56) d or P / 2 = about 1.6d to 1.8d).

これらから、渦発生体が設けられる被測流体の流路の口径に関して、圧電素子による安定した送受信特性を確保するための超音波ビーム幅と、カルマン渦を安定して検出するための超音波ビーム幅(伝播経路幅)とは、トレードオフな関係になっている。   From these, the ultrasonic beam width for ensuring stable transmission / reception characteristics by the piezoelectric element and the ultrasonic beam for stably detecting Karman vortices regarding the diameter of the flow path of the fluid to be measured provided with the vortex generator There is a trade-off relationship with the width (propagation path width).

そのため、超音波渦流量計では、カルマン渦を安定して検出するための超音波ビームの伝播経路幅に合わせて圧電素子の大きさを変えていたのでは、渦発生体が設けられる被測流体の流路の口径が小さい場合は、超音波ビームの安定した送受信特性の確保が難しくなるとともに、被測流体の流路の口径の相違によって圧電素子の共通化もはかれなくなる。   Therefore, in the ultrasonic vortex flowmeter, if the size of the piezoelectric element is changed in accordance with the propagation path width of the ultrasonic beam for stably detecting the Karman vortex, the fluid to be measured in which the vortex generator is provided When the diameter of the flow path is small, it is difficult to ensure stable transmission / reception characteristics of the ultrasonic beam, and the piezoelectric element is not shared due to the difference in the diameter of the flow path of the fluid to be measured.

そこで、従来の超音波渦流量計では、被測流体の流路の口径の相違に関わらず、安定した送受信特性の確保が容易な大きな口径に合わせた圧電素子を使用し、特開平11−271113号公報に記載されているような超音波受信器構造の渦検出センサを採用することによって、カルマン渦を安定して検出するための超音波ビーム幅(伝播経路幅、同公報記載の超音波渦流量計では、受信ビーム幅が対応)を制御している。   Therefore, a conventional ultrasonic vortex flowmeter uses a piezoelectric element having a large diameter that can easily ensure stable transmission / reception characteristics regardless of the difference in the diameter of the flow path of the fluid to be measured. The ultrasonic beam width (propagation path width, ultrasonic vortex described in the publication) for stably detecting Karman vortices by adopting the vortex detection sensor of the ultrasonic receiver structure as described in the publication The flowmeter controls the receiving beam width).

図4は、この従来の超音波渦流量計の横断面である。   FIG. 4 is a cross section of this conventional ultrasonic vortex flowmeter.

図4において、超音波渦流量計18は、被測流体(流れ方向を太矢印で示す)が流れる配管2に対して接続可能に設けられたハウジング3と、ハウジング3に形成された流路4を横切るようにして設けられた渦発生体5と、被測流体の流れによって渦発生体5の後流に生じるカルマン渦Kの発生領域Eを挟んで渦発生体5と直交するように、互いに対向させてハウジング3の流路壁に設けられた一対の超音波送受信器6,7とを備えて構成されている。   In FIG. 4, an ultrasonic vortex flowmeter 18 includes a housing 3 provided so as to be connectable to a pipe 2 through which a fluid to be measured (flow direction is indicated by a thick arrow), and a flow path 4 formed in the housing 3. Between the vortex generator 5 provided across the vortex generator 5 and the vortex generator 5 across the generation region E of the Karman vortex K generated in the wake of the vortex generator 5 due to the flow of the fluid to be measured. A pair of ultrasonic transmitters / receivers 6 and 7 provided on the flow path wall of the housing 3 so as to oppose each other are provided.

超音波送受信器6,7はそれぞれ、圧電素子6a,7aが、ハウジング3の外周部に設けられた取付穴8,9内に挿入され、ハウジング3に螺着、溶着または接着等によって固定される蓋部材10によりシリコンゴム等の弾性体11を介して押圧されて、振動板6b,7bを形成する管壁に接着剤またはグリース等の音響接合剤12を介して密着固定(接合)された構成になっている。   In the ultrasonic transceivers 6 and 7, the piezoelectric elements 6 a and 7 a are respectively inserted into mounting holes 8 and 9 provided in the outer peripheral portion of the housing 3, and are fixed to the housing 3 by screwing, welding, adhesion, or the like. A configuration in which the lid member 10 is pressed through an elastic body 11 such as silicon rubber, and is tightly fixed (bonded) to a tube wall forming the diaphragms 6b and 7b via an acoustic bonding agent 12 such as an adhesive or grease. It has become.

その上で、超音波受信器7の圧電素子7aの取付穴9の底部(振動板7b)の中央部には、圧電素子7aの超音波受信面(振動面)よりも被測流体の流れ方向に沿った方向の幅W1が小さな接合部19が突出され、この接合部19には圧電素子7aの超音波受信面が音響接合剤12を介して接合されている。この接合部19は、流路4内の流体中を伝播して受信側の振動板7bに到達した超音波を、圧電素子7aの超音波受信面に伝達するための音響伝達経路を形成する。   In addition, the flow direction of the fluid to be measured is higher than the ultrasonic wave receiving surface (vibrating surface) of the piezoelectric element 7a at the center of the bottom (vibrating plate 7b) of the mounting hole 9 of the piezoelectric element 7a of the ultrasonic receiver 7. A joint portion 19 having a small width W1 in the direction along the line is projected, and an ultrasonic wave receiving surface of the piezoelectric element 7a is joined to the joint portion 19 via an acoustic joining agent 12. The joint 19 forms an acoustic transmission path for transmitting the ultrasonic wave that has propagated through the fluid in the flow path 4 and reached the receiving diaphragm 7b to the ultrasonic receiving surface of the piezoelectric element 7a.

この場合、被測流体の流れ方向に沿った方向の接合部19の幅W1は、渦発生体5の幅dによって決定されるカルマン渦KのピッチPに基づいて、その幅W1(被測流体の流れ方向に沿った寸法)が渦ピッチPの1/2よりも小さくなるようにしてある(W1<P/2)。具体的には、渦発生体5の幅dと渦ピッチPとの関係(一般に、P/2=(1/0.56)d、又はP/2=1.6d〜1.8d程度)に基づいて、例えば、渦発生体5の幅dに対してW1<1.6d〜1.8d、望ましくはW1≦(1/0.56)dの関係になっている。 このように構成された接合部19は、渦発生体5の後流に生成されるカルマン渦Kの1つによって変調された超音波を、次のようにして受信する。   In this case, the width W1 of the joint portion 19 in the direction along the flow direction of the measured fluid is based on the pitch P of the Karman vortex K determined by the width d of the vortex generator 5 (the measured fluid W1). (A dimension along the flow direction) is smaller than ½ of the vortex pitch P (W1 <P / 2). Specifically, the relationship between the width d of the vortex generator 5 and the vortex pitch P (generally, P / 2 = (1 / 0.56) d, or P / 2 = about 1.6d to 1.8d). Based on this, for example, the relationship of W1 <1.6d to 1.8d, preferably W1 ≦ (1 / 0.56) d, with respect to the width d of the vortex generator 5 is established. The joint 19 configured as described above receives an ultrasonic wave modulated by one of the Karman vortices K generated in the wake of the vortex generator 5 as follows.

まず、超音波送信器6の圧電素子6aから発信された超音波は、所定の送信ビーム幅Tの指向性(広がり)をもって被測流体中を伝播し、カルマン渦Kによって変調されて受信側の振動板7bに到達する。そして、到達した超音波は、接合部19によって形成される音響伝達路及び音響接合剤12を介して、圧電素子7aによって受信される。   First, the ultrasonic wave transmitted from the piezoelectric element 6a of the ultrasonic transmitter 6 propagates in the fluid under measurement with a directivity (expansion) of a predetermined transmission beam width T, is modulated by the Karman vortex K, and is received on the receiving side. It reaches the diaphragm 7b. Then, the reached ultrasonic wave is received by the piezoelectric element 7 a via the acoustic transmission path formed by the joint portion 19 and the acoustic joining agent 12.

このとき、受信側の振動板7bには、圧電素子7aの超音波受信面と振動板7bとの間に接合部19によって空間Sが形成されているので、到達した超音波の伝達経路を接合部19の幅W1に限定して、圧電素子7aの受信ビーム幅R1をカルマン渦のピッチPの1/2よりも小さい接合部19の幅W1に限定できる。   At this time, since the space S is formed by the joint portion 19 between the ultrasonic wave receiving surface of the piezoelectric element 7a and the vibration plate 7b, the transmission path of the reached ultrasonic wave is bonded to the vibration plate 7b on the reception side. The receiving beam width R1 of the piezoelectric element 7a can be limited to the width W1 of the joint portion 19 that is smaller than ½ of the Karman vortex pitch P.

この結果、微小流量の計測のため、管路4の小径化にともなって渦発生体5の幅dが小さくなり、カルマン渦KのピッチPが小さくなった場合でも、渦発生体5の幅dによって決定される渦ピッチPに応じて接合部19の幅W1を充分小さく設定することにより、超音波受信器7の圧電素子7aの寸法を小さくすることなく、所望の超音波の受信ビーム幅R1を得ることができ、単一のカルマン渦Kによる変調を連続的に受けた超音波を受信して流量の計測精度を高めることができるようになっている。   As a result, even when the width d of the vortex generator 5 is reduced as the diameter of the conduit 4 is reduced and the pitch P of the Karman vortex K is reduced, the width d of the vortex generator 5 is measured. By setting the width W1 of the joint 19 to be sufficiently small according to the vortex pitch P determined by the above, the desired ultrasonic reception beam width R1 without reducing the size of the piezoelectric element 7a of the ultrasonic receiver 7 Thus, the ultrasonic wave continuously modulated by the single Karman vortex K can be received to improve the flow rate measurement accuracy.

特開平11−271113号公報JP-A-11-271113

上述した従来構成の超音波渦流量計18では、圧電素子7aは、ハウジング3の取付穴9に嵌合可能な嵌め合い寸法の外周部を有するリテーナ20の端面に形成された凹部にその背部を当接させ、リテーナ20に嵌合された状態でハウジング3の取付穴9内にリテーナ20と一体で収容配置される。その上で、圧電素子7aは、ハウジング3に螺着、溶着又は接着等によって固定される蓋部材10によって、シリコンゴム等の弾性体11を介してリテーナ20とともに取付穴9の軸方向に接合部19側に押圧されることによって、流路4に対する平行度が確保される構成になっている。   In the ultrasonic vortex flowmeter 18 having the conventional configuration described above, the piezoelectric element 7 a has a back portion in a recess formed in an end surface of the retainer 20 having an outer peripheral portion having a fitting size that can be fitted into the mounting hole 9 of the housing 3. The retainer 20 is accommodated and disposed integrally with the retainer 20 in the mounting hole 9 of the housing 3 in a state of being brought into contact with the retainer 20. In addition, the piezoelectric element 7a is joined to the housing 3 in the axial direction of the mounting hole 9 together with the retainer 20 via the elastic body 11 such as silicon rubber by the lid member 10 fixed to the housing 3 by screwing, welding or adhesion. The parallelism with respect to the flow path 4 is ensured by being pressed to the 19th side.

しかしながら、上述した従来構成の超音波渦流量計18では、圧電素子7aはハウジング3の取付穴9内にリテーナ20と一体で収容配置されるため、超音波送受信器6,7を収容したハウジング部分が肉厚になって、その流路面積に比して超音波渦流量計18のハウジング3が大きくなってしまう。そのため、ハウジング3と渦発生体5や取付穴9といったセンサ部を成型で一体的に構成する場合には、不向きであるという問題点があった。   However, in the ultrasonic vortex flowmeter 18 having the conventional configuration described above, the piezoelectric element 7a is housed and disposed integrally with the retainer 20 in the mounting hole 9 of the housing 3, so that the housing portion housing the ultrasonic transceivers 6 and 7 is accommodated. Becomes thick, and the housing 3 of the ultrasonic vortex flowmeter 18 becomes larger than the flow path area. Therefore, there is a problem that the housing 3 and the sensor unit such as the vortex generator 5 and the mounting hole 9 are unsuitable when integrally formed by molding.

また、圧電素子7aの流路4に対する平行度をリテーナ20によって確保する一方で、蓋部材10によって、リテーナ20を介在させ、圧電素子7aの受信面(振動面)中央部を振動板7bの接合部19に対して押圧当接させる構成を採用している。そのため、流路の口径が小さな微小流量計測用の超音波渦流量計に適用した場合は、渦ピッチPが2〜3mmになり、安定して渦を検出できる超音波の受信ビーム幅R1が1mm程度になってしまって接合部19の幅W1も狭くなるため、リテーナ20の取付穴9に対する取付精度(嵌合精度)等といったその組み立てにおける僅かな個体差によって、圧電素子7aの固定が流量計相互間で不安定になり、超音波ビームの透過特性にばらつきが生じる等の問題点があった。   In addition, while the retainer 20 ensures parallelism of the piezoelectric element 7a with respect to the flow path 4, the retainer 20 is interposed by the lid member 10, and the center of the receiving surface (vibration surface) of the piezoelectric element 7a is joined to the diaphragm 7b. A configuration of pressing and contacting the portion 19 is employed. Therefore, when applied to an ultrasonic vortex flowmeter for micro flow measurement with a small diameter of the flow path, the vortex pitch P is 2 to 3 mm, and the received beam width R1 of ultrasonic waves capable of stably detecting the vortex is 1 mm. Since the width W1 of the joint portion 19 becomes narrower, the piezoelectric element 7a is fixed due to slight individual differences in the assembly such as the mounting accuracy (fitting accuracy) of the retainer 20 to the mounting hole 9 and the like. There have been problems such as instability between each other and variation in the transmission characteristics of the ultrasonic beam.

本発明は上述した問題点を鑑みなされたものであって、圧電素子を安定に固定しながらカルマン渦を安定して検出するための超音波ビームの伝播経路幅(超音波ビームの受信ビーム幅R1)を流量計相互間のばらつきを抑えて制御することができ、その組み立ても容易な超音波渦流量計を提供することを目的とする。   The present invention has been made in view of the above-described problems, and is a propagation path width of an ultrasonic beam for stably detecting a Karman vortex while stably fixing a piezoelectric element (received beam width R1 of an ultrasonic beam). It is an object to provide an ultrasonic vortex flowmeter that can be controlled with less variation between flowmeters and can be easily assembled.

本発明の超音波渦流量計は、上述した課題を解決するために、被測流体が流れる流路内に渦発生体を設け、この渦発生体の下流側流路のカルマン渦の発生領域には、少なくとも一対の超音波送信器及び超音波受信器を互いに流路を挟んで対向させて設け、この少なくとも一対の超音波送信器及び超音波受信器によって検出されるカルマン渦の発生周期に基づいて被測流体の流量を計測する超音波渦流量計であって、その少なくとも一対の超音波送信器及び超音波受信器は、圧電素子と、この圧電素子の圧電面と圧電面に対向する流路内壁面との間で超音波を伝播する伝播部とをそれぞれ有し、さらにこの一対の超音波送信器及び超音波受信器の中の少なくとも一方の伝播部には、被測流体の流れ方向に沿って音響インピーダンスの異なる部位を形成して、超音波の伝播部における被測流体の流れ方向に沿った伝播経路幅を、圧電素子の圧電面の被測流体の流れ方向に沿った面幅に比して狭小に規制してなり、かつその圧電素子の圧電面は、被測流体の流れ方向にその両端側と中間部とが少なくとも前記伝播部に接合されて支持されていることを特徴とする。   In order to solve the above-described problem, the ultrasonic vortex flowmeter of the present invention is provided with a vortex generator in a flow path through which a fluid to be measured flows, and in a Karman vortex generation region in a downstream flow path of the vortex generator. Is based on the generation period of Karman vortices detected by at least a pair of ultrasonic transmitters and ultrasonic receivers, facing each other across the flow path. An ultrasonic vortex flowmeter for measuring a flow rate of a fluid to be measured, wherein at least a pair of the ultrasonic transmitter and the ultrasonic receiver includes a piezoelectric element, a piezoelectric surface of the piezoelectric element, and a flow opposite to the piezoelectric surface. Each of the pair of ultrasonic transmitters and ultrasonic receivers includes at least one of the pair of ultrasonic transmitters and ultrasonic receivers. Different parts of acoustic impedance along The propagation path width along the flow direction of the fluid to be measured in the ultrasonic wave propagation part is restricted to be narrower than the surface width along the flow direction of the fluid to be measured on the piezoelectric surface of the piezoelectric element. Further, the piezoelectric surface of the piezoelectric element is characterized in that both end sides and an intermediate portion thereof are supported by being bonded to at least the propagation portion in the flow direction of the fluid to be measured.

その上で、伝播部は、流路を形成する流路管の互いに対向する管壁部によって構成され、音響インピーダンスの異なる部位は、当該管壁部内に形成された空隙部、又は当該管壁部の外周面に形成された溝部によって構成されていることを特徴とする。   In addition, the propagation part is configured by mutually opposing tube wall portions of the flow channel tube forming the flow channel, and the portion having different acoustic impedance is the gap formed in the tube wall portion or the tube wall portion. It is comprised by the groove part formed in the outer peripheral surface of this.

また、伝播部は、流路を形成する流路管と、この流路管の互いに対向する管壁部の外周面に接合されて圧電素子の圧電面を支持する圧電素子支持部材とによって構成され、音響インピーダンスの異なる部位は、当該圧電素子支持部材に形成された空隙部、又は当該圧電素子支持部材の接合面に形成された溝部によって構成されていることを特徴とする。   The propagation part is configured by a flow path tube that forms a flow path, and a piezoelectric element support member that is bonded to the outer peripheral surface of the pipe wall portion facing each other and supports the piezoelectric surface of the piezoelectric element. The parts having different acoustic impedances are constituted by gaps formed in the piezoelectric element support member or grooves formed on the bonding surface of the piezoelectric element support member.

本発明の超音波渦流量計によれば、圧電素子の圧電面は被測流体の流れ方向に沿ってその両端側及び中間部において伝播部に接合されて構成されているから、渦発生体が設けられた流路の口径の相違に関わらず、圧電素子を伝播部に安定させて固定することができる。   According to the ultrasonic vortex flowmeter of the present invention, the piezoelectric surface of the piezoelectric element is configured to be joined to the propagation part at both end sides and the intermediate part along the flow direction of the fluid to be measured. Regardless of the difference in the diameter of the flow path provided, the piezoelectric element can be stably fixed to the propagation part.

さらに、この伝播部には、被測流体の流れ方向に沿って音響インピーダンスの異なる部位を形成して、超音波の伝播部における被測流体の流れ方向に沿った伝播経路幅を、圧電素子の圧電面の被測流体の流れ方向に沿った面幅に比して狭小に規制してなるから、被測流体中を伝播する又は伝播してきた超音波の伝播経路幅を、圧電素子の圧電面の被測流体の流れ方向に沿った面幅によらずに、渦発生体が設けられた流路の口径の相違に応じて適確かつ容易に制御することができ、その組み立ても容易になる。   Further, in this propagation part, a part having different acoustic impedance is formed along the flow direction of the fluid to be measured, and the propagation path width along the flow direction of the fluid to be measured in the propagation part of the ultrasonic wave is determined by the piezoelectric element. Since the piezoelectric surface is restricted to be narrower than the surface width along the flow direction of the fluid to be measured, the propagation path width of the ultrasonic wave propagating through the fluid to be measured or the propagation of the ultrasonic wave is determined by the piezoelectric surface of the piezoelectric element. Regardless of the surface width along the flow direction of the fluid to be measured, it can be accurately and easily controlled according to the difference in the diameter of the flow path provided with the vortex generator, and its assembly is also facilitated. .

さらにまた、本発明の超音波渦流量計によれば、上述のように圧電素子を安定に固定しながら被測流体中を伝播する又は伝播してきた超音波の伝播経路幅を制御することができるので、一対の超音波送信器及び超音波受信器を備えて構成される渦検出センサの送受信特性に関して、流量計相互間のばらつきを低減できるとともに、渦発生体が設けられた流路の口径の相違する流量計同士についても、それぞれの圧電素子を共通化することができる。   Furthermore, according to the ultrasonic vortex flowmeter of the present invention, it is possible to control the propagation path width of the ultrasonic wave that propagates or propagates in the measured fluid while stably fixing the piezoelectric element as described above. Therefore, regarding the transmission / reception characteristics of the vortex detection sensor configured to include a pair of ultrasonic transmitters and ultrasonic receivers, variation between flow meters can be reduced, and the diameter of the flow path provided with the vortex generator can be reduced. The piezoelectric elements can be shared by different flow meters.

本発明の超音波渦流量計の実施の形態について、図面に基づき説明する。なお、その説明にあたって、図4に示した従来の超音波渦流量計18の構成と同一又は同様な構成については、同一の符号を付し、その詳細な説明を省略する。   Embodiments of the ultrasonic vortex flowmeter of the present invention will be described with reference to the drawings. In the description, the same or similar components as those of the conventional ultrasonic vortex flowmeter 18 shown in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.

図1は、本発明の第一の実施の形態の超音波渦流量計の構成図である。図1において、
図1(a)は、本実施の形態の超音波渦流量計の横断面を示し、図1(b)は、本実施の形態の超音波渦流量計に関して、図1(a)中に記載したB−B矢視方向の縦断面図である。
FIG. 1 is a configuration diagram of the ultrasonic vortex flowmeter according to the first embodiment of the present invention. In FIG.
FIG. 1A shows a transverse section of the ultrasonic vortex flowmeter of the present embodiment, and FIG. 1B shows the ultrasonic vortex flowmeter of the present embodiment in FIG. 1A. It is the longitudinal cross-sectional view of the BB arrow direction.

図1に示すように、本実施の形態の超音波渦流量計1-1の流路4を構成するハウジング3は、両端に流入口及び流出口が形成されたフランジ部の形成された円筒の配管部材30によって構成されている。そして、ハウジング3を構成する配管部材30の外周面には、流路4内に配置された渦発生体5の立設方向と平行な面を有する圧電素子固定面31,32が、渦発生体5を中心とする対称位置に形成されている。図示の例では、圧電素子固定面31,32は、円筒の配管部材30の断面円環状の管壁部の一部を、渦発生体5の立設方向と平行な弦方向に沿って除去するようにして形成されている。そして、圧電素子固定面31,32が形成された部分の配管部材30の管壁部分33,34は、その流路径方向の肉厚が他の外周部分に対して薄肉に形成されており、伝播部を構成するようになっている。   As shown in FIG. 1, the housing 3 constituting the flow path 4 of the ultrasonic vortex flowmeter 1-1 of the present embodiment is a cylinder having a flange portion in which an inlet and an outlet are formed at both ends. The piping member 30 is used. On the outer peripheral surface of the piping member 30 constituting the housing 3, piezoelectric element fixing surfaces 31 and 32 having surfaces parallel to the standing direction of the vortex generator 5 disposed in the flow path 4 are provided. 5 is formed at a symmetrical position with 5 as the center. In the illustrated example, the piezoelectric element fixing surfaces 31 and 32 remove a part of an annular tube wall portion of the cylindrical piping member 30 along a chord direction parallel to the standing direction of the vortex generator 5. It is formed in this way. The pipe wall portions 33 and 34 of the pipe member 30 where the piezoelectric element fixing surfaces 31 and 32 are formed are formed so that the thickness in the radial direction of the flow path is thinner than the other outer peripheral portions. The part is configured.

さらに、本実施の形態の場合、外周に圧電素子固定面31,32が形成された管壁部分33,34には、渦発生体5の立設方向と平行に延びる2つの貫通孔35・36,37・38が、流路4の延設方向に沿って並んで形成されている。そして、貫通孔35と貫通孔36との流路4の延設方向に沿った設置間隔W11、及び貫通孔37と貫通孔38との流路4の延設方向に沿った設置間隔W12は、それぞれカルマン渦のピッチPの1/2よりも小さい間隔になっている。その上で、流路4の延設方向に沿った貫通孔35と貫通孔36との間の管壁部分39と、貫通孔37と貫通孔38との間の管壁部分40とは、流路中心軸を中心にして対称関係を有し、流路4の延設方向に関して渦発生体5の下流側に位置するように配置されている。   Further, in the case of the present embodiment, two through holes 35 and 36 extending in parallel to the standing direction of the vortex generator 5 are formed in the tube wall portions 33 and 34 having the piezoelectric element fixing surfaces 31 and 32 formed on the outer periphery. , 37 and 38 are formed side by side along the extending direction of the flow path 4. And the installation interval W11 along the extending direction of the flow path 4 between the through hole 35 and the through hole 36 and the installation interval W12 along the extending direction of the flow path 4 between the through hole 37 and the through hole 38 are: The intervals are smaller than 1/2 of the Karman vortex pitch P. In addition, the tube wall portion 39 between the through hole 35 and the through hole 36 along the extending direction of the flow path 4 and the tube wall portion 40 between the through hole 37 and the through hole 38 are flow-through. It has a symmetrical relationship with respect to the path center axis, and is arranged to be located downstream of the vortex generator 5 in the extending direction of the flow path 4.

この一対の2つの貫通孔35・36,37・38により、外周に圧電素子固定面31,32が形成された管壁部分(伝播部)33,34には、空隙部がそれぞれ形成される。また、貫通孔35と貫通孔36との間の管壁部分39、及び貫通孔37と貫通孔38との間の管壁部分40が、外周に圧電素子固定面31,32が形成された管壁部分(伝播部)33,34における、超音波の被測流体の流れ方向に沿った伝播経路幅を規制する伝播制限部を形成する。   By the pair of two through holes 35, 36, 37, and 38, void portions are formed in the tube wall portions (propagating portions) 33 and 34 in which the piezoelectric element fixing surfaces 31 and 32 are formed on the outer periphery. Further, the tube wall portion 39 between the through hole 35 and the through hole 36 and the tube wall portion 40 between the through hole 37 and the through hole 38 are formed with piezoelectric element fixing surfaces 31 and 32 formed on the outer periphery. Propagation restricting portions for restricting the propagation path width along the flow direction of the ultrasonic fluid to be measured in the wall portions (propagating portions) 33 and 34 are formed.

これに対して、圧電素子6a,7aは、前述した圧電素子固定面31,32には、圧電素子6a,7aが、貫通孔35・36,37・38及び管壁部分39,40と流路4の径方向に重なるようにして、それぞれ音響接合剤12を介して音響的に密着接合されている。その際、圧電素子6a,7aは、超音波の振動が貫通孔(空隙部分)35・36を介する以外は、専ら残余中間部(伝播制限部)45,46を介して伝播するように、圧電素子6a,7aの流路4の延設方向に沿った両端が、2つの貫通孔(空隙部分)35・36の両端,又は2つの貫通孔(空隙部分)37・38の両端から、それぞれ流路4の延設方向にはみ出さないようになっている。圧電素子6aは、図示省略した駆動回路に接続されて励振され、上述した空隙部及び伝播制限部が形成された管壁部分(伝播部)33と一体になって超音波送信器6を構成する。また、圧電素子7aは、図示省略した位相比較回路等を有する渦検出回路に接続され、上述した空隙部及び伝播制限部が形成された管壁部分(伝播部)34と一体になって超音波受信器7を構成する。そして、管壁部分(伝播部)33の内壁面が、超音波送信器6の振動板6bになり、管壁部分(伝播部)34の内壁面が、超音波受信器7の振動板7bになる。   On the other hand, in the piezoelectric elements 6a and 7a, the piezoelectric elements 6a and 7a are connected to the through-holes 35, 36, 37 and 38 and the pipe wall portions 39 and 40 on the piezoelectric element fixing surfaces 31 and 32, respectively. 4 are overlapped in the radial direction of 4 and are acoustically bonded to each other via the acoustic bonding agent 12. At that time, the piezoelectric elements 6a and 7a are piezoelectric so that ultrasonic vibrations propagate only through the remaining intermediate portions (propagation limiting portions) 45 and 46 except through the through holes (gap portions) 35 and 36. Both ends of the elements 6a and 7a along the extending direction of the flow path 4 flow from both ends of the two through holes (gap portions) 35 and 36 or from both ends of the two through holes (gap portions) 37 and 38, respectively. It does not protrude in the extending direction of the path 4. The piezoelectric element 6a is connected to a drive circuit (not shown) and excited, and constitutes the ultrasonic transmitter 6 integrally with the tube wall portion (propagation portion) 33 in which the above-described gap portion and propagation restriction portion are formed. . The piezoelectric element 7a is connected to a vortex detection circuit having a phase comparison circuit (not shown) and is integrated with the above-described tube wall portion (propagation portion) 34 in which the gap portion and the propagation restriction portion are formed. The receiver 7 is configured. The inner wall surface of the tube wall part (propagation part) 33 becomes the diaphragm 6 b of the ultrasonic transmitter 6, and the inner wall surface of the tube wall part (propagation part) 34 becomes the diaphragm 7 b of the ultrasonic receiver 7. Become.

次にこのように構成された本実施の形態の超音波渦流量計1-1の作用について説明する。   Next, the operation of the ultrasonic vortex flow meter 1-1 of the present embodiment configured as described above will be described.

超音波を生成する超音波送信器6の圧電素子6aが励振されると、その振動(超音波振動)は、圧電素子6aの圧電面から、音響接合剤12を介して圧電素子6aの圧電面と音響的に密着接合されている圧電素子固定面31を介して、ハウジング3の管壁部分(伝播部)33に伝播する。この圧電素子固定面31に伝播された超音波は、管壁部分(伝播部)33を、圧電素子固定面31側から流路4の内壁面側へ向けて伝播される。   When the piezoelectric element 6a of the ultrasonic transmitter 6 that generates ultrasonic waves is excited, the vibration (ultrasonic vibration) is transmitted from the piezoelectric surface of the piezoelectric element 6a via the acoustic bonding agent 12 to the piezoelectric surface of the piezoelectric element 6a. And propagates to the tube wall portion (propagating portion) 33 of the housing 3 through the piezoelectric element fixing surface 31 that is acoustically tightly bonded. The ultrasonic wave propagated to the piezoelectric element fixing surface 31 is propagated through the tube wall portion (propagating portion) 33 from the piezoelectric element fixing surface 31 side toward the inner wall surface side of the flow path 4.

その際、超音波は、密度と音速の積で表現される音響インピーダンスの異なる媒体への伝播時には大きな減衰と反射が起こることから、管壁部分(伝播部)33の貫通孔(空隙部分)35,36部分を伝播する超音波は、同じく管壁部分(伝播部)33における管壁部分(伝播制限部)39を伝播する超音波に比べて,非常に小さい音圧でしか伝播しない。そのため、管壁部分(伝播部)33に形成された貫通孔(空隙部分)35,36部分、及び両貫通孔(空隙部分)35,36の間の管壁部分(伝播制限部)39は、管壁部分(伝播部)33の圧電素子固定面31側から流路4の内壁面側へ向けて伝播する超音波のビーム幅R1を絞る効果がある。これにより、管壁部分(伝播部)33における流路4の内壁面からは、流路4の延設方向に沿って音圧レベルが異なった状態で超音波が流路4中の被測流体に対して伝播されることになる。   At that time, since the ultrasonic wave is greatly attenuated and reflected when propagating to a medium having different acoustic impedance expressed by the product of density and sound velocity, the through-hole (gap part) 35 of the tube wall part (propagation part) 33 is generated. , 36 propagates only with a very small sound pressure as compared with the ultrasonic wave propagating through the tube wall portion (propagation limiting portion) 39 in the tube wall portion (propagation portion) 33. Therefore, the through-hole (gap part) 35 and 36 part formed in the pipe wall part (propagation part) 33, and the pipe wall part (propagation restriction part) 39 between both through-holes (gap part) 35 and 36 are: There is an effect of narrowing the beam width R1 of the ultrasonic wave propagating from the piezoelectric element fixing surface 31 side of the tube wall portion (propagating portion) 33 toward the inner wall surface side of the flow path 4. Thereby, from the inner wall surface of the flow path 4 in the pipe wall part (propagation part) 33, an ultrasonic wave is measured in the flow path 4 in a state where the sound pressure level is different along the extending direction of the flow path 4. Will be propagated to.

そして、管壁部分(伝播部)33における流路4の内壁面から被測流体中に伝播した超音波は、渦発生体5の下流側に被測流体の流れにより交番発生するカルマン渦による変調を受けて、対向する管壁部分(伝播部)34における流路4の内壁面に伝播する。   The ultrasonic wave propagated into the measured fluid from the inner wall surface of the flow path 4 in the tube wall portion (propagating portion) 33 is modulated by Karman vortices generated alternately by the flow of the measured fluid downstream of the vortex generator 5. In response, it propagates to the inner wall surface of the flow path 4 in the opposing tube wall part (propagation part) 34.

この管壁部分(伝播部)34においても、被測流体から伝播された超音波は、流路4の内壁面から圧電素子固定面31側へ向けて伝播される。   Also in the tube wall portion (propagating portion) 34, the ultrasonic wave propagated from the fluid to be measured is propagated from the inner wall surface of the flow path 4 toward the piezoelectric element fixing surface 31 side.

しかし、この場合も、管壁部分(伝播部)33の伝播の場合と同様に、流路4の内壁面から圧電素子固定面32側へ向けて伝播される超音波は、貫通孔(空隙部分)37,38部分に差し掛かると、減衰と反射により遮られる。これにより、管壁部分(伝播部)34の圧電素子固定面32から音響接合剤12を介して受信側の圧電素子7aの圧電面に伝達される超音波は、管壁部分(伝播部)34における管壁部分(伝播制限部)40を伝播した超音波だけとなる。   However, in this case as well, as in the case of propagation through the tube wall portion (propagation portion) 33, the ultrasonic wave propagated from the inner wall surface of the flow path 4 toward the piezoelectric element fixing surface 32 side is not transmitted through the through-hole (gap portion). ) When it reaches 37,38 part, it is blocked by attenuation and reflection. As a result, the ultrasonic wave transmitted from the piezoelectric element fixing surface 32 of the tube wall portion (propagating portion) 34 to the piezoelectric surface of the receiving-side piezoelectric element 7 a via the acoustic bonding agent 12 is the tube wall portion (propagating portion) 34. Only the ultrasonic wave propagated through the tube wall portion (propagation limiting portion) 40 in FIG.

そして、圧電素子7aに伝播される超音波による振動は、電気信号に変換されて図示省略した位相比較回路等を有する渦検出回路に供給される。   And the vibration by the ultrasonic wave propagated to the piezoelectric element 7a is converted into an electric signal and supplied to a vortex detection circuit having a phase comparison circuit or the like not shown.

したがって、本実施の形態の超音波渦流量計1-1によれば、圧電素子6aと空隙部並びに伝播制限部が形成された管壁部分(伝播部)33とで構成される超音波送信器6、圧電素子7aと空隙部並びに伝播制限部が形成された管壁部分(伝播部)34とで構成される超音波受信器7とによって、結果として強い指向性を持った超音波の送受信が、貫通孔35と貫通孔36との流路4の延設方向に沿った設置間隔W11、及び貫通孔37と貫通孔38との流路4の延設方向に沿った設置間隔W12に対応した狭いビーム幅R1で実現できる。これにより、渦ピッチPに対して十分狭いビーム幅R1での超音波の送受信が可能になる。   Therefore, according to the ultrasonic vortex flowmeter 1-1 of the present embodiment, an ultrasonic transmitter including the piezoelectric element 6a and the tube wall portion (propagation portion) 33 in which the gap portion and the propagation restriction portion are formed. 6. As a result, transmission and reception of ultrasonic waves having strong directivity are achieved by the ultrasonic receiver 7 including the piezoelectric element 7a and the tube wall portion (propagation portion) 34 in which the gap portion and the propagation restriction portion are formed. , Corresponding to the installation interval W11 along the extending direction of the flow path 4 between the through hole 35 and the through hole 36, and the installation interval W12 along the extending direction of the flow path 4 between the through hole 37 and the through hole 38. This can be realized with a narrow beam width R1. Thereby, transmission / reception of ultrasonic waves with a sufficiently narrow beam width R1 with respect to the vortex pitch P becomes possible.

さらに、本実施の形態の超音波渦流量計1-1によれば、管壁部分(伝播部)33,34に、渦発生体5の立設方向と平行に延びる2つの貫通孔35・36,37・38を、流路4の延設方向に沿って並んで形成しておくだけの構成なので、ハウジング3を成形する際に一体的に貫通孔35,36,37,38を成形したり、又は成形したハウジング3に貫通孔35,36,37,38を穴開け加工するだけで容易に製造することができる。また、圧電素子6a,7aの固定作業も、本実施の形態の超音波渦流量計1-1の場合は、ハウジング3に形成された平坦な圧電素子固定面31,32に音響接合剤12等を用いて音響的に密着接合するだけなので、従来のようにリテーナ20や蓋部材10を用いて圧電素子6a,7aを見えない状態で取付穴8,9内に安定に固定化する必要もない。これにより、圧電素子6a,7aの固定が流量計相互間で不安定になり、超音波ビームの透過特性にばらつきが生じるのを抑制することができ、その組み立ても容易になる。   Furthermore, according to the ultrasonic vortex flowmeter 1-1 of the present embodiment, the two through holes 35 and 36 extending in parallel to the standing direction of the vortex generator 5 are formed in the tube wall portions (propagating portions) 33 and 34. , 37 and 38 are simply formed side by side along the extending direction of the flow path 4, so that when the housing 3 is formed, the through holes 35, 36, 37 and 38 are formed integrally. Alternatively, it can be easily manufactured by simply drilling the through holes 35, 36, 37, 38 in the molded housing 3. In addition, in the case of the ultrasonic vortex flowmeter 1-1 of the present embodiment, the piezoelectric elements 6a and 7a are fixed to the flat piezoelectric element fixing surfaces 31 and 32 formed in the housing 3, and the acoustic bonding agent 12 and the like. Therefore, it is not necessary to stably fix the piezoelectric elements 6a and 7a in the mounting holes 8 and 9 using the retainer 20 and the lid member 10 in a state where they cannot be seen. . As a result, the fixing of the piezoelectric elements 6a and 7a becomes unstable between the flowmeters, and it is possible to suppress variations in the transmission characteristics of the ultrasonic beam, and the assembly thereof is facilitated.

次に、本発明の第二の実施の形態の超音波渦流量計1-2について、図2に基づいて説明する。   Next, an ultrasonic vortex flowmeter 1-2 according to the second embodiment of the present invention will be described with reference to FIG.

図2は、本発明の第二の実施の形態の超音波渦流量計の構成図である。図2において、
図2(a)は、本実施の形態の超音波渦流量計の横断面を示し、図2(b)は、本実施の形態の超音波渦流量計に関して、図2(a)中に記載したB−B矢視方向の縦断面図である。
FIG. 2 is a configuration diagram of the ultrasonic vortex flowmeter according to the second embodiment of the present invention. In FIG.
FIG. 2A shows a cross section of the ultrasonic vortex flowmeter of the present embodiment, and FIG. 2B describes the ultrasonic vortex flowmeter of the present embodiment in FIG. It is the longitudinal cross-sectional view of the BB arrow direction.

本実施の形態の超音波渦流量計1-2は、前述の第一の実施の形態の超音波渦流量計1-1ではハウジング3に直接形成した渦発生体5の立設方向と平行に延びる2つの貫通孔(空隙部分)35・36,37・38、及び両者間の管壁部分(伝播制限部)39,40を、ハウジング3とは別体に、圧電素子固定面31,32に取り付け固定される圧電素子31,32の圧電素子基台51,52によって形成したものである。   The ultrasonic vortex flowmeter 1-2 of the present embodiment is parallel to the standing direction of the vortex generator 5 formed directly on the housing 3 in the ultrasonic vortex flowmeter 1-1 of the first embodiment described above. Two extending through holes (gap portions) 35, 36, 37, and 38, and tube wall portions (propagation limiting portions) 39 and 40 between them are separated from the housing 3, and are attached to the piezoelectric element fixing surfaces 31 and 32. The piezoelectric element bases 51 and 52 of the piezoelectric elements 31 and 32 to be attached and fixed are formed.

圧電素子基台51,52は、圧電素子6a,7aが音響接合剤12等を用いて接合固定される面側とは反対側のハウジング固定面53,54に、ハウジング3の圧電素子固定面31,32に取り付けられた状態で、渦発生体5の立設方向とそれぞれの延設方向が同じ(平行)になるように、2つの溝部55・56,57・58が、流路4の延設方向に沿って間隔を置いて並ぶように形成されている。各圧電素子基台51,52において、2つの溝部55・56,57・58間のハウジング固定面53,54における残余中間部59,60は、カルマン渦のピッチPの1/2よりも小さい幅W11,W12を有するようになっている。   The piezoelectric element bases 51 and 52 are arranged on the housing fixing surfaces 53 and 54 on the opposite side to the surface on which the piezoelectric elements 6 a and 7 a are bonded and fixed using the acoustic bonding agent 12 or the like, and the piezoelectric element fixing surface 31 of the housing 3. , 32, the two grooves 55, 56, 57, 58 extend the flow path 4 so that the standing direction of the vortex generator 5 and the extending direction thereof are the same (parallel). It is formed so as to be arranged at intervals along the installation direction. In each piezoelectric element base 51, 52, the remaining intermediate portions 59, 60 on the housing fixing surfaces 53, 54 between the two grooves 55, 56, 57, 58 have a width smaller than 1/2 of the Karman vortex pitch P. W11 and W12 are provided.

このように構成された本実施の形態の超音波渦流量計1-2によれば、各圧電素子基台51,52のハウジング固定面53,54側を、残余中間部59,60同士が流路中心軸を中心にして対称関係になり、流路4の延設方向に関して渦発生体5の下流側に位置するようにして、ハウジング3の圧電素子固定面31,32に接合固定することによって、2つの溝部55・56,57・58は前述した第一の実施の形態の超音波渦流量計1-1における2つの貫通孔(空隙部分)35・36,37・38として、また残余中間部59,60は同じく管壁部分(伝播制限部)39,40として機能するようになる。   According to the ultrasonic vortex flowmeter 1-2 of the present embodiment configured as described above, the remaining intermediate portions 59, 60 flow on the housing fixing surfaces 53, 54 side of the piezoelectric element bases 51, 52. By being bonded and fixed to the piezoelectric element fixing surfaces 31 and 32 of the housing 3 so as to be symmetrical with respect to the center axis of the path and to be located downstream of the vortex generator 5 with respect to the extending direction of the flow path 4. The two grooves 55, 56, 57, and 58 are formed as two through holes (gap portions) 35, 36, 37, and 38 in the ultrasonic vortex flowmeter 1-1 of the first embodiment described above, and the remaining middle. Similarly, the portions 59 and 60 function as tube wall portions (propagation limiting portions) 39 and 40.

この結果、本実施の形態の超音波渦流量計1-2によっても、前述した第一の実施の形態の超音波渦流量計1-1の場合と同様な作用・効果を奏することができる。   As a result, the ultrasonic vortex flow meter 1-2 according to the present embodiment can provide the same operations and effects as those of the ultrasonic vortex flow meter 1-1 according to the first embodiment described above.

次に、本発明の第三の実施の形態の超音波渦流量計1-3について、図3に基づいて説明する。   Next, an ultrasonic vortex flow meter 1-3 according to a third embodiment of the present invention will be described with reference to FIG.

図3は、本発明の第三の実施の形態の超音波渦流量計の構成図である。図3において、
図3(a)は、本実施の形態の超音波渦流量計の横断面を示し、図3(b)は、本実施の形態の超音波渦流量計に関して、図3(a)中に記載したB−B矢視方向の縦断面図である。
FIG. 3 is a configuration diagram of an ultrasonic vortex flowmeter according to the third embodiment of the present invention. In FIG.
FIG. 3A shows a transverse section of the ultrasonic vortex flowmeter of the present embodiment, and FIG. 3B describes the ultrasonic vortex flowmeter of the present embodiment in FIG. It is the longitudinal cross-sectional view of the BB arrow direction.

本実施の形態の超音波渦流量計1-3は、前述の第一の実施の形態の超音波渦流量計1-1ではハウジング3に直接形成した渦発生体5の立設方向と平行に延びる2つの貫通孔(空隙部分)35・36,37・38、及び両者間の管壁部分(伝播制限部)39,40を、ハウジング3の圧電素子固定面31,32に形成された2つの溝部41・42,43・44と圧電素子6a,7aとを用いて構成している。この2つの溝部41・42,43・44は、圧電素子固定面31,32に、渦発生体5の立設方向とそれぞれの延設方向が同じ(平行)になるように、流路4の延設方向に沿って間隔を置いて並ぶように設けられている。そして、2つの溝部41・42,43・44間の圧電素子固定面31,32における残余中間部45,46は、カルマン渦のピッチPの1/2よりも小さい幅W11,W12を有するようになっている。   The ultrasonic vortex flow meter 1-3 of the present embodiment is parallel to the standing direction of the vortex generator 5 directly formed on the housing 3 in the ultrasonic vortex flow meter 1-1 of the first embodiment described above. Two extending through holes (gap portions) 35, 36, 37, and 38, and tube wall portions (propagation limiting portions) 39 and 40 therebetween are formed on the two piezoelectric element fixing surfaces 31 and 32 of the housing 3. The groove portions 41, 42, 43 and 44 and the piezoelectric elements 6a and 7a are used. The two grooves 41, 42, 43, 44 are arranged on the piezoelectric element fixing surfaces 31, 32 so that the extending direction of the vortex generator 5 and the extending direction thereof are the same (parallel). It is provided so as to be arranged at intervals along the extending direction. The remaining intermediate portions 45 and 46 in the piezoelectric element fixing surfaces 31 and 32 between the two groove portions 41 and 42 and 43 and 44 have widths W11 and W12 smaller than ½ of the Karman vortex pitch P. It has become.

このように構成された本実施の形態の超音波渦流量計1-3によれば、ハウジング3の溝部41・42,43・44以外の残余の圧電素子固定面31,32に、圧電素子6a,7aを薄板状の架橋部材47,48を介して間接的に接合固定することによって、2つの溝部41・42,43・44は前述した第一の実施の形態の超音波渦流量計1-1における2つの貫通孔(空隙部分)35・36,37・38として、また残余中間部45,46は同じく管壁部分(伝播制限部)39,40として機能するようになる。   According to the ultrasonic vortex flowmeter 1-3 of the present embodiment configured as described above, the piezoelectric element 6a is formed on the remaining piezoelectric element fixing surfaces 31, 32 other than the groove portions 41, 42, 43, 44 of the housing 3. , 7a are indirectly joined and fixed through thin plate-like bridging members 47, 48, so that the two groove portions 41, 42, 43, 44 are the ultrasonic vortex flowmeter 1- of the first embodiment described above. 1 and the remaining intermediate portions 45 and 46 function as tube wall portions (propagation limiting portions) 39 and 40, respectively.

なお、本実施の形態において、圧電素子6a,7aを架橋部材47,48を介して圧電素子固定面31,32に間接的に接合固定するようにしたのは、圧電素子6a,7aの流路4の延設方向に沿った両端が、第一,第二の実施の超音波渦流量計1-1,1-2と同様に2つの貫通孔(空隙部分)35・36の両端,又は2つの貫通孔(空隙部分)37・38の両端から、それぞれ流路4の延設方向にはみ出さないようにして、圧電素子6a,7aの圧電素子固定面31,32に対する取り付けの安定化をはかるとともに、超音波の振動が貫通孔(空隙部分)35・36を介する以外は、専ら残余中間部(伝播制限部)45,46を介して伝播するようにしたためである。   In the present embodiment, the piezoelectric elements 6a and 7a are indirectly bonded and fixed to the piezoelectric element fixing surfaces 31 and 32 via the bridging members 47 and 48. 4, both ends along the extending direction are the ends of the two through-holes (gap portions) 35 and 36, as in the ultrasonic vortex flowmeters 1-1 and 1-2 of the first and second embodiments, or 2 The attachment of the piezoelectric elements 6a and 7a to the piezoelectric element fixing surfaces 31 and 32 is stabilized so as not to protrude from both ends of the two through holes (gap portions) 37 and 38 in the extending direction of the flow path 4, respectively. In addition, this is because the ultrasonic vibration propagates exclusively through the remaining intermediate portions (propagation limiting portions) 45 and 46 except through the through holes (gap portions) 35 and 36.

この結果、本実施の形態の超音波渦流量計1-3によっても、前述した第一,第二の実施の形態の超音波渦流量計1-1,1-2の場合と同様な作用・効果を奏することができる。   As a result, the ultrasonic vortex flowmeter 1-3 of the present embodiment also has the same effect as the ultrasonic vortex flowmeters 1-1 and 1-2 of the first and second embodiments described above. There is an effect.

以上説明したように、本発明の実施の形態の超音波渦流量計1は構成されるが、本発明の超音波渦流量計の実施の形態は、上述した構成に限られるものではない。   As described above, the ultrasonic vortex flowmeter 1 of the embodiment of the present invention is configured, but the embodiment of the ultrasonic vortex flowmeter of the present invention is not limited to the above-described configuration.

例えば、上述した超音波渦流量計1-1,1-2,1-3では、いずれも送受信のために超音波送信器6側の伝播部及び超音波受信器7側の伝播部両方に、空隙部及び伝播制限部を形成するように構成したが、ビーム幅R1の狭い超音波を受信するためには、超音波送信器6側又は超音波受信器7側いずれか一方の伝播部にのみに空隙部及び伝播制限部を構成するだけでよく、上述した超音波渦流量計1-1,1-2,1-3においても、超音波送信器6側又は超音波受信器7側いずれか一方の伝播部の空隙部及び伝播制限部を省略することも可能である。   For example, in the ultrasonic vortex flowmeters 1-1, 1-2, and 1-3 described above, both of the propagation unit on the ultrasonic transmitter 6 side and the propagation unit on the ultrasonic receiver 7 side are used for transmission and reception. Although the gap portion and the propagation restriction portion are formed, in order to receive an ultrasonic wave having a narrow beam width R1, only the propagation portion on either the ultrasonic transmitter 6 side or the ultrasonic receiver 7 side is used. In the ultrasonic vortex flowmeters 1-1, 1-2, and 1-3 described above, either the ultrasonic transmitter 6 side or the ultrasonic receiver 7 side may be used. It is also possible to omit the gap part and the propagation restriction part of one propagation part.

また、上述した超音波渦流量計1-1,1-2,1-3では、超音波送信器6及び超音波受信器7を一対だけ設けた超音波渦流量計を例に説明したが、本発明は、超音波送信器6及び超音波受信器7を複数対設けた超音波渦流量計にも適用可能である。   In the above-described ultrasonic vortex flowmeters 1-1, 1-2, and 1-3, the ultrasonic vortex flowmeter provided with only one pair of the ultrasonic transmitter 6 and the ultrasonic receiver 7 has been described as an example. The present invention is also applicable to an ultrasonic vortex flowmeter provided with a plurality of pairs of ultrasonic transmitters 6 and ultrasonic receivers 7.

本発明の第一の実施の形態の超音波渦流量計の構成図である。It is a block diagram of the ultrasonic vortex flowmeter of 1st embodiment of this invention. 本発明の第二の実施の形態の超音波渦流量計の構成図である。It is a block diagram of the ultrasonic vortex flowmeter of 2nd embodiment of this invention. 本発明の第三の実施の形態の超音波渦流量計の構成図である。It is a block diagram of the ultrasonic vortex flowmeter of 3rd embodiment of this invention. 従来の超音波渦流量計の横断面図である。It is a cross-sectional view of a conventional ultrasonic vortex flowmeter.

符号の説明Explanation of symbols

1-1,1-2,1-3 超音波渦流量計
4 流路
5 渦発生体
6 超音波送信器
7 超音波受信器
6a,7a 圧電素子
6b,7b 振動板
19 接合部
30 配管部材
31,32 圧電素子固定面
33,34 管壁部分(伝播部)
35・36,37・38 貫通孔(空隙部)
39,40 管壁部分(伝播制限部)
41,42,43,44 溝部(空隙部)
45,46 残余中間部
47,48 架橋部材
51,52 圧電素子基台
53,54 ハウジング固定面
55,56,57,58 溝部(空隙部)
59,60 残余中間部(伝播制限部)
K カルマン渦
1-1, 1-2, 1-3 Ultrasonic vortex flowmeter 4 Flow path 5 Vortex generator 6 Ultrasonic transmitter 7 Ultrasonic receiver 6a, 7a Piezoelectric element 6b, 7b Diaphragm 19 Joint 30 Piping member 31 , 32 Piezoelectric element fixing surface 33, 34 Tube wall part (propagation part)
35/36, 37/38 Through hole (void)
39, 40 Tube wall part (propagation limiting part)
41, 42, 43, 44 Groove (gap)
45, 46 Remaining intermediate portion 47, 48 Bridging member 51, 52 Piezoelectric element base 53, 54 Housing fixing surface 55, 56, 57, 58 Groove (gap)
59,60 Remaining middle part (propagation restriction part)
K Karman vortex

Claims (3)

被測流体が流れる流路内に渦発生体を設け、
該渦発生体の下流側流路のカルマン渦の発生領域には、少なくとも一対の超音波送信器及び超音波受信器を互いに流路を挟んで対向させて設け、
前記少なくとも一対の超音波送信器及び超音波受信器によって検出されるカルマン渦の発生周期に基づいて被測流体の流量を計測する超音波渦流量計であって、
前記少なくとも一対の超音波送信器及び超音波受信器は、圧電素子と、該圧電素子の圧電面と該圧電面に対向する流路内壁面との間で超音波を伝播する伝播部とをそれぞれ有し、
前記一対の超音波送信器及び超音波受信器の中の少なくとも一方の前記伝播部には、被測流体の流れ方向に沿って音響インピーダンスの異なる部位を形成して、超音波の前記伝播部における被測流体の流れ方向に沿った伝播経路幅を、前記圧電素子の圧電面の被測流体の流れ方向に沿った面幅に比して狭小に規制してなり、
かつ前記圧電素子の圧電面は、被測流体の流れ方向にその両端側と中間部とが少なくとも前記伝播部に接合されて支持されている
ことを特徴とする超音波渦流量計。
A vortex generator is provided in the flow path through which the fluid to be measured flows.
In the Karman vortex generation region of the downstream flow path of the vortex generator, at least a pair of ultrasonic transmitters and ultrasonic receivers are provided facing each other across the flow path,
An ultrasonic vortex flowmeter that measures a flow rate of a fluid to be measured based on a Karman vortex generation period detected by the at least one pair of ultrasonic transmitter and ultrasonic receiver,
The at least a pair of ultrasonic transmitters and ultrasonic receivers each include a piezoelectric element and a propagation unit that propagates ultrasonic waves between the piezoelectric surface of the piezoelectric element and the inner wall surface of the flow channel facing the piezoelectric surface. Have
In the propagation part of at least one of the pair of ultrasonic transmitters and ultrasonic receivers, a part having different acoustic impedance is formed along the flow direction of the fluid to be measured, and the ultrasonic wave in the propagation part The propagation path width along the flow direction of the measured fluid is restricted to be narrower than the width of the piezoelectric surface of the piezoelectric element along the flow direction of the measured fluid,
The piezoelectric vortex flowmeter is characterized in that the piezoelectric surface of the piezoelectric element is supported with at least both ends and an intermediate part thereof joined to the propagation part in the flow direction of the fluid to be measured.
前記伝播部は、流路を形成する流路管の互いに対向する管壁部によって構成され、前記音響インピーダンスの異なる部位は、当該管壁部内に形成された空隙部、又は当該管壁部の外周面に形成された溝部によって構成されている
ことを特徴とする請求項1記載の超音波渦流量計。
The propagation part is configured by mutually opposing tube wall portions of a flow channel tube that forms a flow channel, and the portion having a different acoustic impedance is a void formed in the tube wall portion, or an outer periphery of the tube wall portion The ultrasonic vortex flowmeter according to claim 1, wherein the ultrasonic vortex flowmeter is constituted by a groove formed on the surface.
前記伝播部は、流路を形成する流路管の管壁部と、該流路管の互いに対向する管壁部の外周面に接合されて前記圧電素子の圧電面を支持する圧電素子支持部材とによって構成され、前記音響インピーダンスの異なる部位は、当該圧電素子支持部材に形成された空隙部、又は当該圧電素子支持部材の接合面に形成された溝部によって構成されている
ことを特徴とする請求項1記載の超音波渦流量計。
The propagation part is joined to the outer peripheral surface of the pipe wall part of the flow path pipe that forms the flow path and the pipe wall part of the flow path pipe facing each other, and supports the piezoelectric surface of the piezoelectric element. The part having different acoustic impedance is constituted by a gap formed in the piezoelectric element support member, or a groove formed in the bonding surface of the piezoelectric element support member. Item 2. The ultrasonic vortex flowmeter according to Item 1.
JP2004301717A 2004-10-15 2004-10-15 Ultrasonic vortex flowmeter Pending JP2006112960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301717A JP2006112960A (en) 2004-10-15 2004-10-15 Ultrasonic vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301717A JP2006112960A (en) 2004-10-15 2004-10-15 Ultrasonic vortex flowmeter

Publications (1)

Publication Number Publication Date
JP2006112960A true JP2006112960A (en) 2006-04-27

Family

ID=36381581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301717A Pending JP2006112960A (en) 2004-10-15 2004-10-15 Ultrasonic vortex flowmeter

Country Status (1)

Country Link
JP (1) JP2006112960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057411A (en) * 2019-03-12 2019-07-26 王涵青 A kind of flow rate testing methods based on acoustic emission signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223537A (en) * 1998-02-06 1999-08-17 Yokogawa Electric Corp Ultrasonic vortex flowmeter
JPH11271113A (en) * 1998-03-23 1999-10-05 Tokico Ltd Ultrasonic vortex flowmeter
JPH11287679A (en) * 1998-03-31 1999-10-19 Tokico Ltd Ultrasonic vortex flowmeter
JP2001289679A (en) * 2000-04-06 2001-10-19 Oval Corp Ultrasonic type vortex flowmeter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223537A (en) * 1998-02-06 1999-08-17 Yokogawa Electric Corp Ultrasonic vortex flowmeter
JPH11271113A (en) * 1998-03-23 1999-10-05 Tokico Ltd Ultrasonic vortex flowmeter
JPH11287679A (en) * 1998-03-31 1999-10-19 Tokico Ltd Ultrasonic vortex flowmeter
JP2001289679A (en) * 2000-04-06 2001-10-19 Oval Corp Ultrasonic type vortex flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057411A (en) * 2019-03-12 2019-07-26 王涵青 A kind of flow rate testing methods based on acoustic emission signal
CN110057411B (en) * 2019-03-12 2020-09-25 王涵青 Flow detection method based on acoustic emission signals

Similar Documents

Publication Publication Date Title
JP4233445B2 (en) Ultrasonic flow meter
JP2008134267A (en) Ultrasonic flow measurement method
JPWO2006040996A1 (en) Ultrasonic flow meter
JPH109914A (en) Ultrasonic flowmeter
JPWO2005083371A1 (en) Doppler ultrasonic flow meter
JP2008275607A (en) Ultrasonic flow meter
JP2000337940A (en) Flowmeter
JP2008267848A (en) Ultrasonic flowmeter
JP2006112960A (en) Ultrasonic vortex flowmeter
JP2002236042A (en) Flowmeter
JP4069222B2 (en) Ultrasonic vortex flowmeter
JP7151311B2 (en) ultrasonic flow meter
JP2000065613A (en) Ultrasonic flowmeter
KR100732116B1 (en) Vortex flowmeter
JP3144177B2 (en) Vortex flow meter
JP2004251653A (en) Ultrasonic flowmeter
JP2000193503A (en) Flowmeter
JP4561071B2 (en) Flow measuring device
JP6532504B2 (en) Ultrasonic flow meter
JPH0572011A (en) Ultrasonic flowmeter
JP2883057B2 (en) Ultrasonic transducer
JP2011226910A (en) Ultrasonic velocity flowmeter
JPS631217Y2 (en)
JP2021139738A (en) Transducer for ultrasonic flowmeter and method for adjusting ultrasonic flowmeter
JP6674252B2 (en) Clamp-on ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308