JP2006111484A - Forming mold for optical device and forming method - Google Patents

Forming mold for optical device and forming method Download PDF

Info

Publication number
JP2006111484A
JP2006111484A JP2004300052A JP2004300052A JP2006111484A JP 2006111484 A JP2006111484 A JP 2006111484A JP 2004300052 A JP2004300052 A JP 2004300052A JP 2004300052 A JP2004300052 A JP 2004300052A JP 2006111484 A JP2006111484 A JP 2006111484A
Authority
JP
Japan
Prior art keywords
optical element
mold
molding
outer diameter
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004300052A
Other languages
Japanese (ja)
Inventor
Hiroyuki Seki
博之 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004300052A priority Critical patent/JP2006111484A/en
Publication of JP2006111484A publication Critical patent/JP2006111484A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forming mold for an optical device and a forming method in which the optical device having an aperture of a middle diameter (ψ30) or smaller and large uneven thickness is formed for a short time with excellent precision by giving the temperature distribution to a mold to uniformly contract an optical device base material in cooling. <P>SOLUTION: The forming mold for the optical device for pressing the heated and softened optical device base material 6 to thereby transfer the optical surface profile of the forming surface is constituted so as to have the temperature distribution in the cooling process using cooling heater plates 4A and 4B by providing recessed parts 11a, 12a corresponding to a thin part of the optical device base material 6 and projecting parts 11b, 12b corresponding to the thick part of the optical device base material 6 on a back surface part where is a contact part of heating heater plates 3A, 3B with the cooling heater plates 4A, 4B. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、加熱軟化させた光学素子素材を成形型の成形面で加圧した後に冷却する光学素子の成形型及び成形方法に関し、特に、中口径(φ30)以下で偏肉の大きいレンズを短時間で精度よく成形することができる光学素子の成形型及び成形方法に関する。   The present invention relates to an optical element molding die and a molding method for cooling an optical element material that has been softened by heating on a molding surface of a molding die, and in particular, a lens having a medium diameter (φ30) or less and a large deviation is short. The present invention relates to a molding die and a molding method for an optical element that can be molded accurately in time.

従来からガラス等の光学素子素材を金型内で加熱軟化させてプレス成形するレンズ、プリズム等の光学素子の成形装置及び成形方法が知られている。例えば、特開平8−259240号(特許文献1)では、複数の独立した成形ブロック内に載置した光学素子素材を、複数個同時にチャンバー内に投入し、前記光学素子素材を、温度制御ブロックと均熱手段を有する加熱ステージ、加圧成形ステージ、冷却ステージの各ステージを所望の光学素子成形温度プロフィルで移動させながら複数個同時に同一成形条件で加熱軟化し、加圧成形する光学素子の成形装置及び成形方法が提案されている。   2. Description of the Related Art Conventionally, a molding apparatus and a molding method for an optical element such as a lens and a prism that heat-soften an optical element material such as glass in a mold and press-mold it are known. For example, in Japanese Patent Application Laid-Open No. 8-259240 (Patent Document 1), a plurality of optical element materials placed in a plurality of independent molding blocks are simultaneously placed in a chamber, and the optical element materials are referred to as temperature control blocks. An optical element molding apparatus that simultaneously heats and softens a plurality of stages including a heating stage, a pressure molding stage, and a cooling stage having soaking means with the desired molding temperature profile, and softens them under the same molding conditions. And forming methods have been proposed.

このような従来の光学素子の成形装置及び成形方法では、光学素子素材の加熱又は冷却を上下金型の各底面部を、加熱ステージ又は冷却ステージに接触させ、上下金型の熱伝導により光学素子素材を加熱又は冷却していた。
特開平8−259240号公報 特開2004−137146号公報
In such a conventional optical element molding apparatus and molding method, the optical element material is heated or cooled by bringing each bottom surface portion of the upper and lower molds into contact with the heating stage or the cooling stage, and the optical element is heated by the heat conduction of the upper and lower molds. The material was heated or cooled.
JP-A-8-259240 JP 2004-137146 A

ところが、上述した従来の光学素子の成形装置及び成形方法では、図9及び図10に示すように、プレス成形後の光学素子素材100,200を上下金型110,120又は210,220の熱伝導により吸熱して冷却していたが、例えば、凸レンズや凹レンズのように、中心部と外周部とで偏肉の大きい光学素子素材100,200を冷却する場合は、収縮量の小さい薄肉の箇所の収縮が先に完了して固化し、収縮量の大きい厚肉の箇所の収縮がこれに遅れて完了する。   However, in the conventional optical element molding apparatus and molding method described above, as shown in FIGS. 9 and 10, the heat conduction of the upper and lower molds 110, 120 or 210, 220 is applied to the optical element material 100, 200 after press molding. However, when cooling the optical element materials 100 and 200 having a large thickness deviation between the center and the outer periphery, such as a convex lens and a concave lens, for example, a thin portion with a small contraction amount is cooled. Shrinkage is completed and solidified first, and the shrinkage of the thick portion where the shrinkage amount is large is completed later.

このため、凸レンズならば遅れて固化する中心部、凹レンズならば遅れて固化する外周部が、上下金型110,120又は210,220の成形面から剥離した状態で収縮してしまうので(図9及び図10の点線で囲んだ箇所を参照)、成形品たる光学素子の形状精度が低下してしまうという問題があった。   For this reason, if it is a convex lens, the center part which solidifies late will be shrunk in the state which the outer peripheral part solidified late if it is a concave lens in the state which peeled from the molding surface of the upper and lower metal mold | die 110,120 or 210,220 (FIG. 9). And the portion surrounded by the dotted line in FIG. 10), there is a problem that the shape accuracy of the optical element as a molded product is lowered.

なお、特開2004−137146号(特許文献2)では、相対する一対の上型と下型とからなる成形型の間に光学ガラス素材を配置し、前記成形型を加熱するとともに、前記光学ガラス素材を流動可能な状態まで加熱し、前記成形型を相対的に接近させることにより押圧成形を行い、冷却後に前記成形型と前記光学ガラス素材とを離反させて前記光学ガラス素材を取り出す成形方法において、前記加熱時、前記冷却時、又は前記加熱時及び冷却時に、前記成形型に温度分布を付与する光学ガラス素子の成形方法が提案されている。   In JP-A-2004-137146 (Patent Document 2), an optical glass material is arranged between a pair of upper and lower molds facing each other, the mold is heated, and the optical glass is heated. In a molding method in which a material is heated to a flowable state, press molding is performed by relatively moving the molding die, and the molding die and the optical glass material are separated from each other after cooling to take out the optical glass material. There has been proposed a method for molding an optical glass element that imparts a temperature distribution to the mold during the heating, during the cooling, or during the heating and during the cooling.

しかし、このよう成形方法では、温度分布を付与するためのカートリッジヒータ、ランプヒータ等の大掛かりな設備が必要であり、大口径の光学素子をプレス成形する場合には好適であるが、特開平8−259240号の如き成形装置及び成形方法により、中口径(φ30)以下の光学素子をプレス成形する場合には、構成が複雑かつ大掛かりで適用が困難である。   However, such a molding method requires large-scale equipment such as a cartridge heater and a lamp heater for imparting a temperature distribution, and is suitable when press molding a large-diameter optical element. When an optical element having a medium aperture (φ30) or less is press-molded by a molding apparatus and molding method such as No. -259240, the configuration is complicated and large and difficult to apply.

本発明は上記問題点に鑑みてなされたものであり、冷却時の光学素子素材が均等に収縮するよう金型に温度分布をもたせ、中口径(φ30)以下で偏肉の大きい光学素子を短時間で精度よく成形することができる光学素材の成形型及び成形方法の提供を目的とする。   The present invention has been made in view of the above-mentioned problems. A temperature distribution is imparted to the mold so that the optical element material shrinks evenly during cooling, and an optical element having a medium diameter (φ30) or less and a large deviation is shortened. An object of the present invention is to provide a molding die and a molding method for an optical material that can be molded accurately in time.

上記目的を達成するために、本発明の光学素材の成形型は、加熱軟化させた光学素子素材を加圧して成形面の光学面形状を転写する光学素子の成形型において、加熱用及び冷却用ヒータプレートとの接触部である背面部に、前記光学素子素材の薄肉部に対応する凹部と、前記光学素子素材の厚肉部に対応する凸部とを設けることにより、前記冷却用ヒータプレートによる冷却工程で前記成形型に温度分布をもたせた構成としてある。   In order to achieve the above object, the optical material molding die of the present invention is an optical element molding die that pressurizes a heat-softened optical element material to transfer the optical surface shape of the molding surface. By providing a concave portion corresponding to the thin portion of the optical element material and a convex portion corresponding to the thick portion of the optical element material on the back surface portion that is a contact portion with the heater plate, the cooling heater plate In the cooling process, the mold has a temperature distribution.

好ましくは、前記成形型が、最大外径をφX、中心部と外周部の光軸方向厚さの比を偏肉hとした凸レンズを成形するものであって、前記成形型の最大外径をφkとするとともに、光軸方向に対する前記成形面から底面までの中心厚さをCtとし、前記凸部の外径φoが下記式(1)を満たす構成とする。

φo=φk×α×Ct0.5×Log(e)h+φk …(1)

但し、φo>0、係数αは−1<α<−0.2、βは成形型の最大外径φkに対する成形面の最大外径の比であって1<β<4、φk>φX×βを満たす。
Preferably, the mold molds a convex lens having a maximum outer diameter of φX and a ratio of thickness in the optical axis direction between the center portion and the outer peripheral portion of the thickness h, and the maximum outer diameter of the mold is The center thickness from the molding surface to the bottom surface in the optical axis direction is Ct, and the outer diameter φo of the convex portion satisfies the following formula (1).

φ o = φk × α × Ct 0.5 × Log (e) h + φk (1)

Where φ o > 0, coefficient α is −1 <α <−0.2, β is the ratio of the maximum outer diameter of the molding surface to the maximum outer diameter φk of the mold, and 1 <β <4, φk> φX Xβ is satisfied.

好ましくは、前記成形型が、最大外径をφX、中心部と外周部の光軸方向厚さの比を偏肉hとした凹レンズを成形するものであって、前記成形型の最大外径をφkとするとともに、光軸方向に対する前記成形面から底面までの中心厚さをCtとし、前記凹部の内径φiが下記式(2)を満たす構成とする。

φi=φk×α×Ct0.5×Log(e)h …(2)

但し、φi<φk、係数αは0.2<α<1、βは成形型の最大外径φkに対する成形面の最大外径の比であって1<β<4、φk>φX×βを満たす。
Preferably, the molding die molds a concave lens having a maximum outer diameter of φX and a ratio of the thickness in the optical axis direction between the center portion and the outer peripheral portion of the thickness h, and the maximum outer diameter of the molding die is The center thickness from the molding surface to the bottom surface in the optical axis direction is Ct, and the inner diameter φ i of the recess satisfies the following formula (2).

φ i = φk × α × Ct 0.5 × Log (e) h (2)

Where φ i <φk, coefficient α is 0.2 <α <1, β is the ratio of the maximum outer diameter of the molding surface to the maximum outer diameter φk of the mold, and 1 <β <4, φk> φX × β Meet.

好ましくは、前記凹部又は凸部を輪帯状又は円柱状とした構成、又は、前記凹部及び凸部を交互に輪帯状に設けることにより、段階的な温度分布を付与した構成とする。
上記目的を達成するために、本発明の光学素材の成形方法は、加熱軟化させた光学素子素材を加圧して成形型の成形面である光学面形状を転写する光学素子の成形方法において、前記成形型の加熱用及び冷却用ヒータプレートとの接触部である背面部に、前記光学素子素材の薄肉部に対応する凹部と、前記光学素子素材の厚肉部に対応する凸部とを設け、前記加熱用ヒータプレートによって加熱軟化させた光学素子素材を前記成形型により加圧した後、該成形型の背面部を前記冷却用ヒータプレートに接触させて熱伝導で冷却することにより、成形型に温度分布をもたせるようにしてある。
Preferably, the concave portion or the convex portion has a ring-shaped or columnar configuration, or the concave portion and the convex portion are alternately provided in a ring-shaped shape to provide a stepwise temperature distribution.
In order to achieve the above object, the optical material molding method of the present invention is the optical element molding method for applying pressure to the heat-softened optical element material to transfer the optical surface shape that is the molding surface of the mold. On the back surface portion that is a contact portion with the heating and cooling heater plates of the mold, a concave portion corresponding to the thin portion of the optical element material and a convex portion corresponding to the thick portion of the optical element material are provided, After the optical element material heated and softened by the heating heater plate is pressed by the mold, the back surface of the mold is brought into contact with the cooling heater plate and cooled by heat conduction, thereby forming the mold. It has a temperature distribution.

好ましくは、前記凹部又は凸部を輪帯状又は円柱状とし、又は、前記凹部及び凸部を交互に輪帯状に設けることにより、段階的な温度分布を付与するようにする。   Preferably, the stepped temperature distribution is imparted by forming the recesses or projections in a ring shape or a columnar shape, or alternately providing the recesses and the projections in a ring shape.

本発明の光学素材の成形型及び成形方法によれば、光学素子素材の偏肉に対応した凹凸部を成形型の背面部に設けることにより、冷却時の光学素子素材が均等に収縮するよう金型に温度分布をもたせ、中口径(φ30)以下で偏肉の大きいレンズを短時間で精度よく成形することができる。   According to the molding die and molding method of the optical material of the present invention, the concave and convex portions corresponding to the uneven thickness of the optical element material are provided on the back surface of the molding die so that the optical element material shrinks evenly during cooling. By providing the mold with a temperature distribution, a lens having a medium diameter (φ30) or less and a large thickness deviation can be accurately molded in a short time.

以下、本発明の一実施形態に係る光学素材の成形型及び成形方法について、図面を参照しつつ説明する。図1は本実施形態に係る光学素子の成形型を用いた成形装置を示す説明図である。図2Aは上記成形型の部分断面図であり、図2Bは上記成形型の平面図である。図3は上記成形装置を用いた成形方法の各工程における温度と荷重の状態を示すグラフである。   Hereinafter, a molding die and a molding method for an optical material according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a molding apparatus using a mold for optical elements according to this embodiment. FIG. 2A is a partial cross-sectional view of the mold, and FIG. 2B is a plan view of the mold. FIG. 3 is a graph showing the state of temperature and load in each step of the molding method using the molding apparatus.

図1において、成形装置1は、加熱路であるチャンバー2内に、上下一対の加熱用ヒータプレート3A,3B及び冷却用ヒータプレート4A,4Bを並設した構成としてある。また、上側の加熱用ヒータプレート3A及び冷却用ヒータプレート4Aはそれぞれ油圧シリンダ5,5のピストンロッドに取り付けてあり、下側の加熱用ヒータプレート3B及び冷却用ヒータプレート4Bへ搬送されてきた成形型10への加圧が可能となっている。   In FIG. 1, the molding apparatus 1 has a configuration in which a pair of upper and lower heating heater plates 3A, 3B and cooling heater plates 4A, 4B are arranged in parallel in a chamber 2 that is a heating path. The upper heating heater plate 3A and the cooling heater plate 4A are respectively attached to the piston rods of the hydraulic cylinders 5 and 5, and the moldings that have been conveyed to the lower heating heater plate 3B and the cooling heater plate 4B. The mold 10 can be pressurized.

図2A,図2Bに示すように、本実施形態に係る成形型10は、両凹レンズを加圧成形するためのものであり、金属製の上型11及び下型12とスリーブ13からなっている。上型11及び下型12の背面部には、光学素子素材6の薄肉部(中心部)に対応する凹部11a,12aと、該光学素子素材6の厚肉部(外周部)に対応する凸部11b,12bとが設けてある。   As shown in FIGS. 2A and 2B, the mold 10 according to the present embodiment is for pressure-molding a biconcave lens, and includes a metal upper mold 11, a lower mold 12, and a sleeve 13. . On the back surfaces of the upper mold 11 and the lower mold 12, concave portions 11 a and 12 a corresponding to the thin portion (center portion) of the optical element material 6 and convex portions corresponding to the thick portion (outer peripheral portion) of the optical element material 6. Portions 11b and 12b are provided.

本実施形態では、前記背面部中心の凹部11a,12aを円柱状とし、その外側に輪帯状の凸部11b,12bを形成した構成としてある。このような構成により、後述する光学素子素材6の冷却工程において、冷却用ヒータプレート4A,4Bとの非接触部である凹部11a,12aと、接触部である凸部11b,12bとの熱伝達量を相違させることができ、上型11及び下型12のそれぞれに、光学素子素材6の偏肉に応じた温度分布をもたせるようにしてある。すなわち、成形するレンズに応じて、冷却用ヒータプレート4A,4Bとの接触面積、接触面形状及び接触位置、上型11及び下型12の背面部から成形面までの距離を調整することにより、冷却時における上型11及び下型12の各成形面の温度分布勾配を制御することができる。   In the present embodiment, the concave portions 11a and 12a at the center of the back surface portion are formed in a columnar shape, and ring-shaped convex portions 11b and 12b are formed outside the concave portions 11a and 12a. With such a configuration, in the cooling process of the optical element material 6 to be described later, heat transfer between the concave portions 11a and 12a that are non-contact portions with the cooling heater plates 4A and 4B and the convex portions 11b and 12b that are contact portions. The amounts can be made different, and each of the upper mold 11 and the lower mold 12 has a temperature distribution corresponding to the uneven thickness of the optical element material 6. That is, according to the lens to be molded, by adjusting the contact area with the cooling heater plates 4A and 4B, the shape and position of the contact surface, and the distance from the back surface of the upper mold 11 and the lower mold 12 to the molding surface, The temperature distribution gradient of each molding surface of the upper mold 11 and the lower mold 12 during cooling can be controlled.

また、図1に示すように、上型11及び下型12の温度変化は、加熱用及び冷却用ヒータプレート3A,3B及び4A,4Bにより制御するが、好ましくは、上型11及び下型12に下記式(2)を満たす内径の凹部11a,12aを設けることにより、30秒以内に成形型10の最大温度差が10℃以上の成形条件で、従来の成形方法に比べて、上型11及び下型12に温度分布を急激に付与することが可能となる。

φi=φk×α×Ct0.5×Log(e)h …(2)

但し、φXは成形品たる前記両凹レンズの最大外径、偏肉hは前記両凹レンズの中心部と外周部の光軸方向厚さの比、φkは上型又は下型の最大外径、Ctは光軸方向に対する前記成形面から底面までの中心厚さ、φiは凹部の内径であってφi<φkを満たし、係数αは0.2<α<1を満たし、βは成形型の最大外径φkに対する成形面の最大外径の比であって1<β<4、φk>φX×βを満たす。
Further, as shown in FIG. 1, the temperature changes of the upper mold 11 and the lower mold 12 are controlled by the heating and cooling heater plates 3A, 3B and 4A, 4B. Preferably, the upper mold 11 and the lower mold 12 are used. By providing the recesses 11a and 12a having an inner diameter satisfying the following formula (2) in the upper mold 11 as compared with the conventional molding method under a molding condition in which the maximum temperature difference of the molding die 10 is 10 ° C. or more within 30 seconds. And it becomes possible to give temperature distribution to the lower mold | type 12 rapidly.

φ i = φk × α × Ct 0.5 × Log (e) h (2)

Where φX is the maximum outer diameter of the biconcave lens that is a molded product, thickness deviation h is the ratio of the thickness in the optical axis direction between the center and outer periphery of the biconcave lens, φk is the maximum outer diameter of the upper mold or the lower mold, and Ct Is the center thickness from the molding surface to the bottom surface in the optical axis direction, φ i is the inner diameter of the recess and satisfies φ i <φk, the coefficient α satisfies 0.2 <α <1, and β is the mold The ratio of the maximum outer diameter of the molding surface to the maximum outer diameter φk, which satisfies 1 <β <4, φk> φX × β.

次に、本実施形態に係る光学素子の成形方法について説明する。図1において、まず、図示しない押出し手段により、成形型10をチャンバー2内の下側の加熱用ヒータプレート3A上に搬送する。そして、例えば、光学素子素材6のガラス転移点が約510℃の場合、上型11及び下型12の各成形面が約555℃、光学素子素材6が約550℃まで加熱した時点で、油圧シリンダ5を駆動させ、上側の加熱用ヒータプレート3Bによって加熱溶融した光学素子素材6の加圧成形を開始する(図3のS1参照)。   Next, a method for molding an optical element according to this embodiment will be described. In FIG. 1, first, the molding die 10 is conveyed onto the lower heater plate 3 </ b> A in the chamber 2 by an unillustrated extrusion means. For example, when the glass transition point of the optical element material 6 is about 510 ° C., when the molding surfaces of the upper mold 11 and the lower mold 12 are heated to about 555 ° C. and the optical element material 6 is heated to about 550 ° C., the hydraulic pressure is increased. The cylinder 5 is driven and pressure molding of the optical element material 6 heated and melted by the upper heating heater plate 3B is started (see S1 in FIG. 3).

次いで、前記押出し手段により、成形型10を約540℃(温度差ΔT=10℃)に加熱した下側の冷却用ヒータプレート4A上に搬送し、油圧シリンダ5を駆動させ、上側の冷却用ヒータプレート4Bによって加圧成形後の光学素子素材6を冷却する(図3のS2参照)。   Next, the extrusion means conveys the mold 10 onto the lower cooling heater plate 4A heated to about 540 ° C. (temperature difference ΔT = 10 ° C.), drives the hydraulic cylinder 5, and drives the upper cooling heater. The optical element material 6 after pressure molding is cooled by the plate 4B (see S2 in FIG. 3).

このとき、図2Aに示すように、上型11及び下型12の背面部に、光学素子素材6の薄肉部(中心部)に対応する凹部11a,12aと、該光学素子素材6の厚肉部(外周部)に対応する凸部11b,12bとを設けたことにより、上型11及び下型12の中心部と外周部とで、最大温度差10℃以上の温度分布が生じる。   At this time, as shown in FIG. 2A, concave portions 11a and 12a corresponding to the thin portion (center portion) of the optical element material 6 and the thick wall of the optical element material 6 are formed on the back surfaces of the upper mold 11 and the lower mold 12. By providing the convex portions 11b and 12b corresponding to the portion (outer peripheral portion), a temperature distribution with a maximum temperature difference of 10 ° C. or more is generated between the central portion and the outer peripheral portion of the upper mold 11 and the lower mold 12.

これにより、光学素子素材6の中心部の熱伝達速度が遅く、外周部の熱伝達速度が早くなり、冷却の過程において、該光学素子素材6の中心部は流動可能で、外周部は流動不可能な状態を発生させることができる。すなわち、該光学素子素材6の外周部の収縮に対応して、中心部は外周部の収縮による成形面と光学素子素材6との剥離が発生しないようにさらに変形を続けることが可能となる。この結果、冷却時における光学素子素材6が、上型11及び下型12の各成形面から剥離しないで均等に収縮する。   As a result, the heat transfer rate at the center of the optical element material 6 is slow and the heat transfer rate at the outer periphery is increased. In the cooling process, the center of the optical element material 6 can flow and the outer periphery does not flow. Possible states can be generated. That is, in response to the contraction of the outer peripheral portion of the optical element material 6, the central portion can be further deformed so that the molding surface and the optical element material 6 are not separated due to the contraction of the outer peripheral portion. As a result, the optical element material 6 at the time of cooling shrinks evenly without peeling from the molding surfaces of the upper mold 11 and the lower mold 12.

その後、前記押出し手段により、成形型10をチャンバー2の外部に搬出し、上型11及び下型12を型開きして、最終的な成形品たる光学素子(両凹レンズ)を離型する。   Thereafter, the molding die 10 is carried out of the chamber 2 by the pushing means, the upper die 11 and the lower die 12 are opened, and the optical element (biconcave lens) as the final molded product is released.

このような本実施形態に係る光学素材の成形型及び成形方法によれば、光学素子素材6の偏肉に対応した凹部11a,12a及び凸部11b,12bを、上型11及び下型12の背面部に設けることにより、冷却時の光学素子素材6が均等に収縮するよう上型11及び下型12に温度分布をもたせ、中口径(φ30)以下で偏肉の大きい両凹レンズを短時間で精度よく成形することができる。   According to such a molding die and molding method of the optical material according to the present embodiment, the concave portions 11a and 12a and the convex portions 11b and 12b corresponding to the uneven thickness of the optical element material 6 are formed on the upper die 11 and the lower die 12. By providing the back surface portion, the upper mold 11 and the lower mold 12 have a temperature distribution so that the optical element material 6 contracts evenly during cooling, and a biconcave lens with a large deviation in the inner diameter (φ30) or less can be formed in a short time. It can be molded with high accuracy.

次に、本発明の第2実施形態に係る光学素材の成形型及び成形方法について、図4A,図4Bを参照しつつ説明する。図4Aは本発明の第2実施形態に係る成形型の部分断面図であり、図4Bは上記成形型の平面図である。   Next, an optical material molding die and molding method according to a second embodiment of the present invention will be described with reference to FIGS. 4A and 4B. FIG. 4A is a partial cross-sectional view of a mold according to the second embodiment of the present invention, and FIG. 4B is a plan view of the mold.

これら図面において、本実施形態に係る成形型20は、両凸レンズを加圧成形するためのものであり、金属製の上型21及び下型22とスリーブ23からなっている。上型21及び下型22の背面部には、光学素子素材6の厚肉部(中心部)に対応する凸部21a,22aと、該光学素子素材6の薄肉部(外周部)に対応する凹部21b,22bとが設けてある。   In these drawings, a molding die 20 according to this embodiment is for pressure-molding a biconvex lens, and includes a metal upper die 21, a lower die 22 and a sleeve 23. The back surfaces of the upper mold 21 and the lower mold 22 correspond to convex portions 21 a and 22 a corresponding to the thick portion (center portion) of the optical element material 6 and the thin portion (outer peripheral portion) of the optical element material 6. Recesses 21b and 22b are provided.

本実施形態では、前記背面部中心の凸部21a,22aを円柱状とし、その外側に輪帯状の凹部21b,22bを形成した構成としてある。このような構成により、光学素子素材6の冷却工程において、冷却用ヒータプレート4A,4B(図1参照)との接触部である凸部21a,22aと、非接触部である凹部21b,22bとの熱伝達量を相違させることができ、上型21及び下型22のそれぞれに、光学素子素材6の偏肉に応じた温度分布をもたせるようにしてある。   In the present embodiment, the convex portions 21a and 22a at the center of the back surface portion are formed in a columnar shape, and ring-shaped concave portions 21b and 22b are formed on the outside thereof. With such a configuration, in the cooling process of the optical element material 6, the convex portions 21a and 22a that are contact portions with the cooling heater plates 4A and 4B (see FIG. 1) and the concave portions 21b and 22b that are non-contact portions are provided. Thus, the upper mold 21 and the lower mold 22 each have a temperature distribution corresponding to the thickness deviation of the optical element material 6.

また、第1実施形態と同様に、上型21及び下型22の温度変化は、加熱用及び冷却用ヒータプレート3A,3B及び4A,4B(図1参照)により制御するが、好ましくは、上型21及び下型22に下記式(1)を満たす外径の凸部21a,22aを設けることにより、30秒以内に成形型10の最大温度差が10℃以上の成形条件で、従来の成形方法に比べて、上型21及び下型22に温度分布を急激に付与することが可能となる。

φo=φk×α×Ct0.5×Log(e)h+φk …(1)

但し、φXは成形品たる前記両凸レンズの最大外径、偏肉hは前記両凸レンズの中心部と外周部の光軸方向厚さの比、φkは上型又は下型の最大外径、Ctは光軸方向に対する前記成形面から底面までの中心厚さ、φoは凸部の外径であってφo>0を満たし、係数αは−1<α<−0.2を満たし、βは成形型の最大外径φkに対する成形面の最大外径の比であって1<β<4、φk>φX×βを満たす。
As in the first embodiment, the temperature changes of the upper mold 21 and the lower mold 22 are controlled by the heating and cooling heater plates 3A, 3B and 4A, 4B (see FIG. 1). By providing convex portions 21a and 22a having outer diameters satisfying the following formula (1) on the mold 21 and the lower mold 22, conventional molding is performed under molding conditions in which the maximum temperature difference of the mold 10 is 10 ° C. or more within 30 seconds. Compared with the method, the temperature distribution can be rapidly applied to the upper mold 21 and the lower mold 22.

φ o = φk × α × Ct 0.5 × Log (e) h + φk (1)

Where φX is the maximum outer diameter of the biconvex lens as a molded product, the thickness h is the ratio of the thickness in the optical axis direction between the center and outer periphery of the biconvex lens, φk is the maximum outer diameter of the upper mold or the lower mold, and Ct Is the center thickness from the molding surface to the bottom surface in the optical axis direction, φ o is the outer diameter of the convex portion and satisfies φ o > 0, the coefficient α satisfies −1 <α <−0.2, β Is the ratio of the maximum outer diameter of the molding surface to the maximum outer diameter φk of the mold and satisfies 1 <β <4, φk> φX × β.

このような本実施形態に係る光学素材の成形型及び成形方法によれば、光学素子素材6の偏肉に対応した凸部21a,22a及び凹部21b,22bを、上型21及び下型22の背面部に設けることにより、第1実施形態と同様に、冷却時の光学素子素材6が均等に収縮するよう上型21及び下型22に温度分布をもたせ、中口径(φ30)以下で偏肉の大きい両凸レンズを短時間で精度よく成形することができる。   According to the molding die and molding method of the optical material according to this embodiment, the convex portions 21a and 22a and the concave portions 21b and 22b corresponding to the uneven thickness of the optical element material 6 are replaced with the upper die 21 and the lower die 22. By providing the back surface portion, similarly to the first embodiment, the upper die 21 and the lower die 22 have a temperature distribution so that the optical element material 6 is uniformly shrunk during cooling, and the thickness is less than the middle diameter (φ30). Large biconvex lenses can be accurately molded in a short time.

なお、本発明の光学素材の成形型及び成形方法は、上述した各実施形態に限定されるものではない。例えば、上型及び下型の背面部に、凹部及び凸部を交互に輪帯状に設けることにより、段階的な温度分布を付与した構成としてもよい。   In addition, the shaping | molding die and shaping | molding method of the optical material of this invention are not limited to each embodiment mentioned above. For example, it is good also as a structure which provided the stepwise temperature distribution by providing a recessed part and a convex part alternately by the annular | circular shape in the back part of an upper mold | type and a lower mold | type.

図5Aは本発明のその他変更例に係る両凹レンズ成形用の成形型の部分断面図であり、図5Bは上記成形型の平面図である。同じく図6Aは本発明のその他変更例に係る両凸レンズ成形用の成形型の部分断面図であり、図6Bは上記成形型の平面図である。   FIG. 5A is a partial sectional view of a mold for molding a biconcave lens according to another modification of the present invention, and FIG. 5B is a plan view of the mold. Similarly, FIG. 6A is a partial sectional view of a mold for molding a biconvex lens according to another modification of the present invention, and FIG. 6B is a plan view of the mold.

図5A及び図5Bにおいて、成形型30は、両凹レンズを加圧成形するためのものであり、金属製の上型31及び下型32とスリーブ33からなっている。上型31の背面部には、光学素子素材6の薄肉部(中心部)に対応する円柱状の凹部31aを中心に、輪帯状の凸部31b,31d,31fと凹部31c,31eをそれぞれ交互に設けた構成としてある。同じく、下型32の背面部には、光学素子素材6の薄肉部(中心部)に対応する円柱状の凹部32aを中心に、輪帯状の凸部32b,32d,32fと凹部32c,32eをそれぞれ交互に設けた構成としてある。   5A and 5B, the mold 30 is for pressure-molding a biconcave lens, and includes a metal upper mold 31, a lower mold 32, and a sleeve 33. On the back surface of the upper mold 31, ring-shaped convex portions 31b, 31d, 31f and concave portions 31c, 31e are alternately arranged around a cylindrical concave portion 31a corresponding to the thin portion (center portion) of the optical element material 6. It is the structure provided in. Similarly, ring-shaped convex portions 32b, 32d, 32f and concave portions 32c, 32e are formed on the back surface portion of the lower mold 32 around a cylindrical concave portion 32a corresponding to the thin portion (center portion) of the optical element material 6. Each is provided alternately.

また、図6A及び図6Bにおいて、成形型40は、両凸レンズを加圧成形するためのものであり、金属製の上型41及び下型42とスリーブ43からなっている。上型41の背面部には、光学素子素材6の厚肉部(中心部)に対応する円柱状の凸部41aを中心に、輪帯状の凹部41b,41dと凸部41c,41eをそれぞれ交互に設けた構成としてある。同じく、下型42の背面部には、光学素子素材6の厚肉部(中心部)に対応する円柱状の凸部42aを中心に、輪帯状の凹部42b,42dと凸部42c,42eをそれぞれ交互に設けた構成としてある。   6A and 6B, the mold 40 is for pressure-molding a biconvex lens, and includes a metal upper mold 41, a lower mold 42, and a sleeve 43. On the back surface of the upper die 41, ring-shaped concave portions 41b and 41d and convex portions 41c and 41e are alternately arranged around a cylindrical convex portion 41a corresponding to the thick portion (center portion) of the optical element material 6. It is the structure provided in. Similarly, ring-shaped concave portions 42b and 42d and convex portions 42c and 42e are formed on the back surface of the lower mold 42 around a cylindrical convex portion 42a corresponding to the thick portion (center portion) of the optical element material 6. Each is provided alternately.

このような構成により、レンズの偏肉により細かく対応した段階的な温度分布を、上型31,41及び下型32,42に付与することができ、最終的な成形品たる両凹レンズ及び両凸レンズの形状精度をさらに向上させることが可能となる。   With such a configuration, a stepwise temperature distribution more precisely corresponding to the uneven thickness of the lens can be imparted to the upper molds 31, 41 and the lower molds 32, 42, and a biconcave lens and a biconvex lens as final molded products. It is possible to further improve the shape accuracy.

表1〜表3は、凸レンズを成形する成形型の背面部に設けた凸部(冷却用ヒータプレートとの接触部)の外径φoと前記凸レンズの偏肉hとの関係を示すものであり、表1は係数α=−0.2の場合、表2は係数α=−0.6の場合、表3は係数α=−1の場合を示す。その他の条件として、成形型の最大外径φk=30、Log(e)=2.718282、成形面直径/型厚さ=1とした。また、これら表1〜表3に示す実施例の結果を図7に示す。 Tables 1 to 3 show the relationship between the outer diameter φ o of the convex portion (contact portion with the cooling heater plate) provided on the back surface of the mold for molding the convex lens and the deviation h of the convex lens. Yes, Table 1 shows the case where the coefficient α = −0.2, Table 2 shows the case where the coefficient α = −0.6, and Table 3 shows the case where the coefficient α = −1. As other conditions, the maximum outer diameter of the mold was set to φk = 30, Log (e) = 2.718282, and the molding surface diameter / mold thickness = 1. Moreover, the result of the Example shown to these Tables 1-3 is shown in FIG.

表4〜表6は、凹レンズを成形する成形型の背面部に設けた凹部(冷却用ヒータプレートとの非接触部)の外径φiと前記凹レンズの偏肉hとの関係を示すものであり、表4は係数α=0.2の場合、表5は係数α=0.6の場合、表6は係数α=1の場合を示す。その他の条件として、成形型の最大外径φk=30、Log(e)=2.718282、成形面直径/型厚さ=1とした。また、これら表4〜表6に示す実施例の結果を図8に示す。 Tables 4 to 6 show the relationship between the outer diameter φ i of the concave portion (non-contact portion with the cooling heater plate) provided on the back surface of the mold for molding the concave lens and the uneven thickness h of the concave lens. Yes, Table 4 shows the case where the coefficient α = 0.2, Table 5 shows the case where the coefficient α = 0.6, and Table 6 shows the case where the coefficient α = 1. As other conditions, the maximum outer diameter of the mold was set to φk = 30, Log (e) = 2.718282, and the molding surface diameter / mold thickness = 1. Moreover, the result of the Example shown to these Tables 4-6 is shown in FIG.

図1は本実施形態に係る光学素子の成形型を用いた成形装置を示す説明図である。FIG. 1 is an explanatory view showing a molding apparatus using a mold for optical elements according to this embodiment. 上記成形型の部分断面図である。It is a fragmentary sectional view of the said shaping | molding die. 上記成形型の平面図である。It is a top view of the said shaping | molding die. 上記成形装置を用いた成形方法の各工程における温度と荷重の状態を示すグラフである。It is a graph which shows the state of the temperature and load in each process of the shaping | molding method using the said shaping | molding apparatus. 本発明の第2実施形態に係る成形型の部分断面図である。It is a fragmentary sectional view of the shaping | molding die which concerns on 2nd Embodiment of this invention. 上記成形型の平面図である。It is a top view of the said shaping | molding die. 本発明のその他変更例に係る両凹レンズ成形用の成形型の部分断面図である。It is a fragmentary sectional view of the shaping | molding die for the biconcave lens shaping | molding which concerns on the other modification of this invention. 上記成形型の平面図である。It is a top view of the said shaping | molding die. 同じく図6Aは本発明のその他変更例に係る両凸レンズ成形用の成形型の部分断面図である。Similarly, FIG. 6A is a partial cross-sectional view of a mold for forming a biconvex lens according to another modification of the present invention. 上記成形型の平面図である。It is a top view of the said shaping | molding die. 凸レンズを成形する成形型の背面部に設けた凸部(冷却用ヒータプレートとの接触部)の外径φoと前記凸レンズの偏肉hとの関係を示すグラフである。It is a graph which shows the relationship between the outer diameter (phi) o of the convex part (contact part with the heater plate for cooling) provided in the back surface part of the shaping | molding die which shape | molds a convex lens, and the deviation thickness h of the said convex lens. 凹レンズを成形する成形型の背面部に設けた凹部(冷却用ヒータプレートとの非接触部)の外径φiと前記凹レンズの偏肉hとの関係を示すグラフである。It is a graph which shows the relationship between the outer diameter (phi) i of the recessed part (non-contact part with a cooling heater plate) provided in the back surface part of the shaping | molding die which shape | molds a concave lens, and the uneven thickness h of the said concave lens. 従来の凸レンズを成形する成形型を示す部分断面図である。It is a fragmentary sectional view which shows the shaping | molding die which shape | molds the conventional convex lens. 従来の凹レンズを成形する成形型を示す部分断面図である。It is a fragmentary sectional view which shows the shaping | molding die which shape | molds the conventional concave lens.

符号の説明Explanation of symbols

1 成形装置
2 チャンバー
3 加熱用ヒータプレート
4 冷却用ヒータプレート
5 油圧シリンダ
6 光学素子素材
10,20,30,40 成形型
11,21,31,41 上型
12,22,32,42 下型
13,23,33,43 スリーブ
11a,12a,31a,32a 円柱状の凹部
21a,22a,41a,42a 円柱状の凸部
21b,22b,31c,31e,32c,32e,41b,41d,42b,42d 輪帯状の凹部
11b,12b,31b,31d,31f,32b,32d,32f,41c,42c,41e,42e 輪帯状の凸部



DESCRIPTION OF SYMBOLS 1 Molding device 2 Chamber 3 Heating heater plate 4 Cooling heater plate 5 Hydraulic cylinder 6 Optical element material 10, 20, 30, 40 Mold 11, 21, 31, 41 Upper mold 12, 22, 32, 42 Lower mold 13 , 23, 33, 43 Sleeve 11a, 12a, 31a, 32a Cylindrical concave portion 21a, 22a, 41a, 42a Cylindrical convex portion 21b, 22b, 31c, 31e, 32c, 32e, 41b, 41d, 42b, 42d Band-shaped concave portions 11b, 12b, 31b, 31d, 31f, 32b, 32d, 32f, 41c, 42c, 41e, 42e Ring-shaped convex portions



Claims (8)

加熱軟化させた光学素子素材を加圧して成形面の光学面形状を転写する光学素子の成形型において、
加熱用及び冷却用ヒータプレートとの接触部である背面部に、前記光学素子素材の薄肉部に対応する凹部と、前記光学素子素材の厚肉部に対応する凸部とを設けることにより、前記冷却用ヒータプレートによる冷却工程で前記成形型に温度分布をもたせたことを特徴とする光学素子の成形型。
In the optical element mold that pressurizes the heat-softened optical element material and transfers the optical surface shape of the molding surface,
By providing a concave portion corresponding to the thin portion of the optical element material and a convex portion corresponding to the thick portion of the optical element material on the back surface portion that is a contact portion with the heating and cooling heater plates, A molding die for an optical element, wherein the molding die has a temperature distribution in a cooling step by a cooling heater plate.
前記成形型が、最大外径をφX、中心部と外周部の光軸方向厚さの比を偏肉hとした凸レンズを成形するものであって、
前記成形型の最大外径をφkとするとともに、光軸方向に対する前記成形面から底面までの中心厚さをCtとし、前記凸部の外径φoが下記式(1)を満たすことを特徴とする請求項1記載の光学素子の成形型。

φo=φk×α×Ct0.5×Log(e)h+φk …(1)

但し、φo>0、係数αは−1<α<−0.2、βは成形型の最大外径φkに対する成形面の最大外径の比であって1<β<4、φk>φX×βを満たす。
The molding die molds a convex lens having a maximum outer diameter of φX and a ratio of the thickness in the optical axis direction between the central portion and the outer peripheral portion to a thickness h.
The maximum outer diameter of the mold is φk, the center thickness from the molding surface to the bottom surface in the optical axis direction is Ct, and the outer diameter φo of the convex portion satisfies the following formula (1): The mold for forming an optical element according to claim 1.

φ o = φk × α × Ct 0.5 × Log (e) h + φk (1)

Where φ o > 0, coefficient α is −1 <α <−0.2, β is the ratio of the maximum outer diameter of the molding surface to the maximum outer diameter φk of the mold, and 1 <β <4, φk> φX Xβ is satisfied.
前記成形型が、最大外径をφX、中心部と外周部の光軸方向厚さの比を偏肉hとした凹レンズを成形するものであって、
前記成形型の最大外径をφkとするとともに、光軸方向に対する前記成形面から底面までの中心厚さをCtとし、前記凹部の内径φiが下記式(2)を満たすことを特徴とする請求項1記載の光学素子の成形型。

φi=φk×α×Ct0.5×Log(e)h …(2)

但し、φi<φk、係数αは0.2<α<1、βは成形型の最大外径φkに対する成形面の最大外径の比であって1<β<4、φk>φX×βを満たす。
The mold molds a concave lens having a maximum outer diameter of φX and a ratio of the thickness in the optical axis direction between the central portion and the outer peripheral portion as a deviation thickness h,
The maximum outer diameter of the mold is φk, the center thickness from the molding surface to the bottom surface in the optical axis direction is Ct, and the inner diameter φ i of the recess satisfies the following formula (2). A mold for an optical element according to claim 1.

φ i = φk × α × Ct 0.5 × Log (e) h (2)

Where φ i <φk, coefficient α is 0.2 <α <1, β is the ratio of the maximum outer diameter of the molding surface to the maximum outer diameter φk of the mold, and 1 <β <4, φk> φX × β Meet.
前記凹部又は凸部を輪帯状又は円柱状としたことを特徴とする請求項1〜3いずれか記載の光学素子の成形型。   The mold for an optical element according to any one of claims 1 to 3, wherein the concave portion or the convex portion has an annular shape or a cylindrical shape. 前記凹部及び凸部を交互に輪帯状に設けることにより、段階的な温度分布を付与したことを特徴とする請求項1〜4いずれか記載の光学素子の成形型。   The optical element molding die according to any one of claims 1 to 4, wherein a stepwise temperature distribution is provided by alternately providing the concave portions and the convex portions in a ring shape. 加熱軟化させた光学素子素材を加圧して成形型の成形面である光学面形状を転写する光学素子の成形方法において、
前記成形型の加熱用及び冷却用ヒータプレートとの接触部である背面部に、前記光学素子素材の薄肉部に対応する凹部と、前記光学素子素材の厚肉部に対応する凸部とを設け、前記加熱用ヒータプレートによって加熱軟化させた光学素子素材を前記成形型により加圧した後、該成形型の背面部を前記冷却用ヒータプレートに接触させて熱伝導で冷却することにより、前記成形型に温度分布をもたせたことを特徴とする光学素子の成形方法。
In the molding method of the optical element that pressurizes the heat-softened optical element material to transfer the optical surface shape that is the molding surface of the mold,
A concave portion corresponding to the thin portion of the optical element material and a convex portion corresponding to the thick portion of the optical element material are provided on a back surface portion which is a contact portion with the heating and cooling heater plates of the mold. The optical element material heated and softened by the heating heater plate is pressed by the molding die, and then the back surface of the molding die is brought into contact with the cooling heater plate and cooled by heat conduction, thereby forming the molding. A method for molding an optical element, wherein the mold has a temperature distribution.
前記凹部又は凸部を輪帯状又は円柱状としたことを特徴とする請求項6記載の光学素子の成形方法。   The method for molding an optical element according to claim 6, wherein the concave portion or the convex portion is formed in an annular shape or a cylindrical shape. 前記凹部及び凸部を交互に輪帯状に設けることにより、段階的な温度分布を付与したことを特徴とする請求項6又は7記載の光学素子の成形方法。   8. The method of molding an optical element according to claim 6, wherein a stepwise temperature distribution is provided by alternately providing the concave portions and the convex portions in an annular shape.
JP2004300052A 2004-10-14 2004-10-14 Forming mold for optical device and forming method Pending JP2006111484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004300052A JP2006111484A (en) 2004-10-14 2004-10-14 Forming mold for optical device and forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004300052A JP2006111484A (en) 2004-10-14 2004-10-14 Forming mold for optical device and forming method

Publications (1)

Publication Number Publication Date
JP2006111484A true JP2006111484A (en) 2006-04-27

Family

ID=36380307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004300052A Pending JP2006111484A (en) 2004-10-14 2004-10-14 Forming mold for optical device and forming method

Country Status (1)

Country Link
JP (1) JP2006111484A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037703A (en) * 2006-08-07 2008-02-21 Konica Minolta Opto Inc Glass optical element and method for manufacturing the glass optical element
WO2014192727A1 (en) * 2013-05-29 2014-12-04 Hoya株式会社 Apparatus for producing glass molded body and method for producing glass molded body
JP2015101491A (en) * 2013-11-21 2015-06-04 旭硝子株式会社 Molding equipment and molding method for optical element, and molding tool for optical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111635A (en) * 1988-10-19 1990-04-24 Matsushita Electric Ind Co Ltd Forming mold for press lens and forming method
JPH04357121A (en) * 1991-05-30 1992-12-10 Matsushita Electric Ind Co Ltd Molding optical element and molding device therefor
JPH07267657A (en) * 1994-03-30 1995-10-17 Olympus Optical Co Ltd Heating apparatus for forming optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111635A (en) * 1988-10-19 1990-04-24 Matsushita Electric Ind Co Ltd Forming mold for press lens and forming method
JPH04357121A (en) * 1991-05-30 1992-12-10 Matsushita Electric Ind Co Ltd Molding optical element and molding device therefor
JPH07267657A (en) * 1994-03-30 1995-10-17 Olympus Optical Co Ltd Heating apparatus for forming optical element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037703A (en) * 2006-08-07 2008-02-21 Konica Minolta Opto Inc Glass optical element and method for manufacturing the glass optical element
WO2014192727A1 (en) * 2013-05-29 2014-12-04 Hoya株式会社 Apparatus for producing glass molded body and method for producing glass molded body
JP2014231451A (en) * 2013-05-29 2014-12-11 Hoya株式会社 Glass molding manufacturing apparatus, and glass molding manufacturing method
CN105209398A (en) * 2013-05-29 2015-12-30 Hoya株式会社 Apparatus for producing glass molded body and method for producing glass molded body
CN105209398B (en) * 2013-05-29 2018-01-02 Hoya株式会社 The manufacture device of glass forming body and the manufacture method of glass forming body
JP2015101491A (en) * 2013-11-21 2015-06-04 旭硝子株式会社 Molding equipment and molding method for optical element, and molding tool for optical element

Similar Documents

Publication Publication Date Title
CN100398473C (en) Model forming device and method for optical glass lens
JP2006111484A (en) Forming mold for optical device and forming method
JP2011105559A (en) Mold for optical device and method for molding the optical device
JP2016138008A (en) Set for molding glass optical element, and manufacturing method of glass optical element
JP2007230834A (en) Molding method of optical glass element
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
JPH06122525A (en) Apparatus for forming optical element, forming method and optical element
JPH09249424A (en) Molding of optical element
JPH04357121A (en) Molding optical element and molding device therefor
JPH06271323A (en) Optical element forming mold
JP2005162547A (en) Optical element shaping die, optical element manufacturing apparatus and method for manufacturing optical element
JP2504817B2 (en) Optical element molding method
JP3042411B2 (en) Lens molding method and molding apparatus
JPS59150728A (en) Forming of optical element
JP4952614B2 (en) Glass lens molding equipment
JPH11255529A (en) Molding apparatus for optical element
JP7043036B2 (en) Manufacturing method of nesting for new transfer molds
JPH05319839A (en) Die for forming optical element
JP2011173763A (en) Mold for optical element and method of forming optical element
JPS6379727A (en) Method for forming optical element
JP2004284893A (en) Molding die for hot press, method of manufacturing silica glass using the same, and silica glass
JPH06279038A (en) Mold for molding glass
JP4751818B2 (en) Mold for forming and manufacturing method thereof
JP2650975B2 (en) Glass optical element molding method
JPH05221664A (en) Method for forming optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100601

Free format text: JAPANESE INTERMEDIATE CODE: A02