JP2006109245A - Method of determining arrangement of nodes in wireless lan and program used therefor - Google Patents

Method of determining arrangement of nodes in wireless lan and program used therefor Download PDF

Info

Publication number
JP2006109245A
JP2006109245A JP2004295014A JP2004295014A JP2006109245A JP 2006109245 A JP2006109245 A JP 2006109245A JP 2004295014 A JP2004295014 A JP 2004295014A JP 2004295014 A JP2004295014 A JP 2004295014A JP 2006109245 A JP2006109245 A JP 2006109245A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
priority
reflection boundary
point
transmission point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004295014A
Other languages
Japanese (ja)
Inventor
Hiroaki Kitagawa
博朗 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004295014A priority Critical patent/JP2006109245A/en
Publication of JP2006109245A publication Critical patent/JP2006109245A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radio Transmission System (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine, in a short time, arrangement of nodes in a wireless LAN. <P>SOLUTION: An area 1 surrounded with a reflection boundary 2 is assumed, a transmitting point 4 and a receiving point 5 are arranged inside the area 1, and electromagnetic wave lines 6 advancing straight and extending from the transmitting point 4 in a plurality of surrounding directions are assumed. Based on an extension distance 6 of each of the electromagnetic wave lines 6 from the transmitting point 4 to reach the reflection boundary 2, priorities are imparted to the electromagnetic wave lines 6, and the electromagnetic wave lines 6 are extended in order from the highest priority. The priority of an electromagnetic wave line 6 reaching the reflection boundary 2 again is changed low, the electromagnetic wave lines 6 are continuously extended in the order from the highest priority at that time point, and an electromagnetic wave line 6 reaching the receiving point 5 is preserved. When electromagnetic wave lines 6 of a predetermined number reach the receiving point 5, a gain is calculated from the extension distances of the electromagnetic wave lines 6 reaching the receiving point and how many times the electromagnetic wave lines reach the reflection boundary, the transmitting point 4 is evaluated based on the gain, and nodes are arranged at corresponding positions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、無線LANにおけるノード配置決定方法及びそれに用いるプログラムに係り、特に、短時間で決定ができる無線LANにおけるノード配置決定方法及びそれに用いるプログラムに関するものである。   The present invention relates to a node location determination method in a wireless LAN and a program used therefor, and more particularly to a node location determination method in a wireless LAN that can be determined in a short time and a program used therefor.

部屋で使われる無線LANのノード(アンテナ)を部屋内のどこに設置すれば端末との通信がうまくできるかといった問題は、従来、ノード設置をするユーザ或いはサービス業者の経験や電波知識などに基づくノウハウ的な判断で解決がなされている。   The question of where in the room the wireless LAN node (antenna) used in the room should be installed to successfully communicate with the terminal is the know-how based on the experience and radio wave knowledge of the user or service provider who installs the node. The solution is made with reasonable judgment.

移動体通信の分野では、基地局をどこに設置すれば、移動端末との通信がうまくできるかといった問題を解決するために、任意の場所に想定した発信点からの電磁波の伝搬をレイ・トレース法(光線追跡法)により調べることがある。レイ・トレース法は、本来、光学の分野で利用されているもので、光源から出た光がどこを通って行くか幾何光学的に解析するものである。電磁波では回り込みの現象などがあって幾何光学的には導き出せない面もあるが、波長が短くなるにつれて電磁波でも直線的に進む傾向が強いことから、電磁波を幾何光学的に描ける電磁波線とみなして伝搬を解析するレイ・トレース法が有効と考えられる。   In the field of mobile communications, in order to solve the problem of where the base station can be installed to successfully communicate with the mobile terminal, the propagation of electromagnetic waves from a transmission point assumed at an arbitrary location is determined by the ray trace method. (Ray tracing method) The ray tracing method is originally used in the field of optics, and analyzes geometrically optically where the light emitted from the light source passes. Although electromagnetic waves have some wraparound phenomena and cannot be derived geometrically, they tend to travel linearly with electromagnetic waves as the wavelength becomes shorter, so electromagnetic waves can be regarded as electromagnetic waves that can be drawn geometrically. The ray trace method for analyzing propagation is considered effective.

レイ・トレース法は、イメージ法とレイランチング法とに分類されるが、計算時間が比較的短いと言われるレイランチング法においてさえ多大な計算時間を要する。   The ray tracing method is classified into an image method and a ray launching method. However, even the ray launching method, which is said to have a relatively short calculation time, requires a lot of calculation time.

非特許文献1には、移動体通信の基地局を屋内に設置するに際して、天井、床を考慮しない二次元のレイランチング法と、天井、床を考慮した三次元のイメージ法とを組み合わせた方法が記載されている。   Non-Patent Document 1 discloses a method of combining a two-dimensional ray-launching method that does not consider the ceiling and floor and a three-dimensional image method that considers the ceiling and floor when installing a mobile communication base station indoors. Is described.

「レイ・トレース法を用いた屋内エリア推定システムの高速アルゴリズム」今井哲郎、藤井輝也、電子情報通信学会論文誌B Vol.J83−B No.8 pp.1167−1177、2000年8月“Fast Algorithm for Indoor Area Estimation System Using Ray Trace Method” Tetsuro Imai, Teruya Fujii, IEICE Transactions B Vol. J83-B No. 8 pp. 1167-1177, August 2000

レイ・トレース法では、発信点から適宜な方向に放出される電磁波線の1本1本について、この電磁波線を直接或いは何度かの反射を経て受信先に到達させ、この到達した電磁波線の受信強度を算出し、この1本の電磁波線による受信強度を発信点から全ての方向(平面的解析ならば円の全周、立体的解析なら球の全周)に放出される電磁波線について重ね合わせることにより、受信先でのトータルの受信強度を求める。しかし、無限に多い方向について電磁波線を追跡することは無限の時間がかかり不可能であるから、方向を離散的に選択し、追跡するべき電磁波線の本数をいかに減らすかが重要である。反面、本数を減らすために選択する方向の間隔(角度)を大きく取りすぎると、受信先に高い強度で到達するはずの電磁波線を見落としてしまう確率が高くなり、好ましくない。   In the ray tracing method, each electromagnetic wave emitted from a transmission point in an appropriate direction is caused to reach the receiver directly or after being reflected several times. Calculate the received intensity, and superimpose the received intensity of this single electromagnetic wave on the electromagnetic wave emitted from the transmission point in all directions (all around the circle for planar analysis, all around the sphere for three-dimensional analysis). By combining them, the total reception strength at the reception destination is obtained. However, tracking electromagnetic waves in infinitely many directions is infinite time and impossible, so it is important to select directions discretely and reduce the number of electromagnetic waves to be tracked. On the other hand, if the interval (angle) in the direction to be selected in order to reduce the number is too large, there is a high probability that an electromagnetic wave that should reach the receiver with high intensity is overlooked.

本出願人は、これからノードを設置しようという現場において簡易に使用できかつ短時間でノード配置が決定できる方法及びこの方法を未経験者でも簡単に実施できるコンピュータプログラムの実現を図るものである。   The present applicant intends to realize a method that can be easily used at a site where a node is to be installed and a node arrangement can be determined in a short time, and a computer program that can be easily implemented even by an inexperienced person.

そこで、本発明の目的は、上記課題を解決し、短時間で決定ができる無線LANにおけるノード配置決定方法及びそれに用いるプログラムを提供することにある。   Therefore, an object of the present invention is to provide a node location determination method in a wireless LAN that can solve the above-described problems and can be determined in a short time, and a program used therefor.

上記目的を達成するために本発明の方法は、無線LANを設置する部屋を模擬した反射境界で囲まれたエリアを想定し、このエリア内に発信点と受信点とを配置し、発信点から周囲の複数の方向に直進して延長される電磁波線を想定し、これら電磁波線が発信点から反射境界に到達するまでの延長距離に基づいて各電磁波線に優先度を付与し、この優先度の高い順に電磁波線を延長し、反射境界に再び到達した電磁波線は優先度を低く変更し、その変更時点で優先度の高い順に電磁波線の延長を継続し、受信点に到達した電磁波線を保存しておき、所定本数の電磁波線が受信点に到達したとき、これら到達した電磁波線の延長距離及び反射境界到達回数から利得を算出し、この利得に基づいて発信点を評価し、この発信点に対応する部屋内位置に無線LANのノードを配置するようにしたものである。   In order to achieve the above object, the method of the present invention assumes an area surrounded by a reflection boundary simulating a room in which a wireless LAN is installed, and a transmission point and a reception point are arranged in this area. Assuming electromagnetic rays that extend straight in multiple surrounding directions, each electromagnetic ray is given priority based on the extension distance from the origin to the reflection boundary. The electromagnetic rays that have reached the reflection boundary are changed to a lower priority, and the electromagnetic rays continue to be extended in the order of higher priority at the time of change. When a predetermined number of electromagnetic waves arrive at the receiving point, the gain is calculated from the extended distance of these reached electromagnetic waves and the number of arrivals at the reflection boundary, the transmission point is evaluated based on this gain, and this transmission Room position corresponding to a point A is obtained so as to place the nodes of the wireless LAN.

上記部屋内に障害物がある場合には、上記エリア内の該当位置に反射境界を設定してもよい。   When there is an obstacle in the room, a reflection boundary may be set at a corresponding position in the area.

上記電磁波線が反射境界に到達したときに、その電磁波線の利得を算出し、この利得が所定のしきい値以下であれば、この電磁波線は廃棄してもよい。   When the electromagnetic wave line reaches the reflection boundary, the gain of the electromagnetic wave line is calculated. If the gain is equal to or less than a predetermined threshold value, the electromagnetic wave line may be discarded.

また、本発明のプログラムは、無線LANを設置する部屋を模擬した反射境界で囲まれたエリアを想定するエリア想定ステップと、このエリア内に発信点と受信点とを配置する点配置ステップと、発信点から周囲の複数の方向に直進して延長される電磁波線を想定する電磁波線想定ステップと、これら電磁波線が発信点から反射境界に到達するまでの延長距離に基づいて各電磁波線に優先度を付与する優先度付与ステップと、この優先度の高い順に電磁波線を延長する電磁波線延長ステップと、反射境界に到達した電磁波線は優先度を低く変更する優先度変更ステップと、その変更時点で優先度の高い順に電磁波線の延長を継続する電磁波線延長継続ステップと、受信点に到達した電磁波線を保存しておく電磁波線保存ステップと、所定本数の電磁波線が受信点に到達したとき、これら到達した電磁波線の延長距離及び反射境界到達回数から利得を算出する利得算出ステップと、この利得に基づいて発信点を評価する発信点評価ステップとをコンピュータが解読可能に記述したものである。   Further, the program of the present invention includes an area assumption step that assumes an area surrounded by a reflection boundary that simulates a room in which a wireless LAN is installed, a point arrangement step that arranges a transmission point and a reception point in this area, Priority is given to each electromagnetic wave line based on the electromagnetic wave line assumption step that assumes an electromagnetic wave line that extends straight from the transmission point in multiple surrounding directions, and the extension distance from the transmission point to the reflection boundary. A priority assigning step for giving a degree, an electromagnetic wave extending step for extending the electromagnetic wave in order of higher priority, a priority changing step for changing the priority of the electromagnetic wave reaching the reflection boundary, and the time of the change The electromagnetic wave line extension continuation step for continuing the extension of the electromagnetic wave lines in descending order of priority, the electromagnetic wave storage step for storing the electromagnetic wave lines that have reached the reception point, and a predetermined number When an electromagnetic wave ray reaches a receiving point, a computer calculates a gain calculating step for calculating a gain from the extended distance of the reached electromagnetic wave ray and the number of arrivals at the reflection boundary, and a transmitting point evaluating step for evaluating the transmitting point based on the gain Is described so as to be decipherable.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)短時間でノード配置の決定ができる。   (1) Node arrangement can be determined in a short time.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1〜図7は、本発明の手順を理解しやすいように、レイ・トレース法によって作図を進めていく様子をイメージ的に表したものである。実際にはコンピュータを用いて幾何光学的な演算を行えばよいので、必ずしも図1〜図7を作図しなくとも手順を実行することができる。以下、図1〜図7に従い本発明の手順を説明する。   FIGS. 1 to 7 conceptually show how the drawing is advanced by the ray trace method so that the procedure of the present invention can be easily understood. Actually, it is only necessary to perform geometric optical calculation using a computer, so that the procedure can be executed without necessarily drawing FIGS. The procedure of the present invention will be described below with reference to FIGS.

まず、図1に示されるように、エリア1を想定する。このエリア1は、無線LANを設置する部屋を模擬したもので、部屋の形状を写し取った見取り図のようなものである。ここでは簡単のためエリア1は長方形とした。エリア1は反射境界2で囲まれる。反射境界2は部屋の壁に相当する。部屋の周囲は壁だけでなく壁とは反射特性が異なる出入口や窓もあるが、ここでは簡単のため反射境界2は全周均一な反射特性とした。また、ノードの配置場所は一般に天井か壁上部であり端末の設置場所は机上か床上であるからエリア1は三次元であるのが好ましいが、ここでは簡単のため二次元とした。   First, as shown in FIG. 1, area 1 is assumed. This area 1 simulates a room where a wireless LAN is installed, and is like a sketch drawing of the shape of the room. Here, area 1 is rectangular for simplicity. Area 1 is surrounded by a reflective boundary 2. The reflection boundary 2 corresponds to the wall of the room. The surroundings of the room include not only walls but also entrances and windows that have different reflection characteristics from the walls. Here, for simplicity, the reflection boundary 2 is made to have uniform reflection characteristics all around. Further, since the node is generally placed on the ceiling or the upper part of the wall and the terminal is placed on the desk or on the floor, the area 1 is preferably three-dimensional, but here it is two-dimensional for simplicity.

部屋内に柱型や大型書棚などの障害物がある場合には、図2に示されるように、エリア1内の該当位置に反射境界3を設定する。ここでは簡単のため反射境界3は反射境界2と同じ反射特性とした。以下の説明では、反射境界3も反射境界2の一部として扱い、反射境界3の記載を省略する。   When there is an obstacle such as a column shape or a large bookcase in the room, a reflection boundary 3 is set at a corresponding position in the area 1 as shown in FIG. Here, for simplicity, the reflection boundary 3 has the same reflection characteristics as the reflection boundary 2. In the following description, the reflection boundary 3 is also treated as a part of the reflection boundary 2, and the description of the reflection boundary 3 is omitted.

次に、図3に示されるように、エリア1内に発信点4と受信点5とを配置する。受信点5は、無線LANの端末としてのパソコン、プリンタ、端末電話機、サーバ、家電機器、防犯機器などに相当し、これらの端末は部屋に多数置かれるが、ここでは簡単のため受信点5を1つだけ配置した場合を考える。発信点4は、ノードに相当し、これから最良のノード配置を見出だそうとするために、エリア1内の任意位置に仮に配置する。   Next, as shown in FIG. 3, the transmission point 4 and the reception point 5 are arranged in the area 1. The reception point 5 corresponds to a personal computer, a printer, a terminal phone, a server, a home appliance, a security device, or the like as a wireless LAN terminal. Many of these terminals are placed in a room. Consider a case where only one is arranged. The transmission point 4 corresponds to a node, and is temporarily arranged at an arbitrary position in the area 1 in order to find the best node arrangement from now on.

ここでは簡単のためノードは無指向性とする。よって、発信点4に特定の向きはない。   Here, for simplicity, the node is omnidirectional. Therefore, the transmission point 4 has no specific direction.

図4に示されるように、発信点4から周囲の複数の方向に直進して延長される電磁波線6を想定する。電磁波線6は、発信点4の全周に亘り、一定刻み角度θ毎に描く。一般に電磁波線6の本数を多くすれば計算時間が長くなり、本数を少なくすれば受信強度算出の精度が低下するが、本発明では後に詳述する優先度の導入により計算を省略できるので、電磁波線6の本数を多くしてもよい。   As shown in FIG. 4, an electromagnetic wave line 6 that extends straight from the transmission point 4 in a plurality of surrounding directions is assumed. The electromagnetic wave line 6 is drawn at every constant step angle θ over the entire circumference of the transmission point 4. In general, if the number of electromagnetic waves 6 is increased, the calculation time becomes longer, and if the number is reduced, the accuracy of reception intensity calculation is lowered. However, in the present invention, the calculation can be omitted by introducing the priority described in detail later. The number of lines 6 may be increased.

次に、図4の電磁波線6を発信点4から最初の反射境界2に到達するまで延長する。図5では、簡単のため2本の電磁波線6だけ示した。このとき各電磁波線6について発信点4から反射境界2に到達するまでの延長距離が計算できる。この延長距離に基づいて各電磁波線6に優先度を付与する。優先度は反射境界2に到達したところでの電磁波強度の高い順に高く付ける。本発明では電磁波強度は伝搬距離に反比例すると考え、伝搬距離の短い電磁波は強度が強いと考える。そこで、延長距離の短い電磁波線6に高い優先度を付与することになる。これにより、図4で想定した全ての電磁波線6に優先度が割り振られることになる。図5の2本の電磁波線6の中では太線で示した電磁波線6のほうが延長距離が短いので優先度が高い。優先度は反射境界2で反射する電磁波線6´の強度の順序を表しているとも言える。   Next, the electromagnetic wave line 6 in FIG. 4 is extended from the transmission point 4 until it reaches the first reflection boundary 2. In FIG. 5, only two electromagnetic waves 6 are shown for simplicity. At this time, the extension distance from the transmission point 4 to the reflection boundary 2 can be calculated for each electromagnetic wave line 6. A priority is given to each electromagnetic wave line 6 based on this extended distance. The priority is assigned in descending order of the electromagnetic wave intensity at the point where the reflection boundary 2 is reached. In the present invention, the electromagnetic wave intensity is considered to be inversely proportional to the propagation distance, and the electromagnetic wave having a short propagation distance is considered to have a high intensity. Therefore, a high priority is given to the electromagnetic radiation 6 having a short extension distance. Thereby, priority is assigned to all the electromagnetic waves 6 assumed in FIG. Among the two electromagnetic wave lines 6 in FIG. 5, the electromagnetic wave line 6 indicated by a thick line has a higher priority because the extension distance is shorter. It can be said that the priority represents the order of the intensity of the electromagnetic wave line 6 ′ reflected at the reflection boundary 2.

全ての電磁波線6に優先度を付与したら、この優先度の最も高い電磁波線6を延長する。図5の段階で電磁波線6は反射境界2に到達しているので、延長する方向は、図6に示されるように、図5の段階で到達した箇所から反射する方向である。   If priority is given to all the electromagnetic waves 6, the electromagnetic wave 6 with the highest priority is extended. Since the electromagnetic wave line 6 has reached the reflection boundary 2 at the stage of FIG. 5, the extending direction is the direction of reflection from the position reached at the stage of FIG. 5, as shown in FIG.

図6において、延長した電磁波線6が次の反射境界2に到達したら、この電磁波線6の優先度を低く変更する。この変更は、反射回数の少ない電磁波線6を優先的に追跡するという考えに基づく。壁や障害物で反射した電磁波は、位相がずれたりするので、その後、他の電磁波と重ね合わせをしたときに受信強度を強める作用をするとは限らない。そこで、本発明では、反射回数が多い電磁波は受信強度の増大に寄与する可能性が低いと考え、反射境界2に到達した電磁波線6の優先度を低く変更する。1本の電磁波線6は反射境界到達回数に応じて優先度がどんどん低くなる。   In FIG. 6, when the extended electromagnetic wave line 6 reaches the next reflection boundary 2, the priority of the electromagnetic wave line 6 is changed to be low. This change is based on the idea of preferentially tracking the electromagnetic radiation 6 with a small number of reflections. Since the electromagnetic waves reflected by the walls and obstacles are out of phase, it does not always act to increase the reception intensity when superimposed on other electromagnetic waves. Therefore, in the present invention, it is considered that an electromagnetic wave having a large number of reflections is unlikely to contribute to an increase in reception intensity, and the priority of the electromagnetic wave line 6 that has reached the reflection boundary 2 is changed to be low. One electromagnetic wave line 6 has a lower priority according to the number of reflection boundary arrivals.

さて、図5のように発信点4から反射境界2に到達するまでの延長距離によって優先度を付与する理由は、距離が延びれば強度が弱まるからである。具体的には、電磁波のエネルギPは距離Rの二乗に反比例して弱まる。距離Rが2倍になるとエネルギPは1/4倍になる。   Now, the reason why priority is given by the extended distance from the transmission point 4 to the reflection boundary 2 as shown in FIG. 5 is that the strength decreases as the distance increases. Specifically, the energy P of the electromagnetic wave is weakened in inverse proportion to the square of the distance R. When the distance R is doubled, the energy P is ¼.

P=A×(1/R2) (Aは定数) (1)
一方、図6のように電磁波線6が反射境界2に到達したら優先度を低くする理由は、反射によって強度が弱まるからである。反射で生じる減衰量は反射境界2における反射特性の設定値に依存する。レイトレース法では、壁、障害物などの全ての反射境界に対して反射係数及び透過係数を設定する必要がある。これらの係数は、壁、床、天井、窓など反射境界の材質による。その材質には、ガラスのように大半の電磁波を透過させることが分かっている建材もあれば、電磁シールド室で測定しなければ分からない建材もある。材質を無視し、簡易に係数を一律と考える方法もある。ここでは、反射係数を一律に0.5とする。
P = A × (1 / R 2 ) (A is a constant) (1)
On the other hand, the reason why the priority is lowered when the electromagnetic wave line 6 reaches the reflection boundary 2 as shown in FIG. 6 is that the intensity is weakened by reflection. The amount of attenuation caused by reflection depends on the setting value of the reflection characteristic at the reflection boundary 2. In the ray tracing method, it is necessary to set a reflection coefficient and a transmission coefficient for all reflection boundaries such as walls and obstacles. These coefficients depend on the material of the reflective boundary such as walls, floors, ceilings, and windows. There are building materials that are known to transmit most of electromagnetic waves, such as glass, and other building materials that are not known unless measured in an electromagnetic shield room. There is also a method that ignores the material and simply considers the coefficient as uniform. Here, the reflection coefficient is uniformly set to 0.5.

反射が1回ある場合、式(1)に反射係数0.5をかける。   When there is one reflection, the reflection coefficient 0.5 is applied to Equation (1).

P=A×(1/R2)×0.5 (2)
反射が2回ある場合、式(1)に反射係数0.5を2回かける。
P = A × (1 / R 2 ) × 0.5 (2)
When there are two reflections, the reflection coefficient 0.5 is applied twice to equation (1).

P=A×(1/R2)×0.5 (3)
このように計算したエネルギPでもって優先度を決めれば、延長距離による優先度と反射回数による優先度を複合させることができる。
P = A × (1 / R 2 ) × 0.5 (3)
If the priority is determined by the energy P calculated in this way, the priority based on the extended distance and the priority based on the number of reflections can be combined.

優先度の変更後、変更時点で優先度の最も高い電磁波線6の延長を継続する。その延長した電磁波線6が反射境界2に到達したら、また優先度の変更を行う。このようにして、延長の継続と優先度の変更とを繰り返すと、最初の反射境界2に到達したときに延長距離に応じて与えられた優先度は、その後は、反射境界2に到達したという事象の度に低下されることになる。図7に示した2本の電磁波線6では、仮に最初に反射境界2に到達したとき付与した優先度が同じであったとしても、図7のように違っていたとしても、太線で示した電磁波線6のほうが反射境界到達回数が少ないので優先度が高い。また、図7に示した2本の電磁波線6は、仮に発信点4から最後の反射境界2に到達するまでの延長距離が同じであったとしても、太線で示した電磁波線6のほうが反射境界到達回数が少ないので優先度が高い。   After the priority is changed, the electromagnetic wave line 6 having the highest priority at the time of change is continuously extended. When the extended electromagnetic wave line 6 reaches the reflection boundary 2, the priority is changed again. In this way, when continuation of extension and change of priority are repeated, the priority given according to the extension distance when the first reflection boundary 2 is reached then reaches the reflection boundary 2. It will be reduced at every event. The two electromagnetic wave lines 6 shown in FIG. 7 are indicated by bold lines even if the priority given when the reflection boundary 2 is first reached is the same or different as shown in FIG. The electromagnetic wave 6 has a higher priority because it has a smaller number of reflection boundary arrivals. Moreover, even if the extension distance from the transmission point 4 to the last reflection boundary 2 is the same, the two electromagnetic wave lines 6 shown in FIG. The priority is high because the number of times of reaching the boundary is small.

最初の延長及びその後の延長の継続と優先度の変更との繰り返しを行っている間、電磁波線6が受信点5に到達したならば、その電磁波線6を保存する。この電磁波線6については受信点5まで追跡が完了したので、優先度を除去し、その後の延長の継続には関与させない。   If the electromagnetic wave line 6 reaches the reception point 5 while repeating the first extension and the subsequent extension continuation and the priority change, the electromagnetic wave line 6 is stored. Since the tracking of the electromagnetic wave line 6 has been completed up to the receiving point 5, the priority is removed and the subsequent extension is not involved.

また、電磁波線6が反射境界2に到達したときに、その電磁波線6の利得を算出し、この利得が所定のしきい値以下であれば、この電磁波線6は廃棄するようにしてもよい。一般に、電磁波の利得は、伝搬した距離と壁や障害物で反射したときの減衰とに依存するので、本発明においては、発信点4から今回の反射境界2に到達するまでの延長距離と図1、図2で反射境界2を想定したときに設定した反射特性とから計算できる。しきい値は、仮に当該反射境界2で受信をしたときに、受信が正常に行える程度のS/N比が得られると思われる利得の限界値に設定しておく。受信点5に到達する以前にしきい値まで減衰した電磁波線6がその後何回かの反射を経過した後に受信点5に到達したとしても、受信強度の増大に寄与しないと見なせる。よって、この電磁波線6は廃棄する。   Further, when the electromagnetic wave line 6 reaches the reflection boundary 2, the gain of the electromagnetic wave line 6 is calculated, and if the gain is below a predetermined threshold value, the electromagnetic wave line 6 may be discarded. . In general, the gain of an electromagnetic wave depends on the propagated distance and the attenuation when reflected by a wall or an obstacle. Therefore, in the present invention, the extension distance from the transmission point 4 to the current reflection boundary 2 is shown in FIG. 1 and the reflection characteristics set when the reflection boundary 2 is assumed in FIG. The threshold value is set to a limit value of a gain at which an S / N ratio that can be normally received when receiving at the reflection boundary 2 is expected. Even if the electromagnetic wave line 6 attenuated to the threshold value before reaching the reception point 5 reaches the reception point 5 after several reflections thereafter, it can be regarded as not contributing to an increase in reception intensity. Therefore, the electromagnetic wave 6 is discarded.

このようにして、各電磁波線6を延長していく間に、受信点5まで追跡が完了した電磁波線6は保存され、しきい値まで減衰した電磁波線6は廃棄されるので、延長の対象となり得る電磁波線6の本数は減ってくる。これらの後回しにされた電磁波線6は、反射境界到達回数が増えて優先度が低くなった電磁波線6であり、既に保存された電磁波線6に比べて受信点5の受信強度への寄与はあまり期待できない。そこで、受信点5に到達して保存された電磁波線6の本数が所定本になったら、残りの電磁波線6については延長を中止し、到達した電磁波線6から受信点5の受信強度を算出し、発信点4での発信強度に対する受信点5の受信強度、即ち、利得を算出する。   Thus, while extending each electromagnetic wave line 6, the electromagnetic wave line 6 that has been traced to the reception point 5 is stored, and the electromagnetic wave line 6 attenuated to the threshold value is discarded. The number of electromagnetic waves 6 that can be reduced. The electromagnetic wave 6 that has been postponed is an electromagnetic wave line 6 having a lower priority due to an increase in the number of arrivals at the reflection boundary, and the contribution to the reception intensity at the receiving point 5 compared to the electromagnetic wave line 6 that has already been stored is I can't expect much. Therefore, when the number of electromagnetic waves 6 stored after reaching the reception point 5 reaches a predetermined number, the extension of the remaining electromagnetic waves 6 is stopped, and the reception intensity at the reception point 5 is calculated from the electromagnetic waves 6 that have arrived. Then, the reception intensity of the reception point 5 with respect to the transmission intensity at the transmission point 4, that is, the gain is calculated.

この利得に基づいて発信点5を評価する。例えば、無線LANの信号送受信が所定のS/N比で行うことができる利得を予めしきい値としておく。上記算出した利得がしきい値を越えていれば、発信点4は合格であり、しきい値に満たなければ不合格である。   The transmission point 5 is evaluated based on this gain. For example, a gain that can perform wireless LAN signal transmission and reception at a predetermined S / N ratio is set in advance as a threshold value. If the calculated gain exceeds the threshold value, the transmission point 4 is acceptable, and if it does not satisfy the threshold value, it is unacceptable.

発信点4が不合格の場合には、エリア1内の異なる位置に発信点4を移動させて図4以降の手順をやり直す。   If the transmission point 4 fails, the transmission point 4 is moved to a different position in the area 1 and the procedure from FIG.

以上の手順により、ノード配置が決定できる。   The node arrangement can be determined by the above procedure.

本発明も従来技術も発信点から複数の方向に延長される電磁波線を想定し追跡する点では同じだが、本発明にあっては電磁波線6を1本ずつ手当たり次第に受信点に到達するまで追跡するのではなく、最初に反射境界2に到達したところで優先度を付与し、その後は、優先度の高い順に電磁波線6を延長するようにしたので、優先度の低い電磁波線6を無駄に延長する過程が省略できる。このとき優先度は電磁波線6の延長距離に基づいて付与するので、電磁波強度の強い電磁波線6が優先的に延長されることになる。また、反射境界2に再び到達した電磁波線6は優先度を低く変更することで、反射境界到達回数が多いために受信強度の増大に寄与する可能性が低い電磁波線6の優先度が下がる。相対的に、受信強度の増大に寄与する可能性が高い電磁波線6の優先度が上がる。その後、優先度の高い所定本数の電磁波線6が受信点5に到達したところで発信点4を評価するので、優先度の低い電磁波線6を無駄に延長する過程が省略できる。   The present invention and the prior art are the same in that the electromagnetic wave extending in a plurality of directions from the transmission point is assumed and tracked, but in the present invention, the electromagnetic wave 6 is tracked one by one until it reaches the receiving point gradually. Instead, the priority is given when the reflection boundary 2 is first reached, and then the electromagnetic waves 6 are extended in the order of higher priority, so the electromagnetic waves 6 with lower priority are extended unnecessarily. The process of doing can be omitted. At this time, since the priority is given based on the extension distance of the electromagnetic wave line 6, the electromagnetic wave line 6 having a strong electromagnetic wave intensity is preferentially extended. Further, by changing the priority of the electromagnetic wave line 6 that has reached the reflection boundary 2 again, the priority of the electromagnetic wave line 6 that has a low possibility of contributing to an increase in reception intensity due to a large number of reflection boundary arrivals decreases. Relatively, the priority of the electromagnetic wave line 6 that is highly likely to contribute to the increase in reception intensity is increased. After that, since the transmission point 4 is evaluated when the predetermined number of electromagnetic waves 6 having high priority reaches the receiving point 5, the process of extending the electromagnetic waves 6 having low priority wastefully can be omitted.

このように、電磁波線6を延長する演算が大幅に省略できるので、ノード配置決定全体の計算時間を短縮することができ、最初に発信点4において想定する電磁波線6の本数を多くしてもノード配置決定全体の計算時間に大きな影響を与えない。従って、受信先に高い強度で到達するはずの電磁波線6を見落とす確率が低くなり、受信強度算出の精度を高めることができる。   As described above, since the operation for extending the electromagnetic wave line 6 can be largely omitted, it is possible to reduce the calculation time of the entire node arrangement determination, and even if the number of the electromagnetic wave lines 6 initially assumed at the transmission point 4 is increased. Does not significantly affect the calculation time of the entire node placement decision. Therefore, the probability of overlooking the electromagnetic wave line 6 that should reach the reception destination with high intensity is reduced, and the accuracy of reception intensity calculation can be increased.

図1〜図7による手順の説明では、反射境界2(反射境界3も含む)を均一な反射特性としたが、壁、障害物、窓等における反射・吸収・透過の係数も考慮して場所ごとに反射境界2の反射特性を異ならせてもよい。   In the description of the procedure shown in FIGS. 1 to 7, the reflection boundary 2 (including the reflection boundary 3) is assumed to have a uniform reflection characteristic. The reflection characteristics of the reflection boundary 2 may be made different for each.

また、受信点5の近傍に比較的範囲の広い受信テリトリを仮定し、受信テリトリを通過する電磁波線6については、受信点5に到達したと判定してもよい。さらに、受信テリトリを通過する電磁波線6があったとき、発信点4においてその電磁波線6と隣接する電磁波線6との間に新たな電磁波線6を想定することで、電磁波線間隔を精密にして追跡するようにしてもよい。   Alternatively, a reception territory having a relatively wide range may be assumed in the vicinity of the reception point 5, and it may be determined that the electromagnetic wave line 6 passing through the reception territory has reached the reception point 5. Further, when there is an electromagnetic wave line 6 that passes through the reception territory, a new electromagnetic wave line 6 is assumed between the electromagnetic wave line 6 and the adjacent electromagnetic wave line 6 at the transmission point 4 to make the electromagnetic wave line interval precise. May be tracked.

次に、本発明のプログラムについて説明する。   Next, the program of the present invention will be described.

本発明のプログラムは、大別して電磁波線追跡のプログラムと受信電磁波線処理のプログラムとから構成される。   The program of the present invention is roughly divided into an electromagnetic wave tracking program and a received electromagnetic wave processing program.

図8に示されるように、電磁波線追跡のプログラムは、無線LANを設置する部屋を模擬した反射境界2で囲まれたエリア1を想定するエリア想定ステップS1と、このエリア1内に発信点4と受信点5とを配置する点配置ステップS2と、発信点4から周囲の複数の方向に直進して延長される電磁波線6を想定する電磁波線想定ステップS3と、これら電磁波線6が発信点4から反射境界2に到達するまでの延長距離に基づいて各電磁波線6に優先度を付与する優先度付与ステップS4と、この優先度の高い順に電磁波線6を延長するべく最も優先度の高い電磁波線6を延長する電磁波線延長ステップS5と、反射境界2に到達した電磁波線6は優先度を低く変更する優先度変更ステップS6と、電磁波線6が反射境界2に到達したときに、その電磁波線6の利得を算出し、この利得が所定のしきい値以下であれば、この電磁波線6は廃棄する廃棄ステップS7と、変更時点で優先度の高い順に電磁波線6の延長を継続するべく電磁波線延長ステップS5に戻る電磁波線延長継続ステップS8とを有する。   As shown in FIG. 8, the electromagnetic wave ray tracing program includes an area assumption step S1 in which an area 1 surrounded by a reflection boundary 2 simulating a room in which a wireless LAN is installed is assumed, and a transmission point 4 in the area 1 Point placement step S2 for placing the receiver 5 and the receiving point 5, an electromagnetic wave assumption step S3 for assuming the electromagnetic wave line 6 extending straight from the transmission point 4 in a plurality of surrounding directions, and the electromagnetic wave line 6 as the transmission point Priority giving step S4 for giving priority to each electromagnetic wave line 6 based on the extension distance from 4 to the reflection boundary 2, and the highest priority for extending the electromagnetic wave line 6 in order of priority. When the electromagnetic wave line 6 reaches the reflection boundary 2, the electromagnetic wave line extension step S5 for extending the electromagnetic wave line 6, the priority change step S6 for changing the priority of the electromagnetic wave line 6 reaching the reflection boundary 2, and the electromagnetic wave line 6 reaches the reflection boundary 2 The gain of the electromagnetic wave line 6 is calculated, and if the gain is equal to or less than a predetermined threshold, the electromagnetic wave line 6 is discarded, and the extension of the electromagnetic wave line 6 is continued in descending order of priority at the time of change. In order to do so, there is an electromagnetic wave extension continuing step S8 which returns to the electromagnetic wave extending step S5.

図9に示されるように、受信電磁波線処理プログラムは、電磁波線6が受信点5に到達したならば、その電磁波線6を保存し、その後の延長の継続には関与させないようにする電磁波線保存ステップS11と、所定本数の電磁波線6が受信点に到達した(保存した)とき、これら到達した電磁波線6の延長距離及び反射境界到達回数から利得を算出する利得算出ステップS12と、この利得に基づいて発信点を評価する発信点評価ステップS13とを有する。電磁波線6が受信点5に到達しないとき、及び保存した電磁波線6が所定本数に満たないときは、図8の電磁波線追跡のプログラムに戻るようになっている。   As shown in FIG. 9, when the electromagnetic wave line 6 reaches the reception point 5, the received electromagnetic wave line processing program stores the electromagnetic wave line 6 and prevents it from participating in the continuation of the subsequent extension. A saving step S11, a gain calculating step S12 for calculating a gain from the extended distance of the reached electromagnetic wave lines 6 and the number of times of arrival at the reflection boundary when a predetermined number of electromagnetic wave lines 6 have reached (saved) the receiving point, and this gain And a transmission point evaluation step S13 for evaluating the transmission point based on the above. When the electromagnetic wave lines 6 do not reach the receiving point 5 and when the number of stored electromagnetic wave lines 6 is less than the predetermined number, the program returns to the electromagnetic wave ray tracing program of FIG.

図8の電磁波線追跡のプログラムは、S1からS4までの初期設定を実行した後は、S5〜S8を繰り返し実行する。この電磁波線追跡のプログラムの処理中に電磁波線6が受信点5に到達したイベントが発生するごとに、図9の受信電磁波線処理プログラムの電磁波線保存ステップS11が実行される。このとき所定本数の電磁波線6が受信点5に到達したら、図8の電磁波線追跡のプログラムは実行が終了される。これらのプログラムの実行により実現される動作は図1〜図7で説明したイメージのとおりである。   The electromagnetic wave ray tracing program in FIG. 8 repeatedly executes S5 to S8 after executing the initial settings from S1 to S4. Every time an event in which the electromagnetic wave 6 reaches the reception point 5 occurs during the processing of the electromagnetic wave tracking program, the electromagnetic wave storage step S11 of the received electromagnetic wave processing program of FIG. 9 is executed. At this time, when a predetermined number of electromagnetic wave lines 6 reach the receiving point 5, the execution of the electromagnetic wave ray tracing program of FIG. The operations realized by the execution of these programs are as described in FIGS.

電磁波線追跡のプログラムの実行中の計算値に基づいて図1〜図7のような画像をコンピュータに表示させるプログラムを設けてもよい。   A program for causing the computer to display images as shown in FIGS. 1 to 7 based on the calculated values during execution of the electromagnetic wave tracking program may be provided.

これからノードを設置しようという現場において、コンピュータに本発明のプログラムを実行させれば、簡易にかつ短時間でノード配置が決定できる。オペレータは、S1,S2の初期設定において部屋の見取り図や障害物配置に従ってエリア1の座標を入力し、端末配置に従って受信点5の座標を入力し、所望のノード位置として発信点4の座標を入力するだけで、コンピュータから発信点4の評価結果を知ることができる。発信点4の評価が良好でない場合はS2からやり直しすればよい。   If a computer is caused to execute the program of the present invention at a site where a node is to be installed, the node arrangement can be determined easily and in a short time. In the initial setting of S1 and S2, the operator inputs the coordinates of area 1 according to the room layout and obstacle arrangement, inputs the coordinates of reception point 5 according to the terminal arrangement, and inputs the coordinates of transmission point 4 as the desired node position. By simply doing, the evaluation result of the transmission point 4 can be known from the computer. If the evaluation of the transmission point 4 is not good, it is sufficient to start again from S2.

本発明の手順を作図のイメージで表した図である。It is the figure which represented the procedure of this invention with the image of drawing. 本発明の手順を作図のイメージで表した図である。It is the figure which represented the procedure of this invention with the image of drawing. 本発明の手順を作図のイメージで表した図である。It is the figure which represented the procedure of this invention with the image of drawing. 本発明の手順を作図のイメージで表した図である。It is the figure which represented the procedure of this invention with the image of drawing. 本発明の手順を作図のイメージで表した図である。It is the figure which represented the procedure of this invention with the image of drawing. 本発明の手順を作図のイメージで表した図である。It is the figure which represented the procedure of this invention with the image of drawing. 本発明の手順を作図のイメージで表した図である。It is the figure which represented the procedure of this invention with the image of drawing. 本発明のプログラムの流れ図である。It is a flowchart of the program of this invention. 本発明のプログラムの流れ図である。It is a flowchart of the program of this invention.

符号の説明Explanation of symbols

1 エリア
2 反射境界
3 反射境界
4 発信点
5 受信点
6 電磁波線
1 Area 2 Reflection boundary 3 Reflection boundary 4 Transmission point 5 Reception point 6 Electromagnetic wave

Claims (4)

無線LANを設置する部屋を模擬した反射境界で囲まれたエリアを想定し、このエリア内に発信点と受信点とを配置し、発信点から周囲の複数の方向に直進して延長される電磁波線を想定し、これら電磁波線が発信点から反射境界に到達するまでの延長距離に基づいて各電磁波線に優先度を付与し、この優先度の高い順に電磁波線を延長し、反射境界に再び到達した電磁波線は優先度を低く変更し、その変更時点で優先度の高い順に電磁波線の延長を継続し、受信点に到達した電磁波線を保存しておき、所定本数の電磁波線が受信点に到達したとき、これら到達した電磁波線の延長距離及び反射境界到達回数から利得を算出し、この利得に基づいて発信点を評価し、この発信点に対応する部屋内位置に無線LANのノードを配置するようにしたことを特徴とする無線LANにおけるノード配置決定方法。   Assuming an area surrounded by a reflective boundary simulating a room where a wireless LAN is installed, an electromagnetic wave that extends from a transmission point to a plurality of directions around it by placing a transmission point and a reception point in this area Priority is given to each electromagnetic wave line based on the extension distance until these electromagnetic wave lines reach the reflection boundary from the transmission point, and the electromagnetic wave lines are extended in order of the higher priority, and again to the reflection boundary. The electromagnetic waves that have arrived are changed to a lower priority, and the extension of the electromagnetic waves is continued in the order of priority at the time of the change, the electromagnetic waves that have reached the reception point are stored, and a predetermined number of electromagnetic waves are received at the reception points. , The gain is calculated from the extended distance of these reached electromagnetic waves and the number of arrivals at the reflection boundary, the transmission point is evaluated based on this gain, and the wireless LAN node is set at the position in the room corresponding to this transmission point. Like to place Node arrangement determination method in a wireless LAN, characterized in that. 上記部屋内に障害物がある場合には、上記エリア内の該当位置に反射境界を設定することを特徴とする請求項1記載の無線LANにおけるノード配置決定方法。   2. The node placement determination method in a wireless LAN according to claim 1, wherein when there is an obstacle in the room, a reflection boundary is set at a corresponding position in the area. 上記電磁波線が反射境界に到達したときに、その電磁波線の利得を算出し、この利得が所定のしきい値以下であれば、この電磁波線は廃棄することを特徴とする請求項1又は2記載の無線LANにおけるノード配置決定方法。   3. A gain of the electromagnetic wave is calculated when the electromagnetic wave reaches a reflection boundary, and the electromagnetic wave is discarded if the gain is a predetermined threshold value or less. The node arrangement determination method in the wireless LAN described. 無線LANを設置する部屋を模擬した反射境界で囲まれたエリアを想定するエリア想定ステップと、このエリア内に発信点と受信点とを配置する点配置ステップと、発信点から周囲の複数の方向に直進して延長される電磁波線を想定する電磁波線想定ステップと、これら電磁波線が発信点から反射境界に到達するまでの延長距離に基づいて各電磁波線に優先度を付与する優先度付与ステップと、この優先度の高い順に電磁波線を延長する電磁波線延長ステップと、反射境界に到達した電磁波線は優先度を低く変更する優先度変更ステップと、その変更時点で優先度の高い順に電磁波線の延長を継続する電磁波線延長継続ステップと、受信点に到達した電磁波線を保存しておく電磁波線保存ステップと、所定本数の電磁波線が受信点に到達したとき、これら到達した電磁波線の延長距離及び反射境界到達回数から利得を算出する利得算出ステップと、この利得に基づいて発信点を評価する発信点評価ステップとをコンピュータが解読可能に記述したことを特徴とする無線LANにおけるノード配置決定に用いるプログラム。
An area assumption step that assumes an area surrounded by a reflection boundary that simulates a room where a wireless LAN is installed, a point placement step that places a transmission point and a reception point in this area, and a plurality of directions around the transmission point An electromagnetic wave assumption step that assumes an electromagnetic wave line that goes straight ahead and extends, and a priority assignment step that gives priority to each electromagnetic wave line based on the extended distance from the transmission point to the reflection boundary. The electromagnetic wave extending step for extending the electromagnetic radiation in the order of the priority, the electromagnetic wave reaching the reflection boundary, the priority changing step for changing the priority lower, and the electromagnetic radiation in the order of the higher priority at the time of the change. The electromagnetic wave extension continuation step that continues the extension of the electromagnetic wave, the electromagnetic wave ray preservation step that preserves the electromagnetic wave ray that has reached the reception point, and the predetermined number of electromagnetic wave rays have reached the reception point The computer described the gain calculation step for calculating the gain from the extended distance of the electromagnetic waves that reached and the number of times of arrival at the reflection boundary and the transmission point evaluation step for evaluating the transmission point based on this gain in a computer-readable manner. A program used to determine node arrangement in a featured wireless LAN.
JP2004295014A 2004-10-07 2004-10-07 Method of determining arrangement of nodes in wireless lan and program used therefor Pending JP2006109245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295014A JP2006109245A (en) 2004-10-07 2004-10-07 Method of determining arrangement of nodes in wireless lan and program used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295014A JP2006109245A (en) 2004-10-07 2004-10-07 Method of determining arrangement of nodes in wireless lan and program used therefor

Publications (1)

Publication Number Publication Date
JP2006109245A true JP2006109245A (en) 2006-04-20

Family

ID=36378422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295014A Pending JP2006109245A (en) 2004-10-07 2004-10-07 Method of determining arrangement of nodes in wireless lan and program used therefor

Country Status (1)

Country Link
JP (1) JP2006109245A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525300A (en) * 2007-03-13 2010-07-22 アルカテル−ルーセント ユーエスエー インコーポレーテッド A method for locating a transmitter using reverse ray tracking.
JP2014098568A (en) * 2012-11-13 2014-05-29 Advanced Telecommunication Research Institute International Sound source position estimation device, sound source position estimation method, and sound source position estimation program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525300A (en) * 2007-03-13 2010-07-22 アルカテル−ルーセント ユーエスエー インコーポレーテッド A method for locating a transmitter using reverse ray tracking.
JP2014098568A (en) * 2012-11-13 2014-05-29 Advanced Telecommunication Research Institute International Sound source position estimation device, sound source position estimation method, and sound source position estimation program

Similar Documents

Publication Publication Date Title
US9699618B2 (en) Determining location based on both a detected location and a predicted location
US20070093212A1 (en) Radio wave propagation characteristic estimation system, and its method and program
WO2010067560A1 (en) Radio environment data correcting system, method and program
US8244511B2 (en) Radio wave propagation characteristic estimation apparatus and computer program
AU2017360282A1 (en) Method and device for analyzing communication channels and designing wireless networks, in consideration of information relating to real environments
JP6645346B2 (en) Method, apparatus and system for tracking electromagnetic wave propagation path
US10215838B2 (en) Method and apparatus for locating wireless access point
US9031574B2 (en) Location estimation based on adjusted distance values for a wireless device
JP4530898B2 (en) Radio wave propagation estimation program, radio wave propagation estimation method, and apparatus for executing the method
JPH088846A (en) Radio wave reception strength simulation method
JP2010258518A (en) Apparatus and method for estimation of radio wave propagation characteristic, and computer program
JP5301521B2 (en) Radio wave estimation method, radio wave estimation program, and radio wave estimation apparatus
US20090167756A1 (en) Method and apparatus for computation of wireless signal diffraction in a three-dimensional space
JP2006109245A (en) Method of determining arrangement of nodes in wireless lan and program used therefor
JP2005072667A (en) Apparatus and method of estimating reception characteristic
WO2012159330A1 (en) Analysis method and device for propagation characteristics of electromagnetic wave
JP4972471B2 (en) Radio wave propagation analyzer
JPWO2009069507A1 (en) Radio wave propagation simulator, radio wave propagation characteristic estimation method used therefor, and program thereof
CN111954225B (en) Router position determining method and electronic equipment
CN104581936B (en) A kind of method and apparatus of positioning
JP2007309709A (en) Radio wave propagation characteristic estimation system, its method, and program
CN107707319B (en) Method and device for predicting field intensity of wireless signal in building
JP4091190B2 (en) Radio environment parameter determination method for wireless terminal test, wireless terminal test apparatus
WO2022176163A1 (en) Wireless communication method, wireless communication system, and wireless communication program
WO2020184253A1 (en) Arrival rate estimation device, arrival rate estimation method, and program