JP2006108571A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2006108571A
JP2006108571A JP2004296499A JP2004296499A JP2006108571A JP 2006108571 A JP2006108571 A JP 2006108571A JP 2004296499 A JP2004296499 A JP 2004296499A JP 2004296499 A JP2004296499 A JP 2004296499A JP 2006108571 A JP2006108571 A JP 2006108571A
Authority
JP
Japan
Prior art keywords
wiring
pattern
insulating film
interlayer insulating
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004296499A
Other languages
English (en)
Inventor
Yoshihisa Matsubara
義久 松原
Takuhiro Tsuchida
卓洋 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2004296499A priority Critical patent/JP2006108571A/ja
Publication of JP2006108571A publication Critical patent/JP2006108571A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】 ダイ領域の層間絶縁膜の平坦性を確保すると共に、スクライブ領域を多機能化或いは小型化する。
【解決手段】 多層配線構造を有する半導体装置であって、ダイ領域11及びスクライブ領域12を有する基板上に形成された層間絶縁膜と、ダイ領域11の層間絶縁膜内に形成された多層の金属配線層(配線パターン)13と、金属配線層13と同じ層に形成され、かつ、ダイ領域11の層間絶縁膜内に形成されたダミーパターン15とを備え、ダミーパターン15内にリソグラフィ・マークパターンとしての合わせマーク16が形成されている。
【選択図】 図1

Description

本発明は、Cuダマシン配線を有する半導体装置に関する。
図6は、従来の合わせマークを有する半導体装置を説明するための上面図である。図6に示すように、配線パターン33がダイ領域31に形成されており、このダイ領域31の周りにスクライブ領域32が存在する。図6はプロセス評価用のウェハを示しており、配線パターン33はプロセス評価用の測定パターンである。スクライブ領域32を切断することにより半導体チップに個片化される。スクライブ領域32には、露光装置の合わせ用ターゲット、合わせマークパターン36やフォーカスモニタパターン37のようなリソグラフィ・マークパターンが形成される。また、合わせマークについて様々な提案がなされている(例えば、非特許文献1及び非特許文献2参照。)。
しかしながら、近年の半導体装置の微細化に伴い、半導体装置の製造過程において必要な寸法精度の正確さが高まりつつある。現実的な合わせの目標として、90nmノードの配線では50nm程度、さらに65nmノードの配線では30nm程度の合わせ精度が必須である。これは、65nmノードでは配線幅ターゲットが100nm程度まで微細化されており、30nmの合わせ精度でパターンを合わせても、30%のパターンずれを許容することになるからである。
さらに、多層配線技術において化学的機械的研磨(CMP:chemical mechanical polishing)技術が普及している。研磨速度を促進させる目的で絶縁膜内にダミー配線を形成したり、研磨速度を抑制させる目的で配線内に絶縁膜ダミーを形成する技術が提案されている。この技術により、ウェハ面内の配線データ率を均一化して、研磨速度をウェハ面内で均一化することができる。この技術につき、以下に説明する。
代表的な半導体装置として知られているマイクロプロセッサ(MPU)やカスタムLSI等のLSI(大規模集積回路)は、集積度の向上に伴い、個々の素子の寸法は年々微細化されつつある。また、素子を構成する半導体領域(不純物拡散領域)の深さも浅く形成されつつあり、さらに、半導体領域から配線を引き出すために層間絶縁膜に設けるコンタクトビアのサイズも制限されてきている。従って、配線の微細化が避けられなくなっている。
微細配線に適した構造として、層間絶縁膜内に配線用溝を設けて、この配線用溝内に導体を埋め込むことにより配線を形成する、いわゆるダマシン構造が用いられている(例えば、特許文献1参照。)。このダマシン構造について、図7を参照して以下に説明する。
図7に示すように、半導体素子としてのMOSFETを構成するゲート電極43が基板41上にゲート絶縁膜42を介して形成され、基板41上層に半導体領域としてのソース/ドレイン領域44が形成されている。ゲート電極43を覆う第1層間絶縁膜45としてのシリコン酸化膜内にソース/ドレイン領域44と接続するコンタクトプラグ47が形成されている。
第1層間絶縁膜45上に形成された第2層間絶縁膜48内には、互いに近接した帯状の配線51a,51b,51c,…からなる第1配線51が形成されると共に、この第1配線51と平行に帯状の第2配線52が形成されている。第1配線51及び第2配線52は、上述したダマシン構造を有する。第1配線51を構成する配線51bは、コンタクトプラグ47を通じてソース/ドレイン領域44と接続される。
ここで、第1配線51は、複数の配線51a,51b,51c,…が密に、すなわち配線密度が大きくなるように形成されている。一方、第2配線52は単独の配線が疎に形成されている。第1配線51及び第2配線52の形成時に、第2層間絶縁膜48の表面はCMP法により平坦化される。しかし、複数の配線51a,51b,51c,…が密に配置されてなる第1配線51近傍の第2層間絶縁膜48の表面には、後述する理由によりエロージョン53が発生してしまう。
次に、図8を参照して、図7に示す半導体装置の製造方法について説明する。
先ず、図8(a)に示すように、公知の手法を用いてMOSFETを形成する。具体的には、p型シリコン基板41に素子分離とウェル領域とを形成する(図示せず)。次に、シリコン基板41上にゲート絶縁膜42を介してゲート電極43を形成する。そして、このゲート電極43をマスクとしてシリコン基板41に不純物のイオン注入を行う。これにより、ゲート電極43に対して自己整合的にソース/ドレイン領域44がシリコン基板41上層に形成する。
次に、図8(b)に示すように、シリコン基板41全面にシリコン酸化膜等からなる第1層間絶縁膜45をCVD法により形成する。そして、リソグラフィ技術及びエッチングにより、第1層間絶縁膜45内にソース/ドレイン領域44に接続するコンタクトホール46を形成する。その後、コンタクトホール46内にタングステン等の導電材料を埋め込むことによりプラグ47を形成する。
次に、図8(c)に示すように、第1層間絶縁膜45及びプラグ47上にシリコン酸化膜等からなる第2層間絶縁膜48をCVD法により形成する。そして、リソグラフィ技術及びエッチングにより第2層間絶縁膜48内に配線用溝49を形成する。
続いて、図8(d)に示すように、配線用溝49内を含む第2層間絶縁膜48上に銅、アルミニウム等の導体膜50を形成する。そして、第2層間絶縁膜48をストッパ膜として不要な導体膜50をCMP法により除去する。これにより、図8(e)に示すように、第2層間絶縁膜48の所望位置に、ダマシン配線構造を有しかつ帯状の第1配線51及び第2配線52が形成される。その後、図9に示すように、第1配線51、第2配線52及び第2層間絶縁膜48上に第3層間絶縁膜54を形成することにより、半導体素子(MOSFET)を外部雰囲気から保護する。
ここで、第1配線51を構成し、密に配置された配線51a,51b,51c,…間に位置する第2層間絶縁膜48の表面は、第2配線52近傍に位置する第2層間絶縁膜48の表面に比べて強度的に劣っている。それゆえ、導体膜50をCMPする際に強度的に弱い部分が集中して研磨されるため、配線51a,51b,51c,…間に位置する第2層間絶縁膜48の表面に凹部が形成される、いわゆるエロージョン53が発生してしまう。
ところで、図8及び図9に示す従来の半導体装置では、導体膜50の研磨時にエロージョン53の発生を避けられないので、第2層間絶縁膜48の平坦度が劣るという問題があった。よって、かかる平坦度が劣る層間絶縁膜48の上層に形成される上層配線、例えば、第3層間絶縁膜54内に形成される配線に変形や断線等の不都合が生じてしまう。
上述のような問題を解消するため、配線が密に配置されてなる第1配線と、第2配線との間にダミー配線を形成する手法が提案されている。
図10は、ダミー配線を有する従来の半導体装置を示す平面図であり、図11は、図10のD−D’断面図である。孤立配線である第2配線52の周辺にダミー配線55を形成することにより、第2層間絶縁膜48における配線密度を均一化することができる。これにより、第2層間絶縁膜48表面の機械的強度も均一化することができ、導体膜50のCMP時に第2層間絶縁膜48の表面におけるエロージョンの発生を防止することができる。すなわち、ダミー配線55は第2層間絶縁膜48の平坦化に必須である。
ところで、層間絶縁膜を平坦化するためにダミー配線を単にランダムに形成してしまうと、配線容量を効率良く低減することが困難になってしまうという問題があった。極端な事例では、ダミー配線55が信号配線52とカップリングすることにより実効的容量が増加し、配線容量が増加してしまい、回路動作速度が低下するという問題が生じる。そこで、ダミー配線55を信号配線52から距離Lだけ離間して配置する方法が提案されている(例えば、特許文献2参照。)。
M. Adel、外7名、"Performance Study of New Segmented Overlay Marks for Advanced Wafer Processing"、2003年、SPIE Mike Adel、外7名、"Characterization of Overlay Mark Fidelity"、2003年、SPIE 米国特許第6232231号明細書 特開2000−286263号公報
しかしながら、従来の半導体装置のダイ領域に配置されていたCMPダミーパターンは、それ自体では機能を有していなかった。つまり、ダミー配線はCMPが終了した後には何ら役に立つ構造物ではないにも関わらず、上述した層間絶縁膜の平坦化のためにダイ領域に設ける必要があった。従って、従来は、何ら機能を有していないダミー構造が製品領域(ダイ領域)に存在していた。
一方、合わせマークやフォーカスモニタマークのようなリソグラフィ・マークパターンは、スクライブ領域に配置されていた。このため、リソグラフィ・マークパターンの数をスクライブ領域の面積によって制限するか、或いは、スクライブ領域を広くとる必要があった。
近年は配線の微細化と共に、配線の多層化が進んでいる。このため、リソグラフィ・マークパターンの他にも、ビア検査用のビアチェーンパターンや、配線検査用の層抵抗測定パターンのような多くのモニタパターンをスクライブ領域に形成する必要があり、スクライブ領域を広くせざるを得ない場合が多かった。
本発明は、上記従来の課題を解決するためになされたもので、ダイ領域の層間絶縁膜の平坦性を確保すると共に、スクライブ領域を多機能化或いは小型化することを目的とする。
本発明に係る半導体装置は、多層配線構造を有する半導体装置であって、
ダイ領域及びスクライブ領域を有する基板上に形成された層間絶縁膜と、
前記ダイ領域の前記層間絶縁膜内に形成された多層の金属配線層と、
前記金属配線層と同じ層に形成され、かつ、前記ダイ領域の前記層間絶縁膜内に形成されたダミーパターンとを備え、
前記ダミーパターン内にリソグラフィ・マークパターンが形成されたことを特徴とするものである。
本発明に係る半導体装置において、前記リソグラフィ・マークパターンは、前記金属配線層を構成するビアと同じ層に形成されたビア合わせマークパターンと、前記金属配線層を構成する上層配線又は下層配線と同じ層に形成された配線合わせマークパターンとを有する合わせマークパターンであることが好適である。
本発明に係る半導体装置において、前記合わせマークパターンを構成する最外周のパターンと、前記ダミーパターンとが、合わせ測定器により前記合わせマークパターンを認識可能な距離だけ相互に離間して配置されたことが好適である。
本発明に係る半導体装置において、前記リソグラフィ・マークパターンはフォーカスモニタパターンであり、該フォーカスモニタパターンを構成する最外周のパターンと、前記ダミーパターンとが、フォーカス測定器により前記フォーカスモニタパターンを認識可能な距離だけ離間して配置されたことが好適である。
本発明に係る半導体装置において、前記ダイ領域における前記リソグラフィ・マークパターンの面積率が10%以上であるが好適である。
本発明は以上説明したように、ダイ領域のダミーパターンとリソグラフィマークとを兼用することにより、ダイ領域の層間絶縁膜の平坦性を確保すると共に、スクライブ領域を多機能化或いは小型化することことができる。
以下、図面を参照して本発明の実施の形態について説明する。図中、同一または相当する部分には同一の符号を付してその説明を簡略化ないし省略することがある。
実施の形態1.
図1は、本発明の実施の形態1による半導体装置を説明するための平面図である。具体的には、2層銅配線のビア抵抗を測定するためのテストパターンを有するウェハを示す平面図である。
図1に示すように、ダイ領域11には、層間絶縁膜内に形成された配線用溝にCu膜等の導電膜を埋め込むことによって形成された配線パターン13が形成されている。本実施の形態1において、配線パターン13はビア抵抗測定用パターンであり、該パターン13はパッド14に接続されている。パッド14の1辺の長さは、例えば、100μmである。配線パターン13及びパッド14の周辺に長さL1の領域(以下「禁止領域」という。)だけ離間させてダミー配線パターン(以下「ダミーパターン」という。)15が形成されている。禁止領域の長さL1は、カップリング容量で決定され、例えば、10μmである。このダミーパターン15は、従来技術で説明したように、CMP時の層間絶縁膜の高平坦性を確保するために配置されている。
本実施の形態1では、このダミーパターン15の内側に合わせマーク(overlay mark)16が形成されている。すなわち、ダイ領域11内のダミー配線パターン15を合わせマーク16として機能させている。これにより、半導体装置における合わせマーク16の配置に自由度が発生する。ダイ領域11における合わせマーク16の面積率は10%以上が好適である。
合わせマーク16の1辺の長さA1は、例えば、24μmである。合わせマーク16は、規則正しく、例えば、長さA2が200μmの格子状に配置されており、格子の中央にも配置されている。また、合わせマーク16が完全な格子状に配置されていないのは、ダミーパターン15との演算処理により消失する合わせマーク16があるためである。
ダイ領域11の周辺に位置するスクライブ領域12には、フォーカスモニタマーク17、配線検査用の層抵抗測定パターン18、ビア検査用のビアチェーンパターン19が配置されている。
ここで、スクライブ領域を禁止領域とする第1の方法と、スクライブ領域を禁止領域としない第2の方法とがある。図1は、スクライブ領域12を禁止領域としており、第1の方法を示している。第2の方法では、既存マスクに合わせマークをグリッド展開する場合、合わせマークと既存マスクのファインアライメントマークとのマージン設定作業を行う必要がある。第1の方法では、このマージン設定作業が不要である。従って、既存マスクに合わせマークを展開するには、第1の方法が望ましい。
図2は、図1における合わせマークを拡大して示す平面図である。
図2に示すように、合わせマーク16は、正方形のビア合わせマーク16aと、ビア合わせマーク16aの外側に配置された4本の配線合わせマーク16bとを有している。
ビア合わせマーク16aの1辺の長さDは、例えば、5μmである。配線合わせマーク16bの長さBは、例えば、7μmであり、幅Cは、例えば、0.5μmである。ビア合わせマーク16aと配線合わせマーク16bの間隔Eは、例えば、2μmである。認識用マーク16cの長さFは、例えば、3μmであり、幅Gは、例えば、1μmである。
合わせマーク16をスキャンにより認識可能にするために、ダミーパターン15と、合わせマーク16の最外周の配線合わせマーク16bとは、長さL2だけ離間させる。長さL2は、スキャンを行う合わせ測定器の精度によって決定され、例えば、10μmである。
図3は、合わせマークの第1例を示す断面図である。
図2に示すように、合わせマーク16は、ビア合わせマーク16aと、該マーク16aを囲む配線合わせマーク16bとを有している。図3に示すように、配線合わせマーク16bは下層金属配線23と同じ層に形成され、ビア合わせマーク16aはビア25と同じ層に形成されている。詳細には、配線合わせマーク16bは、下層金属配線23と同じ層に形成されたダミーパターン15a内に形成されている。そして、ビア合わせマーク16aは、ビア25と同じ層に形成されたダミーパターン15b内に形成されている。
次に、図3に示す構造の製造方法について説明する。
先ず、基板(図示せず)上に形成された下地層21上に第1層間絶縁膜22を形成する。ここで、図示しないが、基板上にはMOSFETのような半導体素子が形成されている。次に、リソグラフィ技術及びドライエッチング技術を用いて第1層間絶縁膜22内に、下層金属配線23、ダミーパターン15a及び配線合わせマーク16bとなる複数の溝を形成し、この溝が埋まるようにCu膜のような導電膜を堆積させる。その後、第1層間絶縁膜22をストッパ膜としてCu膜のCMPを行うことにより、第1層間絶縁膜22内に下層金属配線23、ダミーパターン15a及び配線合わせマーク16bが形成される。
次に、基板全面に第2層間絶縁膜24を形成する。次に、第2層間絶縁膜24内に、上記と同様の技術を用いて、ビア25、ダミーパターン15b及びビア合わせマーク16aとなる複数の溝を形成し、この溝が埋まるように導電膜を堆積させる。その後、第2層間絶縁膜24をストッパ膜として導電膜のCMPを行うことにより、第2層間絶縁膜24内にビア25、ダミーパターン15b及びビア合わせマーク16aが形成される。
次に、基板全面に第3層間絶縁膜26を形成する。次に、第3層間絶縁膜26内に、上記と同様の方法を用いて、上層金属配線27となる溝を形成し、この溝が埋まるように導電膜を堆積させる。その後、第3層間絶縁膜26をストッパ膜として導電膜のCMPを行うことにより、第3層間絶縁膜26内に上層金属配線27が形成される。
なお、層間絶縁膜22,24,26として、CVD法によりシリコン酸化膜を形成してもよく、電気信号の伝搬を低減するためにシリコン酸化膜よりも低い比誘電率を有する低誘電率膜を形成してもよい。低誘電率膜として、SiOC膜のようにシリコン酸化膜に有機基をドーピングした膜をCVD法により形成してもよく、MSQ(Methyl Silsesquioxane)膜、HSQ(Hydrogen Silsesquioxane)膜、若しくはポリマー(例えば、ダウケミカル社製のSiLK(登録商標))、又はそれらに空孔が導入されたもの、又はそれらの積層膜をスピン塗布法により形成してもよい。
図4は、合わせマークの第2例を示す断面図である。
図3に示す第1例では、配線合わせマーク16bは下層金属配線23と同じ層に形成されている。図4に示す第2例では、配線合わせマーク16bは上層金属配線26と同じ層に形成されている。詳細には、配線合わせマーク16bは、上層金属配線27と同じ層に形成されたダミーパターン15c内に形成されている。ビア合わせマーク16aは、図3に示す第1例と同様である。
次に、図4に示す構造の製造方法について説明する。上記図3に示す構造の製造方法との相違点を中心に説明する。
先ず、下地層21上に第1層間絶縁膜22を形成する。次に、第1層間絶縁膜22内に下層金属配線23となる溝を形成した後、導電膜を堆積させる。その後、導電膜のCMPを行うことにより、第1層間絶縁膜22内に下層金属配線23が形成される。
次に、上記と同様の方法を用いて、基板全面に第2層間絶縁膜24を形成し、該第2層間絶縁膜24内にビア25、ダミーパターン15b及びビア合わせマーク16aを形成する。
次に、基板全面に第3層間絶縁膜26を形成する。そして、第3層間絶縁膜26内に上層金属配線27、ダミーパターン15c及び配線合わせマーク16bとなる複数の溝を形成し、導電膜を堆積させる。その後、第3層間絶縁膜26をストッパ膜として導電膜のCMPを行うことにより、第3層間絶縁膜26内に上層金属配線27、ダミーパターン15c及びボックスマーク16bが形成される。
以上説明したように、本実施の形態1では、ダミーパターン15内に合わせマーク16を形成することにより、ダイ領域11に形成したダミーパターン15に合わせマーク16の機能を持たせることとした。よって、合わせマーク16を構成するビア合わせマーク16aはビア25形成工程のCMP研磨レートを促進することができ、ビア合わせマーク16aの外側に位置する配線合わせマーク16bは金属配線23,27形成工程のCMP研磨レートを促進することができる。このため、層間絶縁膜の平坦性を確保することができる。
また、ダイ領域11内部でパターンの合わせ測定ができるため、製品における正確な合わせ測定情報を収集することができる。
また、合わせマーク16をダイ領域11内部に配置することができるため、スクライブ領域12には合わせマーク16を配置する必要がなくなるか、若しくはスクライブ領域12に配置する合わせマーク16の数を大幅に減らすことができる。よって、スクライブ領域12の従来合わせマーク16を配置していた部分に、他の機能を有するTEG(例えば、モニタパターン)を配置することができる。或いは、スクライブ領域12に合わせマーク、フォーカスモニタ17及びモニタパターン(層抵抗測定パターン18、ビアチェーンパターン19)を配置していたためにスクライブ領域12の幅を広くせざるを得なかった場合には、合わせマーク16の占有面積分だけスクライブ領域12を縮小することができる。
なお、ダミーパターン15の形状は任意であってよく、パッド型やT字型のダミーパターンの内側に合わせマーク16を配置することができる。
実施の形態2.
前述した実施の形態1では、ダイ領域11内のダミー配線パターンを合わせマークとして機能させたが、本発明の実施の形態2では、ダイ領域11内のダミー配線パターンをフォーカスモニタパターンとして機能させる点に特徴がある。以下、実施の形態1との相違点を中心に説明する。
図5は、本発明の実施の形態2による半導体装置において、フォーカスモニタを拡大して示す平面図である。
図5に示すように、フォーカスモニタ20は、線幅が太い配線20aと、該配線20aに接続された線幅が細い配線20bとからなる。詳細には、配線20aの長辺から外周方向に複数の配線20bが延びるように配置されている。このフォーカスモニタ20における細い配線20bの長さHを測定することによりフォーカス位置をモニタすることができる。フォーカスモニタ20は、金属配線層及びビア層におけるダミーパターン15の内側に形成される。
細い配線20bの配線幅と配線間隔は、製品ノードの最小配線幅に設定することが望ましい。例えば、65nmノード・バックエンド系では、配線幅と配線間隔とは共に90nm程度が望ましい。
また、細い配線20bの配線長さHは、レジスト後退現象を考慮して、200nm程度が望ましい。この理由としては、レジスト後退が100nm程度発生し得るため、配線長さHが100nm以下の場合には、細い配線20bが消失して太い配線20aのみが形成される可能性があるためである。
また、フォーカスモニタ20をスキャンにより認識可能にするために、ダミーパターン15と、フォーカスモニタ20の最外周の配線20bとは、長さL3だけ離間させる。長さL3は、スキャンを行うフォーカス測定器の精度によって決定され、例えば、10μmである。
なお、スクライブ領域には、合わせマークを形成することができる。
以上説明したように、本実施の形態2では、ダミーパターン15内にフォーカスモニタ20を形成することにより、ダイ領域に形成したダミーパターン15にフォーカスモニタの機能を持たせることとした。よって、フォーカスモニタ20は配線及びビア形成工程のCMP研磨レートを増加させることができる。このため、層間絶縁膜の平坦性を確保することができる。
また、実施の形態1の合わせマーク16よりも、本実施の形態2によるフォーカスモニタ20の方が配線面積を広く取ることができるため、CMPダミーとしてより好適である。すなわち、フォーカスモニタマークの配線面積率が高いため、CMP研磨レートを増加させることができる。
さらに、本実施の形態2では、フォーカスモニタ20を構成する太い配線20aの配線幅Iと細い配線20bの配線幅Jとの比率を最適化することにより、研磨レートの制御を容易に行うことができる。
また、フォーカスモニタマークをダイ領域の全域に展開することが可能であるため、高いNA(Numerical Aperture;開口数)のレンズを用いた高解像力のリソグラフィー技術において狭い焦点深度許容範囲を満足することができる。
また、フォーカスモニタ20をダイ領域内部に配置することができるため、スクライブ領域にはフォーカスモニタを配置する必要がなくなるか、若しくはスクライブ領域に配置するフォーカスモニタの数を大幅に減らすことができる。よって、スクライブ領域の従来フォーカスモニタ20を配置していた部分に、他の機能を有するTEG(例えば、モニタパターン)を配置することができる。或いは、スクライブ領域に合わせマーク、フォーカスモニタ及びモニタパターン(層抵抗測定パターン、ビアチェーンパターン)を配置していたためにスクライブ領域の幅を広くせざるを得なかった場合には、フォーカスモニタ20の占有面積分だけスクライブ領域を縮小することができる。
なお、ダミーパターン15の形状は任意であってよく、パッド型やT字型のダミーパターンの内側にフォーカスモニタ20を配置することができる。
本発明の実施の形態1による半導体装置を説明するための平面図である。 図1における合わせマークを拡大して示す平面図である。 合わせマークの第1例を示す断面図である。 合わせマークの第2例を示す断面図である。 本発明の実施の形態2による半導体装置において、フォーカスモニタを拡大して示す平面図である。 従来の合わせマークを有する半導体装置を説明するための上面図である。 ダマシン構造を有する半導体装置を説明するための断面図である。 図7に示す半導体装置の製造方法を説明するための工程断面図である(その1)。 図7に示す半導体装置の製造方法を説明するための工程断面図である(その2)。 ダミー配線を有する従来の半導体装置を示す平面図である。 図10のD−D’断面図である。
符号の説明
11 ダイ領域
12 スクライブ領域
13 配線パターン
14 パッド
15 ダミー配線パターン
16 合わせマーク
16a ビア合わせマーク
16b 配線合わせマーク
17 フォーカスモニタ
18 層抵抗測定パターン
19 ビアチェーンパターン
20 フォーカスモニタ
20a,20b 配線
21 下地層
22 第1層間絶縁膜
23 下層金属配線
24 第2層間絶縁膜
25 ビア
26 第3層間絶縁膜
27 上層金属配線

Claims (5)

  1. 多層配線構造を有する半導体装置であって、
    ダイ領域及びスクライブ領域を有する基板上に形成された層間絶縁膜と、
    前記ダイ領域の前記層間絶縁膜内に形成された多層の金属配線層と、
    前記金属配線層と同じ層に形成され、かつ、前記ダイ領域の前記層間絶縁膜内に形成されたダミーパターンとを備え、
    前記ダミーパターン内にリソグラフィ・マークパターンが形成されたことを特徴とする半導体装置。
  2. 請求項1に記載の半導体装置において、
    前記リソグラフィ・マークパターンは、前記金属配線層を構成するビアと同じ層に形成されたビア合わせマークパターンと、前記金属配線層を構成する上層配線又は下層配線と同じ層に形成された配線合わせマークパターンとを有する合わせマークパターンであることを特徴とする半導体装置。
  3. 請求項2に記載の半導体装置において、
    前記合わせマークパターンを構成する最外周のパターンと、前記ダミーパターンとが、合わせ測定器により前記合わせマークパターンを認識可能な距離だけ相互に離間して配置されたことを特徴とする半導体装置。
  4. 請求項1に記載の半導体装置において、
    前記リソグラフィ・マークパターンはフォーカスモニタパターンであり、該フォーカスモニタパターンを構成する最外周のパターンと、前記ダミーパターンとが、フォーカス測定器により前記フォーカスモニタパターンを認識可能な距離だけ離間して配置されたことを特徴とする半導体装置。
  5. 請求項1から4の何れかに記載の半導体装置において、
    前記ダイ領域における前記リソグラフィ・マークパターンの面積率が10%以上であることを特徴とする半導体装置。
JP2004296499A 2004-10-08 2004-10-08 半導体装置 Pending JP2006108571A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296499A JP2006108571A (ja) 2004-10-08 2004-10-08 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296499A JP2006108571A (ja) 2004-10-08 2004-10-08 半導体装置

Publications (1)

Publication Number Publication Date
JP2006108571A true JP2006108571A (ja) 2006-04-20

Family

ID=36377902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296499A Pending JP2006108571A (ja) 2004-10-08 2004-10-08 半導体装置

Country Status (1)

Country Link
JP (1) JP2006108571A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026920A (ja) * 2007-07-19 2009-02-05 Seiko Epson Corp 半導体装置の製造方法及び合わせマークの形成方法、半導体装置
KR100948457B1 (ko) * 2007-04-06 2010-03-17 주식회사 하이닉스반도체 반도체 소자의 패턴 형성 방법
US8158446B2 (en) 2008-07-07 2012-04-17 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN111916425A (zh) * 2019-05-10 2020-11-10 中芯国际集成电路制造(上海)有限公司 半导体形成方法及其结构
US11417536B2 (en) 2018-11-23 2022-08-16 Samsung Electronics Co., Ltd. Method for wafer planarization and an image sensor made by the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948457B1 (ko) * 2007-04-06 2010-03-17 주식회사 하이닉스반도체 반도체 소자의 패턴 형성 방법
JP2009026920A (ja) * 2007-07-19 2009-02-05 Seiko Epson Corp 半導体装置の製造方法及び合わせマークの形成方法、半導体装置
US8158446B2 (en) 2008-07-07 2012-04-17 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US8487305B2 (en) 2008-07-07 2013-07-16 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US11417536B2 (en) 2018-11-23 2022-08-16 Samsung Electronics Co., Ltd. Method for wafer planarization and an image sensor made by the same
CN111916425A (zh) * 2019-05-10 2020-11-10 中芯国际集成电路制造(上海)有限公司 半导体形成方法及其结构

Similar Documents

Publication Publication Date Title
US9543193B2 (en) Non-hierarchical metal layers for integrated circuits
US6261883B1 (en) Semiconductor integrated circuit device, and fabrication process and designing method thereof
TWI730081B (zh) 用於後段製程(beol)間隔物為基內連之以光桶來圖案化的削減栓塞與突片
KR101735912B1 (ko) 공기 간극 구조를 구비한 반도체 장치 및 그 제조 방법
JP2005109145A (ja) 半導体装置
TWI776672B (zh) 利用光刻桶的嵌刻栓塞及突片圖案化以用於後段製程(beol)基於隔層的互連
US11929258B2 (en) Via connection to a partially filled trench
US9786552B2 (en) Methods of forming fine patterns including pad portion and line portion
TWI751366B (zh) 導電通孔及金屬線端部的製造及由其製成的結構
JP2009060074A (ja) 半導体素子のコンタクト形成方法
JP5172069B2 (ja) 半導体装置
US9793185B2 (en) Test structure for monitoring liner oxidation
JP4634180B2 (ja) 半導体装置及びその製造方法
JP2006128709A (ja) 半導体集積回路装置およびその製造方法
JP2006108571A (ja) 半導体装置
JP2005354046A (ja) 半導体装置の製造方法
US20220148918A1 (en) Etching to reduce line wiggling
CN110289221B (zh) 一种半导体器件及其制造方法
JP2011035413A (ja) 半導体集積回路装置
JP2003051470A (ja) 半導体装置の製造方法、マスクパターンの設計方法およびプログラム
JP2005072403A (ja) 半導体装置および半導体装置の製造方法
JP2008258493A (ja) 半導体記憶装置の配線の形成方法
KR20080062695A (ko) 더미 패턴을 갖는 반도체 소자 및 그 형성방법
JP2005302894A (ja) 半導体装置の製造方法
KR100470390B1 (ko) 에스램소자 제조시 다마신을 이용한 국부배선 스페이스최소화방법