JP2006108082A - Manganese oxide powder for anode active substance - Google Patents

Manganese oxide powder for anode active substance Download PDF

Info

Publication number
JP2006108082A
JP2006108082A JP2005261348A JP2005261348A JP2006108082A JP 2006108082 A JP2006108082 A JP 2006108082A JP 2005261348 A JP2005261348 A JP 2005261348A JP 2005261348 A JP2005261348 A JP 2005261348A JP 2006108082 A JP2006108082 A JP 2006108082A
Authority
JP
Japan
Prior art keywords
manganese oxide
manganese
oxide powder
electrolytic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005261348A
Other languages
Japanese (ja)
Other versions
JP4993887B2 (en
Inventor
Shinya Kagei
慎也 蔭井
Takeshi Nagaishi
剛 永石
Hiromi Hata
祥巳 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005261348A priority Critical patent/JP4993887B2/en
Publication of JP2006108082A publication Critical patent/JP2006108082A/en
Application granted granted Critical
Publication of JP4993887B2 publication Critical patent/JP4993887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manganese oxide powder which can realize high rate performance of a battery. <P>SOLUTION: The manganese oxide is expressed by a composition formula, MnS<SB>a</SB>H<SB>b</SB>Me<SB>x</SB>O<SB>c</SB>zH<SB>2</SB>O, where a is 0.005 to 0.015, b is 0.3 to 0.4, c is 1.8 to 2.3, x is 0 to 0.015, z is more than 0 and particles of 1 μm size or larger have the existing rate of 50% or more in the particle size distribution. Protons (H+) are provided directly and promptly for discharge reaction by including a specified amount of S and H, and the discharge reaction becomes easy to follow even a heavy load. Furthermore, since an existing rate of ultrafine particles is extremely high, even if a discharge current becomes high, a utilization factor of the manganese oxide powder does not decline, so that a high current can be extracted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電池の正極活物質として用いるマンガン酸化物粉体に関する。   The present invention relates to a manganese oxide powder used as a positive electrode active material of a battery.

マンガン酸化物は、ニッケルマンガン電池、アルカリ電池、マンガンリチウム電池などの正極活物質として広く使用されている。中でも、電解二酸化マンガンは、比較的安価である上、高放電容量の電池を実現できるため、近年、これを正極活物質として用いたアルカリ電池は、デジタルカメラ、デジタルビデオカメラ、携帯電話機、PDAなどの電子機器用駆動電源等として広く利用されている。   Manganese oxides are widely used as positive electrode active materials such as nickel manganese batteries, alkaline batteries, and manganese lithium batteries. Among these, electrolytic manganese dioxide is relatively inexpensive and can realize a battery with a high discharge capacity. In recent years, alkaline batteries using this as a positive electrode active material are digital cameras, digital video cameras, cellular phones, PDAs, and the like. It is widely used as a drive power source for electronic equipment.

最近、電子機器の高性能化に伴い、正極活物質として用いるマンガン酸化物にも、より一層のハイレート特性が求められるようになって来ているが、本来的に電解二酸化マンガンは、電池の正極活物質として用いた場合、放電電流が大きくなると電解二酸化マンガンの利用率が低下して大電流を効率良く取り出せなくなる課題を有している。そこで従来、ハイレート特性を向上させるための種々の提案が為されてきた。   Recently, with higher performance of electronic devices, manganese oxide used as a positive electrode active material has been required to have higher high-rate characteristics. When used as an active material, when the discharge current is increased, the utilization rate of electrolytic manganese dioxide is reduced, and there is a problem that a large current cannot be efficiently extracted. Therefore, various proposals have been made for improving the high rate characteristics.

例えば特許文献1には、硫酸マンガン及び硫酸溶液にアンモニウム塩を添加した電解液を電解して得た、アンモニアを有するα型二酸化マンガンを、リチウム塩水溶液で中和処理し、またはリチウム塩を混合することにより、リチウム二次電池の正極材料として使用することが提案されている。   For example, in Patent Document 1, α-type manganese dioxide having ammonia obtained by electrolyzing an electrolytic solution in which ammonium salt is added to manganese sulfate and a sulfuric acid solution is neutralized with an aqueous lithium salt solution, or mixed with a lithium salt. Thus, it has been proposed to be used as a positive electrode material for a lithium secondary battery.

特許文献2には、120℃以上400℃を超えない範囲での加熱処理により除去される水のモル数が、Mn原子1モル当たり0.16以上である電解二酸化マンガンを正極に用いることが提案されている。   Patent Document 2 proposes that electrolytic manganese dioxide having a mole number of water removed by heat treatment in a range not less than 120 ° C. and not exceeding 400 ° C. be 0.16 or more per mole of Mn atoms is used for the positive electrode. Has been.

特許文献3には、最大粒子径が100μm以下で、1μm以下の粒子個数が15%未満で、かつそのメジアン径が20〜60μmの範囲にある電解二酸化マンガン粉末であって、該粉末を窒素中150℃で脱気した後、窒素とヘリウムの混合ガス吸着法により測定した比表面積が50m2/g以上である電解二酸化マンガン粉末が提案されている。 Patent Document 3 discloses an electrolytic manganese dioxide powder having a maximum particle size of 100 μm or less, a number of particles of 1 μm or less of less than 15%, and a median diameter in the range of 20 to 60 μm. An electrolytic manganese dioxide powder having a specific surface area of 50 m 2 / g or more measured by a mixed gas adsorption method of nitrogen and helium after deaeration at 150 ° C. has been proposed.

また、特許文献4には、最大粒子径が100μm以下で、1μm以下の粒子個数が15%未満で、かつそのメジアン径が20〜60μmの範囲にある電解二酸化マンガン粉末であって、該粉末を、X線源としてCuKαを用いた測定において、ミラー指数が(110)である回折面の半価幅が3.5°未満である微小結晶サイズの大きな電解二酸化マンガン粉末が提案されている。   Patent Document 4 discloses an electrolytic manganese dioxide powder having a maximum particle diameter of 100 μm or less, the number of particles of 1 μm or less being less than 15%, and a median diameter in the range of 20 to 60 μm. In the measurement using CuKα as the X-ray source, an electrolytic manganese dioxide powder having a large microcrystal size in which the half width of the diffraction surface having a Miller index of (110) is less than 3.5 ° has been proposed.

特許文献5には、ハイレート間欠性能を向上させたアルカリマンガン電池用正極合材として、表面硫酸量が0.10重量%以上であり、かつ、表面アルカリ金属量が0.20重量%未満である二酸化マンガンが開示されている。   In Patent Document 5, as a positive electrode mixture for an alkaline manganese battery with improved high-rate intermittent performance, the surface sulfuric acid amount is 0.10% by weight or more, and the surface alkali metal amount is less than 0.20% by weight. Manganese dioxide is disclosed.

特許文献6は、チタンを電解二酸化マンガンに0.001〜3.0重量%含有させることにより、電化二酸化マンガンの比表面積を高めて反応面積を高めることによりハイレート特性を高める方法が提案されている。   Patent Document 6 proposes a method for enhancing high-rate characteristics by increasing the specific surface area of electrified manganese dioxide and increasing the reaction area by containing titanium in electrolytic manganese dioxide in an amount of 0.001 to 3.0% by weight. .

更に、特許文献7には、ハイレート特性を向上させることができる電解二酸化マンガンとして、硫酸根を1.3〜1.6重量%含有するものが開示されている。   Furthermore, Patent Document 7 discloses an electrolytic manganese dioxide capable of improving the high rate characteristics, containing 1.3 to 1.6% by weight of sulfate radicals.

特開平5−21062号Japanese Patent Laid-Open No. 5-21062 特開平5−174841号Japanese Patent Laid-Open No. 5-174841 特開2002−289185号JP 2002-289185 A 特開2002−289186号JP 2002-289186 A 特開2002−304990号JP 2002-304990 A 特開2003−163003号JP2003-163003 特開2004−47445号JP 2004-47445 A

本発明は、従来存在しなかった新たな発想に基づき、ハイレート(高負荷)での放電特性に特に優れたマンガン酸化物粉体を提案せんとするものである。   The present invention proposes a manganese oxide powder that is particularly excellent in discharge characteristics at a high rate (high load) based on a new idea that did not exist in the past.

本発明は、組成式MnSabMexc・zH2O(但し、Me:Ti,Ca、Mg、Ln(ランタノイド)の一種或いは二種以上の組合せ)で表されるマンガン酸化物粉体であって、
aは、0.005以上0.015以下であり、
bは、0.3以上0.4以下であり、
cは、1.8以上2.3以下であり、
xは、0或いは0より大きく0.015以下であり、
zは、0を超える値であり、
個数分布における1μm以下の粒子の存在比率が50%以上であることを特徴とするマンガン酸化物粉体を提案する。
The present invention relates to a manganese oxide powder represented by the composition formula MnS a H b Me x O c · zH 2 O (where Me is one or a combination of two or more of Ti, Ca, Mg, and Ln (lanthanoid)). Body,
a is 0.005 or more and 0.015 or less,
b is 0.3 or more and 0.4 or less,
c is 1.8 or more and 2.3 or less,
x is 0 or greater than 0 and less than or equal to 0.015;
z is a value greater than 0;
Proposed is a manganese oxide powder characterized in that the abundance ratio of particles of 1 μm or less in the number distribution is 50% or more.

このようにマンガン酸化物中に所定量の「S」「H」が取り込まれることによって、放電反応時に、マンガン酸化物内から直接かつ速やかにプロトン(H+)が供給され、高負荷時においても放電反応(ハイレート放電)が追随でき易くなり、ハイレート特性に優れた電池を実現することができる。
また、マンガン酸化物の結晶成長の間に「S」乃至「Me」が取り込まれると、これが結晶成長に際して制御因子として働き、ハイレート特性が更に優れたものとなる。詳細なメカニズムは不明であるが、おそらくマンガン酸化物の結晶成長の間に取り込まれた「S」「Me」が結晶成長に際して制御因子と働き、プロトン(H+)を含めて放電反応物の供給がより一層スムーズになると同時に放電生成物の拡散もスムーズになるため優れたハイレート特性が実現されるものと考えられる。ただし、一定量以上の「S」「Me」が存在するとプロトン(H+)の拡散を阻害することになる為、「S」「Me」の量を適正にすることが重要であるとも考えられる。
さらに本発明のマンガン酸化物粉体は、1μm以下の超微粒子の存在比率が極めて高いため、放電電流が大きくなってもマンガン酸化物粉体の利用率が低下せず、大電流を取り出すことができるという点においてもハイレート特性に優れている。この理由はおそらく、反応面積が大きくなり、同時にマンガン酸化物と導電剤として一般に使用される黒鉛との接触点数が増えるため、放電時の電子の移動がスムーズに行われるようになり、放電電流が大きくなってもマンガン酸化物の利用率が低下せず、大電流を取り出すことができるようになるものと考えられる。
Thus, by incorporating a predetermined amount of “S” and “H” into the manganese oxide, protons (H + ) are supplied directly and quickly from the inside of the manganese oxide during the discharge reaction, and even at high loads. It becomes easy to follow a discharge reaction (high rate discharge), and a battery excellent in high rate characteristics can be realized.
Further, when “S” to “Me” are incorporated during the crystal growth of the manganese oxide, this acts as a control factor during the crystal growth, and the high rate characteristics are further improved. Although the detailed mechanism is unknown, it is likely that “S” and “Me” incorporated during the crystal growth of manganese oxide act as regulators during crystal growth, and supply of discharge reactants including protons (H + ) It is considered that an excellent high rate characteristic is realized because the discharge becomes more smooth and the diffusion of the discharge product becomes smoother. However, if “S” or “Me” above a certain amount is present, diffusion of protons (H + ) is inhibited, so it is considered that it is important to make the amounts of “S” and “Me” appropriate. .
Furthermore, the manganese oxide powder of the present invention has a very high abundance ratio of ultrafine particles of 1 μm or less, so even if the discharge current increases, the utilization factor of the manganese oxide powder does not decrease, and a large current can be taken out. It is also excellent in high rate characteristics in that it can be made. This is probably because the reaction area increases, and at the same time the number of contact points between manganese oxide and graphite, which is generally used as a conductive agent, increases, so that electrons move smoothly during discharge, and the discharge current is reduced. Even if it becomes large, it is considered that the utilization factor of manganese oxide does not decrease and a large current can be taken out.

なお、本発明において「ハイレート」とは、アルカリ電池(電池サイズLR6)及びニッケルマンガン電池の場合には400mA以上の使用領域をハイレートと言う。後述する試験では、ハーフセルにおいて25mA(アルカリ電池LR6の場合1300mA相当)の電流を所定の電圧を維持しつつ継続的に流すことによりハイレート特性を検討した。   In the present invention, the term “high rate” refers to a high rate in the usage region of 400 mA or more in the case of alkaline batteries (battery size LR6) and nickel manganese batteries. In the test to be described later, the high rate characteristic was examined by continuously flowing a current of 25 mA (corresponding to 1300 mA in the case of the alkaline battery LR6) while maintaining a predetermined voltage in the half cell.

本発明の組成式MnSabMexc・zH2Oにおいて「S」「H」及び「Me」は、焼成後に事後的に添加されて混合状態で存在するものとは異なり、マンガン酸化物内に含有され、X線回折において「S」「H」「Me」のピークが観察されない状態を意味し、マンガン酸化物と一体的に含有されている状態のものをいう。 In the composition formula MnS a H b Me x O c · zH 2 O of the present invention, “S”, “H”, and “Me” are added after the calcination and present in a mixed state, unlike manganese oxidation. It means a state in which peaks of “S”, “H”, and “Me” are not observed in X-ray diffraction, and is in a state of being integrated with manganese oxide.

また、組成式MnSabMexc・zH2Oにおける「z」は、マンガン酸化物を110℃で2時間乾燥させた時のマンガン酸化物1モル当たりの質量減少をH2Oのモル数に換算した値である。この「H2O」は110℃での加熱乾燥によって蒸発し得る状態にある水、すなわちマンガン酸化物中にH2Oの状態で含有される水であるから、事後的に添加された水分とは異なる。又、マンガン酸化物を200〜400℃に加熱した際に蒸発する水分を結合水などと言うが、この結合水は110℃での加熱乾燥では蒸発しないため、結合水とも異なる。 Further, "z" in the composition formula MnS a H b Me x O c · zH 2 O is a mass reduction of 1 mole per manganese oxide when manganese oxide is dried for 2 hours at 110 ° C. in H 2 O It is the value converted into the number of moles. This “H 2 O” is water that can be evaporated by heat drying at 110 ° C., that is, water contained in the manganese oxide in the H 2 O state. Is different. Moreover, although the water | moisture content which evaporates when a manganese oxide is heated at 200-400 degreeC is called combined water etc., since this combined water does not evaporate by the heat drying at 110 degreeC, it differs from combined water.

本明細書において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意であり、「好ましくはXより大きく、Yより小さい」の意を包含する。 In this specification, “X to Y” (X and Y are arbitrary numbers) means “X or more and Y or less” unless otherwise specified, and “preferably larger than X and smaller than Y”. Is included.

次に、本発明の実施の形態について説明するが、本発明の範囲が以下に説明する実施形態に制限されるものではない。   Next, embodiments of the present invention will be described, but the scope of the present invention is not limited to the embodiments described below.

本発明のマンガン酸化物粉体は、組成式MnSabMexc・zH2Oで表されるマンガン酸化物からなり、個数分布における1μm以下の粒子の存在比率が50%以上であるマンガン酸化物粉体である。 The manganese oxide powder of the present invention comprises a manganese oxide represented by the composition formula MnS a H b Me x O c .zH 2 O, and the abundance ratio of particles of 1 μm or less in the number distribution is 50% or more. Manganese oxide powder.

本発明のマンガン酸化物粉体は、上記組成を満足するのであれば、天然マンガン酸化物、化学合成マンガン酸化物、電解マンガン酸化物、その他のマンガン酸化物のいずれからなるものでもよいが、安価でかつ上記組成を実現し易いという観点から、硫酸マンガン溶液を電気分解することによって析出させて得られるマンガン酸化物からなるものであるのが好ましい。   The manganese oxide powder of the present invention may be composed of any of natural manganese oxide, chemically synthesized manganese oxide, electrolytic manganese oxide, and other manganese oxides as long as the above composition is satisfied. In addition, from the viewpoint of easily realizing the above composition, it is preferably made of a manganese oxide obtained by precipitation by electrolyzing a manganese sulfate solution.

上記組成式において、Sのモル比率としての「a」は、0.005以上0.015以下であることが重要であり、好ましくは0.009以上0.013以下である。
S元素の定量はICP分析装置を使って測定することができる。
このSのモル比率aは、電解法によってマンガン酸化物を製造する場合であれば、例えば電解装置の設計(電解液の上層を高温層とし下層を低温層とすることも含む)、電解液の硫酸濃度、電解条件などによって調整することができる。但し、この方法に限定されるものではない。
なお、Sのモル比率aをコントロールする手段として、硫酸マンガン電解補給液の調整を挙げることができるが、aの値を高めるために硫酸マンガン電解補給液中の硫酸濃度を高くし過ぎると溶液中の硫酸によって電極表面が不働態化してマンガンの電解を阻害する要因となる点に注意が必要である。
In the above composition formula, “a” as a molar ratio of S is important to be 0.005 or more and 0.015 or less, and preferably 0.009 or more and 0.013 or less.
The quantification of S element can be measured using an ICP analyzer.
If the molar ratio a of S is a case where manganese oxide is produced by an electrolytic method, for example, the design of an electrolytic device (including the case where the upper layer of the electrolytic solution is a high temperature layer and the lower layer is a low temperature layer), It can be adjusted according to sulfuric acid concentration, electrolysis conditions, and the like. However, it is not limited to this method.
As a means for controlling the molar ratio a of S, adjustment of the manganese sulfate electrolytic replenisher can be mentioned, but in order to increase the value of a, if the sulfuric acid concentration in the manganese sulfate electrolytic replenisher is too high, Attention should be paid to the fact that the surface of the electrode is passivated by the sulfuric acid, thereby inhibiting the electrolysis of manganese.

上記組成式において、Hのモル比率としての「b」は、0.3以上0.4以下であることが重要であり、好ましくは0.30以上0.40以下である。
「b」の値が0.3より小さい、すなわちHが少ないと、放電反応時マンガン酸化物内からのプロトン(H+)の充分な供給が行われず放電反応が追随できなくなるようになる。他方、「b」の値が0.4より大き過ぎる、すなわちHが多過ぎるとマンガン酸化物内のマンガンがプロトンにより置換されてマンガンとしての理論容量が低下し利用率が低下するようになる。
このHのモル比率bは、電解法によってマンガン酸化物を製造する場合であれば、例えば電解装置の設計(電解液の上層を高温層とし下層を低温層とすることも含む)、電解液の硫酸濃度、電解条件などによって調整することができる。但し、この方法に限定されるものではない。
H元素の定量は、窒素雰囲気中で110から500℃まで加熱した際に試料から放出された水分量をカールフィッシャー水分計で測定し、得られた水分量から、110℃で加熱乾燥した際に放出される水分量を除いた値に基づいて算出することができる。
なお、マンガン酸化物におけるHの存在状態として、H+、OH-、H2Oが考えられるが、試料を500℃まで加熱した場合、MnOx値に大きな減少はみられないため、この点から周囲の酸素を捉えてH2Oとして蒸発するプロトン(H+)の絶対量はほとんどなく、主にOH-、H2Oとして存在すると考えられる。
In the above composition formula, “b” as the molar ratio of H is important to be 0.3 or more and 0.4 or less, preferably 0.30 or more and 0.40 or less.
When the value of “b” is smaller than 0.3, that is, when H is small, sufficient supply of protons (H + ) from the manganese oxide is not performed during the discharge reaction, and the discharge reaction cannot follow. On the other hand, if the value of “b” is too large, that is, if there is too much H, manganese in the manganese oxide is replaced by protons, the theoretical capacity as manganese decreases, and the utilization rate decreases.
The molar ratio b of H is, for example, the design of an electrolysis apparatus (including the case where the upper layer of the electrolyte is a high temperature layer and the lower layer is a low temperature layer), if the manganese oxide is produced by an electrolytic method, It can be adjusted depending on the sulfuric acid concentration, electrolysis conditions, and the like. However, it is not limited to this method.
The amount of H element is determined by measuring the amount of water released from the sample when heated from 110 to 500 ° C. in a nitrogen atmosphere with a Karl Fischer moisture meter, and then heating and drying at 110 ° C. from the obtained amount of water. It can be calculated based on a value excluding the amount of water released.
In addition, H + , OH , and H 2 O can be considered as the existence state of H in the manganese oxide. However, when the sample is heated to 500 ° C., there is no significant decrease in the MnOx value. the absolute amount will almost no protons evaporation oxygen as the capture H 2 O (H +), mainly OH -, is believed to be present as H 2 O.

本発明のマンガン酸化物粉体は、所定量の「S」及び「H」をともに含有することが重要であり、特にSに対するHの量が所定比率であることが好ましい。具体的には、Sに対するHの比率b/aが25以上40以下であることが好ましく、特に25以上30以下であることがより好ましい。
Sに対するHの比率b/aは、電解法によってマンガン酸化物を製造する場合であれば、例えば電解装置の設計(電解液の上層を高温層とし下層を低温層とすることも含む)、電解液の硫酸濃度、電解条件などによって調整することができる。但し、この方法に限定されるものではない。
なお、b/aをコントロールする手段として、硫酸マンガン電解補給液の調整を挙げることができるが、aの値を高めるために硫酸マンガン電解補給液中の硫酸濃度を高くし過ぎると溶液中の硫酸によって電極表面が不働態化してマンガンの電解を阻害する要因となる点に注意が必要である。
It is important that the manganese oxide powder of the present invention contains both predetermined amounts of “S” and “H”, and it is particularly preferable that the amount of H with respect to S is a predetermined ratio. Specifically, the ratio b / a of H to S is preferably 25 or more and 40 or less, and more preferably 25 or more and 30 or less.
The ratio b / a of H to S is, for example, the design of an electrolytic device (including the case where the upper layer of the electrolytic solution is a high temperature layer and the lower layer is a low temperature layer), and electrolysis. It can be adjusted according to the sulfuric acid concentration of the liquid, electrolysis conditions, and the like. However, it is not limited to this method.
Incidentally, as a means for controlling b / a, adjustment of manganese sulfate electrolytic replenisher can be mentioned. However, if the sulfuric acid concentration in the manganese sulfate electrolytic replenisher is excessively increased in order to increase the value of a, sulfuric acid in the solution It is necessary to pay attention to the fact that the electrode surface becomes passivated and becomes a factor that inhibits the electrolysis of manganese.

上記組成式において、Oのモル比率としての「c」は、1.8以上2.3以下であることが重要であり、好ましくは1.9以上2.1以下である。このOのモル比率「c」は、S、H及びMeの含有量を変化させることにより調整できる。但し、この方法に限定されるものではない。   In the above composition formula, “c” as the molar ratio of O is important to be 1.8 or more and 2.3 or less, and preferably 1.9 or more and 2.1 or less. The molar ratio “c” of O can be adjusted by changing the contents of S, H, and Me. However, it is not limited to this method.

上記組成式において、「Me」はTi,Ca、Mg、Ln(ランタノイド)の一種あるいは二種以上の組合せであり、原料中に含まれている不可避不純物と故意に添加された物とを区別するものではない。また、Ti,Ca、Mg、Lnの効果は略同様であると考えられる。
「Me」のモル比率としての「x」は、0或いは0より大きく0.015以下であることが重要であり、好ましくは0.000001以上0.013以下、さらに好ましくは0.00001以上0.013以下である。すなわち、Meは必ずしも含まれていなくてもよいが、少しでも含まれていると結晶成長の際に制御因子として働き、ハイレート特性を更に優れたものとすることができる。但し、上述したように「Me」が多過ぎるとプロトン(H+)の拡散を阻害するばかりか、マンガン酸化物が異相を形成し理論容量を低下させることとなるため、その量の適正化を図ることが重要である。
「Me」の量に関しては、原料の選択或いは添加によって調整することができる。
In the above composition formula, “Me” is one or a combination of two or more of Ti, Ca, Mg, and Ln (lanthanoid), and distinguishes the inevitable impurities contained in the raw material from those intentionally added. It is not a thing. The effects of Ti, Ca, Mg, and Ln are considered to be substantially the same.
It is important that “x” as the molar ratio of “Me” is 0 or more than 0 and 0.015 or less, preferably 0.000001 or more and 0.013 or less, more preferably 0.00001 or more and 0.0. 013 or less. That is, Me does not necessarily need to be contained, but if it is contained in a small amount, it acts as a control factor during crystal growth and can further improve the high rate characteristics. However, as described above, too much “Me” not only inhibits the diffusion of protons (H + ) but also reduces the theoretical capacity because manganese oxide forms a heterogeneous phase. It is important to plan.
The amount of “Me” can be adjusted by selecting or adding raw materials.

上記組成式において、「z」は、マンガン酸化物中にH2Oの状態で含有される水のモル比率を意味し、110℃で2時間程度加熱乾燥させた時の重量減少を、マンガン酸化物1モル当たりのH2Oモル数に換算した値であり、若干でも存在すれば、すなわち0を超える値であればよいが、0.2以下であるのが好ましい。この「z」の値が高き過ぎると、すなわちH2Oが多過ぎると、マンガン酸化物の表面近傍で電解液と反応し、電解液濃度が希薄となり放電反応の際に抵抗となって放電反応が抑制されるようになる。 In the above composition formula, “z” means the molar ratio of water contained in the state of H 2 O in the manganese oxide, and the weight loss when heated and dried at 110 ° C. for about 2 hours is expressed as manganese oxidation. It is a value converted to the number of moles of H 2 O per mole of the product, and if it exists even a little, that is, a value exceeding 0 is sufficient, but it is preferably 0.2 or less. If the value of “z” is too high, that is, if there is too much H 2 O, it reacts with the electrolyte near the surface of the manganese oxide, and the electrolyte concentration becomes dilute and becomes a resistance during the discharge reaction. Will be suppressed.

(結晶性)
上記組成を有するマンガン酸化物の中でも、X線回折法(XRD)で測定される(310)面のピーク強度I(310)と(221)面のピーク強度I(221)との比率が、I(310)/I(221)<0.20、特に<0.19、中でも特に<0.18であるのが好ましい。ピーク強度I(310)と、(221)面のピーク強度I(221)の比率が0.4よりどれだけ小さいかは、γ−MnO2の結晶構造からどれだけずれているかの指標、言い換えればマンガン酸化物内にS、H及びMeがどれだけ含有されているかの指標となる。したがって、I(310)/I(221)<0.20であれば、マンガン酸化物内にS、H及びMeが十分に取り込まれていることの一つの目安となる。
(crystalline)
Among the manganese oxides having the above composition, the ratio of the peak intensity I (310) on the (310) plane and the peak intensity I (221) on the (221) plane measured by X-ray diffraction (XRD) is I It is preferred that (310) / I (221) <0.20, especially <0.19, especially <0.18. How much the ratio of the peak intensity I (310) and the peak intensity I (221) of the (221) plane is smaller than 0.4 is an indicator of how much it deviates from the crystal structure of γ-MnO 2 , in other words It becomes an index of how much S, H and Me are contained in the manganese oxide. Therefore, if I (310) / I (221) <0.20, it is one indication that S, H, and Me are sufficiently taken into the manganese oxide.

また、X線回折法(XRD)で測定されるRamsdellite(空間群Pnma)と帰属した場合における(110)面の面間隔d値が4.01Å以上、特に4.01Å以上4.09Å以下、中でも特に4.01Å以上4.06Å以下であるのが好ましい。(110)面の面間隔d値はMnとOの結合状態に起因して変化する値である。詳細な理由は不明であるが、面間隔d値が4.010Å以上であればハイレート特性がより一層優れたものとなることが確かめられている。   In addition, the interplanar spacing d value of the (110) plane when attributed to Ramsdellite (space group Pnma) measured by X-ray diffraction (XRD) is 4.01 mm or more, particularly 4.01 mm or more and 4.09 mm or less, In particular, it is preferably 4.01 to 4.06. The (110) plane spacing d value is a value that changes due to the bonding state of Mn and O. Although the detailed reason is unknown, it has been confirmed that the high-rate characteristic is further improved when the surface separation d value is 4.010 mm or more.

(個数分布における1μm以下の粒子の存在比率)
本発明のマンガン酸化物粉体は、個数分布における1μm以下の粒子の存在比率が50%以上であることが重要であり、好ましくは50%以上90%以下である。1μm以下の粒子の存在比率が90%を超えると、成形性が悪くなって活物質の充填量が低下し、その結果電池容量が低下する可能性がある。
この際、個数分布、中心粒径及び最多頻度粒子径は、溶媒として水を使用した湿式レーザー回折式粒度分布測定装置を使用して測定して得た値から求めることができ、1μm以下の粒子の存在比率(%)は下記式(1)より算出することができる。
式(1)・・(粒子径1μm以下の粒の存在個数/全粒子の存在個数)×100
(Abundance ratio of particles of 1 μm or less in the number distribution)
In the manganese oxide powder of the present invention, it is important that the abundance ratio of particles of 1 μm or less in the number distribution is 50% or more, preferably 50% or more and 90% or less. If the abundance ratio of the particles of 1 μm or less exceeds 90%, the moldability is deteriorated and the active material filling amount is lowered, and as a result, the battery capacity may be lowered.
At this time, the number distribution, the center particle size, and the most frequent particle size can be obtained from values obtained by measurement using a wet laser diffraction particle size distribution measuring apparatus using water as a solvent. The abundance ratio (%) can be calculated from the following equation (1).
Formula (1) .. (the number of particles having a particle diameter of 1 μm or less / the number of all particles) × 100

(個数分布で表される最多頻度粒子径)
本発明のマンガン酸化物粉体は、個数分布で表される最多頻度粒子径の値が1.5μm以下、特に0.4μm以上1.0μm以下、中でも特に0.4μm以上0.9μm以下であるのが好ましい。
最多頻度粒子が1.5μmを超えると、放電時の導電剤の接触点数および反応面積が小さくなりその結果電池容量が低下するようになる。
この際、最多頻度粒子径の値は、湿式レーザー回折式粒度分布測定装置の測定値から個数分布を100に分割した分布の中で最も存在比率が高い粒子径の意である。
なお、下記表2では、この個数分布で表される最多頻度粒子径は「ピークトップ」と表示されている。
(The most frequent particle size represented by the number distribution)
The manganese oxide powder of the present invention has a value of the most frequent particle diameter represented by the number distribution of 1.5 μm or less, particularly 0.4 μm or more and 1.0 μm or less, particularly 0.4 μm or more and 0.9 μm or less. Is preferred.
When the most frequent particles exceed 1.5 μm, the number of contact points and the reaction area of the conductive agent during discharge become small, resulting in a decrease in battery capacity.
In this case, the value of the most frequent particle diameter means the particle diameter having the highest abundance ratio among the distributions obtained by dividing the number distribution into 100 based on the measurement value of the wet laser diffraction particle size distribution measuring apparatus.
In Table 2 below, the most frequent particle diameter represented by this number distribution is indicated as “peak top”.

(中心粒径)
本発明のマンガン酸化物粉体は、体積分布における中心粒径が、20μm以上40μm以下、特に25μm以上37μm以下であるのが好ましい。
この際、中心粒径は、湿式レーザー回折式粒度分布測定装置の測定値における体積分布を100に分割した分布の中で各頻度を積算し、その積算値が50%に相当する粒子径の意である。
(Center particle size)
The manganese oxide powder of the present invention preferably has a center particle size in a volume distribution of 20 μm to 40 μm, particularly 25 μm to 37 μm.
At this time, the central particle size means the particle size in which the respective frequencies are integrated in a distribution obtained by dividing the volume distribution in the measurement value of the wet laser diffraction particle size distribution measuring device into 100, and the integrated value corresponds to 50%. It is.

(マンガン酸化物の製造方法)
本発明のマンガン酸化物は、例えば、硫酸マンガン及び硫酸溶液からなる電解液を電気分解する方法において、電解槽内に高温の上層電解液層と低温の下層電解液層とを形成すると共に、電解電流密度、電解液の硫酸濃度等を調整することにより、目的とする組成のマンガン酸化物を製造し、所定の方法で粉砕乃至分級することにより得ることが出来る。
(Manufacturing method of manganese oxide)
The manganese oxide of the present invention forms, for example, a high-temperature upper electrolyte layer and a low-temperature lower electrolyte layer in an electrolytic cell in a method for electrolyzing an electrolytic solution composed of manganese sulfate and a sulfuric acid solution, and performs electrolysis. By adjusting the current density, the sulfuric acid concentration of the electrolytic solution, etc., a manganese oxide having a target composition can be produced and pulverized or classified by a predetermined method.

硫酸マンガン及び硫酸溶液からなる電解液を電気分解する方法において、電解槽内に高温の上層電解液層と低温の下層電解液層とを形成すると共に、電解電流密度、電解液の硫酸濃度等を調整することにより、目的とする組成のマンガン酸化物を製造することができる。以下、この製造方法についてより詳細に説明する。   In the method of electrolyzing an electrolytic solution composed of manganese sulfate and a sulfuric acid solution, a high temperature upper electrolyte layer and a low temperature lower electrolyte layer are formed in the electrolytic cell, and the electrolytic current density, the sulfuric acid concentration of the electrolytic solution, etc. By adjusting, a manganese oxide having a target composition can be produced. Hereinafter, this manufacturing method will be described in more detail.

電極として陽極には、チタン、チタン合金、鉛板、黒鉛板等を用い、陰極には、カーボン等を用いればよい。但し、これらに限定するものではない。
上層電解液層の温度は90〜100℃、低温の下層電解液層の温度は60〜85℃、特に65〜84℃とするのが好ましい。このように高温の上層電解液層と低温の下層電解液層とを形成する手段は、特に制限するものではないが、一例としては、電解槽の底部から補給液を上方向に送液するように導入管を設け、所定温度の電解液を所定の送液速度で補給しながら、熱交換器の配設位置とその加熱温度を調整する手段を紹介することができる。
As the electrode, titanium, a titanium alloy, a lead plate, a graphite plate, or the like may be used for the anode, and carbon or the like may be used for the cathode. However, it is not limited to these.
The temperature of the upper electrolyte layer is 90 to 100 ° C., and the temperature of the low temperature lower electrolyte layer is preferably 60 to 85 ° C., particularly 65 to 84 ° C. The means for forming the high-temperature upper electrolyte layer and the low-temperature lower electrolyte layer in this way is not particularly limited, but as an example, the replenisher is fed upward from the bottom of the electrolytic cell. A means for adjusting the position of the heat exchanger and its heating temperature can be introduced while an introduction pipe is provided to supply an electrolyte solution at a predetermined temperature at a predetermined liquid feeding speed.

電解液の組成は特に制限はないが、電解液中の硫酸濃度に関しては50〜100g/L、特に60〜80g/Lであるのが好ましい。電解液中のマンガン濃度は、20〜50g/L、特に20〜40g/Lであるのが好ましい。電解電流密度は、20〜100A/m2、特に50〜60A/m2であるのが好ましい。
なお、送液速度つまり電解液の補給速度は、電解液の硫酸濃度が所定濃度に保持されるように設定すればよい。
The composition of the electrolytic solution is not particularly limited, but the sulfuric acid concentration in the electrolytic solution is preferably 50 to 100 g / L, particularly 60 to 80 g / L. The manganese concentration in the electrolytic solution is preferably 20 to 50 g / L, particularly 20 to 40 g / L. The electrolytic current density is preferably 20 to 100 A / m 2 , particularly 50 to 60 A / m 2 .
The liquid feeding speed, that is, the replenishing speed of the electrolytic solution may be set so that the sulfuric acid concentration of the electrolytic solution is maintained at a predetermined concentration.

Meを含有させる場合、Meを多く含む原料を選択するか、或いは電解液にMe化合物を添加するようにすればよい。この際、Me化合物としては、硫酸塩化合物、硝酸塩化合物、塩化塩化合物などを挙げることができる。具体的には、補給液としての硫酸マンガン溶液にこれらのMe化合物を溶解して添加する方法が好ましい。   When Me is contained, a raw material containing a large amount of Me may be selected, or a Me compound may be added to the electrolytic solution. In this case, examples of the Me compound include a sulfate compound, a nitrate compound, and a chloride compound. Specifically, a method of dissolving and adding these Me compounds in a manganese sulfate solution as a replenisher is preferable.

陽極上に電析固着したマンガン酸化物の析出物を剥離して電解マンガン酸化物を得ることができる。   The electrolytic manganese oxide can be obtained by peeling the deposit of manganese oxide electrodeposited on the anode.

なお、上述した方法は一例であって、これに限定するものではない。マンガン酸化物中にS、H、場合によってはMeがそれぞれ所定量含有されるようにマンガン酸化物を製造することができる他の方法でも製造可能であると考えられる。   The method described above is an example, and the present invention is not limited to this. It is considered that the manganese oxide can be produced by other methods that can produce manganese oxide such that a predetermined amount of S, H, and, in some cases, Me is contained in the manganese oxide.

このようにして得た電解マンガン酸化物を、ジョークラッシャー等により粗粉砕にて1cm程度の塊状物に粉砕し、さらに遠心ロールミルにより微粉砕を行い、分級して所望粒度のマンガン酸化物粉体を得るようにするのが好ましい。この際、遠心ロールミルの回転速度及び粉砕器内の滞留時間(粉砕時間)を調節することにより、1μm以下の微粒子の存在比率を調整することができる。実際には、回転速度と粉砕時間とのバランスを調節しながら粉砕条件を設定する必要があるが、傾向としては、遠心ロールミルの回転速度を速くするか、或いは粉砕器内の滞留時間(粉砕時間)を長くすれば、1μm以下の微粒子の存在比率を高めることができる。ただし、本発明では、粉砕方法及び粉砕条件をこれらの方法に限定するものではない。
また、分級の方法は、篩によるほか、粉砕して得られたマンガン酸化物粉末を純水中に分散させ、沈降粉末をろ過し乾燥を行うことにより微粉末を除去する方法等を採用することができる。
このように微粉砕したマンガン酸化物粉は、必要に応じて、表面に残留する遊離酸を取り除くため、水洗もしくはアルカリを用いて洗浄・乾燥を行うようにする。
The electrolytic manganese oxide thus obtained is roughly pulverized into a lump of about 1 cm by a jaw crusher or the like, further pulverized by a centrifugal roll mill, and classified to obtain a manganese oxide powder having a desired particle size. It is preferable to obtain. Under the present circumstances, the abundance ratio of 1 micrometer or less microparticles | fine-particles can be adjusted by adjusting the rotational speed of a centrifugal roll mill, and the residence time (pulverization time) in a grinder. Actually, it is necessary to set the grinding conditions while adjusting the balance between the rotational speed and the grinding time. However, the tendency is to increase the rotational speed of the centrifugal roll mill, or the residence time (grinding time in the grinder). ) Can be increased, the abundance ratio of fine particles of 1 μm or less can be increased. However, in the present invention, the grinding method and grinding conditions are not limited to these methods.
Moreover, the classification method employs a method of removing fine powder by dispersing the manganese oxide powder obtained by pulverization in pure water, filtering the precipitated powder and drying, in addition to using a sieve. Can do.
The finely pulverized manganese oxide powder is washed and dried using water or alkali in order to remove free acid remaining on the surface, if necessary.

(用途)
本発明のマンガン酸化物粉体は、ニッケルマンガン電池、アルカリ電池、マンガンリチウム電池などの正極活物質として好適に用いることができる。特に、ハイレート特性が優れているため、これを正極活物質として用いたアルカリ電池は、デジタルカメラ、デジタルビデオカメラ、携帯電話機、PDAなどの電子機器用駆動電源として好適に用いることができる。
リチウム電池の正極活物質として用いる場合は、上述したように、電解後に焼成脱水したマンガン酸化物を使用することが好ましい。
ニッケルマンガン電池の正極活物質として用いる場合は、本発明のマンガン酸化物粉体とオキシ水酸化ニッケルとを混合して得られる混合合材を正極活物質として用いればよい。
(Use)
The manganese oxide powder of the present invention can be suitably used as a positive electrode active material for nickel manganese batteries, alkaline batteries, manganese lithium batteries and the like. In particular, since the high-rate characteristic is excellent, an alkaline battery using this as a positive electrode active material can be suitably used as a drive power source for electronic devices such as digital cameras, digital video cameras, mobile phones, and PDAs.
When used as a positive electrode active material of a lithium battery, as described above, it is preferable to use manganese oxide that has been calcined and dehydrated after electrolysis.
When used as a positive electrode active material of a nickel manganese battery, a mixed material obtained by mixing the manganese oxide powder of the present invention and nickel oxyhydroxide may be used as the positive electrode active material.

なお、電池の負極活物質は従来から知られているものでよく、特に限定されないが、マンガン電池、アルカリマンガン電池の場合は亜鉛等を、リチウム電池の場合はリチウム等を用いるのが一般的である。
電池を構成する電解液も従来から知られているものでよく、特に限定されないが、マンガン電池では塩化亜鉛又は塩化アンモニウム、アルカリ電池では水酸化カリウム、リチウム電池ではリチウム塩の有機溶媒溶液等を用いるのが一般的である。
The negative electrode active material of the battery may be a conventionally known material, and is not particularly limited. In general, zinc or the like is used for a manganese battery or an alkaline manganese battery, and lithium or the like is used for a lithium battery. is there.
The electrolyte constituting the battery may also be a conventionally known electrolyte, and is not particularly limited. For example, a manganese battery uses zinc chloride or ammonium chloride, an alkaline battery uses potassium hydroxide, and a lithium battery uses an organic solvent solution of a lithium salt. It is common.

(実施例1)
5Lビーカーを電解槽として用い、陽極としてチタン板、陰極として黒鉛板をそれぞれ交互に電解槽内に懸吊し、電解槽の底部から補給液が上方向に補給されるように硫酸マンガン電解補給液の導入管を設けた。この際、電解液に浸漬している極板の長さ1に対して、電解槽底から極板下端までの距離が0.2となる長さの電極を用いた。
60℃に調整した電解補給液を前記導入管を通じて電解槽内に注入し、電解するに際して電解液の組成がマンガン35g/L、硫酸60g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整し、電解液の上層(電解液に浸漬している電極板全体を含む上層部)の温度を95〜98℃に保つ一方、電解液の下層(電極板より下層部)の温度を65〜80℃に保ちながら、電流密度55A/m2で10日間電解した。
なお、マンガン濃度、硫酸濃度、電流密度の実測値の平均値を表1に示した。
Example 1
Using a 5L beaker as an electrolytic cell, a titanium plate as an anode and a graphite plate as a cathode are alternately suspended in the electrolytic cell. The introduction pipe was provided. At this time, an electrode having a length such that the distance from the bottom of the electrolytic cell to the lower end of the electrode plate is 0.2 with respect to the length 1 of the electrode plate immersed in the electrolytic solution.
The electrolytic replenisher adjusted to 60 ° C. is poured into the electrolytic cell through the introduction tube, and the electrolysis is adjusted so that the composition of the electrolytic solution is 35 g / L manganese and 60 g / L sulfuric acid. While adjusting the installation position and heating temperature, the temperature of the upper layer of the electrolyte (upper layer including the entire electrode plate immersed in the electrolyte) is maintained at 95 to 98 ° C., while the lower layer of the electrolyte (lower layer than the electrode plate) ) At a current density of 55 A / m 2 for 10 days.
Table 1 shows the average values of actually measured values of manganese concentration, sulfuric acid concentration, and current density.

次に、電解析出して得られたマンガン酸化物を粗粉砕した後、遠心ロールミル(回転数108rpm、粉砕時間11分)で微粉砕した。これを90℃の熱水で30分洗浄後、デカンテーションし、さらに同量の水で24時間撹拌洗浄し、再びデカンテーションした。
そして、ここで得られたマンガン酸化物を苛性ソーダによりマンガン酸化物のJISpHが3.5になるよう中和後、95℃で0.5時間加熱乾燥させてマンガン酸化物粉体を得た。
Next, the manganese oxide obtained by electrolytic deposition was coarsely pulverized and then finely pulverized by a centrifugal roll mill (rotation speed: 108 rpm, pulverization time: 11 minutes). This was washed with hot water at 90 ° C. for 30 minutes, then decanted, further stirred and washed with the same amount of water for 24 hours, and decanted again.
The manganese oxide obtained here was neutralized with caustic soda so that the JIS pH of the manganese oxide became 3.5, and then dried by heating at 95 ° C. for 0.5 hours to obtain a manganese oxide powder.

(実施例2)
実施例1と同様の電解槽において、電解液に浸漬している極板の長さ1に対して、電解槽底から極板下端までの距離が0.4となる長さの電極を用い、他の条件は実施例1と同じになるように電解析出を行い、電解にて合成された電解二酸化マンガンを、粗粉砕後、遠心ロールミル(回転数を127rpm、粉砕時間17分)で微粉砕した。ここで得られたマンガン酸化物の洗浄・乾燥は実施例1と同じになるようにし、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
(Example 2)
In the same electrolytic cell as in Example 1, for the length 1 of the electrode plate immersed in the electrolytic solution, an electrode having a length from which the distance from the electrolytic cell bottom to the lower electrode plate is 0.4 is used. The electrolytic deposition was carried out so that other conditions were the same as in Example 1, and electrolytic manganese dioxide synthesized by electrolysis was coarsely pulverized and then finely pulverized by a centrifugal roll mill (rotation speed: 127 rpm, pulverization time: 17 minutes) did. The washing and drying of the manganese oxide obtained here was the same as in Example 1 to obtain a manganese oxide powder. (See Table 1 for details).

(実施例3)
Caを多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給し、他の条件は実施例2と同じになるように電解析出及び粉砕・洗浄・乾燥を行い、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
(Example 3)
Manganese sulfate electrolytic replenisher made of manganese-rich raw material containing a large amount of Ca is prepared and supplied, and electrolytic deposition, pulverization, washing, and drying are performed so that the other conditions are the same as in Example 2. Got. (See Table 1 for details).

(実施例4)
Lnを多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給すると共に、電解するに際して電解液の組成をマンガン30g/L、硫酸70g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整することにより、電解液の上層の温度を95〜98℃に保ち、下層の温度を65〜80℃に保ちながら、電流密度55A/m2で10日間電解した。電解にて合成された電解二酸化マンガンを、粗粉砕後、遠心ロールミル(回転数を116rpm、粉砕時間11分)で微粉砕した。ここで得られたマンガン酸化物の洗浄・乾燥は実施例1と同じになるようにし、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
Example 4
In addition to adjusting and supplying a manganese sulfate electrolytic replenisher composed of a manganese raw material containing a large amount of Ln, the composition of the electrolytic solution is adjusted to 30 g / L manganese and 70 g / L sulfuric acid when electrolyzing, and the heat exchanger By adjusting the arrangement position and the heating temperature, electrolysis was performed at a current density of 55 A / m 2 for 10 days while maintaining the temperature of the upper layer of the electrolyte at 95 to 98 ° C. and the temperature of the lower layer at 65 to 80 ° C. Electrolytic manganese dioxide synthesized by electrolysis was coarsely pulverized and then finely pulverized by a centrifugal roll mill (rotation speed: 116 rpm, pulverization time: 11 minutes). The washing and drying of the manganese oxide obtained here was the same as in Example 1 to obtain a manganese oxide powder. (See Table 1 for details).

(実施例5)
電解液及び電解補給液にTiを0.25g/L及びLnを0.25g/L添加し、電解するに際して電解液の組成をマンガン20g/L、硫酸80g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整することにより、電解液の上層の温度を95〜98℃に保ち、下層の温度を65〜80℃に保ちながら、電流密度55A/m2で10日間電解した。他の条件は実施例4と同じになるように電解析出及び粉砕・洗浄・乾燥を行い、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
(Example 5)
While adding 0.25 g / L of Ti and 0.25 g / L of Ln to the electrolytic solution and the electrolytic replenisher, the composition of the electrolytic solution is adjusted to 20 g / L of manganese and 80 g / L of sulfuric acid when electrolyzing, By adjusting the position of the heat exchanger and the heating temperature, the temperature of the upper layer of the electrolytic solution is kept at 95 to 98 ° C., and the temperature of the lower layer is kept at 65 to 80 ° C., while the current density is 10 A at 55 A / m 2 . Electrolyzed for days. Electrodeposition and pulverization / washing / drying were carried out in the same manner as in Example 4 to obtain manganese oxide powder. (See Table 1 for details).

(実施例6)
Mgを多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給し、他の条件は実施例1と同じになるように電解析出を行い、電解にて合成された電解二酸化マンガンを、粗粉砕後、遠心ロールミル(回転数を116rpm、粉砕時間12分)で微粉砕した。
(Example 6)
Prepare and supply manganese sulfate electrolytic replenisher consisting of manganese raw material containing a lot of Mg, and perform electrolytic deposition so that other conditions are the same as in Example 1, electrolytic manganese dioxide synthesized by electrolysis, After coarse pulverization, it was finely pulverized by a centrifugal roll mill (rotation speed: 116 rpm, pulverization time: 12 minutes).

なお、マンガン酸化物中のMgの量は、原料の選択および硫酸マンガン電解補給液中へのMg添加により調整することが可能であるが、本実施例以上の量のMgを含有させようと硫酸マンガン電解補給液のMg濃度を上げた場合、溶液中のMgにより電極が不働態化しマンガンの電解が阻害され、得られる産物の電池特性が劣る結果となる。   The amount of Mg in the manganese oxide can be adjusted by selection of raw materials and addition of Mg to the manganese sulfate electrolytic replenisher. When the Mg concentration of the manganese electrolytic replenisher is increased, the electrode is passivated by Mg in the solution and manganese electrolysis is inhibited, resulting in poor battery characteristics of the resulting product.

(実施例7)
Mgを多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給し、他の条件は実施例6と同じになるように電解析出を行い、他の条件は実施例6と同じになるように電解析出及び粉砕・洗浄・乾燥を行い、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
(Example 7)
A manganese sulfate electrolytic replenisher composed of a manganese raw material containing a large amount of Mg is prepared and supplied, and electrolytic deposition is performed so that other conditions are the same as in Example 6. Other conditions are the same as in Example 6. Thus, electrolytic deposition and pulverization / washing / drying were performed to obtain a manganese oxide powder. (See Table 1 for details).

(実施例8)
Lnを多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給すると共に、他の条件は実施例4と同じになるように電解析出を行った。電解にて合成された電解二酸化マンガンを、粗粉砕後、遠心ロールミル(回転数を113rpm、粉砕時間1分)で微粉砕した。ここで得られたマンガン酸化物の洗浄・乾燥は実施例1と同じになるようにし、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
(Example 8)
A manganese sulfate electrolytic replenisher composed of a manganese raw material containing a large amount of Ln was prepared and supplied, and electrolytic deposition was performed so that other conditions were the same as in Example 4. Electrolytic manganese dioxide synthesized by electrolysis was coarsely pulverized and then finely pulverized by a centrifugal roll mill (rotation speed: 113 rpm, pulverization time: 1 minute). The washing and drying of the manganese oxide obtained here was the same as in Example 1 to obtain a manganese oxide powder. (See Table 1 for details).

(実施例9)
硫酸マンガン電解液の組成をマンガン20g/L、硫酸86g/Lとなるように調整するとともに、電流密度32A/m2に設定し、他の条件は実施例1と同じになるように電解析出を行った。電解にて合成された電解二酸化マンガンを、粗粉砕後、遠心ロールミル(回転数を108rpm、粉砕時間11分)で微粉砕した。ここで得られたマンガン酸化物の洗浄・乾燥は実施例1と同じになるようにし、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
Example 9
The composition of the manganese sulfate electrolyte was adjusted to 20 g / L manganese and 86 g / L sulfuric acid, and the current density was set to 32 A / m 2. Went. Electrolytic manganese dioxide synthesized by electrolysis was coarsely pulverized and then finely pulverized by a centrifugal roll mill (rotation speed: 108 rpm, pulverization time: 11 minutes). The washing and drying of the manganese oxide obtained here was the same as in Example 1 to obtain a manganese oxide powder. (See Table 1 for details).

(実施例10)
硫酸マンガン電解液の組成をマンガン10g/L、硫酸20g/Lとなるように調整するとともに、電流密度32A/m2に設定し、他の条件は実施例1と同じになるように電解析出を行った。電解にて合成された電解二酸化マンガンを、粗粉砕後、遠心ロールミル(回転数を108rpm、粉砕時間11分)で微粉砕した。ここで得られたマンガン酸化物の洗浄・乾燥は実施例1と同じになるようにし、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)
(Example 10)
The composition of the manganese sulfate electrolyte was adjusted to 10 g / L manganese and 20 g / L sulfuric acid, and the current density was set to 32 A / m 2. The other conditions were electrolytic deposition so as to be the same as in Example 1. Went. Electrolytic manganese dioxide synthesized by electrolysis was coarsely pulverized and then finely pulverized by a centrifugal roll mill (rotation speed: 108 rpm, pulverization time: 11 minutes). The washing and drying of the manganese oxide obtained here was the same as in Example 1 to obtain a manganese oxide powder. (See Table 1 for details)

(比較例1)
5Lビーカーを電解槽として用い、陽極にチタン板、陰極として黒鉛板をそれぞれ交互に電解槽内に懸吊し、電解槽の底部に補給液が下方向に補給されるように硫酸マンガン電解補給液の導入管を設けた。この際、電解液に浸漬している極板の長さ1に対して。電解槽底から極板下端までの距離が0.2となる長さの電極を用いた。
98℃に調整した電解補給液を前記導入管を通じて電解槽内に注入し、電解するに際し電解液の組成がマンガン60g/L、硫酸15g/Lとなるように調整するとともに、電解槽内の電解液温度が均一に95〜98℃に保たれるように熱交換器の配設位置と加熱温度を調整しながら、電流密度55A/m2に設定して10日間電解した。なお、マンガン濃度、硫酸濃度、電流密度の実測値を表1に示した。
(Comparative Example 1)
Using a 5L beaker as an electrolytic cell, a titanium plate as an anode and a graphite plate as a cathode are alternately suspended in the electrolytic cell, and a manganese sulfate electrolytic replenisher so that the replenisher is replenished downward at the bottom of the electrolytic cell. The introduction pipe was provided. At this time, with respect to the length 1 of the electrode plate immersed in the electrolytic solution. An electrode having a length such that the distance from the bottom of the electrolytic cell to the lower end of the electrode plate was 0.2 was used.
The electrolytic replenisher adjusted to 98 ° C. is poured into the electrolytic cell through the introduction tube, and the electrolysis is adjusted so that the composition of the electrolytic solution is 60 g / L manganese and 15 g / L sulfuric acid. Electrolysis was carried out for 10 days while setting the current density to 55 A / m 2 while adjusting the position of the heat exchanger and the heating temperature so that the liquid temperature was uniformly maintained at 95 to 98 ° C. The measured values of manganese concentration, sulfuric acid concentration, and current density are shown in Table 1.

電解にて合成されたマンガン酸化物を粗粉砕した後、遠心ロールミル(回転数112rpm、粉砕時間2分)で微粉砕した。これを90℃の熱水で30分洗浄後、デカンテーションし、さらに同量の水で24時間撹拌洗浄し、再びデカンテーションした。そして、ここで得られたマンガン酸化物を苛性ソーダによりマンガン酸化物のJISpHが3.5になるよう中和後、95℃で0.5時間加熱乾燥させてマンガン酸化物粉体を得た。(詳しくは表1を参照のこと)   The manganese oxide synthesized by electrolysis was coarsely pulverized and then finely pulverized by a centrifugal roll mill (rotation speed: 112 rpm, pulverization time: 2 minutes). This was washed with hot water at 90 ° C. for 30 minutes, then decanted, further stirred and washed with the same amount of water for 24 hours, and decanted again. The manganese oxide obtained here was neutralized with caustic soda so that the JIS pH of the manganese oxide became 3.5, and then dried by heating at 95 ° C. for 0.5 hours to obtain a manganese oxide powder. (See Table 1 for details)

(比較例2)
電解するに際して電解液の組成をマンガン55g/L、硫酸35g/Lとなるように調整するとともに、電流密度65A/m2に設定し、他の条件は比較例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行い、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
(Comparative Example 2)
The electrolysis was adjusted so that the composition of the electrolytic solution was 55 g / L manganese and 35 g / L sulfuric acid, and the current density was set to 65 A / m 2 , and other conditions were the same as in Comparative Example 1. Extraction, pulverization, washing and drying were performed to obtain manganese oxide powder. (See Table 1 for details).

(比較例3)
電解するに際して電解液の組成をマンガン40g/L、硫酸40g/Lとなるように調整するとともに、電流密度90A/m2に設定し、他の条件は比較例1と同じになるように電解析出を行った。
電解にて合成された電解二酸化マンガンを、粗粉砕後、遠心ロールミル(回転数を94rpm、粉砕時間1分)で微粉砕した。ここで得られたマンガン酸化物の洗浄・乾燥は比較例1と同じになるようにし、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
(Comparative Example 3)
In the electrolysis, the composition of the electrolytic solution was adjusted to 40 g / L manganese and 40 g / L sulfuric acid, the current density was set to 90 A / m 2 , and the other conditions were the same as in Comparative Example 1. Went out.
Electrolytic manganese dioxide synthesized by electrolysis was coarsely pulverized and then finely pulverized by a centrifugal roll mill (rotation speed: 94 rpm, pulverization time: 1 minute). The washing and drying of the manganese oxide obtained here was the same as in Comparative Example 1 to obtain a manganese oxide powder. (See Table 1 for details).

(比較例4)
電解するに際して電解液の組成をマンガン55g/L、硫酸20g/Lとなるように調整するとともに、電流密度55A/m2に設定し、他の条件は比較例1と同じになるように電解析出を行った。電解にて合成された電解二酸化マンガンを、粗粉砕後、遠心ロールミル(回転数を109rpm、粉砕時間11分)で微粉砕した。ここで得られたマンガン酸化物の洗浄・乾燥は比較例1と同じになるようにし、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
(Comparative Example 4)
In the electrolysis, the composition of the electrolytic solution was adjusted to 55 g / L manganese and 20 g / L sulfuric acid, the current density was set to 55 A / m 2 , and the other conditions were the same as in Comparative Example 1. Went out. Electrolytic manganese dioxide synthesized by electrolysis was coarsely pulverized and then finely pulverized by a centrifugal roll mill (rotation speed: 109 rpm, pulverization time: 11 minutes). The washing and drying of the manganese oxide obtained here was the same as in Comparative Example 1 to obtain a manganese oxide powder. (See Table 1 for details).

(比較例5)
電解するに際して電解液の組成をマンガン30g/L、硫酸30g/Lとなるように調整するとともに、電流密度20A/m2に設定し、他の条件は比較例4と同じになるように電解析出及び粉砕・洗浄・乾燥を行い、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
(Comparative Example 5)
In the electrolysis, the composition of the electrolytic solution was adjusted to 30 g / L manganese and 30 g / L sulfuric acid, the current density was set to 20 A / m 2 , and the other conditions were the same as in Comparative Example 4 Extraction, pulverization, washing and drying were performed to obtain manganese oxide powder. (See Table 1 for details).

(比較例6)
Mgを多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給し、他の条件は実施例6と同じになるように電解析出を行った。電解にて合成された電解二酸化マンガンを、粗粉砕後、遠心ロールミル(回転数を109rpm、粉砕時間11分)で微粉砕した。ここで得られたマンガン酸化物の洗浄・乾燥は比較例1と同じになるようにし、マンガン酸化物粉体を得た。(詳しくは表1を参照のこと)。
(Comparative Example 6)
A manganese sulfate electrolytic replenisher composed of a manganese raw material containing a large amount of Mg was prepared and supplied, and electrolytic deposition was performed so that other conditions were the same as in Example 6. Electrolytic manganese dioxide synthesized by electrolysis was coarsely pulverized and then finely pulverized by a centrifugal roll mill (rotation speed: 109 rpm, pulverization time: 11 minutes). The washing and drying of the manganese oxide obtained here was the same as in Comparative Example 1 to obtain a manganese oxide powder. (See Table 1 for details).

Figure 2006108082
Figure 2006108082

Figure 2006108082
Figure 2006108082

実施例3−8の結果をみると、Ti、Ca、Ln、Mgのいずれを含む場合にも優れた特性(効果)が得られることが認められる。その一方、比較例6の結果をみると、Me量が多すぎると特性(効果)が低下することが認められる。このような点から、Me量(モル比率)の好ましい範囲としては0.015以下、特に0.004以下(実施例6参照)であると考えられる。 From the results of Example 3-8, it is recognized that excellent characteristics (effects) can be obtained even when any of Ti, Ca, Ln, and Mg is included. On the other hand, when the result of Comparative Example 6 is seen, it is recognized that the characteristic (effect) decreases when the amount of Me is too large. From such a point, it is considered that a preferable range of the Me amount (molar ratio) is 0.015 or less, particularly 0.004 or less (see Example 6).

(水分量の測定)
試料としてのマンガン酸化物粉末を、110℃で2時間加熱乾燥した際に放出される水分量を測定した。
(Measurement of water content)
The amount of water released when the manganese oxide powder as a sample was heat-dried at 110 ° C. for 2 hours was measured.

(H元素の定量方法)
試料としてのマンガン酸化物粉末を、カールフィッシャー水分計を用いて、窒素雰囲気中で110から500℃まで加熱した際に水分のカウントが安定するまで保持することで放出される水分量を測定し、その水分量から、上記の110℃の加熱乾燥させた際に放出される水分量を除き、その除いた水分量からH元素のモル比率を算出した。
(Quantitative method of H element)
Measure the amount of moisture released by holding the manganese oxide powder as a sample until the water count is stabilized when heated from 110 to 500 ° C. in a nitrogen atmosphere using a Karl Fischer moisture meter, From the amount of water, the amount of water released when heated at 110 ° C. was removed, and the molar ratio of element H was calculated from the amount of water removed.

(S元素の定量方法)
JIS K 1467:2003に基づき、ICP分析装置でS元素の量を測定した。
(Quantitative method of S element)
Based on JIS K 1467: 2003, the amount of S element was measured with an ICP analyzer.

(Me元素の定量方法)
JIS K 1467:2003に基づき、ICP分析装置で各Me元素の量を測定した。
(Me element quantitative method)
Based on JIS K 1467: 2003, the amount of each Me element was measured with an ICP analyzer.

(MnO2含有量及び全Mn量の測定)
MnO2含有量は、JIS K 1467:2003の通り測定した。全Mn量はKMnO4を用いた電位差滴定により測定した。
(Measurement of MnO 2 content and total Mn content)
The MnO 2 content was measured according to JIS K 1467: 2003. The total amount of Mn was measured by potentiometric titration using KMnO 4 .

(酸素分の測定)
MnO2含有量及び全Mn量からMn酸化数を算出してMnOx値を算出した。また、Sの存在状態をSO4 2-と仮定し、S量から酸素量を算出した。さらにまた、110℃から500℃まで加熱した際に試料から放出される水分量をカールフィッシャー水分計で測定し、得られた水分量から、110℃で加熱乾燥した際に放出される水分量を除いた値に基づいて酸素量を算出した。そして、前記MnOx値から算出した酸素量、前記S量から算出した酸素量、および前記加熱乾燥した際に放出される水分量の合計量から全酸素量を求め、O元素のモル比率を算出した。
(Measurement of oxygen content)
The MnO x value was calculated by calculating the Mn oxidation number from the MnO 2 content and the total Mn amount. Further, assuming that the presence state of S is SO 4 2- , the amount of oxygen was calculated from the amount of S. Furthermore, the amount of moisture released from the sample when heated from 110 ° C. to 500 ° C. is measured with a Karl Fischer moisture meter, and the amount of moisture released when heated and dried at 110 ° C. is determined from the obtained moisture amount. The amount of oxygen was calculated based on the excluded value. Then, the total amount of oxygen is determined from the total amount of oxygen calculated from the MnO x value, the amount of oxygen calculated from the S amount, and the amount of water released upon heating and drying, and the molar ratio of the O element is calculated. did.

(XRD測定)
Cu管球を用いて、測定範囲10〜80°をスキャンステップ0.02°、スキャンスピード1°/minでXRD測定してXRDチャートを求めた。
得られるXRDチャートのピークの平滑化処理、バックグラウンド除去処理及びKα2除去処理(最大強度比=0.500)を行ない、ピークトップの角度を用いて、Ramsdellite(空間群Pnma)と帰属した場合における(110)面のd値、(310)面/(221)面のピーク強度比I(310)/I(221)を算出し、表2に示した。
(XRD measurement)
Using a Cu tube, an XRD chart was obtained by XRD measurement at a scan range of 0.02 ° and a scan speed of 1 ° / min over a measurement range of 10 to 80 °.
When the peak smoothing process, background removal process and Kα2 removal process (maximum intensity ratio = 0.500) of the obtained XRD chart are performed and the peak top angle is used, it is assigned to Ramsdellite (space group Pnma). The d value of the (110) plane and the peak intensity ratio I (310) / I (221) of the (310) plane / (221) plane were calculated and shown in Table 2.

(粒度分布測定試験)
実施例及び比較例で得られたマンガン酸化物粉体の粒子径を、湿式レーザー回折式粒度分布測定装置(装置:日機装株式会社製「マイクロトラックHRA 9320−X100」、分散媒:水、分散時間:3分間、測定時間:30秒、計測回数1回、前処理なし、チャンネル数100)を使用して測定し、前述したように、個数分布における1μm以下の存在割合及び最多頻度粒子径(ピークトップ)、体積分布における中心粒径を求めた。
(Particle size distribution measurement test)
The particle diameters of the manganese oxide powders obtained in Examples and Comparative Examples were measured using a wet laser diffraction particle size distribution measuring apparatus (apparatus: “Microtrac HRA 9320-X100” manufactured by Nikkiso Co., Ltd., dispersion medium: water, dispersion time. : 3 minutes, measurement time: 30 seconds, number of measurements once, no pretreatment, number of channels 100), and as described above, the presence ratio of 1 μm or less and the most frequent particle diameter (peak) in the number distribution Top), the center particle size in the volume distribution was determined.

(プレス密度)
実施例及び比較例で得られたマンガン酸化物と黒鉛を所定比率(95:5)で混合し、200mLビーカーにて薬さじで充分に攪拌混合した後、この混合剤0.5gをφ10mm円盤作製用ダイスにセットし、油圧プレス機で荷重3tonを10秒間かけた。得られた円盤状成形品の重量を測定すると共に、該円盤状成形品の寸法(直径、高さ)をノギスで測定した。成形品の重量を測定寸法から計算した体積で除算してプレス密度を求め、表2には、各実施例及び比較例のプレス密度を、実施例1のプレス密度を100%とした場合の相対値(%)として示した。
(Press density)
Manganese oxides obtained in Examples and Comparative Examples and graphite were mixed at a predetermined ratio (95: 5), and thoroughly stirred and mixed with a spoonful in a 200 mL beaker. The product was set on an industrial die and a load of 3 tons was applied for 10 seconds with a hydraulic press. The weight of the obtained disk-shaped molded product was measured, and the dimensions (diameter and height) of the disk-shaped molded product were measured with calipers. The press density is obtained by dividing the weight of the molded product by the volume calculated from the measured dimensions. Table 2 shows the press density of each Example and Comparative Example, and the relative values when the press density of Example 1 is 100%. It was shown as a value (%).

(ハイレート特性:ハーフセル25mAの測定方法)
−アルカリマンガン電池−
実施例1〜5及び比較例1〜4で得られたマンガン酸化物(サンプル)と黒鉛を所定比率(94:6)で混合し、200mLビーカーにて薬さじで充分に攪拌混合した後、この混合剤0.2gを、φ10mm円盤作製用ダイスにセットし、油圧プレス機で荷重2tonを10秒間かけて成形品を得た。この成形品をφ10mmの上部開放底付きニッケルめっきスチール缶に装入し、φ10mmニッケル網を成形品上部に装入した後、成形品を圧着するため油圧プレス機で荷重2tonを10秒間かけた。次いで成形品が圧着されたスチール缶をアクリル樹脂製モデルセルに装着し、対極として導電用タブをつけたニッケル網をモデルセルに装着し、電解液40%KOH水溶液をモデルセルに注入し、一昼夜静置した後、サンプル極と対極(:ニッケル)と電流計とを、電流値が予め設定されている定電流電源装置に配線し、参照電極(Hg/HgO)を電解液に浸漬させ、デジタル式電圧記録計でサンプル極と参照電極間の電位を測定記録した。
定電流電源装置から25mA連続放電を行い、電位がカットオフ電位(−0.2V)に達した時点で放電終了し、−0.2V時の放電容量を測定した。
各実施例及び比較例のハーフセル特性(25mA)は、比較例3の測定値(放電容量)を100%とし、これに対する比率(%)として表2に示した。
(High-rate characteristics: half cell 25 mA measurement method)
-Alkaline manganese battery-
The manganese oxide (sample) obtained in Examples 1 to 5 and Comparative Examples 1 to 4 and graphite were mixed at a predetermined ratio (94: 6), and after thoroughly mixing with a spoonful in a 200 mL beaker, this 0.2 g of the mixed agent was set on a φ10 mm disk making die, and a molded article was obtained by applying a load of 2 ton for 10 seconds with a hydraulic press. This molded product was placed in a nickel-plated steel can with a top opening bottom of φ10 mm, a φ10 mm nickel mesh was placed on the top of the molded product, and then a load of 2 tons was applied for 10 seconds with a hydraulic press to crimp the molded product. Next, the steel can on which the molded product has been pressure-bonded is attached to an acrylic resin model cell, a nickel net with a conductive tab as a counter electrode is attached to the model cell, and a 40% KOH aqueous solution is injected into the model cell. After standing, wire the sample electrode, counter electrode (nickel), and ammeter to a constant current power supply device with a preset current value, and immerse the reference electrode (Hg / HgO) in the electrolyte. The potential between the sample electrode and the reference electrode was measured and recorded with a type voltage recorder.
A 25 mA continuous discharge was performed from the constant current power supply, and when the potential reached the cut-off potential (−0.2 V), the discharge was terminated, and the discharge capacity at −0.2 V was measured.
The half cell characteristics (25 mA) of each Example and Comparative Example are shown in Table 2 as the ratio (%) relative to the measured value (discharge capacity) of Comparative Example 3 being 100%.

−ニッケルマンガン電池−
実施例1、2及び比較例3で得たマンガン酸化物(サンプル)とオキシ水酸化ニッケルと黒鉛とを所定比率(47:47:6)で混合し、200mLビーカーにて薬さじで充分に攪拌混合した後、この混合剤0.2gを、φ10mm円盤作製用ダイスにセットし、油圧プレス機で荷重2tonを10秒間かけて成形品を得た。この成形品をφ10mmの上部開放底付きニッケルめっきスチール缶に装入し、φ10mmニッケル網を成形品上部に装入した後、成形品を圧着するため油圧プレス機で荷重2tonを10秒間かけた。次いで成形品が圧着されたスチール缶をアクリル樹脂製モデルセルに装着し、対極として導電用タブをつけたニッケル網をモデルセルに装着し、電解液40%KOH水溶液をモデルセルに注入し、一昼夜静置した後、サンプル極と対極(:ニッケル)と電流計とを、電流値が予め設定されている定電流電源装置に配線し、参照電極(Hg/HgO)を電解液に浸漬させ、デジタル式電圧記録計でサンプル極と参照電極間の電位を測定記録した。
実施例のハーフセル特性(25mA)は、比較例3の測定値(放電容量)を100%とし、これに対する比率(%)として表2に示した。
-Nickel manganese battery-
Manganese oxides (samples) obtained in Examples 1 and 2 and Comparative Example 3, nickel oxyhydroxide, and graphite were mixed at a predetermined ratio (47: 47: 6) and sufficiently stirred with a spoonful in a 200 mL beaker. After mixing, 0.2 g of this admixture was set on a φ10 mm disk making die, and a molded article was obtained by applying a load of 2 ton for 10 seconds with a hydraulic press. This molded product was placed in a nickel-plated steel can with a top opening bottom of φ10 mm, a φ10 mm nickel mesh was placed on the top of the molded product, and then a load of 2 tons was applied for 10 seconds with a hydraulic press to crimp the molded product. Next, the steel can on which the molded product has been pressure-bonded is attached to an acrylic resin model cell, a nickel net with a conductive tab as a counter electrode is attached to the model cell, and a 40% KOH aqueous solution is injected into the model cell. After standing, wire the sample electrode, counter electrode (nickel), and ammeter to a constant current power supply device with a preset current value, and immerse the reference electrode (Hg / HgO) in the electrolyte. The potential between the sample electrode and the reference electrode was measured and recorded with a type voltage recorder.
The half cell characteristic (25 mA) of the example is shown in Table 2 as a ratio (%) to the measured value (discharge capacity) of Comparative Example 3 as 100%.

なお、ニッケルマンガン電池はオキシ水酸化ニッケルが加わること以外はアルカリ電池と同様の電池構成である。なお且つ実施例1,2及び比較例3よりニッケルマンガン電池においても同様の効果が確認された。これらのことから、本発明による効果はニッケルマンガン電池においても同様の効果があると考えられる。



The nickel manganese battery has the same battery configuration as the alkaline battery except that nickel oxyhydroxide is added. In addition, from Examples 1 and 2 and Comparative Example 3, the same effect was confirmed in the nickel manganese battery. From these facts, the effect of the present invention is considered to be the same in the nickel manganese battery.



Claims (7)

組成式MnSabMexc・zH2O(但し、Me:Ti,Ca、Mg、Lnの一種或いは二種以上の組合せ)で表されるマンガン酸化物粉体であって、
aは、0.005以上0.015以下であり、
bは、0.3以上0.4以下であり、
cは、1.8以上2.3以下であり、
xは、0或いは0より大きく0.015以下であり、
zは、0を超える値であり、
個数分布における1μm以下の粒子の存在比率が50%以上であることを特徴とするマンガン酸化物粉体。
A manganese oxide powder represented by a composition formula MnS a H b Me x O c · zH 2 O (where Me is one or a combination of two or more of Ti, Ca, Mg, and Ln),
a is 0.005 or more and 0.015 or less,
b is 0.3 or more and 0.4 or less,
c is 1.8 or more and 2.3 or less,
x is 0 or greater than 0 and less than or equal to 0.015;
z is a value greater than 0;
A manganese oxide powder, wherein the abundance ratio of particles of 1 μm or less in the number distribution is 50% or more.
上記組成式MnSabMexc・zH2Oにおいて、Sに対するHの比率b/aが25以上40以下であることを特徴とする請求項1記載のマンガン酸化物粉体。 2. The manganese oxide powder according to claim 1, wherein in the composition formula MnS a H b Me x O c · zH 2 O, a ratio b / a of H to S is 25 or more and 40 or less. 個数分布で表される最多頻度粒子径の値が1.5μm以下であることを特徴とする請求項1又は2に記載のマンガン酸化物粉体。   3. The manganese oxide powder according to claim 1, wherein the value of the most frequent particle diameter represented by the number distribution is 1.5 μm or less. 個数分布で表される最多頻度粒子径の値が0.4μm以上1.0μm以下であることを特徴とする請求項1〜3のいずれかに記載のマンガン酸化物粉体。   The manganese oxide powder according to any one of claims 1 to 3, wherein a value of a most frequent particle diameter represented by a number distribution is 0.4 µm or more and 1.0 µm or less. 体積分布における中心粒径が20μm以上40μm以下であることを特徴とする請求項1〜4のいずれかに記載のマンガン酸化物粉体。   The manganese oxide powder according to any one of claims 1 to 4, wherein the center particle diameter in the volume distribution is 20 µm or more and 40 µm or less. 請求項1〜5のいずれかのマンガン酸化物粉体を正極活物質として用いてなる構成を備えた電池。   A battery comprising a structure using the manganese oxide powder according to claim 1 as a positive electrode active material. 請求項1〜5のいずれかのマンガン酸化物粉体とオキシ水酸化ニッケルとを混合して得られる混合合材を正極活物質として用いてなる構成を備えた電池。



A battery comprising a structure using a mixed composite material obtained by mixing the manganese oxide powder according to any one of claims 1 to 5 and nickel oxyhydroxide as a positive electrode active material.



JP2005261348A 2004-09-09 2005-09-08 Manganese oxide powder for cathode active material Expired - Fee Related JP4993887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005261348A JP4993887B2 (en) 2004-09-09 2005-09-08 Manganese oxide powder for cathode active material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004262233 2004-09-09
JP2004262233 2004-09-09
JP2005261348A JP4993887B2 (en) 2004-09-09 2005-09-08 Manganese oxide powder for cathode active material

Publications (2)

Publication Number Publication Date
JP2006108082A true JP2006108082A (en) 2006-04-20
JP4993887B2 JP4993887B2 (en) 2012-08-08

Family

ID=36377518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261348A Expired - Fee Related JP4993887B2 (en) 2004-09-09 2005-09-08 Manganese oxide powder for cathode active material

Country Status (1)

Country Link
JP (1) JP4993887B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140711A (en) * 2009-12-08 2011-07-21 Tosoh Corp Electrolytic manganese dioxide, method for producing the same and use of the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198052A (en) * 1986-02-25 1987-09-01 Toshiba Battery Co Ltd Laminated type zinc chloride cell
JP2003109592A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method of the same
JP2003163003A (en) * 2001-11-26 2003-06-06 Mitsui Mining & Smelting Co Ltd Positive electrode active substance for battery, method for manufacturing electrolytic manganese dioxide, and battery
WO2003067689A1 (en) * 2002-02-07 2003-08-14 Matsushita Electric Industrial Co., Ltd. Alkali cell
JP2003535013A (en) * 2000-06-01 2003-11-25 エヴァレディー バッテリー カンパニー インコーポレイテッド Doped manganese dioxide
JP2004047445A (en) * 2002-05-15 2004-02-12 Mitsui Mining & Smelting Co Ltd Positive electrode active material for battery, manufacturing method for electrolytic manganese dioxide, and battery
JP3578349B1 (en) * 2004-04-09 2004-10-20 三井金属鉱業株式会社 Manganese oxide for positive electrode active material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198052A (en) * 1986-02-25 1987-09-01 Toshiba Battery Co Ltd Laminated type zinc chloride cell
JP2003535013A (en) * 2000-06-01 2003-11-25 エヴァレディー バッテリー カンパニー インコーポレイテッド Doped manganese dioxide
JP2003109592A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method of the same
JP2003163003A (en) * 2001-11-26 2003-06-06 Mitsui Mining & Smelting Co Ltd Positive electrode active substance for battery, method for manufacturing electrolytic manganese dioxide, and battery
WO2003067689A1 (en) * 2002-02-07 2003-08-14 Matsushita Electric Industrial Co., Ltd. Alkali cell
JP2004047445A (en) * 2002-05-15 2004-02-12 Mitsui Mining & Smelting Co Ltd Positive electrode active material for battery, manufacturing method for electrolytic manganese dioxide, and battery
JP3578349B1 (en) * 2004-04-09 2004-10-20 三井金属鉱業株式会社 Manganese oxide for positive electrode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140711A (en) * 2009-12-08 2011-07-21 Tosoh Corp Electrolytic manganese dioxide, method for producing the same and use of the same

Also Published As

Publication number Publication date
JP4993887B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
Ortiz et al. A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for Li-ion microbatteries
JP4789066B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4826147B2 (en) Aluminum-containing nickel hydroxide particles and method for producing the same
JP6599249B2 (en) Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method for producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR101451441B1 (en) Carbonate composite and process for porducing thereof
WO2012111766A1 (en) Electrolytic manganese dioxide and method for producing same, and method for producing lithium-manganese complex oxide
JP6090673B2 (en) Alkaline storage battery and positive electrode material for alkaline storage battery
JP2015516649A (en) Method for making metal doped nickel oxide active material
JP2015518236A (en) Metal doped nickel oxide active material
JP6906072B2 (en) Method for producing cobalt compound-coated nickel hydroxide particles and cobalt compound-coated nickel hydroxide particles
JP2008226495A (en) Lithium-containing composite oxide particle for nonaqueous secondary battery, and its manufacturing method
JP2009135067A (en) Electrolytic manganese dioxide, and production method and application therefor
JP2014203509A (en) Positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP4993888B2 (en) Manganese oxide powder for cathode active material
WO2015093578A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
Biswal et al. Electrodeposition of Sea Urchin and Cauliflower‐like Nickel‐/Cobalt‐Doped Manganese Dioxide Hierarchical Nanostructures with Improved Energy‐Storage Behavior
JP3968372B2 (en) Manganese oxide for cathode active material
KR100753921B1 (en) Fabrication method of nano-sized active materials containing copper phase with improved cycle-ability for anode of lithium secondary battery
JP5718734B2 (en) Secondary battery electrode material and manufacturing method thereof
JP4993887B2 (en) Manganese oxide powder for cathode active material
JP5811233B2 (en) Manganese oxide and method for producing lithium manganate using the same
JP2022180552A (en) Positive electrode active material for alkaline storage battery and method for manufacturing positive electrode active material for alkaline storage battery
JP3983779B2 (en) Manganese oxide for cathode active material
TW541745B (en) Anode active matter and production method therefor, non-aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
Biswal et al. Influence of the microstructure and its stability on the electrochemical properties of EMD produced from a range of precursors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees