JP2006107868A - Cell for fuel cell, its manufacturing method and fuel cell - Google Patents

Cell for fuel cell, its manufacturing method and fuel cell Download PDF

Info

Publication number
JP2006107868A
JP2006107868A JP2004291301A JP2004291301A JP2006107868A JP 2006107868 A JP2006107868 A JP 2006107868A JP 2004291301 A JP2004291301 A JP 2004291301A JP 2004291301 A JP2004291301 A JP 2004291301A JP 2006107868 A JP2006107868 A JP 2006107868A
Authority
JP
Japan
Prior art keywords
electrode
catalyst layer
fuel
electrode catalyst
conductive porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004291301A
Other languages
Japanese (ja)
Inventor
Takashi Mizukoshi
崇 水越
Shinako Kaneko
志奈子 金子
Masayuki Sasaki
正幸 佐々木
Toshihiko Nishiyama
利彦 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2004291301A priority Critical patent/JP2006107868A/en
Publication of JP2006107868A publication Critical patent/JP2006107868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell for a fuel cell hardly causing damage of an MEA, and having excellent supply efficiency of an oxygen-containing gas and a fuel, low contact resistance and high output; to provide its manufacturing method; and to provide a fuel cell. <P>SOLUTION: This cell for a fuel cell includes: an electrolyte membrane; an oxygen electrode catalyst layer and a fuel electrode catalyst layer arranged on both sides by interposing the electrolyte membrane; conductive porous base materials arranged respectively on the oxygen electrode catalyst layer and the fuel electrode catalyst layer; and current-collecting electrodes electrically jointed to the conductive porous base materials. The cell for a fuel cell is characterized by that each current-collecting electrode has a frame-like part; the frame-like part of each current-collecting electrode is disposed in a peripheral part of the conductive porous base material connected to the current-collecting electrode; and the peripheral part of the conductive porous base material is electrically jointed to the frame-like part by welding. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用、特に固体高分子型燃料電池用のセル構造、及びそのセルの製造方法に関する。   The present invention relates to a cell structure for a fuel cell, particularly a polymer electrolyte fuel cell, and a method for manufacturing the cell.

燃料電池は、水の電気分解の逆の反応、すなわち水素と酸素との反応を利用することで、電流を取り出す発電装置である。燃料電池は、従来の他の発電装置に比べて発電効率が高く、また発電による生成物が水であるため、省資源、環境保全等の観点から様々な分野における電源として実用化が期待されている。   A fuel cell is a power generation device that extracts a current by utilizing a reaction reverse to the electrolysis of water, that is, a reaction between hydrogen and oxygen. Fuel cells have higher power generation efficiency than other conventional power generation devices, and because the product of power generation is water, it is expected to be put to practical use as a power source in various fields from the viewpoint of resource saving and environmental conservation. Yes.

燃料電池の一般的な基本構成としては、酸素極触媒層及び導電性多孔質基材からなる酸素極電極部、燃料極触媒層及び導電性多孔質基材からなる燃料極電極部、及び、それらの酸素燃料極触媒層及び燃料極触媒層で挟み込まれた電解質膜、で形成された電解質膜電極接合体(MEA)と、MEAの両表面に配置されている導電性多孔質基材から電気を取り出す集電電極と、で構成されるセルを有する。通常は、このセルを複数直列に接続した状態となっており、複数のセルを厚さ方向に積み重ねた形態を積層型スタック構造、複数のセルを同一平面に配置してセルを直列に接続した形態を平面型スタック構造と呼ぶ。そして、酸素極電極部から酸素(又は空気等の酸素含有ガス)を、燃料極電極部側から水素、メタノール等の燃料を、供給することで、発電する。導電性多孔質基材は、各極触媒層へ酸素又は燃料を拡散する拡散層としての機能を発揮するものである。   As a general basic configuration of a fuel cell, an oxygen electrode electrode part composed of an oxygen electrode catalyst layer and a conductive porous substrate, a fuel electrode part composed of a fuel electrode catalyst layer and a conductive porous substrate, and those From an oxygen membrane electrode catalyst layer and an electrolyte membrane sandwiched between the anode electrode catalyst layers, and an electroconductive porous substrate disposed on both surfaces of the MEA. And a collecting electrode to be taken out. Normally, a plurality of cells are connected in series, and a stacked structure in which a plurality of cells are stacked in the thickness direction is formed, and a plurality of cells are arranged in the same plane, and the cells are connected in series. The form is called a planar stack structure. Electricity is generated by supplying oxygen (or an oxygen-containing gas such as air) from the oxygen electrode part and supplying fuel such as hydrogen and methanol from the fuel electrode part side. The conductive porous substrate exhibits a function as a diffusion layer for diffusing oxygen or fuel into each electrode catalyst layer.

積層型スタック構造を構成するセルの構成の一例を図8に示す。電解質膜2の両側には酸素極電極部21及び燃料極電極部22が配置されてMEA13を構成し、その両側にはセパレーター12が配置される。セパレーター12の表面には、溝20が設けられている。この溝20は、酸素極電極部21の表面に酸素(又は空気等の酸素含有ガス)を、燃料極電極部22の表面に燃料を、供給する流路となるものであり、同時に生成物の排出流路ともなるものである。さらにセパレータ12は集電電極としての機能を有する。このような積層型スタック構造は、各セパレータ毎に流路となる部分を形成する必要があり、さらには厚さ方向に積層する形態であることから、軽量化、薄型化には不向きである。   An example of the configuration of the cells constituting the stacked stack structure is shown in FIG. An oxygen electrode portion 21 and a fuel electrode portion 22 are disposed on both sides of the electrolyte membrane 2 to constitute the MEA 13, and separators 12 are disposed on both sides thereof. A groove 20 is provided on the surface of the separator 12. The groove 20 serves as a flow path for supplying oxygen (or an oxygen-containing gas such as air) to the surface of the oxygen electrode part 21 and fuel to the surface of the fuel electrode part 22, and at the same time, It also serves as a discharge channel. Furthermore, the separator 12 has a function as a current collecting electrode. Such a stacked stack structure is not suitable for weight reduction and thickness reduction because it is necessary to form a portion serving as a flow path for each separator, and further, the stacked layers are stacked in the thickness direction.

携帯電話、ノートパソコンといったモバイル機器用電源としては薄型であることが非常に重要であり、そのような用途に対応可能なものとして、平面型スタック構造が提案されている(特許文献1〜3参照)。平面型スタック構造を形成している状態の一例を図9に示すように、段差を設けた平面型スタック用集電電極14の半分の面でMEA13を挟み込み、必要に応じてシール材6を挟み込み、それらを交互に重ねて直列に接続している形態となっている。この場合、各セルが平面的に配置されているため、薄型化が可能である。   As a power source for mobile devices such as mobile phones and laptop computers, it is very important that the power source is thin, and a flat stack structure has been proposed as one that can be used for such applications (see Patent Documents 1 to 3). ). As shown in FIG. 9, an example of a state in which the planar stack structure is formed, the MEA 13 is sandwiched between half the surfaces of the planar stack collector electrode 14 provided with a step, and the sealing material 6 is sandwiched as necessary. These are alternately overlapped and connected in series. In this case, since each cell is arranged in a plane, the thickness can be reduced.

ところで、積層型スタック構造及び平面型スタック構造のいずれにおいても、MEAの両表面に配置されている導電性多孔質基材と集電電極との電気的接続は、単にこれらを加圧して組み立て当接させることで行っているのが一般的である。しかし、単に当接させるだけでは接触抵抗が生じ、特にスタックするセルの数が多い場合や、電流が大きくなった場合、その接触抵抗は大きな損失となる。この接触抵抗を小さくするためには組立時の圧力を高くする必要がある一方、圧力が高すぎるとMEAがダメージを受けることとなるため、その圧力のバランスが重要である。さらに、その圧力を均一にすることも重要であるが、そのために集電電極の構造を複雑化すると製造コストが高くなる結果となる。   By the way, in both the stacked stack structure and the planar stack structure, the electrical connection between the conductive porous substrate disposed on both surfaces of the MEA and the current collecting electrode is simply performed by pressurizing them. It is common to make contact. However, contact resistance is generated simply by abutting, especially when the number of stacked cells is large or when the current is increased, the contact resistance is a large loss. In order to reduce the contact resistance, it is necessary to increase the pressure at the time of assembly. On the other hand, if the pressure is too high, the MEA is damaged, and the balance of the pressure is important. Furthermore, it is important to make the pressure uniform, but if the structure of the current collecting electrode is complicated for that purpose, the manufacturing cost increases.

例えば、図9に示す平面型スタック構造では、押さえ板15、ネジ9を用いて、フレーム7に固定する手法が採られている。特に平面型スタック構造では、集電電極とMEAとを均一な圧力で固定する必要があり、押さえ板の使用、ネジの数を増やすこととなる。結果として、部品点数が多くなり、薄型化の効果が小さくなるだけでなく、重くなってしまう。   For example, in the planar stack structure shown in FIG. 9, a method of fixing to the frame 7 using the pressing plate 15 and the screws 9 is adopted. In particular, in the planar stack structure, it is necessary to fix the collecting electrode and the MEA with a uniform pressure, which increases the use of a pressing plate and the number of screws. As a result, the number of parts increases, and not only the effect of thinning becomes small, but also it becomes heavy.

そこで、MEAの両表面に配置されている導電性多孔質基材と集電電極との電気的接続を溶接により行う手法が検討されている。特許文献4には、流路を有するセパレーターと拡散層とを、その接触部位において溶接することが記載されている。
特開2002−56855号公報 特開2003−173813号公報 特開2003−203647号公報 特開2000−208153号公報
In view of this, a method of performing electrical connection between the conductive porous substrate disposed on both surfaces of the MEA and the collecting electrode by welding has been studied. Patent Document 4 describes that a separator having a flow path and a diffusion layer are welded at the contact portion.
JP 2002-56855 A JP 2003-173813 A JP 2003-203647 A JP 2000-208153 A

しかしながら、特許文献4の方法では、一つのセルで多数箇所溶接する必要があり、しかもその溶接部位が拡散層全体に広がっている。溶接部位のそれぞれにおいてMEAがダメージを受けるため、全体としてMEAは大きなダメージを受けてしまう。このダメージは、各極の触媒層及び電解質の寿命を短くすることとなる。また、そもそもセパレーターに形成された流路を酸素含有ガス及び燃料が流れるため、その溶接部位においては酸素含有ガス及び燃料が供給されず、全体としての酸素含有ガス及び燃料の供給効率が悪い。   However, in the method of Patent Document 4, it is necessary to perform welding at a large number of locations in one cell, and the welded portion extends over the entire diffusion layer. Since the MEA is damaged at each of the welded portions, the MEA as a whole is damaged greatly. This damage shortens the life of the catalyst layer and electrolyte of each electrode. In addition, since the oxygen-containing gas and fuel flow through the flow path formed in the separator in the first place, the oxygen-containing gas and fuel are not supplied at the welding site, and the supply efficiency of the oxygen-containing gas and fuel as a whole is poor.

本発明は、MEAのダメージが小さく、酸素含有ガス及び燃料の供給効率が良好で、接触抵抗が低く出力の高い燃料電池用セル及びその製造方法並びに燃料電池を提供することを目的とする。   An object of the present invention is to provide a fuel cell having a small MEA damage, good supply efficiency of oxygen-containing gas and fuel, low contact resistance and high output, a method for manufacturing the same, and a fuel cell.

本発明の燃料電池用セルは、
電解質膜と、該電解質膜を挟んで両側に配置された酸素極触媒層及び燃料極触媒層と、該酸素極触媒層上及び該燃料極触媒層上のそれぞれに配置された導電性多孔質基材と、該導電性多孔質基材と電気的に接合された集電電極と、を有する燃料電池用セルにおいて、
前記集電電極が枠状部分を有し、各集電電極の枠状部分が該集電電極に接続される導電性多孔質基材の周縁部に配置され、該導電性多孔質基材の周縁部と該枠状部分とが溶接により電気的に接合されているものである。
The fuel cell of the present invention comprises:
An electrolyte membrane, an oxygen electrode catalyst layer and a fuel electrode catalyst layer disposed on both sides of the electrolyte membrane, and a conductive porous substrate disposed on each of the oxygen electrode catalyst layer and the fuel electrode catalyst layer A fuel cell having a material and a collecting electrode electrically joined to the conductive porous substrate,
The current collecting electrode has a frame-shaped portion, and the frame-shaped portion of each current collecting electrode is disposed on the peripheral edge of the conductive porous substrate connected to the current collecting electrode, The peripheral edge portion and the frame-shaped portion are electrically joined by welding.

本発明の燃料電池用セルの製造方法は、
(a1)2つの導電性多孔質基材の片面に、酸素極触媒層及び燃料極触媒層のいずれかをそれぞれ形成する工程と、
(b1)前記酸素極触媒層又は燃料極触媒層が形成された導電性多孔質基材の、前記酸素極触媒層又は燃料極触媒層を形成した面と反対側の表面における周縁部に、枠状部分を有する集電電極の該枠状部分をそれぞれ配置し、該導電性多孔質基材の周縁部と該枠状部分とを溶接により接合して、集電電極付き電極部とする工程と、
(c1)酸素極触媒層が形成されている集電電極付き電極部の酸素極触媒層と、燃料極触媒層が形成されている集電電極付き電極部の燃料極触媒層と、によって電解質膜を挟みこみ、全体を熱プレスする工程と、
を有するものである。
The method for producing a fuel cell of the present invention comprises:
(A1) forming either one of an oxygen electrode catalyst layer and a fuel electrode catalyst layer on one side of two conductive porous substrates;
(B1) A frame is formed on the periphery of the conductive porous substrate on which the oxygen electrode catalyst layer or the fuel electrode catalyst layer is formed on the surface opposite to the surface on which the oxygen electrode catalyst layer or the fuel electrode catalyst layer is formed. Each of the frame-like portions of the collecting electrode having a shape-like portion, and joining the peripheral portion of the conductive porous substrate and the frame-like portion by welding to form an electrode portion with a collecting electrode; ,
(C1) An electrolyte membrane comprising an oxygen electrode catalyst layer of the electrode part with a collecting electrode on which the oxygen electrode catalyst layer is formed and a fuel electrode catalyst layer of the electrode part with a collecting electrode on which the fuel electrode catalyst layer is formed The process of hot pressing the whole,
It is what has.

また、本発明の燃料電池用セルの製造方法は、
(a2)2つの導電性多孔質基材の片面における周縁部に、枠状部分を有する2つの集電電極の該枠状部分をそれぞれ配置し、該導電性多孔質基材の周縁部と該枠状部分とを溶接により接合する工程と、
(b2)前記集電電極が接合された2つの導電性多孔質基材の、前記集電電極と接合した面と反対側の表面に、酸素極触媒層及び燃料極触媒層のいずれかをそれぞれ形成して、集電電極付き電極部とする工程と、
(c2)酸素極触媒層が形成されている集電電極付き電極部の酸素極触媒層と、燃料極触媒層が形成されている集電電極付き電極部の燃料極触媒層と、によって電解質膜を挟みこみ、全体を熱プレスする工程と、
を有するものである。
In addition, the method for producing the fuel cell of the present invention includes:
(A2) The frame-like portions of the two collecting electrodes each having a frame-like portion are arranged on the periphery of one surface of the two conductive porous substrates, respectively, and the periphery of the conductive porous substrate and the Joining the frame-like part by welding;
(B2) Either one of the oxygen electrode catalyst layer and the fuel electrode catalyst layer is formed on the surface of the two conductive porous substrates to which the current collecting electrode is bonded, on the side opposite to the surface bonded to the current collecting electrode. Forming and forming an electrode part with a collecting electrode;
(C2) An electrolyte membrane comprising an oxygen electrode catalyst layer of the electrode portion with a collecting electrode on which the oxygen electrode catalyst layer is formed, and a fuel electrode catalyst layer of the electrode portion with a collecting electrode on which the fuel electrode catalyst layer is formed The process of hot pressing the whole,
It is what has.

本発明の燃料電池は、前記の燃料電池用セルを具備するものである。   The fuel cell of the present invention comprises the fuel cell.

本発明によれば、MEAのダメージが小さく、酸素含有ガス及び燃料の供給効率が良好で、接触抵抗が低く出力の高い燃料電池用セル及びその製造方法並びに燃料電池を提供できる。結果として、押さえ板が不要になる、ネジの数を減らすことができる等により部品点数を減らすことが可能であり、薄型・軽量化を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the damage for MEA is small, the supply efficiency of oxygen-containing gas and fuel is favorable, the contact resistance is low, and the output for fuel cell, its manufacturing method, and a fuel cell can be provided. As a result, it is possible to reduce the number of parts by eliminating the need for a pressing plate, reducing the number of screws, etc., and reducing the thickness and weight.

本発明の燃料電池用セルは、電解質膜と、電解質膜を挟んで両側に配置された酸素極触媒層及び燃料極触媒層と、酸素極触媒層上及び該燃料極触媒層上のそれぞれに配置された導電性多孔質基材と、導電性多孔質基材と電気的に接合された集電電極と、を有するものである。そして、集電電極として枠状部分を有する集電電極を使用し、その枠状部分を導電性多孔質基材の周縁部に配置し、導電性多孔質基材の周縁部と枠状部分とを、溶接により電気的に接合したものである。   The fuel cell of the present invention includes an electrolyte membrane, an oxygen electrode catalyst layer and a fuel electrode catalyst layer disposed on both sides of the electrolyte membrane, and an oxygen electrode catalyst layer and a fuel electrode catalyst layer. A conductive porous substrate, and a current collecting electrode electrically joined to the conductive porous substrate. And using the current collection electrode which has a frame-shaped part as a current collection electrode, arrange | positioning the frame-shaped part in the peripheral part of a conductive porous base material, and the peripheral part and frame-shaped part of a conductive porous base material, Are electrically joined by welding.

以上のような本発明の燃料電池用セルの一例の断面図を図2に、その拡大図を図1に示す。   A cross-sectional view of an example of the fuel cell of the present invention as described above is shown in FIG. 2, and an enlarged view thereof is shown in FIG.

電解質膜2はその両側から酸素極触媒層4及び燃料極触媒層5によって挟み込まれており、さらに酸素極触媒層4及び燃料極触媒層5の上に導電性多孔質基材3が配置されている。そして、酸素極触媒層4及びその上の導電性多孔質基材3により酸素極電極部21を、燃料極触媒層5及びその上の導電性多孔質基材3により燃料極電極部22を形成し、さらにこれら全体が一体となって電解質膜電極接合体(MEA)13を形成している。   The electrolyte membrane 2 is sandwiched between the oxygen electrode catalyst layer 4 and the fuel electrode catalyst layer 5 from both sides, and the conductive porous substrate 3 is disposed on the oxygen electrode catalyst layer 4 and the fuel electrode catalyst layer 5. Yes. The oxygen electrode electrode layer 21 is formed by the oxygen electrode catalyst layer 4 and the conductive porous substrate 3 thereon, and the fuel electrode electrode portion 22 is formed by the fuel electrode catalyst layer 5 and the conductive porous substrate 3 thereon. In addition, the whole is integrated to form an electrolyte membrane electrode assembly (MEA) 13.

MEA13の両表面に配置されている導電性多孔質基材3は、更にその両側に配置されている集電電極1とそれぞれ溶接により接合されており、溶接部8を介して電気的に接続されている。より具体的には、集電電極1として枠状部分を有する集電電極を使用しており、その枠状部分と、導電性多孔質基材の周縁部と、が溶接により接合されている。   The conductive porous substrate 3 disposed on both surfaces of the MEA 13 is further joined by welding to the current collecting electrodes 1 disposed on both sides thereof, and is electrically connected via the welded portion 8. ing. More specifically, a current collecting electrode having a frame-shaped portion is used as the current collecting electrode 1, and the frame-shaped portion and the peripheral portion of the conductive porous substrate are joined by welding.

図3に、枠状部分を有する集電電極1と導電性多孔質基材3とを溶接により接合したものを導電性多孔質基材3側から見た構造を示す。図3における集電電極1(図3における符号8の部分を含む)は四角形の枠状部分を有している。そして、その集電電極1の枠状部分における内周の四角形よりも大きい四角形の形状を有する導電性多孔質基材3(図3における符号8の部分を含む)が配置されている。そして、図3における符号8の部分において、集電電極1の枠状部分の一部と、導電性多孔質基材3の周縁部と、が重なりあい、その部分を溶接により電気的に接合し、溶接部8を形成している。そして、集電電極1には電流を取り出す端子11及び対極側の集電電極とネジで固定するためのネジ穴10が形成されている。   FIG. 3 shows a structure in which a current collecting electrode 1 having a frame-like portion and a conductive porous substrate 3 joined by welding are viewed from the conductive porous substrate 3 side. The collecting electrode 1 in FIG. 3 (including the portion 8 in FIG. 3) has a rectangular frame-like portion. Then, a conductive porous substrate 3 (including a portion denoted by reference numeral 8 in FIG. 3) having a quadrangular shape larger than the inner peripheral quadrangular shape in the frame-shaped portion of the current collecting electrode 1 is disposed. And in the part of the code | symbol 8 in FIG. 3, a part of frame shape part of the collector electrode 1 and the peripheral part of the electroconductive porous base material 3 overlap, and the part is electrically joined by welding. The weld 8 is formed. The current collecting electrode 1 is formed with a terminal 11 for taking out current and a screw hole 10 for fixing the current collecting electrode on the counter electrode side with a screw.

このような集電電極1は対極となる集電電極と対になるように組み立てられる。そして、対極となる2つの集電電極1は、シール材6を介して所定の間隔で対向配置されており、ネジ9によりフレーム7に固定されている。   Such a collecting electrode 1 is assembled so as to be paired with a collecting electrode serving as a counter electrode. The two collecting electrodes 1 serving as counter electrodes are arranged to face each other at a predetermined interval with a seal material 6 interposed therebetween, and are fixed to the frame 7 with screws 9.

以上のように、集電電極として枠状部分を有する集電電極を使用し、その枠状部分と、導電性多孔質基材の周縁部とを、溶接により電気的に接合する形態とすることで、溶接部となる部分を少なくすることができMEAのダメージを小さくすることができる。また、両者を溶接により接合することで、接触抵抗が低くなり出力が高くなる。さらに、導電性多孔質基材は周縁部のみで溶接されており、その溶接部となる周縁部を除いてほぼ全面で酸素含有ガスまたは燃料と接触できることから、酸素含有ガス及び燃料の供給効率が高まる。結果として、押さえ板が不要になる、ネジの数を減らすことができる等により部品点数を減らすことが可能であり、薄型・軽量化を図ることができる。   As described above, a collector electrode having a frame-like portion is used as the collector electrode, and the frame-like portion and the peripheral portion of the conductive porous substrate are electrically joined by welding. Therefore, the part which becomes a welding part can be decreased and the damage of MEA can be made small. Further, by joining the two together by welding, the contact resistance is lowered and the output is increased. Furthermore, since the conductive porous base material is welded only at the peripheral portion and can contact the oxygen-containing gas or fuel almost on the entire surface except the peripheral portion that becomes the welded portion, the supply efficiency of the oxygen-containing gas and fuel is improved. Rise. As a result, it is possible to reduce the number of parts by eliminating the need for a pressing plate, reducing the number of screws, etc., and reducing the thickness and weight.

電解質膜を形成する材料としては、例えば、溶融炭酸塩、固体酸化物、リン酸、固体高分子等、燃料電池の電解質として使用可能な材料から、適宜選択して使用できる。ここで、上記の電解質膜の中でも固体高分子電解質膜を使用した固体高分子型燃料電池は、常温で作動可能であることから、モバイル機器等への適用が期待されている。このような燃料電池は薄型・軽量であることも重要であることから、本発明の燃料電池用セルに固体高分子電解質膜を適用することによって、大きな効果が得られる。   As a material for forming the electrolyte membrane, for example, a material selected as a fuel cell electrolyte such as molten carbonate, solid oxide, phosphoric acid, and solid polymer can be appropriately selected and used. Here, among the above electrolyte membranes, a solid polymer fuel cell using a solid polymer electrolyte membrane can be operated at room temperature, and is expected to be applied to mobile devices and the like. Since it is important that such a fuel cell is thin and lightweight, a large effect can be obtained by applying the solid polymer electrolyte membrane to the fuel cell of the present invention.

固体高分子電解質膜としては、燃料電池に使用可能なプロトン伝導性を有する、すなわち例えばプロトン伝導率が0.01S/m以上である高分子電解質膜から、適宜選択して使用できる。また、燃料のクロスオーバー(透過)が少ないことが好ましい。例えば、パーフルオロスルホン酸系高分子電解質膜、炭化水素系高分子電解質等が使用できる。高いプロトン伝導性を有することから、アニオン基を有する高分子で構成されることが好ましく、スルホン基を有する高分子で構成されることがより好ましい。スルホン基を有する高分子としては、例えば、パーフルオロスルホン酸系ポリマーが挙げられ、入手もしやすく高プロトン伝導性であることから、デュポン社製Nafion(登録商標)115、Nafion(登録商標)117等のNafion(登録商標)シリーズからなる高分子電解質膜が特に好ましい。   The solid polymer electrolyte membrane can be appropriately selected from polymer electrolyte membranes having proton conductivity that can be used for fuel cells, that is, proton conductivity of 0.01 S / m or more, for example. Further, it is preferable that the fuel has less crossover (permeation). For example, a perfluorosulfonic acid polymer electrolyte membrane or a hydrocarbon polymer electrolyte can be used. Since it has high proton conductivity, it is preferably composed of a polymer having an anion group, and more preferably composed of a polymer having a sulfone group. Examples of the polymer having a sulfone group include a perfluorosulfonic acid polymer, which is easily available and has high proton conductivity. Therefore, Nafion (registered trademark) 115, Nafion (registered trademark) 117 manufactured by DuPont, etc. Particularly preferred are polymer electrolyte membranes comprising the Nafion® series.

酸素極触媒層及び燃料極触媒層は、電極反応を起こさせるためのものであり、通常、各極用の触媒及び固体電解質を含む。酸素極用の触媒としてはPtを、燃料極用の触媒としてはPtRuを、用いるのが一般的であるが、各極の電極反応の触媒となるものから適宜選択して使用できる。触媒は、微粒子状のものをそのまま使用することもでき、カーボン粉末等の担体に担持された状態もものを使用することもできる。酸素極触媒層及び燃料極触媒層で用いる固体電解質としては、触媒と電解質膜との間をプロトンが伝導可能なプロトン伝導性を有し、かつ触媒のバインダーとしての機能を有するものから、適宜選択して使用できる。通常、この各極の触媒層は、上記の成分を含有するスラリーを導電性多孔質基材上に塗布・乾燥することにより形成する。このスラリーの調製に用いる固体電解質含有液として、デュポン社製Nafion(登録商標)溶液(スルホン基を導入したフッ素化ポリオレフィン溶液)等を好適に使用できる。   The oxygen electrode catalyst layer and the fuel electrode catalyst layer are for causing an electrode reaction, and usually include a catalyst for each electrode and a solid electrolyte. In general, Pt is used as the catalyst for the oxygen electrode, and PtRu is used as the catalyst for the fuel electrode. However, the catalyst can be appropriately selected from those used as the electrode reaction catalyst for each electrode. The catalyst can be used in the form of fine particles as it is, or the catalyst can be used in a state of being supported on a carrier such as carbon powder. The solid electrolyte used in the oxygen electrode catalyst layer and the fuel electrode catalyst layer is appropriately selected from those having proton conductivity capable of conducting protons between the catalyst and the electrolyte membrane and having a function as a catalyst binder. Can be used. Usually, the catalyst layer of each electrode is formed by applying and drying a slurry containing the above components on a conductive porous substrate. A Nafion (registered trademark) solution manufactured by DuPont (a fluorinated polyolefin solution into which a sulfone group has been introduced) or the like can be suitably used as the solid electrolyte-containing liquid used for the preparation of the slurry.

導電性多孔質基材の材質は、ステンレス、Ti等の金属、または、カーボン等の導電性材料から、適宜選択することができる。高強度、高脆性であり溶接が容易であることから金属で形成されることが好ましく、特に電気抵抗が小さく耐酸性に優れたTiで形成されることが好ましい。導電性多孔質基材は、例えばφ10〜100μmの繊維状となる上記の材料を織り込んだ繊維シートであることが好ましい。導電性多孔質基材の空隙率は20〜90%であることが好ましく、厚さは100〜800μmであることが好ましい。   The material of the conductive porous substrate can be appropriately selected from metals such as stainless steel and Ti, or conductive materials such as carbon. It is preferably made of metal because it has high strength and high brittleness and is easy to weld. Particularly, it is preferably made of Ti having low electric resistance and excellent acid resistance. The conductive porous substrate is preferably a fiber sheet woven with the above-mentioned material having a fibrous shape of, for example, φ10 to 100 μm. The porosity of the conductive porous substrate is preferably 20 to 90%, and the thickness is preferably 100 to 800 μm.

集電電極の材質は、ステンレス、Ti等の金属、または、カーボン等の導電性材料から、適宜選択することができる。高強度、高脆性であり溶接が容易であることから金属で形成されることが好ましく、特に電気抵抗が小さく耐酸性に優れたTiで形成されることが好ましい。   The material of the current collecting electrode can be appropriately selected from metals such as stainless steel and Ti, or conductive materials such as carbon. It is preferably made of metal because it has high strength and high brittleness and is easy to weld. Particularly, it is preferably made of Ti having low electric resistance and excellent acid resistance.

図3では、集電電極1の枠状部分及び導電性多孔質基材3として四角形のものを使用した例を示したが、四角形以外の多角形、円、楕円等の形状を有するものを使用することもできる。ただし、両者の重なり合った箇所を溶接により接合することから、集電電極1の枠状部分の内周よりも導電性多孔質基材3の外周の方が大きく、全体の均一性の観点から、両者は相似形であることが好ましい。重なり合う部分の幅は溶接可能な範囲で適宜選択できるが、0.5〜5mmとすることが好ましい。   In FIG. 3, an example in which a rectangular shape is used as the frame-shaped portion of the collecting electrode 1 and the conductive porous substrate 3 is shown. However, a shape having a polygon, circle, ellipse, or the like other than the rectangle is used. You can also However, since the overlapping portions of the two are joined by welding, the outer periphery of the conductive porous substrate 3 is larger than the inner periphery of the frame-shaped portion of the collecting electrode 1, from the viewpoint of overall uniformity, Both are preferably similar. The width of the overlapping portion can be selected as appropriate within a weldable range, but is preferably 0.5 to 5 mm.

なお、従来の集電電極は、図8に示すセパレーター12のように、溝20のような流路となる部分を有していなければならない。本発明の集電電極は、枠状部分を有していれば良く、その枠状部分の内部全面に燃料又は酸素含有ガスを供給できるように構成することで、集電電極自体には流路となる部分を有している必要がなく、集電電極の構造が簡素でき製造コストを下げられるという効果も発揮する。   In addition, the conventional current collection electrode must have the part used as the flow path like the groove | channel 20 like the separator 12 shown in FIG. The current collecting electrode of the present invention only needs to have a frame-like portion, and a flow path is provided in the current collecting electrode itself by being configured so that fuel or oxygen-containing gas can be supplied to the entire inner surface of the frame-like portion. Therefore, the structure of the current collecting electrode can be simplified and the manufacturing cost can be reduced.

溶接の方法としては、スポット溶接、レーザー溶接、超音波溶接等の2つのものを電気的に接合可能な手法から適宜選択できる。作業性及び溶接箇所の仕上がりが良好であることから、レーザー溶接で行うことが好ましい。   As a welding method, two methods such as spot welding, laser welding, and ultrasonic welding can be appropriately selected from methods that can be electrically joined. Since workability and the finish of the welded portion are good, laser welding is preferable.

溶接する箇所は前述のように集電電極の枠状部分及び導電性多孔質基材の周縁部の重なり合う部分となるが、その重なり合う部分全面を溶接することもできるが、接触抵抗が大きくならない範囲で重なり合う部分の一部のみを溶接することもできる。一部のみを溶接する場合、溶接部間の間隔は1〜5mmが好ましい。   As described above, the welded portion is the overlapping portion of the frame-shaped portion of the collecting electrode and the peripheral edge portion of the conductive porous substrate, but the entire overlapping portion can be welded, but the contact resistance does not increase. It is also possible to weld only a part of the overlapping part. When only a part is welded, the interval between the welded portions is preferably 1 to 5 mm.

対向配置される集電電極の枠状部分の間には、必要に応じてシール材を配置することができる。シール材を配置することで、MEAのダメージをより小さくすることができる。シール材としては、絶縁性及び耐酸性を有しているものを好適に使用することができ、例えばシリコーン製パッキン、フッ素ゴム製パッキン、EPDM製パッキン等を使用することができる。   A sealing material can be disposed between the frame-shaped portions of the collecting electrodes facing each other as necessary. By disposing the sealing material, the damage to the MEA can be further reduced. As the sealing material, those having insulating properties and acid resistance can be suitably used. For example, silicone packing, fluororubber packing, EPDM packing, and the like can be used.

ここで、電解質膜の大きさは、導電性多孔質基材及び各極の触媒層より大きいことが好ましい。電解質膜を大きくすることで、燃料及び酸素含有ガスを良好にシールすることができる。例えば、図1に示すように、集電電極の枠型部分と電解質膜を同じ大きさとすることが好ましい。このとき、電解質膜の所定位置にネジ穴となる穴が設けられていることが好ましい。   Here, the size of the electrolyte membrane is preferably larger than that of the conductive porous substrate and the catalyst layer of each electrode. By enlarging the electrolyte membrane, the fuel and the oxygen-containing gas can be well sealed. For example, as shown in FIG. 1, it is preferable that the frame-shaped portion of the collecting electrode and the electrolyte membrane have the same size. At this time, it is preferable that a hole to be a screw hole is provided at a predetermined position of the electrolyte membrane.

本発明の燃料電池用セルは、積層型スタック構造及び平面型スタック構造を採ることもできる。本発明は薄型・軽量化を図ることが可能であるものであることから、同様の要求の強い平面型スタック構造を形成するのに適用することでより大きな効果が得られる。   The fuel cell of the present invention can also adopt a stacked stack structure and a planar stack structure. Since the present invention can be reduced in thickness and weight, a greater effect can be obtained by applying it to the formation of a flat stack structure having the same strong demands.

平面型スタック構造の一例を図4(上面図)及び図5(断面図)を示す。この図では同一平面に4個のセルが配置された構造を示す。   An example of the planar stack structure is shown in FIG. 4 (top view) and FIG. 5 (cross-sectional view). This figure shows a structure in which four cells are arranged on the same plane.

平面型スタック用集電電極14としては、2つの枠型部分を有するものと、1つの枠型部分を有するものの2種を使用する。そして、各セルを直列にスタックしたときの最端部の集電電極として後者を、それ以外の内部の集電電極として前者を使用する。2つの枠型部分を有する集電電極は、平面型スタック構造を形成可能なように段差が設けられている。各集電電極は、間にMEAを配置する枠型部分が1対となって向かい合うように組み立てられる。   As the planar stack current collecting electrode 14, two types, one having two frame-shaped portions and one having one frame-shaped portion, are used. The latter is used as the collecting electrode at the end when the cells are stacked in series, and the former is used as the collecting electrode inside the other cells. The collecting electrode having two frame-shaped portions is provided with a step so that a planar stack structure can be formed. Each current collecting electrode is assembled so that a pair of frame-shaped portions on which MEAs are arranged face each other.

そして、それらの平面型スタック用集電電極の枠型部分の間にMEA13が挟み込まれている。このような構成とすることで、最端部の集電電極の間に4枚のMEAと3つの内部の集電電極が交互に配置されることとなる。   And MEA13 is inserted | pinched between the frame-shaped parts of the current collection electrode for planar type | mold stacks. With such a configuration, four MEAs and three internal collecting electrodes are alternately arranged between the collecting electrodes at the end.

スタックするセルの数は2以上であれば任意に選択でき、例えば、必要出力(電圧)が得られる数を選択できる。スタックしたことで大きな効果が得られるようにする観点から4個以上が好ましい。また、あまり多すぎると配線が複雑になり大きさも大きくなることから、25個以下が好ましく、10個以下がより好ましい。   The number of cells to be stacked can be arbitrarily selected as long as it is 2 or more. For example, the number of necessary outputs (voltages) can be selected. From the viewpoint of obtaining a great effect by stacking, four or more are preferable. Moreover, since it will become complicated and will become large when there are too many wirings, 25 or less are preferable and 10 or less are more preferable.

以上のような本発明の燃料電池用セルは、以下のいずれかの方法により好適に製造できる。   The fuel cell of the present invention as described above can be suitably manufactured by any of the following methods.

(方法1)
(a1)2つの導電性多孔質基材の片面に、酸素極触媒層及び燃料極触媒層のいずれかをそれぞれ形成する工程と、
(b1)前記酸素極触媒層又は燃料極触媒層が形成された導電性多孔質基材の、前記酸素極触媒層又は燃料極触媒層を形成した面と反対側の表面における周縁部に、枠状部分を有する集電電極の該枠状部分をそれぞれ配置し、該導電性多孔質基材の周縁部と該枠状部分とを溶接により接合して、集電電極付き電極部とする工程と、
(c1)酸素極触媒層が形成されている集電電極付き電極部の酸素極触媒層と、燃料極触媒層が形成されている集電電極付き電極部の燃料極触媒層と、によって電解質膜を挟みこみ、全体を熱プレスする工程と、
を有することを特徴とする燃料電池用セルの製造方法。
(Method 1)
(A1) forming either one of an oxygen electrode catalyst layer and a fuel electrode catalyst layer on one side of two conductive porous substrates;
(B1) A frame is formed on the periphery of the conductive porous substrate on which the oxygen electrode catalyst layer or the fuel electrode catalyst layer is formed on the surface opposite to the surface on which the oxygen electrode catalyst layer or the fuel electrode catalyst layer is formed. Each of the frame-like portions of the collecting electrode having a shape-like portion, and joining the peripheral portion of the conductive porous substrate and the frame-like portion by welding to form an electrode portion with a collecting electrode; ,
(C1) An electrolyte membrane comprising an oxygen electrode catalyst layer of the electrode part with a collecting electrode on which the oxygen electrode catalyst layer is formed and a fuel electrode catalyst layer of the electrode part with a collecting electrode on which the fuel electrode catalyst layer is formed The process of hot pressing the whole,
The manufacturing method of the cell for fuel cells characterized by having.

(方法2)
(a2)2つの導電性多孔質基材の片面における周縁部に、枠状部分を有する2つの集電電極の該枠状部分をそれぞれ配置し、該導電性多孔質基材の周縁部と該枠状部分とを溶接により接合する工程と、
(b2)前記集電電極が接合された2つの導電性多孔質基材の、前記集電電極と接合した面と反対側の表面に、酸素極触媒層及び燃料極触媒層のいずれかをそれぞれ形成して、集電電極付き電極部とする工程と、
(c2)酸素極触媒層が形成されている集電電極付き電極部の酸素極触媒層と、燃料極触媒層が形成されている集電電極付き電極部の燃料極触媒層と、によって電解質膜を挟みこみ、全体を熱プレスする工程と、
を有することを特徴とする燃料電池用セルの製造方法。
(Method 2)
(A2) The frame-like portions of the two collecting electrodes each having a frame-like portion are arranged on the periphery of one surface of the two conductive porous substrates, respectively, and the periphery of the conductive porous substrate and the Joining the frame-like part by welding;
(B2) Either one of the oxygen electrode catalyst layer and the fuel electrode catalyst layer is formed on the surface of the two conductive porous substrates to which the current collecting electrode is bonded, on the side opposite to the surface bonded to the current collecting electrode. Forming and forming an electrode part with a collecting electrode;
(C2) An electrolyte membrane comprising an oxygen electrode catalyst layer of the electrode part with a collecting electrode in which the oxygen electrode catalyst layer is formed and a fuel electrode catalyst layer of the electrode part with a collecting electrode in which the fuel electrode catalyst layer is formed The process of hot pressing the whole,
The manufacturing method of the cell for fuel cells characterized by having.

あらかじめ触媒層が形成された導電性多孔質基材と集電電極とを溶接する方法(方法1)では、溶接時に溶接部分の触媒層が消失することがあるため、先に導電性多孔質基材と集電電極とを溶接し、その後に触媒層を形成する方法(方法2)の方が好ましい。   In the method of welding the conductive porous base material on which the catalyst layer has been formed in advance and the current collecting electrode (Method 1), the catalyst layer at the welded portion may disappear during welding. The method (Method 2) in which the material and the collecting electrode are welded and then the catalyst layer is formed is preferable.

方法1の工程(c1)及び方法2の工程(c2)において行う熱プレスの条件としては、温度は110〜130℃、圧力は10MPa程度、時間は5〜30分で行うことができる。   As conditions of the hot press performed in the step (c1) of the method 1 and the step (c2) of the method 2, the temperature can be 110 to 130 ° C., the pressure is about 10 MPa, and the time can be 5 to 30 minutes.

以上のような本発明の燃料電池用セルは、例えば、酸素含有ガス供給部及び排出部、並びに、燃料供給部及び排出部を具備する筐体内に配置し、酸素含有ガス供給機構及び燃料供給機構と併せて、燃料電池とすることができる。酸素含有ガスの供給に関しては、単に大気中にさらすことで行うこともできる。   The fuel cell according to the present invention as described above is disposed, for example, in a casing including an oxygen-containing gas supply unit and a discharge unit, and a fuel supply unit and a discharge unit, and includes an oxygen-containing gas supply mechanism and a fuel supply mechanism. In addition, a fuel cell can be obtained. The oxygen-containing gas can be supplied by simply exposing it to the atmosphere.

(実施例1)
本実施例では、図2(拡大図:図1)に示した構成の燃料電池用セルを作製した。
Example 1
In this example, a fuel cell having the structure shown in FIG. 2 (enlarged view: FIG. 1) was produced.

まず、導電性多孔質基材3として、SUS316L製の金属繊維シート(線径φ30μm、空隙率60%、厚さ200μm)を□37×37mmに切断したものを2枚準備した。その金属繊維シート上に、PtRu担持カーボン触媒(燃料極触媒)[田中貴金属社製]、または、Pt担持カーボン触媒(酸素極触媒)[田中貴金属社製]、をNafion(登録商標)溶液(デュポン社製、スルホン基を導入したフッ素化ポリオレフィン溶液)に混合したスラリー[触媒:溶液中のNafion(登録商標)=1:1(質量比)]をスプレー塗布にて乾燥厚さ0.2mmになるように塗布し、130℃で乾燥することにより、それぞれ酸素極触媒層4及び燃料極触媒層5を形成し、酸素極電極部21及び燃料極電極部22を得た。   First, as the conductive porous substrate 3, two sheets of SUS316L metal fiber sheet (wire diameter φ30 μm, porosity 60%, thickness 200 μm) cut to □ 37 × 37 mm were prepared. On the metal fiber sheet, a PtRu-supported carbon catalyst (fuel electrode catalyst) [manufactured by Tanaka Kikinzoku Co., Ltd.] or a Pt-supported carbon catalyst (oxygen electrode catalyst) [manufactured by Tanaka Kikinzoku Co., Ltd.], Nafion (registered trademark) solution (DuPont) A slurry [catalyst: Nafion (registered trademark) in solution: 1: 1 (mass ratio)] mixed in a fluorinated polyolefin solution having a sulfone group introduced therein is 0.2 mm in dry thickness by spray coating. Then, the oxygen electrode catalyst layer 4 and the fuel electrode catalyst layer 5 were formed, respectively, and the oxygen electrode electrode portion 21 and the fuel electrode electrode portion 22 were obtained.

上記酸素極電極部21及び燃料極電極部22の触媒層を形成した面と反対側に、集電電極1を重ね合わせた。集電電極1としては、内側が□35×35mmの枠状部分を有するSUS316L製のものを用いた。このとき、酸素極電極部21及び燃料極電極部22における金属繊維シートの周縁部と集電電極1の枠状部分とが1mm幅で重なり合うように配置した。そして、その金属繊維シートと集電電極との重なり合う箇所を2.0mm間隔でスポット溶接により接合した(溶接部8)。   The current collecting electrode 1 was placed on the opposite side of the surface on which the catalyst layers of the oxygen electrode electrode portion 21 and the fuel electrode portion 22 were formed. As the current collecting electrode 1, an electrode made of SUS316L having a frame-like portion with a □ 35 × 35 mm inside was used. At this time, it arrange | positioned so that the peripheral part of the metal fiber sheet in the oxygen electrode electrode part 21 and the fuel electrode part 22 and the frame-shaped part of the current collection electrode 1 might overlap with 1 mm width. And the overlapping part of the metal fiber sheet and the current collecting electrode was joined by spot welding at intervals of 2.0 mm (welded portion 8).

得られた集電電極付き酸素極電極部及び燃料極電極部における酸素極触媒層4及び燃料極触媒層5によって、電解質膜2として固体電解質膜Nafion(登録商標)115(デュポン社製)を挟みこみ、さらにシール材6としてシリコーン製パッキンを図1及び2に示すように配置して、全体を熱プレスした。熱プレス条件は、130℃、10min、6.0MPaとした。得られた集電電極付きMEAをネジ9によってフレーム7に固定して、燃料電池用セルを得た。   A solid electrolyte membrane Nafion (registered trademark) 115 (manufactured by DuPont) is sandwiched between the obtained oxygen electrode electrode portion with a collecting electrode and the oxygen electrode catalyst layer 4 and the fuel electrode catalyst layer 5 in the fuel electrode portion. Further, a silicone packing as a sealing material 6 was disposed as shown in FIGS. 1 and 2, and the whole was hot-pressed. The hot press conditions were 130 ° C., 10 min, 6.0 MPa. The obtained MEA with a collecting electrode was fixed to the frame 7 with screws 9 to obtain a fuel cell.

(実施例2)
金属繊維シートと集電電極とが重なり合う箇所を全面にレーザー溶接で接合したこと以外は、実施例1と同様の方法で燃料電池用セルを作製した。
(Example 2)
A fuel cell was produced in the same manner as in Example 1 except that the portion where the metal fiber sheet and the collecting electrode overlapped was joined to the entire surface by laser welding.

(実施例3)
導電性多孔質基材3及び集電電極1の材質をTi製としたこと以外は、実施例2と同様の方法で燃料電池用セルを作製した。
(Example 3)
A fuel cell was produced in the same manner as in Example 2, except that the conductive porous substrate 3 and the collecting electrode 1 were made of Ti.

(実施例4)
先に金属繊維シートと集電電極1との接合を行い、集電電極を接合した面と反対側の金属繊維シート上に酸素極触媒層4及び燃料極触媒層5を形成して集電電極付き酸素極電極部及び燃料極電極部としたこと以外は、実施例2と同様の方法で燃料電池用セルを作製した。
Example 4
First, the metal fiber sheet and the collector electrode 1 are joined, and the oxygen electrode catalyst layer 4 and the fuel electrode catalyst layer 5 are formed on the metal fiber sheet on the opposite side of the surface to which the collector electrode is joined. A fuel cell was prepared in the same manner as in Example 2 except that the attached oxygen electrode part and the fuel electrode part were used.

(比較例1)
金属繊維シートと集電電極との溶接を行わなかったこと以外は、実施例1と同様の方法で燃料電池用セルを作製した。
(Comparative Example 1)
A fuel cell was produced in the same manner as in Example 1 except that the metal fiber sheet and the collecting electrode were not welded.

(実施例1〜4及び比較例1で作製した燃料電池用セルの評価)
実施例1〜4及び比較例1で作製した燃料電池用セルの電流密度−電圧特性を図6に示した。なお、測定に際しては、燃料極側に室温の2Mメタノール水溶液を供給し、酸素極側には大気にさらすことで酸素を供給した(以下同様)。溶接を行わなかった比較例1の燃料電池用セルに比べて、溶接を行った実施例1〜4の燃料電池用セルは出力が向上したことが分かる。また、交流インピーダンス法によって直流抵抗成分を測定した結果を表1に示すように、比較例1の燃料電池用セルに比べて、実施例1〜4の燃料電池用セルの直流抵抗成分が小さくなっている。すなわち、上記の出力向上の原因は、MEAの両表面に配置された導電性多孔質基材と集電電極との電気的接触抵抗が低下したためと考えられる。
(Evaluation of fuel cell produced in Examples 1 to 4 and Comparative Example 1)
The current density-voltage characteristics of the fuel cell produced in Examples 1 to 4 and Comparative Example 1 are shown in FIG. In the measurement, a 2M aqueous methanol solution at room temperature was supplied to the fuel electrode side, and oxygen was supplied to the oxygen electrode side by exposure to the atmosphere (the same applies hereinafter). It can be seen that the output of the fuel cell cells of Examples 1 to 4 that were welded improved compared to the fuel cell cell of Comparative Example 1 that was not welded. In addition, as shown in Table 1, the direct current resistance component of the fuel cell of Examples 1 to 4 is smaller than that of the fuel cell of Comparative Example 1, as shown in Table 1. ing. That is, the cause of the above-mentioned improvement in output is considered to be that the electrical contact resistance between the conductive porous substrate and the collecting electrode arranged on both surfaces of the MEA is reduced.

Figure 2006107868
Figure 2006107868

実施例2の燃料電池用セルの出力は、実施例1の燃料電池用セルと同等であったが、レーザー溶接を行ったため、作業性及び溶接箇所の仕上がりが良好であった。   The output of the fuel cell of Example 2 was the same as that of the fuel cell of Example 1, but since laser welding was performed, workability and finish of the welded portion were good.

実施例3の燃料電池用セルの出力は、実施例2の燃料電池用セルに比べて、さらに向上した。これは、金属繊維シート及び集電電極の材質をTi製としたことにより、電気抵抗がさらに低下し、出力が向上したものと考えられる。   The output of the fuel cell of Example 3 was further improved as compared with the fuel cell of Example 2. This is considered to be because the metal fiber sheet and the collecting electrode are made of Ti, and thus the electric resistance is further reduced and the output is improved.

実施例4の燃料電池用セルの出力は、実施例2の燃料電池用セルに比べて、若干向上した。これは、実施例2では金属繊維シートに触媒層を形成した後で溶接したため、溶接時に溶接部分の触媒層が消失してしまうのに対し、実施例4では先に溶接したためその消失が起こらないことに起因していると考えられる。   The output of the fuel cell of Example 4 was slightly improved as compared with the fuel cell of Example 2. This is because, in Example 2, since the catalyst layer was formed on the metal fiber sheet and then welded, the catalyst layer in the welded portion disappeared during welding, whereas in Example 4, the loss was not caused because the welding was performed first. This is thought to be caused by this.

(実施例5)
本実施例では、図4及び図5に示した構成の平面型スタック構造を形成している燃料電池用セルを作製した。なお、用いた材料及び製造方法は実施例4に準じて実施し、同一平面に4つのセルが配置された構成とした。
(Example 5)
In this example, a fuel cell having a planar stack structure configured as shown in FIGS. 4 and 5 was produced. In addition, the used material and manufacturing method were implemented according to Example 4, and set it as the structure by which four cells are arrange | positioned on the same plane.

(比較例2)
金属繊維シートと集電電極との溶接を行わずに組み立てたこと以外は、実施例1と同様の方法で燃料電池用セルを作製した。
(Comparative Example 2)
A fuel cell was produced in the same manner as in Example 1 except that the metal fiber sheet and the collecting electrode were assembled without welding.

(実施例5及び比較例2で作製した燃料電池用セルの評価)
実施例5及び比較例2で作製した燃料電池用セルの電流密度−電圧特性を図7に示した。溶接を行わなかった比較例2の燃料電池用セルに比べて、溶接を行った実施例5の燃料電池用セルは出力が向上したことが分かる。また、本発明では、従来の平面型スタック構造を有する燃料電池用セルに用いられている押さえ板(図9参照)を使用する必要がないため、小型・軽量化が可能である。
(Evaluation of fuel cell produced in Example 5 and Comparative Example 2)
The current density-voltage characteristics of the fuel cell produced in Example 5 and Comparative Example 2 are shown in FIG. It can be seen that the output of the fuel cell of Example 5 that was welded was improved as compared to the fuel cell of Comparative Example 2 that was not welded. Further, in the present invention, since it is not necessary to use a pressing plate (see FIG. 9) used in a fuel cell having a conventional planar stack structure, it is possible to reduce the size and weight.

本発明の燃料電池用セルの一例の構造を示す拡大断面図である。It is an expanded sectional view showing the structure of an example of the cell for fuel cells of the present invention. 本発明の燃料電池用セルの一例の構造を示す断面図である。It is sectional drawing which shows the structure of an example of the cell for fuel cells of this invention. 集電電極と導電性多孔質基材とを溶接により接合したもののの一例の構造を導電性多孔質基材側から見た上面図である。It is the upper side figure which looked at the structure of an example of what joined the current collection electrode and the conductive porous base material by welding from the conductive porous base material side. 本発明の平面型スタック構造の一例を示す上面図である。It is a top view which shows an example of the planar stack structure of this invention. 本発明の平面型スタック構造の一例を示す断面図である。It is sectional drawing which shows an example of the planar stack structure of this invention. 実施例1〜4及び比較例1の電流−電圧特性の評価結果を示す図である。It is a figure which shows the evaluation result of the current-voltage characteristic of Examples 1-4 and the comparative example 1. FIG. 実施例5及び比較例2の電流−電圧特性の評価結果を示す図である。It is a figure which shows the evaluation result of the current-voltage characteristic of Example 5 and Comparative Example 2. 従来の積層型スタック構造の一例を示す斜視図である。It is a perspective view which shows an example of the conventional laminated type stack structure. 従来の平面型スタック構造の一例を示す断面図である。It is sectional drawing which shows an example of the conventional planar type | mold stack structure.

符号の説明Explanation of symbols

1 集電電極
2 電解質膜
3 導電性多孔質基材
4 酸素極触媒層
5 燃料極触媒層
6 シール材
7 フレーム
8 溶接部
9 ネジ
10 ネジ穴
11 端子
12 セパレーター
13 電解質膜電極接合体(MEA)
14 平面型スタック用集電電極
15 押さえ板
20 溝
21 酸素極電極部
22 燃料極電極部
DESCRIPTION OF SYMBOLS 1 Current collection electrode 2 Electrolyte membrane 3 Conductive porous base material 4 Oxygen electrode catalyst layer 5 Fuel electrode catalyst layer 6 Seal material 7 Frame 8 Welding part 9 Screw 10 Screw hole 11 Terminal 12 Separator 13 Electrolyte membrane electrode assembly (MEA)
14 Current collecting electrode 15 for planar stack 15 Holding plate 20 Groove 21 Oxygen electrode part 22 Fuel electrode part

Claims (8)

電解質膜と、該電解質膜を挟んで両側に配置された酸素極触媒層及び燃料極触媒層と、該酸素極触媒層上及び該燃料極触媒層上のそれぞれに配置された導電性多孔質基材と、該導電性多孔質基材と電気的に接合された集電電極と、を有する燃料電池用セルにおいて、
前記集電電極が枠状部分を有し、各集電電極の枠状部分が該集電電極に接続される導電性多孔質基材の周縁部に配置され、該導電性多孔質基材の周縁部と該枠状部分とが溶接により電気的に接合されていることを特徴とする燃料電池用セル。
An electrolyte membrane, an oxygen electrode catalyst layer and a fuel electrode catalyst layer disposed on both sides of the electrolyte membrane, and a conductive porous substrate disposed on each of the oxygen electrode catalyst layer and the fuel electrode catalyst layer A fuel cell having a material and a collecting electrode electrically joined to the conductive porous substrate,
The current collecting electrode has a frame-shaped portion, and the frame-shaped portion of each current collecting electrode is disposed on the peripheral edge of the conductive porous substrate connected to the current collecting electrode, A fuel cell, wherein the peripheral edge portion and the frame-like portion are electrically joined by welding.
前記集電電極及び前記導電性多孔質基材の少なくとも一方が、Ti製であることを特徴とする請求項1に記載の燃料電池用セル。   The fuel cell according to claim 1, wherein at least one of the current collecting electrode and the conductive porous substrate is made of Ti. 前記集電電極の枠状部分が、シール材を介して所定の間隔で対向配置されていることを特徴とする請求項1または2に記載の燃料電池用セル。   3. The fuel cell according to claim 1, wherein the frame-like portions of the current collecting electrodes are arranged to face each other at a predetermined interval via a sealing material. 前記電解質膜が、固体高分子電解質膜であることを特徴とする請求項1〜3のいずれかに記載の燃料電池用セル。   The fuel cell according to any one of claims 1 to 3, wherein the electrolyte membrane is a solid polymer electrolyte membrane. 同一平面に複数個のセルが配置された平面型スタック構造を形成していることを特徴とする請求項1〜4のいずれかに記載の燃料電池用セル。   The fuel cell according to any one of claims 1 to 4, wherein a planar stack structure in which a plurality of cells are arranged on the same plane is formed. (a1)2つの導電性多孔質基材の片面に、酸素極触媒層及び燃料極触媒層のいずれかをそれぞれ形成する工程と、
(b1)前記酸素極触媒層又は燃料極触媒層が形成された導電性多孔質基材の、前記酸素極触媒層又は燃料極触媒層を形成した面と反対側の表面における周縁部に、枠状部分を有する集電電極の該枠状部分をそれぞれ配置し、該導電性多孔質基材の周縁部と該枠状部分とを溶接により接合して、集電電極付き電極部とする工程と、
(c1)酸素極触媒層が形成されている集電電極付き電極部の酸素極触媒層と、燃料極触媒層が形成されている集電電極付き電極部の燃料極触媒層と、によって電解質膜を挟みこみ、全体を熱プレスする工程と、
を有することを特徴とする燃料電池用セルの製造方法。
(A1) forming either one of an oxygen electrode catalyst layer and a fuel electrode catalyst layer on one side of two conductive porous substrates;
(B1) A frame is formed on the periphery of the conductive porous substrate on which the oxygen electrode catalyst layer or the fuel electrode catalyst layer is formed on the surface opposite to the surface on which the oxygen electrode catalyst layer or the fuel electrode catalyst layer is formed. Each of the frame-like portions of the collecting electrode having a shape-like portion, and joining the peripheral portion of the conductive porous substrate and the frame-like portion by welding to form an electrode portion with a collecting electrode; ,
(C1) An electrolyte membrane comprising an oxygen electrode catalyst layer of the electrode part with a collecting electrode on which the oxygen electrode catalyst layer is formed and a fuel electrode catalyst layer of the electrode part with a collecting electrode on which the fuel electrode catalyst layer is formed The process of hot pressing the whole,
The manufacturing method of the cell for fuel cells characterized by having.
(a2)2つの導電性多孔質基材の片面における周縁部に、枠状部分を有する2つの集電電極の該枠状部分をそれぞれ配置し、該導電性多孔質基材の周縁部と該枠状部分とを溶接により接合する工程と、
(b2)前記集電電極が接合された2つの導電性多孔質基材の、前記集電電極と接合した面と反対側の表面に、酸素極触媒層及び燃料極触媒層のいずれかをそれぞれ形成して、集電電極付き電極部とする工程と、
(c2)酸素極触媒層が形成されている集電電極付き電極部の酸素極触媒層と、燃料極触媒層が形成されている集電電極付き電極部の燃料極触媒層と、によって電解質膜を挟みこみ、全体を熱プレスする工程と、
を有することを特徴とする燃料電池用セルの製造方法。
(A2) The frame-like portions of the two collecting electrodes each having a frame-like portion are arranged on the periphery of one surface of the two conductive porous substrates, respectively, and the periphery of the conductive porous substrate and the Joining the frame-like part by welding;
(B2) Either one of the oxygen electrode catalyst layer and the fuel electrode catalyst layer is formed on the surface of the two conductive porous substrates to which the current collecting electrode is bonded, on the side opposite to the surface bonded to the current collecting electrode. Forming and forming an electrode part with a collecting electrode;
(C2) An electrolyte membrane comprising an oxygen electrode catalyst layer of the electrode part with a collecting electrode in which the oxygen electrode catalyst layer is formed and a fuel electrode catalyst layer of the electrode part with a collecting electrode in which the fuel electrode catalyst layer is formed The process of hot pressing the whole,
The manufacturing method of the cell for fuel cells characterized by having.
請求項1〜5のいずれかに記載の燃料電池用セルを具備する燃料電池。   A fuel cell comprising the fuel cell according to any one of claims 1 to 5.
JP2004291301A 2004-10-04 2004-10-04 Cell for fuel cell, its manufacturing method and fuel cell Pending JP2006107868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291301A JP2006107868A (en) 2004-10-04 2004-10-04 Cell for fuel cell, its manufacturing method and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291301A JP2006107868A (en) 2004-10-04 2004-10-04 Cell for fuel cell, its manufacturing method and fuel cell

Publications (1)

Publication Number Publication Date
JP2006107868A true JP2006107868A (en) 2006-04-20

Family

ID=36377330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291301A Pending JP2006107868A (en) 2004-10-04 2004-10-04 Cell for fuel cell, its manufacturing method and fuel cell

Country Status (1)

Country Link
JP (1) JP2006107868A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422479A (en) * 2003-04-15 2006-07-26 Ceres Power Ltd Electrochemical cell substrate and a method for fabricating the same
JP2006252811A (en) * 2005-03-08 2006-09-21 Casio Comput Co Ltd Membrane electrode joining element, cell for fuel cell, and fuel cell device
JP2008177048A (en) * 2007-01-18 2008-07-31 Mitsubishi Materials Corp Gas diffusion member for fuel cell, and its manufacturing method
JP2008210611A (en) * 2007-02-26 2008-09-11 Toshiba Corp Fuel cell
JP2008218197A (en) * 2007-03-05 2008-09-18 Toyota Motor Corp Fuel cell and fuel cell stack
WO2015108012A1 (en) * 2014-01-15 2015-07-23 日本特殊陶業株式会社 Fuel cell cassette and fuel cell stack
CN107534167A (en) * 2015-05-01 2018-01-02 日本特殊陶业株式会社 Fuel-cell generation unit and fuel cell pack
JP2019529115A (en) * 2016-09-22 2019-10-17 ニコベンチャーズ ホールディングス リミテッド Laser welding method for joining solid metal components and porous metal components

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422479A (en) * 2003-04-15 2006-07-26 Ceres Power Ltd Electrochemical cell substrate and a method for fabricating the same
GB2422479B (en) * 2003-04-15 2006-12-13 Ceres Power Ltd Solid oxide fuel cell with a novel substrate and a method for fabricating the same
JP2006252811A (en) * 2005-03-08 2006-09-21 Casio Comput Co Ltd Membrane electrode joining element, cell for fuel cell, and fuel cell device
JP2008177048A (en) * 2007-01-18 2008-07-31 Mitsubishi Materials Corp Gas diffusion member for fuel cell, and its manufacturing method
JP2008210611A (en) * 2007-02-26 2008-09-11 Toshiba Corp Fuel cell
JP2008218197A (en) * 2007-03-05 2008-09-18 Toyota Motor Corp Fuel cell and fuel cell stack
WO2015108012A1 (en) * 2014-01-15 2015-07-23 日本特殊陶業株式会社 Fuel cell cassette and fuel cell stack
JP6039110B2 (en) * 2014-01-15 2016-12-07 日本特殊陶業株式会社 Fuel cell cassette and fuel cell stack for solid oxide fuel cell
US10707499B2 (en) 2014-01-15 2020-07-07 Morimura Sofc Technology Co., Ltd. Fuel cell cassette and fuel cell stack
CN107534167A (en) * 2015-05-01 2018-01-02 日本特殊陶业株式会社 Fuel-cell generation unit and fuel cell pack
EP3291344A4 (en) * 2015-05-01 2018-12-05 NGK Spark Plug Co., Ltd. Fuel-cell power generation unit and fuel-cell stack
US10476087B2 (en) 2015-05-01 2019-11-12 Ngk Spark Plug Co., Ltd. Fuel-cell power generation unit and fuel-cell stack
CN107534167B (en) * 2015-05-01 2020-09-22 森村索福克科技股份有限公司 Fuel cell power generation unit and fuel cell stack
JP2019529115A (en) * 2016-09-22 2019-10-17 ニコベンチャーズ ホールディングス リミテッド Laser welding method for joining solid metal components and porous metal components
US11172706B2 (en) 2016-09-22 2021-11-16 Nicoventures Trading Limited Laser welding method for joining a solid and porous metal component

Similar Documents

Publication Publication Date Title
US7476459B2 (en) Membrane electrode assembly and fuel cell
US8512907B2 (en) Membrane catalyst layer assembly with reinforcing films, membrane electrode assembly with reinforcing films, and polymer electrolyte fuel cells
WO2009139370A1 (en) Fuel cell and fuel cell layer
JP2006012789A (en) Fuel cell and its manufacturing method
US9742012B2 (en) Fuel cell and manufacturing method thereof having integrated membrane electrode assembly and gas diffusion layer
JP6928921B1 (en) Compressor
JP4781626B2 (en) Fuel cell
JP2009093825A (en) Current-collecting composite plate for fuel cell, and fuel cell
JP5130692B2 (en) Electrochemical device and manufacturing method thereof
WO2003105265A1 (en) Liquid fuel feed type fuel cell
JP4566995B2 (en) Apparatus comprising a membrane electrode assembly and method for preparing the apparatus
JP2008300137A (en) Catalyst layer retaining diffusion layer for fuel cell, membrane electrode assembly for fuel cell, manufacturing method of catalyst layer retaining diffusion layer for fuel cell, and manufacturing method of membrane electrode assembly for fuel cell
JP6928922B1 (en) Compressor
JP2006107868A (en) Cell for fuel cell, its manufacturing method and fuel cell
JP2007273141A (en) Fuel cell and manufacturing method of fuel cell
JP2004247294A (en) Power generation element for fuel cell, its manufacturing method, and fuel cell using power generation element
JP2010238458A (en) Fuel battery cell stack, fuel battery, and manufacturing method of fuel battery cell stack
JP2012190720A (en) Membrane electrode assembly in solid polymer fuel cell and method for manufacturing the same
KR101304700B1 (en) Hot pressing device for bonding membrane electrode assembly with a function of improved stability
KR20190037878A (en) Membrane-electrode assembly, method for manufacturing the same, and fuel cell stack comprising the same
JP2018133342A (en) Fuel cell
JP5251139B2 (en) Manufacturing method of fuel cell membrane / electrode assembly
JPH1116584A (en) Cell for solid high polymer type fuel cell and its manufacture
JP6533028B2 (en) Fuel cell membrane electrode assembly
JP2005174770A (en) Fuel cell