JP2006105259A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2006105259A
JP2006105259A JP2004292085A JP2004292085A JP2006105259A JP 2006105259 A JP2006105259 A JP 2006105259A JP 2004292085 A JP2004292085 A JP 2004292085A JP 2004292085 A JP2004292085 A JP 2004292085A JP 2006105259 A JP2006105259 A JP 2006105259A
Authority
JP
Japan
Prior art keywords
rolling bearing
rolling
belt
variable transmission
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004292085A
Other languages
Japanese (ja)
Inventor
Shuichi Yano
修一 矢野
Yukio Oura
大浦  行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004292085A priority Critical patent/JP2006105259A/en
Publication of JP2006105259A publication Critical patent/JP2006105259A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)
  • Pulleys (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • General Details Of Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing capable of securing high rigidity regardless of a size of a bearing clearance, capable of preventing seizure in an early stage and generation of noise by restraining increase of torque or calorific value, and capable of maintaining high lubricating property for a long time. <P>SOLUTION: This rolling bearing 2 is installed in a belt type continuously variable transmission for continuously varying the engine speed in accordance with the traveling state. The belt type continuously variable transmission is provided with input side and output side rotating shafts, a pulley arranged on the rotating shafts respectively and capable of relatively adjusting a pulley width, and a belt mutually laid between the pulleys. The input side and output side rotating shafts are rotatably supported through the rolling bearing; and the rolling bearing is provided with an inner ring 4 and an outer ring 6 relatively and rotatably arranged so as to confront with each other, and a plurality of rolling bodies 8 arranged so as to freely roll between raceway surfaces 4s and 6s of the inner and outer rings; at least one of the raceway surfaces of the inner ring and the outer ring is in a non-complete round shape; and predetermined pre-load is applied to the rolling bearing in the state of being installed in the belt type continuously variable transmission. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種自動車のベルト式無断変速機(CVT:Continuously Variable Transmission)に組み込まれた転がり軸受に関する。   The present invention relates to a rolling bearing incorporated in a continuously variable transmission (CVT) of various automobiles.

従来から各種自動車には、走行状態(例えば、傾斜地での走行、高速運転)に応じてエンジンの回転を変速してドライブシャフト側に出力するために、ベルトを使って無段階で連続的に変速するベルト式無断変速機(ベルト式CVT)が搭載されている。その一例として特許文献1及び特許文献2に示されたベルト式CVT10は、図5(a),(b)に示すように、互いに平行に配置された入力側回転軸12と出力側回転軸14とを備えており、各々の回転軸12,14は、その両側に設けられた転がり軸受2を介して変速機ケース(図示しない)に回転自在に支持されている。   Conventionally, in various automobiles, a belt is used to continuously change the speed of the engine in order to change the rotation of the engine according to the driving condition (for example, driving on a sloping ground, high speed driving) and outputting it to the drive shaft side. A belt type continuously variable transmission (belt type CVT) is mounted. As an example, the belt-type CVT 10 shown in Patent Document 1 and Patent Document 2 includes an input-side rotating shaft 12 and an output-side rotating shaft 14 arranged in parallel to each other, as shown in FIGS. The rotary shafts 12 and 14 are rotatably supported by a transmission case (not shown) via rolling bearings 2 provided on both sides thereof.

入力側回転軸12は、トルクコンバータや電磁クラッチなどの発進クラッチ16を介して駆動源(例えば、エンジン)18に接続されており、駆動源18の駆動力により所定方向に回転制御されるようになっている。また、入力側回転軸12には、当該入力側回転軸12と同期して回転する駆動側プーリ20が設けられており、駆動側プーリ20は、駆動側アクチュエータ22により相対的に接近或いは離間させることが可能な一対の駆動側プーリ板20a,20bを備えている。一対の駆動側プーリ板20a,20bは、その環状の先細り傾斜面S1を互いに対向させて配置されており、これら先細り傾斜面S1の間に金属製の無端ベルト24を掛け渡すことができる。この場合、駆動側アクチュエータ22で例えばいずれかの駆動側プーリ板20a(20b)を軸方向に変位させることにより、一対の駆動側プーリ板20a,20bの先細り傾斜面S1相互の間隔を調節することができる。   The input-side rotary shaft 12 is connected to a drive source (for example, an engine) 18 via a starting clutch 16 such as a torque converter or an electromagnetic clutch, and is controlled to rotate in a predetermined direction by the driving force of the drive source 18. It has become. Further, the input side rotary shaft 12 is provided with a drive side pulley 20 that rotates in synchronization with the input side rotary shaft 12, and the drive side pulley 20 is relatively approached or separated by a drive side actuator 22. A pair of drive-side pulley plates 20a and 20b that can be used are provided. The pair of drive-side pulley plates 20a and 20b are arranged with their annular tapered inclined surfaces S1 facing each other, and a metal endless belt 24 can be stretched between these tapered inclined surfaces S1. In this case, the distance between the tapered inclined surfaces S1 of the pair of drive side pulley plates 20a and 20b is adjusted by displacing one of the drive side pulley plates 20a (20b) in the axial direction by the drive side actuator 22, for example. Can do.

出力側回転軸14には、当該出力側回転軸14と同期して回転する従動側プーリ26が設けられており、従動側プーリ26は、従動側アクチュエータ28により相対的に接近或いは離間させることが可能な一対の従動側プーリ板26a,26bを備えている。一対の従動側プーリ板26a,26bは、その環状の先細り傾斜面S2を互いに対向させて配置されており、これら先細り傾斜面S2の間に無端ベルト24を掛け渡すことができる。この場合、従動側アクチュエータ28で例えばいずれかの従動側プーリ板26a(26b)を軸方向に変位させることにより、一対の従動側プーリ板26a,26bの先細り傾斜面S2相互の間隔を調節することができる。   The output side rotating shaft 14 is provided with a driven pulley 26 that rotates in synchronization with the output side rotating shaft 14, and the driven pulley 26 can be relatively approached or separated by a driven side actuator 28. A pair of possible driven pulley plates 26a and 26b are provided. The pair of driven pulley plates 26a and 26b are arranged with their annular tapered inclined surfaces S2 facing each other, and the endless belt 24 can be stretched between these tapered inclined surfaces S2. In this case, the distance between the tapered inclined surfaces S2 of the pair of driven pulley plates 26a and 26b is adjusted by displacing one of the driven pulley plates 26a (26b) in the axial direction by the driven actuator 28, for example. Can do.

このような構成において、駆動源18から発進クラッチ16を介して入力側回転軸12に伝達された動力は、駆動側プーリ20から無端ベルト24を介して従動側プーリ26に伝達される。なお、無端ベルト24として押し付け方向に動力を伝達するものと、引っ張り方向に動力を伝達するものとがある。従動側プーリ26に伝達された動力は、出力側回転軸14から減速歯車列30及びデファレンシャルギヤ32を介してドライブシャフト34に出力され駆動輪36を回転させる。この場合、入力側回転軸12と出力側回転軸14との間の変速比を変える方法としては、駆動側及び従動側プーリ20,26の先細り傾斜面S1,S2の間隔(以下、プーリ幅という)を相対的に調節(増減変更)すれば良い。   In such a configuration, the power transmitted from the drive source 18 to the input side rotary shaft 12 via the starting clutch 16 is transmitted from the drive side pulley 20 to the driven pulley 26 via the endless belt 24. The endless belt 24 includes one that transmits power in the pressing direction and one that transmits power in the pulling direction. The power transmitted to the driven pulley 26 is output from the output side rotating shaft 14 to the drive shaft 34 via the reduction gear train 30 and the differential gear 32 to rotate the drive wheels 36. In this case, as a method of changing the gear ratio between the input side rotating shaft 12 and the output side rotating shaft 14, the distance between the tapered inclined surfaces S1, S2 of the driving side and driven side pulleys 20, 26 (hereinafter referred to as pulley width). ) May be adjusted relative to each other.

例えば入力側回転軸12と出力側回転軸14との間の減速比を大きくする場合には、駆動側プーリ20のプーリ幅を大きくすると共に、従動側プーリ26のプーリ幅を小さくすれば良い。これにより、駆動側及び従動側プーリ20,26に掛け渡された無端ベルト24の径が、駆動側プーリ20で小さく、従動側プーリ26で大きくなるため、入力側回転軸12と出力側回転軸14との間で減速が行なわれる。
これに対して、入力側回転軸12と出力側回転軸14との間の増速比を大きく(減速比を小さく)する場合には、駆動側プーリ20のプーリ幅を小さくすると共に、従動側プーリ26のプーリ幅を大きくすれば良い。これにより、無端ベルト24の径が、駆動側プーリ20で大きく、従動側プーリ26で小さくなるため、入力側回転軸12と出力側回転軸14との間で増速が行なわれる。
For example, when the speed reduction ratio between the input side rotating shaft 12 and the output side rotating shaft 14 is increased, the pulley width of the driving pulley 20 may be increased and the pulley width of the driven pulley 26 may be decreased. As a result, the diameter of the endless belt 24 stretched between the driving side and driven pulleys 20 and 26 is small at the driving side pulley 20 and large at the driven side pulley 26, so that the input side rotating shaft 12 and the output side rotating shaft are 14 is decelerated.
On the other hand, when increasing the speed increasing ratio between the input side rotating shaft 12 and the output side rotating shaft 14 (decreasing the speed reducing ratio), the pulley width of the driving pulley 20 is decreased and the driven side The pulley width of the pulley 26 may be increased. As a result, the diameter of the endless belt 24 is large at the driving pulley 20 and small at the driven pulley 26, so that the speed is increased between the input side rotating shaft 12 and the output side rotating shaft 14.

ところで、上述したようなベルト式CVT10では、無端ベルト24のスリップを防止するため、駆動側及び従動側プーリ20,26に比較的強いクランプ力が付与されている。この場合、無端ベルト24の張力が増大することにより、入力側回転軸12及び出力側回転軸14を支持する転がり軸受2には、大きな荷重(例えば、ラジアル荷重、アキシアル荷重、モーメント荷重)が作用する。このため、ベルト式CVT10には、無端ベルト24の張力に抗して入力側回転軸12及び出力側回転軸14を一定位置に保持し、最適なベルトアライメントを維持することで、変位の抑制、異音の発生防止や耐久性(剛性)の向上が要求されている。なお、異音としては、例えば無端ベルト24の走行時の異音、転がり軸受2の異音(内外輪4,6と転動体8との衝突音)などが想定され、耐久性としては、例えばラジアル荷重及びアキシアル荷重並びにモーメント荷重に対する転がり軸受2の剛性が想定される。そして変位としては、転がり軸受2に対する荷重付加時のラジアル方向やアキシアル方向へのズレや偏心(傾斜)などが想定される。   Incidentally, in the belt-type CVT 10 as described above, a relatively strong clamping force is applied to the driving side and driven side pulleys 20 and 26 in order to prevent the endless belt 24 from slipping. In this case, as the tension of the endless belt 24 increases, a large load (for example, radial load, axial load, moment load) acts on the rolling bearing 2 that supports the input side rotary shaft 12 and the output side rotary shaft 14. To do. For this reason, the belt-type CVT 10 holds the input-side rotary shaft 12 and the output-side rotary shaft 14 at fixed positions against the tension of the endless belt 24, and maintains optimal belt alignment, thereby suppressing displacement. There is a demand for prevention of abnormal noise and improvement of durability (rigidity). As the abnormal noise, for example, abnormal noise during traveling of the endless belt 24, abnormal noise of the rolling bearing 2 (impact noise between the inner and outer rings 4, 6 and the rolling element 8), and the like are assumed. The rigidity of the rolling bearing 2 with respect to radial load, axial load, and moment load is assumed. The displacement is assumed to be a radial direction or axial direction deviation or eccentricity (tilt) when a load is applied to the rolling bearing 2.

このような要求に応える構成として、例えば、軸受すきま(ラジアル内部すきま、アキシアル内部すきま、角すきま)を極力小さく設定したり、すきま以外に溝半径(軌道曲率半径)も小さく設定するといった構成が考えられる。例えば特許文献3の発明では、ラジアル内部すきまを−10〜+7μmに設定する構成が提案されている。しかしながら、このような構成で無端ベルト24を走行させると、転がり軸受2の温度上昇に伴って早期に焼き付きが生じる場合がある。   As a configuration that meets such requirements, for example, a configuration in which the bearing clearance (radial internal clearance, axial internal clearance, angular clearance) is set as small as possible, or the groove radius (orbit curvature radius) is set to be small in addition to the clearance is considered. It is done. For example, in the invention of Patent Document 3, a configuration in which the radial internal clearance is set to −10 to +7 μm is proposed. However, when the endless belt 24 is run in such a configuration, seizure may occur at an early stage as the temperature of the rolling bearing 2 rises.

具体的に説明すると、転がり軸受2の運転中には転動体8と内輪4と外輪6との間の温度差が生じるが、その際、例えば転動体8の温度が最も高く、内輪4がそれに次ぎ、外輪6が最も低い温度になると、外輪6よりもその内部の部品(転動体8、内輪4)の温度が高くなる。このとき部品の熱膨張は外輪6よりも大きな値となるため、例えば特許文献3のようにラジアル内部すきまを負の値に設定すると、転動体8と内外輪4,6との間の接触面圧が高くなり、その結果、早期に焼き付きが生じる場合がある。このような焼き付きを防止するためには、例えば運転条件(例えば、無端ベルト24の走行速度)や使用条件(例えば、転がり軸受2のすきま設定値)が制限されてしまうため、満足できるものでは無い。   Specifically, during the operation of the rolling bearing 2, a temperature difference occurs between the rolling element 8, the inner ring 4 and the outer ring 6. At this time, for example, the temperature of the rolling element 8 is the highest, and the inner ring 4 Next, when the outer ring 6 reaches the lowest temperature, the temperature of the components (rolling element 8, inner ring 4) inside the outer ring 6 becomes higher. At this time, since the thermal expansion of the component is larger than that of the outer ring 6, if the radial internal clearance is set to a negative value as in Patent Document 3, for example, the contact surface between the rolling element 8 and the inner and outer rings 4, 6 The pressure increases and as a result, seizure may occur early. In order to prevent such seizure, for example, operating conditions (for example, the traveling speed of the endless belt 24) and usage conditions (for example, the clearance set value of the rolling bearing 2) are limited, which is not satisfactory. .

また、例えば特許文献4の発明では、内外輪4,6と転動体8とを多点接触(4点)させることにより、耐久性(剛性)の向上を図る構成が提案されている。
しかし、内外輪4,6と転動体8とを多点接触させる構成では、接触点の数が増えるに従ってトルクや発熱量が増加し、このトルクや発熱量の増加に伴って転がり軸受2自体の温度も上昇する。転がり軸受2の温度が上昇すると、上述したように内外輪4,6と転動体8との間の接触面圧が高くなり、その結果、早期に焼き付きが生じる場合がある。また、転がり軸受2の温度上昇は、封入された潤滑剤の劣化(潤滑性の低下)を促進し、その結果、潤滑不良による異音や早期の焼き付きが生じる場合がある。
特開2003−336703号公報 特許第3446821号公報 特開2003−49837号公報 特開2003−227515号公報
For example, in the invention of Patent Document 4, a configuration is proposed in which durability (rigidity) is improved by bringing the inner and outer rings 4 and 6 and the rolling elements 8 into multipoint contact (four points).
However, in the configuration in which the inner and outer rings 4, 6 and the rolling elements 8 are in multipoint contact, the torque and the heat generation amount increase as the number of contact points increases, and the rolling bearing 2 itself increases as the torque and the heat generation amount increase. The temperature also rises. When the temperature of the rolling bearing 2 rises, the contact surface pressure between the inner and outer rings 4, 6 and the rolling element 8 increases as described above, and as a result, seizure may occur early. Moreover, the temperature rise of the rolling bearing 2 promotes deterioration of the enclosed lubricant (decrease in lubricity), and as a result, abnormal noise and early seizure may occur due to poor lubrication.
JP 2003-336703 A Japanese Patent No. 3446821 JP 2003-49837 A JP 2003-227515 A

本発明は、このような問題を解決するためになされており、その目的は、軸受すきまの大きさを問わず高い剛性を確保しつつ、トルクや発熱量の増加を抑えて早期の焼き付け防止や異音の発生防止を図り、長期に亘り高い潤滑性を維持可能な転がり軸受を提供することにある。   The present invention has been made to solve such problems, and its purpose is to prevent high-speed seizure by suppressing an increase in torque and heat generation while ensuring high rigidity regardless of the size of the bearing clearance. An object of the present invention is to provide a rolling bearing capable of preventing abnormal noise and maintaining high lubricity over a long period of time.

このような目的を達成するために、本発明は、各種自動車の走行状態に応じてエンジンの回転を、ベルトを使って無段階で連続的に変速するベルト式無断変速機に組み込まれた転がり軸受であって、ベルト式無断変速機は、入力側回転軸及び出力側回転軸と、これら回転軸にそれぞれ設けられ且つプーリ幅を相対的に調節可能なプーリと、これらプーリ相互間に掛け渡されたベルトとを備えており、入力側回転軸及び出力側回転軸は、その両側に設けられた転がり軸受を介して回転可能に支持されていると共に、転がり軸受は、相対的に回転可能に対向配置された内輪及び外輪と、内外輪の軌道面間に転動自在に配列された複数の転動体とを備えており、内輪及び外輪の少なくとも一方の軌道面が非真円形状を成し、且つ、ベルト式無断変速機に組み込んだ状態において、当該転がり軸受には所定の予圧が付加されている。
この発明では、複数の転動体において内外輪に対して接触面圧を有する転動体と接触面圧の無い転動体とが混在することにより、転がり軸受は周方向に沿って部分的に予圧が付加された状態となる。また、接触面圧の無い転動体と非真円形状の軌道面との間のラジアル内部すきまは、真円形状の軌道面を有する転がり軸受のラジアル内部すきまに比べて、大きく設定可能である。
この場合、非真円形状の軌道面は、所定の非真円量に対応した多角形状の歪円を成している。非真円量は、多角形状の歪円に対する外接円径から内接円径を減じて算出される。
In order to achieve such an object, the present invention provides a rolling bearing incorporated in a belt-type continuously variable transmission that continuously changes the rotation of an engine in a stepless manner using a belt in accordance with the traveling state of various automobiles. In the belt-type continuously variable transmission, the input-side rotary shaft and the output-side rotary shaft, pulleys that are respectively provided on the rotary shafts and can adjust the pulley width relatively, and the pulleys are spanned between the pulleys. The input side rotating shaft and the output side rotating shaft are rotatably supported via rolling bearings provided on both sides thereof, and the rolling bearings are opposed to each other so as to be relatively rotatable. The inner ring and the outer ring arranged, and a plurality of rolling elements arranged so as to be able to roll between the inner and outer ring raceway surfaces, at least one raceway surface of the inner ring and the outer ring has a non-circular shape, In addition, belt-type continual speed change In the state incorporated in, predetermined preload has been added to the rolling bearing.
In this invention, the rolling bearings are partially preloaded along the circumferential direction by mixing the rolling elements having contact surface pressure with the inner and outer rings and the rolling elements having no contact surface pressure in a plurality of rolling elements. It will be in the state. Further, the radial internal clearance between the rolling element having no contact surface pressure and the non-circular raceway surface can be set larger than the radial internal clearance of a rolling bearing having a perfect raceway surface.
In this case, the non-circular circular raceway surface forms a polygonal distorted circle corresponding to a predetermined non-circular amount. The non-circular amount is calculated by subtracting the inscribed circle diameter from the circumscribed circle diameter for the polygonal strain circle.

本発明によれば、内輪及び外輪の少なくとも一方の軌道面が非真円形状を成し、且つ、ベルト式無断変速機に組み込んだ状態において、当該転がり軸受に所定の予圧が付加されるため、軸受すきまの大きさを問わず高い剛性を確保しつつ、トルクや発熱量の増加を抑えて早期の焼き付け防止や異音の発生防止を図り、長期に亘り高い潤滑性を維持可能な転がり軸受を実現することができる。   According to the present invention, a predetermined preload is applied to the rolling bearing in a state where at least one raceway surface of the inner ring and the outer ring has a non-circular shape and is incorporated in the belt-type continuously variable transmission, Rolling bearings that can maintain high lubricity over a long period of time, while ensuring high rigidity regardless of the size of the bearing clearance, suppressing increases in torque and heat generation to prevent early seizure and noise. Can be realized.

以下、本発明の一実施の形態に係る転がり軸受について添付図面を参照して説明する。
本実施の形態では、各種自動車のベルト式無断変速機(CVT:Continuously Variable
Transmission)に組み込まれた転がり軸受を想定する。なお、ベルト式無断変速機(ベルト式CVT)10は、図5(a),(b)に示した構成例と同一であるため、以下では相違する部分の説明に止める。
Hereinafter, a rolling bearing according to an embodiment of the present invention will be described with reference to the accompanying drawings.
In the present embodiment, a belt type continuously variable transmission (CVT) of various automobiles is used.
Assume a rolling bearing built in (Transmission). The belt-type continuously variable transmission (belt-type CVT) 10 is the same as the configuration example shown in FIGS. 5 (a) and 5 (b).

本実施の形態に係る転がり軸受2は、ベルト式CVT10の入力側回転軸12及び出力側回転軸14の両側にそれぞれ設けられており、図1(a),(b)の基本構成図に示すように、相対的に回転可能に対向配置された内輪4及び外輪6と、内外輪4,6の軌道面4s,6s間に転動自在に配列された複数の転動体(例えば、玉、ころ)8とを備えている。なお、転がり軸受2に封入された潤滑剤(例えば、グリース、油)の漏洩防止と共に、異物(例えば、水、塵埃)の浸入防止を図るために、内外輪4,6間に密封板(図示しない)を配設しても良く、この場合、密封板としては、例えばシールやシールドを適用すれば良い。   The rolling bearing 2 according to the present embodiment is provided on both sides of the input side rotating shaft 12 and the output side rotating shaft 14 of the belt type CVT 10, and is shown in the basic configuration diagrams of FIGS. 1 (a) and 1 (b). As described above, a plurality of rolling elements (for example, balls, rollers, etc.) that are arranged so as to roll freely between the inner ring 4 and the outer ring 6 that are relatively opposed to each other and the raceway surfaces 4s, 6s of the inner and outer rings 4, 6 ) 8. A sealing plate (not shown) is provided between the inner and outer rings 4 and 6 in order to prevent leakage of lubricant (for example, grease and oil) enclosed in the rolling bearing 2 and to prevent entry of foreign matter (for example, water and dust). In this case, for example, a seal or a shield may be applied as the sealing plate.

このような転がり軸受2において、内輪4及び外輪6の少なくとも一方の軌道面4s(6s)が非真円形状を成し、且つ、ベルト式CVT10に組み込んだ状態において、当該転がり軸受2には所定の予圧が付加されている。
本実施の形態では一例として、内輪4の軌道面4sが非真円形状を成しており、当該軌道面4sは、所定の非真円量に対応した多角形状の歪円を成している。なお、多角形状の歪円としては、例えば等径の三角形状や四角形状、或いはそれ以上の角度を成す形状(例えば、五角形状、六角形状など)を適用することができるが、本実施の形態では等径の三角形状の歪円を成す軌道面4sを想定する。
In such a rolling bearing 2, when at least one raceway surface 4s (6s) of the inner ring 4 and the outer ring 6 has a non-circular shape and is incorporated in the belt type CVT 10, the rolling bearing 2 has a predetermined shape. The preload is added.
In the present embodiment, as an example, the raceway surface 4s of the inner ring 4 has a non-circular shape, and the raceway surface 4s has a polygonal distorted circle corresponding to a predetermined non-circular amount. . As the polygonal strain circle, for example, an equal-diameter triangular shape, a quadrangular shape, or a shape having an angle larger than that (for example, a pentagonal shape, a hexagonal shape, etc.) can be applied. Then, it is assumed that the raceway surface 4s is a triangular strain circle having an equal diameter.

この場合、非真円量は、多角形状(等径の三角形状)の歪円に対する外接円径Routから内接円径Rinを減じて算出される。なお、非真円量は、転がり軸受2の使用環境や使用目的に応じて任意に設定することができるため、ここでは特に数値限定はしない。また、符号Rbで示す円径は、外接円径Rout及び内接円径Rinを規定する際の基準円径である。
このような構成によれば、複数の転動体8において内外輪4,6に対して接触面圧を有する転動体8と接触面圧の無い転動体8とが混在することになり、転がり軸受2は周方向に沿って部分的に予圧が付加された状態となる。
In this case, the non-circular amount is calculated by subtracting the inscribed circle diameter Rin from the circumscribed circle diameter Rout for a polygonal (equal-diameter triangular) distorted circle. The non-circular amount can be arbitrarily set according to the use environment and purpose of the rolling bearing 2, and is not specifically limited here. The circle diameter indicated by the symbol Rb is a reference circle diameter for defining the circumscribed circle diameter Rout and the inscribed circle diameter Rin.
According to such a configuration, the rolling elements 8 having contact surface pressure with respect to the inner and outer rings 4 and 6 and the rolling elements 8 having no contact surface pressure are mixed in the plurality of rolling elements 8, and the rolling bearing 2. Is in a state in which preload is partially applied along the circumferential direction.

かかる状態は転がり軸受2の動作中にも維持され、内外輪4,6が転動体8を介して相対的に回転する際、内外輪4,6に対して接触面圧を有する転動体8の位置が周方向に変化することになるが、その間、内輪4の軌道面4sの外接円径Routは常にいずれかの転動体8に接した状態を維持する。   Such a state is maintained even during the operation of the rolling bearing 2, and when the inner and outer rings 4 and 6 rotate relative to each other via the rolling element 8, the rolling element 8 having a contact surface pressure with respect to the inner and outer rings 4 and 6 is provided. While the position changes in the circumferential direction, the circumscribed circle diameter Rout of the raceway surface 4s of the inner ring 4 is always maintained in contact with any of the rolling elements 8.

以上、本実施の形態によれば、内輪4の軌道面4sを非真円形状とすることにより、転がり軸受2の周方向に沿って部分的に予圧を付加した状態にすることができるため、軸受すきまの大きさを問わずラジアル荷重Fr及びアキシアル荷重Fa並びにモーメント荷重(特に図示しない)に対して高い剛性を有する転がり軸受2を実現することができる。例えば図1(b)に示すように、転がり軸受2の中心Tからオフセットされた位置にラジアル荷重Frが加わってもモーメント剛性の変化を小さくすることができる。この結果、転がり軸受2を安定して且つ滑らかに動作させることが可能となり、トルク制御を安定して行うことが可能となる。   As described above, according to the present embodiment, by making the raceway surface 4s of the inner ring 4 into a non-circular shape, a preload can be partially applied along the circumferential direction of the rolling bearing 2, The rolling bearing 2 having high rigidity with respect to the radial load Fr, the axial load Fa, and the moment load (not particularly shown) can be realized regardless of the size of the bearing clearance. For example, as shown in FIG. 1B, even if a radial load Fr is applied to a position offset from the center T of the rolling bearing 2, the change in moment rigidity can be reduced. As a result, the rolling bearing 2 can be operated stably and smoothly, and torque control can be performed stably.

更に、内輪4の軌道面4sを非真円形状とし部分的な予圧付加状態とすることにより、軸受すきまの大きさを問わず(軸受すきまが大きくても小さくても)、内輪4と外輪6とが相対的に傾斜するのを抑制することができる。この結果、内外輪4,6の軌道面4s,6sと転動体8との間に潤滑剤を引き込み易くなり、潤滑不良による異音や早期の焼き付きも生じない。特に、耐熱性の潤滑剤を用いた転がり軸受2では、低温化での潤滑剤の流動性が低くなるが、この場合でも異音や焼き付きが生じることはない。   Further, by making the raceway surface 4s of the inner ring 4 into a non-circular shape and applying a partial preload, the inner ring 4 and the outer ring 6 regardless of the size of the bearing clearance (whether the bearing clearance is large or small). Can be prevented from relatively tilting. As a result, it becomes easy to draw the lubricant between the raceway surfaces 4s, 6s of the inner and outer rings 4, 6 and the rolling elements 8, and abnormal noise due to poor lubrication and early seizure do not occur. In particular, in the rolling bearing 2 using a heat-resistant lubricant, the fluidity of the lubricant at low temperatures is lowered, but even in this case, no abnormal noise or seizure occurs.

ここで、三角形状の歪円を成す軌道面4sを有する内輪4を備えた転がり軸受2のアキシアル剛性比(図2)及びラジアル剛性比(図3)の計算結果について説明する。
この計算では呼び番号(開放形)6203の転がり軸受2を適用する。この場合、転がり軸受2は、内径が17mm、外径が40mm、幅が12mmであり、玉径は6.747mm、玉数は8個に設定した。なお、ラジアル荷重は500N、アキシアル荷重は2000Nとした。
Here, calculation results of the axial rigidity ratio (FIG. 2) and the radial rigidity ratio (FIG. 3) of the rolling bearing 2 including the inner ring 4 having the raceway surface 4s forming a triangular strain circle will be described.
In this calculation, the rolling bearing 2 having an identification number (open type) 6203 is applied. In this case, the rolling bearing 2 has an inner diameter of 17 mm, an outer diameter of 40 mm, a width of 12 mm, a ball diameter of 6.747 mm, and the number of balls set to eight. The radial load was 500N and the axial load was 2000N.

軸受すきま:0、非真円量:0のアキシアル剛性比を1としたときの非真円量とアキシアル剛性比との関係では、例えば図2に示すように、アキシアル内部すきま(軸受すきま)が正の値(例えば、0.01mm、0.02mm)でも、歪量(非真円量)がある程度大きければ、真円で軸受すきま0mmの転がり軸受よりも高いモーメント剛性比が得られることが分る。今回の計算結果では、アキシアル内部すきま:0.01mmで、非真円量:0.05mm以上、及び、アキシアル内部すきま:0.02mmで、非真円量:0.065mm以上の歪量(非真円量)があれば、真円で軸受すきま0mmの転がり軸受よりも大きなアキシアル剛性比が得られた。   Bearing clearance: 0, non-circular amount: 0 When the axial stiffness ratio is set to 1, the relationship between the non-circular amount and the axial stiffness ratio is, for example, as shown in Fig. 2, the axial internal clearance (bearing clearance) is Even with positive values (for example, 0.01 mm, 0.02 mm), if the amount of strain (non-roundness) is large to some extent, a higher moment stiffness ratio can be obtained than a rolling bearing with a perfect circle and a bearing clearance of 0 mm. The In this calculation result, the axial internal clearance is 0.01 mm, the non-circular amount is 0.05 mm or more, and the axial internal clearance is 0.02 mm, the non-circular amount is 0.065 mm or more. If there is a perfect circle amount), an axial rigidity ratio greater than that of a rolling bearing having a perfect circle and a bearing clearance of 0 mm was obtained.

また、軸受すきま:0、非真円量:0のラジアル剛性比を1としたときの非真円量とラジアル剛性比との関係では、例えば図3に示すように、ラジアル内部すきま(軸受すきま)が正の値(例えば、0.01mm、0.02mm)でも、歪量(非真円量)がある程度大きければ、真円で軸受すきま0mmの転がり軸受よりも高いラジアル剛性比が得られることが分る。今回の計算結果では、ラジアル内部すきま:0.01mmで、非真円量:0.045mm以上、及び、ラジアル内部すきま:0.02mmで、非真円量:0.080mm以上の歪量(非真円量)があれば、真円で軸受すきま0mmの転がり軸受よりも大きなラジアル剛性比が得られた。   The relationship between the non-circular amount and the radial stiffness ratio when the radial stiffness ratio is 1 when the bearing clearance is 0 and the non-circular amount is 0, for example, as shown in FIG. 3, is the radial internal clearance (bearing clearance). ) Is a positive value (for example, 0.01 mm, 0.02 mm), and if the strain (non-roundness) is large to some extent, a higher radial rigidity ratio can be obtained than a rolling bearing with a perfect circle and a bearing clearance of 0 mm. I understand. In this calculation result, the radial internal clearance is 0.01 mm, the non-circular amount is 0.045 mm or more, and the radial internal clearance is 0.02 mm, the non-circular amount is 0.080 mm or more. If there is a perfect circle amount), a radial rigidity ratio greater than that of a rolling bearing having a perfect circle and a bearing clearance of 0 mm was obtained.

更に、非真円量を一定(例えば、0.02mm、0.04mm)にしてモーメント荷重を変化させた場合(ラジアル荷重:1000Nとする)、例えば図4に示すように、非真円形状の軌道面4sを有する転がり軸受2(軸受すきま:0mm)は、そのモーメント剛性比の変化が基準仕様(非真円量:0mm)に比べて小さくなっていることが分る。即ち、モーメント荷重の変化に鈍感になっている。これにより、非真円形状の軌道面4sを有する転がり軸受2は、その取付誤差や取付制限などから生じるオフセット荷重Fr(図1(b))に対してモーメント剛性比が変化し難いという意味で、基準仕様よりも高いロバスト性(例えば、安定性、最適性)を有していることが分る。   Further, when the moment load is changed with a non-circular amount being constant (for example, 0.02 mm, 0.04 mm) (radial load: 1000 N), for example, as shown in FIG. It can be seen that in the rolling bearing 2 (bearing clearance: 0 mm) having the raceway surface 4s, the change in the moment stiffness ratio is smaller than that in the standard specification (non-circular amount: 0 mm). That is, it is insensitive to changes in moment load. As a result, the rolling bearing 2 having the non-circular raceway surface 4s means that the moment stiffness ratio is unlikely to change with respect to the offset load Fr (FIG. 1 (b)) caused by its mounting error or mounting limitation. It can be seen that it has higher robustness (for example, stability, optimality) than the standard specification.

以上の計算結果によれば、接触面圧の無い転動体8と非真円形状の軌道面4sとの間のラジアル内部すきまは、真円(例えば図1(a)の基準円Rb)形状の軌道面を有する転がり軸受のラジアル内部すきまに比べて、大きく設定することができる。別の言い方をすると、接触面圧の無い転動体8と非真円形状の軌道面4sとの間のラジアル内部すきまは、ラジアル内部すきまを極めて小さく設定した従来の真円軸受に比べて、大幅に大きく設定することができる。なお、ラジアル内部すきまの設定値は、転がり軸受2の大きさや種類、転動体8の数や大きさなどにより任意に設定することができるため、ここでは特に数値限定はしない。   According to the above calculation results, the radial internal clearance between the rolling element 8 having no contact surface pressure and the non-circular raceway surface 4s is a perfect circle (for example, the reference circle Rb in FIG. 1A). It can be set larger than the radial internal clearance of a rolling bearing having a raceway surface. In other words, the radial internal clearance between the rolling element 8 without contact surface pressure and the non-circular raceway surface 4s is significantly larger than that of a conventional circular bearing with a very small radial internal clearance. Can be set large. The set value of the radial internal clearance can be arbitrarily set according to the size and type of the rolling bearing 2, the number and size of the rolling elements 8, and the numerical value is not particularly limited here.

このようにラジアル内部すきまを大きく設定(正の値に設定)することにより、転動体8と内外輪4,6との間の接触面圧を低くすることができ、トルクや発熱量を軽減させることが可能となり、転がり軸受の温度上昇を抑えることができる。この結果、従来のようにラジアル内部すきまを負の値に設定した転がり軸受に比べて、本実施の形態では、転がり軸受2に封入された潤滑剤の劣化(潤滑性の低下)を生じさせることが無いため、潤滑不良による異音や早期の焼き付きが生じることも無い。   Thus, by setting the radial internal clearance large (set to a positive value), the contact surface pressure between the rolling element 8 and the inner and outer rings 4 and 6 can be lowered, and torque and heat generation can be reduced. Therefore, the temperature rise of the rolling bearing can be suppressed. As a result, as compared with the conventional rolling bearing in which the radial internal clearance is set to a negative value, in this embodiment, the lubricant enclosed in the rolling bearing 2 is deteriorated (decreasing lubricity). Therefore, there is no abnormal noise or premature seizure due to poor lubrication.

このような転がり軸受2を組み込んだベルト式CVT10(図5(a),(b))によれば、その運転中、ベルト式CVT10の入力側回転軸12と出力側回転軸14とを一定位置に保持し、最適なベルトアライメントを維持することができるため、各種自動車の走行状態に応じてエンジンの回転を安定して且つ滑らかに変速することができる。   According to the belt type CVT 10 (FIGS. 5A and 5B) in which such a rolling bearing 2 is incorporated, the input side rotary shaft 12 and the output side rotary shaft 14 of the belt type CVT 10 are placed at fixed positions during the operation. And the optimum belt alignment can be maintained, so that the rotation of the engine can be changed stably and smoothly according to the running state of various automobiles.

また、内輪4の軌道面4sを非真円形状にして、転がり軸受2の周方向に沿って部分的に予圧を付加した状態にしたことにより、軸受すきまの大きさを問わずラジアル荷重及びアキシアル荷重並びにモーメント荷重に対して高い剛性を確保することが可能になる。この場合、例えば駆動側及び従動側プーリ20,26に掛け渡された無端ベルト24の張力により転がり軸受2の中心Tからオフセットされた位置にラジアル荷重Frが加わっても(図1(b))、モーメント剛性の変化を小さくすることができるため、転がり軸受2を安定して且つ滑らかに動作させることが可能となる。この結果、ベルト式CVT10を安定して且つ滑らかに動作させることができる。   Further, the raceway surface 4s of the inner ring 4 is made into a non-circular shape, and a preload is partially applied along the circumferential direction of the rolling bearing 2, so that the radial load and the axial load can be obtained regardless of the size of the bearing clearance. It is possible to ensure high rigidity against loads and moment loads. In this case, for example, even if the radial load Fr is applied to a position offset from the center T of the rolling bearing 2 by the tension of the endless belt 24 stretched around the driving side and driven side pulleys 20 and 26 (FIG. 1B). Since the change in moment stiffness can be reduced, the rolling bearing 2 can be operated stably and smoothly. As a result, the belt type CVT 10 can be operated stably and smoothly.

更に、本実施の形態の転がり軸受2は、非真円軸受は多点(4点)接触軸受に比べて軸受トルクを小さくすることができるため、運転中の転がり軸受2の発熱量を軽減することができる。この結果、従来の転がり軸受に比べて、潤滑剤の劣化(潤滑性の低下)を生じさせることが無いため、潤滑不良による異音や早期の焼き付きが生じることも無い。これにより、ベルト式CVT10(入力側及び出力側回転軸12,14、駆動側及び従動側プーリ20,26、無端ベルト24)の回転安定性及び円滑性を長期に亘って確保することが可能となる。更にまた、転がり軸受2の軸受トルクを小さくすることにより、ベルト式CVT10の消費馬力の増大を抑えることも可能となる。   Furthermore, since the rolling bearing 2 of the present embodiment can reduce the bearing torque of the non-round bearing compared to the multi-point (4-point) contact bearing, the amount of heat generated by the rolling bearing 2 during operation is reduced. be able to. As a result, the lubricant does not deteriorate (decrease in lubricity) as compared with the conventional rolling bearing, so that no abnormal noise or early seizure due to poor lubrication does not occur. As a result, it is possible to ensure the rotational stability and smoothness of the belt-type CVT 10 (input-side and output-side rotating shafts 12, 14, drive-side and driven-side pulleys 20, 26, endless belt 24) over a long period of time. Become. Furthermore, by reducing the bearing torque of the rolling bearing 2, it is also possible to suppress an increase in the horsepower consumption of the belt type CVT 10.

なお、上述した実施の形態において、転がり軸受2の種類については特に限定しなかったが、単列及び複列の軸受にも本発明を適用することができる。また、上述した実施の形態では等径の三角形状の歪円を成す軌道面4sを想定したが、当該内輪4の軌道面4sに代えて外輪6の軌道面6sを非真円形状にしても良いし、或いは、内外輪4,6の軌道面4s,6sの双方を非真円形状にしても上記同様の効果を実現することができる。   In the above-described embodiment, the type of the rolling bearing 2 is not particularly limited, but the present invention can also be applied to single-row and double-row bearings. In the above-described embodiment, the raceway surface 4s forming a triangular strain circle having an equal diameter is assumed. However, the raceway surface 6s of the outer ring 6 is made to be a non-circular shape instead of the raceway surface 4s of the inner ring 4. Alternatively, even if both the raceway surfaces 4s and 6s of the inner and outer rings 4 and 6 are non-circular, the same effect as described above can be realized.

本発明の一実施の形態に係る転がり軸受の軌道面と各転動体との関係を示す図であり、(a)は非真円形状の軌道面の構成を模式的に示す図、(b)は同図(a)の模式図に対応した転がり軸受の構成例を示す図。It is a figure which shows the relationship between the raceway surface of the rolling bearing which concerns on one embodiment of this invention, and each rolling element, (a) is a figure which shows the structure of a non-circular raceway surface typically, (b) These are figures which show the structural example of the rolling bearing corresponding to the schematic diagram of the figure (a). 軸受すきま:0、非真円量:0のアキシアル剛性比を1としたときの非真円量とアキシアル剛性比との関係を示す図。The figure which shows the relationship between the amount of non-roundness and an axial rigidity ratio when the axial clearance ratio of bearing clearance: 0 and non-roundness: 0 is set to 1. 軸受すきま:0、非真円量:0のラジアル剛性比を1としたときの非真円量とラジアル剛性比との関係を示す図。The figure which shows the relationship between the amount of non-roundness and a radial rigidity ratio when the bearing clearance: 0 and the amount of non-roundness: 0 when the radial stiffness ratio is 1. 軸受すきま:0、非真円量:0のモーメント剛性比を1としたときのモーメント荷重とモーメント剛性比との関係を示す図。The figure which shows the relationship between a moment load and moment stiffness ratio when bearing clearance: 0, non-circular amount: 0 when the moment stiffness ratio is set to 1. (a)は、本発明の転がり軸受が組み込まれたベルト式無断変速機(ベルト式CVT)の構成例を模式的に示す部分断面図、(b)は、本発明の転がり軸受が組み込まれたベルト式無断変速機(ベルト式CVT)の具体的な構成例を示す断面図。(a) is a partial sectional view schematically showing a configuration example of a belt type continuously variable transmission (belt type CVT) in which the rolling bearing of the present invention is incorporated, and (b) is a diagram in which the rolling bearing of the present invention is incorporated. Sectional drawing which shows the specific structural example of a belt type continuously variable transmission (belt type CVT).

符号の説明Explanation of symbols

2 転がり軸受
4 内輪
4s 内輪の軌道面
6 外輪
6s 外輪の軌道面
8 転動体
10 ベルト式無断変速機(ベルト式CVT)
12 入力側回転軸
14 出力側回転軸
16 発進クラッチ
18 駆動源
20 駆動側プーリ
22 駆動側アクチュエータ
24 無端ベルト
26 従動側プーリ
28 従動側アクチュエータ
30 減速歯車列
32 デファレンシャルギヤ
34 ドライブシャフト
36 駆動輪
2 Rolling bearing 4 Inner ring 4s Inner ring raceway surface 6 Outer ring 6s Outer ring raceway surface 8 Rolling element 10 Belt type continuously variable transmission (belt type CVT)
12 Input side rotary shaft 14 Output side rotary shaft 16 Start clutch 18 Drive source 20 Drive side pulley 22 Drive side actuator 24 Endless belt 26 Drive side pulley 28 Drive side actuator 30 Reduction gear train 32 Differential gear 34 Drive shaft 36 Drive wheel

Claims (5)

各種自動車の走行状態に応じてエンジンの回転を、ベルトを使って無段階で連続的に変速するベルト式無断変速機に組み込まれた転がり軸受であって、
ベルト式無断変速機は、入力側回転軸及び出力側回転軸と、これら回転軸にそれぞれ設けられ且つプーリ幅を相対的に調節可能なプーリと、これらプーリ相互間に掛け渡されたベルトとを備えており、入力側回転軸及び出力側回転軸は、その両側に設けられた転がり軸受を介して回転可能に支持されていると共に、
転がり軸受は、相対的に回転可能に対向配置された内輪及び外輪と、内外輪の軌道面間に転動自在に配列された複数の転動体とを備えており、
内輪及び外輪の少なくとも一方の軌道面が非真円形状を成し、且つ、ベルト式無断変速機に組み込んだ状態において、当該転がり軸受には所定の予圧が付加されていることを特徴とする転がり軸受。
A rolling bearing incorporated in a belt-type continuously variable transmission that continuously changes the rotation of an engine in a stepless manner using a belt according to the running state of various automobiles,
The belt-type continuously variable transmission includes an input-side rotating shaft and an output-side rotating shaft, pulleys that are respectively provided on these rotating shafts and that can adjust the pulley width relatively, and a belt that is stretched between the pulleys. The input side rotary shaft and the output side rotary shaft are rotatably supported via rolling bearings provided on both sides thereof, and
The rolling bearing includes an inner ring and an outer ring that are disposed to face each other so as to be relatively rotatable, and a plurality of rolling elements that are arranged to freely roll between the raceway surfaces of the inner and outer rings,
The rolling bearing is characterized in that a predetermined preload is applied to the rolling bearing when the raceway surface of at least one of the inner ring and the outer ring has a non-circular shape and is incorporated in a belt-type continuously variable transmission. bearing.
複数の転動体において内外輪に対して接触面圧を有する転動体と接触面圧の無い転動体とが混在することにより、転がり軸受は周方向に沿って部分的に予圧が付加された状態となることを特徴とする請求項1に記載の転がり軸受。   In a plurality of rolling elements, a rolling element having a contact surface pressure with respect to the inner and outer rings and a rolling element having no contact surface pressure are mixed, so that the rolling bearing is partially preloaded along the circumferential direction. The rolling bearing according to claim 1, wherein: 接触面圧の無い転動体と非真円形状の軌道面との間のラジアル内部すきまは、真円形状の軌道面を有する転がり軸受のラジアル内部すきまに比べて、大きく設定可能であることを特徴とする請求項1又は2に記載の転がり軸受。   The radial internal clearance between the rolling element without contact surface pressure and the non-circular raceway surface can be set larger than the radial internal clearance of a rolling bearing with a perfect circular raceway surface. The rolling bearing according to claim 1 or 2. 非真円形状の軌道面は、所定の非真円量に対応した多角形状の歪円を成していることを特徴とする請求項1〜3のいずれかに記載の転がり軸受。   The rolling bearing according to claim 1, wherein the non-circular raceway surface forms a polygonal strain circle corresponding to a predetermined non-circular amount. 非真円量は、多角形状の歪円に対する外接円径から内接円径を減じて算出されることを特徴とする請求項1〜4のいずれかに記載の転がり軸受。
5. The rolling bearing according to claim 1, wherein the non-round amount is calculated by subtracting an inscribed circle diameter from a circumscribed circle diameter with respect to a polygonal strain circle.
JP2004292085A 2004-10-05 2004-10-05 Rolling bearing Pending JP2006105259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292085A JP2006105259A (en) 2004-10-05 2004-10-05 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292085A JP2006105259A (en) 2004-10-05 2004-10-05 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2006105259A true JP2006105259A (en) 2006-04-20

Family

ID=36375245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292085A Pending JP2006105259A (en) 2004-10-05 2004-10-05 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2006105259A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128072A (en) * 2017-02-08 2018-08-16 住友重機械工業株式会社 Eccentric oscillation type gear unit
CN109595258A (en) * 2018-10-30 2019-04-09 南安市瑞方机械科技有限公司 A kind of large size bearing radial internal clearance automatic adjusting mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128072A (en) * 2017-02-08 2018-08-16 住友重機械工業株式会社 Eccentric oscillation type gear unit
CN109595258A (en) * 2018-10-30 2019-04-09 南安市瑞方机械科技有限公司 A kind of large size bearing radial internal clearance automatic adjusting mechanism
CN109595258B (en) * 2018-10-30 2020-11-13 台州浙盛轴承科技有限公司 Automatic radial clearance adjusting mechanism for large bearing

Similar Documents

Publication Publication Date Title
CA2423627C (en) Journal bearing and thrust pad assembly
JP6035732B2 (en) Rolling bearing
WO2010074285A1 (en) Pulley support structure for belt-drive continuously variable transmission and belt-drive continuously variable transmission
RU2232926C2 (en) Antifriction bearing
JP2006105259A (en) Rolling bearing
JP2004183765A (en) Rolling bearing for belt-type continuously variable transmission
JP2006138447A (en) Rolling bearing
KR20040053385A (en) Bevel gear transmission
EP2811204A1 (en) Toroidal-type continuously variable transmission
KR20150130297A (en) One-way clutch and one-way clutch unit for wind power generation device
JP4569470B2 (en) Roller bearing for belt type continuously variable transmission
US6514171B2 (en) Toroidal continuously variable transmission
JP2007309518A (en) Continuously variable transmission of automobile
JP4994630B2 (en) Tapered roller bearings
JP4860560B2 (en) Toroidal continuously variable transmission
JP2005090687A (en) Belt type continuously variable transmission
US11078955B2 (en) Tapered roller bearing
JP2006138448A (en) Rolling bearing
JP2006105255A (en) Rolling bearing
JP2002372115A (en) Frictional continuously variable transmission
JP2009204089A (en) Cage for needle roller bearing, and needle roller bearing
KR101035207B1 (en) Continuously variable transmission
JPH10292859A (en) Pulley shaft supporting bearing of belt type continuously variable transmission
JP2003336703A (en) Roller bearing for belt-type continuously variable transmission
JP2008082505A (en) Rolling bearing for belt type continuously variable transmission and belt type continuously variable transmission