JP2006102807A - Method for reforming metallic structure - Google Patents

Method for reforming metallic structure Download PDF

Info

Publication number
JP2006102807A
JP2006102807A JP2004297000A JP2004297000A JP2006102807A JP 2006102807 A JP2006102807 A JP 2006102807A JP 2004297000 A JP2004297000 A JP 2004297000A JP 2004297000 A JP2004297000 A JP 2004297000A JP 2006102807 A JP2006102807 A JP 2006102807A
Authority
JP
Japan
Prior art keywords
molten metal
mold
solidification
ultrasonic
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004297000A
Other languages
Japanese (ja)
Inventor
Yuichi Furukawa
雄一 古川
Mitsuhiro Ogawa
満広 小川
Yoshiki Tsunekawa
好樹 恒川
Shigetomi Morita
重富 森田
Sadahito Kinoshita
禎仁 木下
Masami Eguchi
正美 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daisen Sangyo Co Ltd
Toyota Tsusho Corp
Toyota Motor Corp
Toyota Gauken
Original Assignee
Daisen Sangyo Co Ltd
Toyota Tsusho Corp
Toyota Motor Corp
Toyota Gauken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daisen Sangyo Co Ltd, Toyota Tsusho Corp, Toyota Motor Corp, Toyota Gauken filed Critical Daisen Sangyo Co Ltd
Priority to JP2004297000A priority Critical patent/JP2006102807A/en
Publication of JP2006102807A publication Critical patent/JP2006102807A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reforming a metallic structure by which the whole of the metallic structure can be refined without relying on complicated and large-sized equipment, and further, not only there is no limitation on an applying range but also mold releasing is not made difficult even when it is applied to casting. <P>SOLUTION: A horn 2 integrated with an ultrasonic vibrator 3 is arranged at the upper part of a mold 1 in such a manner that the same is separated from the surface of a molten metal M in the mold 1 by a prescribed distance L, the molten metal M is poured into the mold 1, thereafter, ultrasonic waves are emitted from the horn 2 to the molten metal M in the mold 1 in a suitable timing, and ultrasonic vibration is applied thereto. By the application of the ultrasonic vibration, fine nuclei for solidification are generated in the molten metal and are dispersed, further, dendrite as primary crystals is destroyed and is made into fine grains so as to be dispersed. Thus, the solidification progresses with these nuclei and grains as the centers, and the solidified structure is refined. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属の凝固組織を微細化するための金属組織改質方法に関する。   The present invention relates to a metal structure modification method for making a solidified metal structure fine.

凝固過程の溶融金属に超音波振動を付与することが、凝固組織の微細化に効果があることが従来より知られている。そして、溶融金属に超音波振動を付与するため、従来一般には、鋳型の側壁に超音波振動子を取付けて、側壁を通して溶融金属に超音波振動を付与する間接加振方式(例えば、特許文献1参照)と、保持容器内の溶融金属にホーンを浸漬して、直接溶融金属に超音波振動を付与する直接加振方式(例えば、特許文献2参照)との何れかが採用されていた。しかし、間接加振方式では、鋳型の側壁付近では微細化が進むが、内部まで微細化効果が及ばず、一方、直接加振方式では、浸漬したホーンの周辺では微細化が進むが、容器(鋳型)の側壁付近まで微細化の効果が及ばず、何れの方式とも、全体を微細化することが困難であるという問題がある。さらに、加振部近傍の濡れ性が向上することにより溶融した金属が容器等に密着するという問題も生じる。   It has heretofore been known that applying ultrasonic vibration to molten metal in the solidification process is effective in reducing the solidification structure. In order to apply ultrasonic vibration to the molten metal, an indirect excitation method (for example, Patent Document 1) in which an ultrasonic vibrator is generally attached to the side wall of the mold and ultrasonic vibration is applied to the molten metal through the side wall. And a direct vibration method (for example, refer to Patent Document 2) in which a horn is immersed in the molten metal in the holding container and ultrasonic vibration is directly applied to the molten metal. However, in the indirect vibration method, miniaturization proceeds near the side wall of the mold, but the effect of miniaturization does not reach the inside. On the other hand, in the direct vibration method, miniaturization proceeds in the vicinity of the immersed horn, but the container ( The effect of miniaturization does not reach to the vicinity of the side wall of the mold), and any method has a problem that it is difficult to miniaturize the whole. Furthermore, the problem that the melted metal adheres to a container etc. also arises by the improvement of the wettability in the vicinity of the vibration part.

ところで、特許文献3には、超音波加振と電磁振動加振とを併用することにより、溶融金属中にキャビテーションを生じさせ、その消滅時に発生する衝撃圧力で微細化を図ることが記載されており、この方法によれば、全体に微細化効果が及ぶものと期待される。
特開平3−165506号公報 特開平4−158952号公報 特開平11−90615号公報
By the way, Patent Document 3 describes that cavitation is generated in molten metal by using ultrasonic vibration and electromagnetic vibration in combination, and miniaturization is achieved by impact pressure generated at the time of disappearance. Therefore, according to this method, it is expected that the effect of miniaturization will reach the whole.
JP-A-3-165506 JP-A-4-158852 JP-A-11-90615

しかしながら、上記特許文献3に記載の微細化方法によれば、超音波加振と電磁振動加振とを併用するため、設備が複雑、大型化してコスト負担が増大する、という問題があった。また、加振源の設置に制約があるため、製造すべき製品形状、適用する加工分野等の適用範囲に大きな制限を受ける、という問題があった。また、加振力が強力で、固液界面が激しく活性化するため、酸化膜が破壊されてしまい、鋳造品が鋳型の壁面に密着(焼付き)して離型が困難となり、特にアルミニウム系合金の鋳造に適用した場合は、前記密着の程度が激しくなって、鋳型からの鋳造品の離型がほとんど不可能になる、という問題があった。   However, according to the miniaturization method described in Patent Document 3, since ultrasonic vibration and electromagnetic vibration excitation are used in combination, there is a problem that the equipment is complicated and the size is increased and the cost burden is increased. Moreover, since there is a restriction on the installation of the excitation source, there is a problem that the application range such as the shape of the product to be manufactured and the processing field to be applied is greatly limited. In addition, since the excitation force is strong and the solid-liquid interface is vigorously activated, the oxide film is destroyed, and the cast product adheres to the wall of the mold (seizures), making it difficult to release the mold. When applied to casting of an alloy, there is a problem that the degree of adhesion becomes intense and it becomes almost impossible to release the cast product from the mold.

本発明は、上記した従来の問題点に鑑みてなされたもので、その課題とするところは、複雑、大型の設備に頼ることなく全体を微細化でき、しかも、適用範囲に制限がないばかりか、鋳造に適用しても離型が困難になることがない金属組織改質方法を提供することにある。   The present invention has been made in view of the above-described conventional problems, and the problem is that the whole can be miniaturized without relying on complicated and large-sized equipment, and the scope of application is not limited. Another object of the present invention is to provide a metallographic modification method that does not become difficult to release even when applied to casting.

上記課題を解決するため、本発明は、溶融した金属を冷却する冷却過程において、前記金属の湯面に向けて、離間した位置から超音波を直接照射し、前記金属に超音波振動を付与することを特徴とする。
本発明において、「溶融した金属」とは、凝固開始前の完全液体状態の金属および凝固開始後の半凝固状態の金属を意味している。また、「冷却過程」とは、凝固開始前の過程と凝固開始後の過程との何れか一方、または両方を含んでいる。したがって、「冷却過程の溶融した金属に超音波振動を付与する」ことは、凝固開始前の完全液体状態の金属に超音波振動を付与すること、凝固開始後の半凝固状態の金属に超音波振動を付与すること、完全液体状態から半凝固状態にかけての金属に超音波振動を付与することを含んでいる。
In order to solve the above-described problems, the present invention provides an ultrasonic vibration to the metal by directly irradiating ultrasonic waves from a separated position toward the molten metal surface in the cooling process of cooling the molten metal. It is characterized by that.
In the present invention, the “molten metal” means a metal in a completely liquid state before the start of solidification and a metal in a semi-solid state after the start of solidification. Further, the “cooling process” includes one or both of a process before the start of solidification and a process after the start of solidification. Therefore, “applying ultrasonic vibration to the molten metal in the cooling process” means applying ultrasonic vibration to the metal in the completely liquid state before the start of solidification, and applying ultrasonic vibration to the metal in the semi-solid state after the start of solidification. It includes applying vibration and applying ultrasonic vibration to the metal from a completely liquid state to a semi-solid state.

上記のように行う金属組織微細化方法においては、冷却過程の溶融金属に対し、その湯面から適当に離間した位置から超音波を照射することで、溶融金属の全体に超音波振動が効率よく付与される。そして、この超音波振動の付与により、冷却過程の溶融金属中に凝固の微細な核が発生して分散すると共に、初晶のデンドライトが破壊されて微細な粒子となって分散し、これら微細な核および粒子を中心に凝固が進行して、凝固組織が微細化する。また、超音波振動を単独で付与し、しかも、溶融金属やこれを保持する鋳型等の容器と非接触で超音波振動を付与するので、装置が複雑、大型化することはなく、その上、製造すべき製品形状にほとんど制限を受けないばかりか、適用する加工分野にもほとんど制限がない。さらに、湯面から適当に離間した位置から超音波を照射することで、溶融金属に付与される超音波振動の加振力は適当な大きさとなり、固液界面が激しく活性化することがなくなって、鋳造時、特にアルミニウム系合金の鋳造に適用しても鋳造品が鋳型に密着することはなくなる。   In the metal structure refinement method performed as described above, ultrasonic vibration is efficiently applied to the entire molten metal by irradiating the molten metal in the cooling process with ultrasonic waves from a position appropriately spaced from the molten metal surface. Is granted. Then, by applying this ultrasonic vibration, solidified fine nuclei are generated and dispersed in the molten metal in the cooling process, and the primary dendrites are destroyed and dispersed as fine particles. Solidification progresses around the core and particles, and the solidified structure becomes finer. In addition, since the ultrasonic vibration is applied independently, and the ultrasonic vibration is applied in a non-contact manner with a container such as a molten metal or a mold for holding the molten metal, the apparatus is not complicated and does not increase in size. Not only are there any restrictions on the shape of the product to be manufactured, but there are also almost no restrictions on the applied processing field. Furthermore, by irradiating ultrasonic waves from a position appropriately spaced from the molten metal surface, the excitation force of ultrasonic vibration applied to the molten metal becomes an appropriate magnitude and the solid-liquid interface is not vigorously activated. Thus, the cast product does not adhere to the mold at the time of casting, especially when applied to casting of an aluminum alloy.

本発明が適用される加工分野は任意であり、半凝固状態で成形する半凝固鋳造プロセス(チクソキャスティング)を含む鋳造はもとより、溶接、溶射、はんだ付け等の各種分野に適用できる。したがって、上記冷却過程は、これら適用分野に応じて鋳造過程、溶接過程、溶射過程、はんだ金属のはんだ付け過程となる。   The processing field to which the present invention is applied is arbitrary, and can be applied to various fields such as welding, thermal spraying, and soldering as well as casting including a semi-solid casting process (thixocasting) for forming in a semi-solid state. Therefore, the cooling process is a casting process, a welding process, a thermal spraying process, or a solder metal soldering process according to these application fields.

本発明に係る金属組織微細化方法によれば、複雑、大型の設備に頼ることなく全体を微細化できるので、設備にかかるコスト負担が低減する。また、製造すべき製品形状にほとんど制限を受けないばかりか、適用する加工分野にもほとんど制限がなく、適用範囲が著しく拡大する。さらに、鋳造に適用した場合は、鋳造品が鋳型に密着することがなくなるので、離型が容易となり、特にアルミニウム系合金の金型鋳造に向けて好適となる。   According to the metal structure refinement method according to the present invention, the entire structure can be refined without depending on complicated and large-sized facilities, so that the cost burden on the facilities is reduced. In addition, there are almost no restrictions on the shape of the product to be manufactured, and there are almost no restrictions on the applied processing field, so that the application range is remarkably expanded. Furthermore, when it is applied to casting, the cast product does not adhere to the mold, so that the mold release is easy, and it is particularly suitable for casting of an aluminum alloy.

以下、本発明を実施するための最良の形態を添付図面も参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本発明に係る金属組織改質方法の1つの実施形態を示したものである。本実施形態は鋳造に適用したもので、溶融金属(溶湯)Mが注入される鋳型1の上方には、該鋳型1内の溶融金属Mの湯面から所定距離Lだけ離間して超音波照射用のホーン2が配置されている。このホーン2は、超音波振動子3に取付けられており、超音波振動子3には、別途設けた超音波発振器4から超音波が印加されるようになっている。本方法の実施に際しては、鋳型1に溶融金属Mを注入した後、超音波発振器4によって適当なタイミングで超音波振動子3を作動させ、ホーン2から鋳型1内の溶融金属Mに超音波を照射し、超音波振動を付与する。   FIG. 1 shows one embodiment of a metallographic modification method according to the present invention. The present embodiment is applied to casting. Ultrasonic irradiation is performed above the mold 1 into which a molten metal (molten metal) M is poured and separated by a predetermined distance L from the surface of the molten metal M in the mold 1. A horn 2 is arranged. The horn 2 is attached to an ultrasonic transducer 3, and ultrasonic waves are applied to the ultrasonic transducer 3 from an ultrasonic oscillator 4 provided separately. In carrying out this method, after injecting the molten metal M into the mold 1, the ultrasonic oscillator 3 is operated at an appropriate timing by the ultrasonic oscillator 4, and ultrasonic waves are applied from the horn 2 to the molten metal M in the mold 1. Irradiate and apply ultrasonic vibration.

鋳型1内の溶融金属Mに超音波振動を付与する(超音波加振する)タイミングは、凝固開始前の冷却過程であっても、凝固開始後の冷却過程(凝固過程)であっても、あるいは凝固開始前の冷却過程と凝固開始後の冷却過程とを含む範囲であってもよい。凝固開始前においては、溶融金属Mが完全液体状態となっているが、この完全液体状態の溶融金属Mを超音波加振した場合は、冷却に応じて溶融金属M中に凝固の微細な核が発生して分散し、この核を中心に凝固が進行して鋳造組織が微細化する。一方、凝固開始後においては、溶融金属Mが半凝固状態となっているが、この半凝固状態の溶融金属Mを超音波加振した場合は、初晶のデンドライトが破壊されて微細な粒子となって分散し、該微細な粒子を中心に凝固が進行して同様に鋳造組織が微細化する。また、凝固開始前の冷却過程と凝固開始後の冷却過程とを含む範囲で溶融金属Mを超音波加振した場合は、前記した凝固の微細な核の発生と初晶デンドライトの破壊による微細な粒子の生成との相乗効果で、鋳造組織が微細化する。したがって、微細化効果を最大限に発揮させるには、凝固開始点を跨いでその前後で超音波加振を行うのが望ましい。この場合、凝固開始点は、溶融金属Mの種類、鋳型1の大きさ(注入量)等によって異なるので、事前に冷却曲線を求めて凝固開始点を把握する。   The timing of applying ultrasonic vibration to the molten metal M in the mold 1 (ultrasonic vibration) is the cooling process before the start of solidification or the cooling process (solidification process) after the start of solidification. Alternatively, the range may include a cooling process before the start of solidification and a cooling process after the start of solidification. Before the start of solidification, the molten metal M is in a completely liquid state. When the molten metal M in the completely liquid state is subjected to ultrasonic vibration, fine nuclei of solidification in the molten metal M according to cooling. Is generated and dispersed, and solidification progresses around the core to refine the cast structure. On the other hand, after the start of solidification, the molten metal M is in a semi-solid state. However, when this semi-solid state molten metal M is subjected to ultrasonic vibration, the primary crystal dendrite is destroyed and fine particles and Then, the particles are dispersed and solidification progresses around the fine particles, and the cast structure is similarly refined. In addition, when the molten metal M is subjected to ultrasonic vibration within a range including the cooling process before the start of solidification and the cooling process after the start of solidification, the fine nuclei generated by the solidification and the destruction of the primary dendrite described above are generated. The cast structure is refined by a synergistic effect with the generation of particles. Therefore, in order to maximize the effect of miniaturization, it is desirable to perform ultrasonic vibration before and after the solidification start point. In this case, since the solidification start point varies depending on the type of the molten metal M, the size (injection amount) of the mold 1, and the like, the solidification start point is grasped by obtaining a cooling curve in advance.

図2は、鋳物用アルミニウム合金(ADC12)の溶湯を実験室規模(上部内径48mm、下部内径26mm、深さ53mm)の鋳型1に注入した際の冷却曲線を示したもので、凝固開始点P1はほぼ570℃で、注入時点から凝固開始点P1までの時間は約70秒(sec)、凝固開始点P1から凝固終了点P2までの時間は約190秒(注入時点からは約260秒)となっている。したがって、この場合は、注入後、約70秒経過時点を中心にその前後で連続して所定時間超音波加振を行うのが望ましい。   FIG. 2 shows a cooling curve when a molten aluminum alloy for casting (ADC12) is poured into a mold 1 of a laboratory scale (upper inner diameter 48 mm, lower inner diameter 26 mm, depth 53 mm), and a solidification start point P1. Is approximately 570 ° C., the time from the injection point to the coagulation start point P1 is about 70 seconds (sec), and the time from the coagulation start point P1 to the coagulation end point P2 is about 190 seconds (about 260 seconds from the injection point). It has become. Therefore, in this case, it is desirable to perform ultrasonic vibration for a predetermined time continuously around about 70 seconds after injection.

図3は、上記実験室規模の鋳型1にADC12の溶湯を注入した後、600℃付近から約120秒間、超音波加振して得た鋳塊(本発明材)のマクロ組織を、超音波加振を全く行わないで得た鋳塊(比較材)と対比して示したもので、本発明材は、比較材に比べて明らかに凝固組織が微細化している。また、図3から把握される特徴的な点は、比較材に大きな引け巣が認められるのに対し、本発明材には、そのような大きな引け巣が全く認められない点である。この相違は、設定する押湯の大きさと関係し、引け巣の小さい鋳塊が得られる本発明の方法では、押湯を小さく設定できることになり、その分、歩留りが向上してコスト的に有利となる。   FIG. 3 shows a macrostructure of an ingot (the material of the present invention) obtained by ultrasonically oscillating from about 600 ° C. for about 120 seconds after pouring a melt of ADC12 into the laboratory scale mold 1. This is shown in comparison with an ingot (comparative material) obtained without any vibration. The solidified structure of the present invention material is clearly made finer than the comparative material. A characteristic point grasped from FIG. 3 is that a large shrinkage nest is recognized in the comparative material, whereas such a large shrinkage nest is not recognized in the material of the present invention. This difference is related to the size of the riser to be set, and in the method of the present invention in which an ingot with a small shrinkage cavity is obtained, the riser can be set small, and the yield is improved by that amount, which is advantageous in terms of cost. It becomes.

ここで、本発明は、上記したように溶融金属Mから離間した位置から超音波を照射するので、上記した鋳造以外にも、溶接、溶射、はんだ付け等の種々の加工分野に適用可能となる。図4は、2枚の鋼板5Aと5Bの突合せ溶接に本発明を適用した場合の1つの実施形態を示したもので、溶接部位の上方に、鋼板5A、5Bの上面から所定距離Lだけ離間して前記超音波照射用のホーン2と超音波振動子3とを配置し、これらホーン2および超音波振動子3を、溶接棒6による溶接の進行に応じて溶接方向(ここでは、紙面に垂直方向)へ移動させる。このように溶接を行うことで、2枚の鋼板5Aと5Bの間の溶接部(溶融金属)7に超音波振動が付与され、上記鋳造におけると同様に凝固組織が微細化する。   Here, since the present invention irradiates ultrasonic waves from a position apart from the molten metal M as described above, it can be applied to various processing fields such as welding, thermal spraying, and soldering in addition to the above-described casting. . FIG. 4 shows one embodiment when the present invention is applied to the butt welding of two steel plates 5A and 5B, and is separated from the upper surface of the steel plates 5A and 5B by a predetermined distance L above the welded portion. Then, the horn 2 for ultrasonic irradiation and the ultrasonic vibrator 3 are arranged, and the horn 2 and the ultrasonic vibrator 3 are moved in the welding direction (here, on the paper surface) according to the progress of the welding by the welding rod 6. Move vertically). By performing welding in this manner, ultrasonic vibration is applied to the welded portion (molten metal) 7 between the two steel plates 5A and 5B, and the solidified structure is refined as in the above casting.

図5に示すように、舟形の鋳型10を用意し、この鋳型10の上方に、該鋳型10に注入した溶湯Mの湯面から6mm離間するようにホーン2と超音波振動子3とを配置した。なお、鋳型10は、平均内幅35mm、平均長さ20mm、深さ39mmの大きさとなっている。そして、この鋳型10を予め300℃に予熱して、この中に鋳物用アルミニウム合金であるADC12の溶湯(溶融金属)Mを710℃で注入し、この注入直後から60秒間、ホーン2から溶湯Mに向けて振幅40μmの超音波を照射し、凝固後、図示のように鋳塊の下部から切出して引張試験片11を採取し、引張試験を行った。なお、引張試験片11は、その平行部11aの直径が12.3mm、平行部11aの長さが71mmとなっている。また、比較のため、超音波の照射を行わずに同様の鋳造を行い、得られた鋳塊から同様に引張試験片を採取して引張試験を行った。   As shown in FIG. 5, a boat-shaped mold 10 is prepared, and the horn 2 and the ultrasonic vibrator 3 are arranged above the mold 10 so as to be spaced 6 mm from the surface of the molten metal M injected into the mold 10. did. The mold 10 has an average inner width of 35 mm, an average length of 20 mm, and a depth of 39 mm. Then, the mold 10 is preheated to 300 ° C., and a melt (molten metal) M of ADC12 which is an aluminum alloy for casting is poured into the mold 10 at 710 ° C., and the melt M is fed from the horn 2 for 60 seconds immediately after the pouring. Then, an ultrasonic wave having an amplitude of 40 μm was irradiated toward the surface, and after solidification, the tensile test piece 11 was taken out from the lower part of the ingot as shown in the figure, and a tensile test was performed. The tensile test piece 11 has a parallel portion 11a having a diameter of 12.3 mm and a parallel portion 11a having a length of 71 mm. For comparison, the same casting was performed without irradiating ultrasonic waves, and tensile test pieces were similarly collected from the resulting ingots and subjected to a tensile test.

図6は、上記のように行った引張試験の結果を示したものである。同図に示す結果より、超音波加振有りのものは、引張強さの平均が約185N/mm2となっているのに対し、超音波加振無しのものは、引張強さの平均が約166N/mm2となっており、超音波振動の付与が、強度の向上に大きく寄与することが明らかとなった。 FIG. 6 shows the results of the tensile test performed as described above. From the results shown in the figure, the average of the tensile strength is about 185 N / mm 2 with the ultrasonic vibration, whereas the average tensile strength is about the one without the ultrasonic vibration. It was about 166 N / mm 2, and it was revealed that application of ultrasonic vibration greatly contributes to improvement in strength.

図1に示した実験室規模の鋳型1を用い、これにADC12の溶湯を710℃で注入した後、湯面から14mm離間して設置した超音波発振用ホーンから湯面に向けて振幅42μmの超音波を、下記のごとき種々のタイミング(加振条件)で出射した。   The molten metal of ADC12 was poured into the mold 1 at 710 ° C. shown in FIG. 1 at 710 ° C., and then an ultrasonic oscillation horn placed 14 mm away from the molten metal surface with an amplitude of 42 μm toward the molten metal surface. Ultrasonic waves were emitted at various timings (excitation conditions) as described below.

1)620℃から120秒加振(完全溶融状態〜凝固過程の初期段階)
2)620℃から30秒加振(完全溶融状態)
3)570℃から30秒加振(凝固過程の初期段階)
4)570℃から90秒後に30秒加振(凝固過程の中期段階)
5)570℃から180秒後に30秒加振(凝固過程の末期段階)
1) Excitation from 620 ° C. for 120 seconds (completely molten state to initial stage of solidification process)
2) Vibration from 620 ° C. for 30 seconds (completely melted state)
3) Excitation at 570 ° C for 30 seconds (initial stage of solidification process)
4) 30 seconds of vibration after 90 seconds from 570 ° C (the middle stage of the solidification process)
5) 30 seconds after 180 seconds from 570 ° C (the final stage of the solidification process)

そして、上記した種々の加振条件で得られた鋳塊について、マクロ試験およびミクロ試験を行い、金属組織を観察した。この結果、各加振条件で微細化が認められたが、凝固の初期段階を含む1)、3)の加振条件で最も微細化が進んでいることが分かった。   And about the ingot obtained on the above-mentioned various vibration conditions, the macro test and the micro test were done and the metal structure was observed. As a result, miniaturization was observed under each excitation condition, but it was found that miniaturization was most advanced under the excitation conditions 1) and 3) including the initial stage of solidification.

図4に示した2枚の鋼板5A、5Bとして、板厚6mm×板幅40mmのSS400を選択するとともに、溶接棒6として、神戸製鋼社製LB−26(低水素系溶接棒)を選択し、2枚の鋼板5A、5Bの突合せ部を前記溶接棒6により溶接し、この間、鋼板5A、5Bの上面から30mm離間して配置したホーン2から溶接部7に向けて振幅42μmの超音波を照射し、溶接後、溶接部のマクロ組織を観察した。また、比較のため、超音波の照射を行わずに同様の溶接を行い、同様に溶接部のマクロ組織を観察した。この結果、超音波照射(超音波振動の付与)を行ったものは、細かい粒状組織となっているのに対し、超音波照射を行わなかったものは、比較的粗い針状組織となっており、溶接においても、超音波振動の付与が組織の微細化に大きく寄与することが確認できた。   As the two steel plates 5A and 5B shown in FIG. 4, SS400 having a plate thickness of 6 mm × plate width of 40 mm is selected, and LB-26 (low hydrogen welding rod) manufactured by Kobe Steel is selected as the welding rod 6. The butted portions of the two steel plates 5A and 5B are welded by the welding rod 6, and during this time, an ultrasonic wave having an amplitude of 42 μm is directed from the horn 2 arranged 30 mm away from the upper surface of the steel plates 5A and 5B toward the weld portion 7. After irradiation and welding, the macrostructure of the weld was observed. For comparison, the same welding was performed without irradiating ultrasonic waves, and the macrostructure of the welded portion was similarly observed. As a result, those with ultrasonic irradiation (application of ultrasonic vibration) have a fine granular structure, while those without ultrasonic irradiation have a relatively coarse needle-like structure. Also in welding, it was confirmed that the application of ultrasonic vibration greatly contributed to the refinement of the structure.

本発明に係る金属組織微細化方法を鋳造に適用した場合の実施形態を示す模式図である。It is a schematic diagram which shows embodiment at the time of applying the metal structure refinement | miniaturization method which concerns on this invention to casting. 冷却過程の溶融金属に対する超音波加振のタイミング設定の基礎となる冷却曲線の一例を示すグラフである。It is a graph which shows an example of the cooling curve used as the basis of the timing setting of the ultrasonic vibration with respect to the molten metal of a cooling process. 実験室規模で得た鋳塊のマクロ組織を超音波加振を行った場合と超音波加振を行わなかった場合とで対比して示す写真である。It is the photograph which shows by contrast the case where ultrasonic vibration is performed and the case where ultrasonic vibration is not performed about the macro structure of the ingot obtained on the laboratory scale. 本発明に係る金属組織微細化方法を溶接に適用した場合の実施形態を示す模式図である。It is a schematic diagram which shows embodiment at the time of applying the metal structure refinement | miniaturization method which concerns on this invention to welding. 引張試験片を採取するために行った本発明の実施例を示す模式図である。It is a schematic diagram which shows the Example of this invention performed in order to extract | collect a tensile test piece. 本発明の実施例で得られた引張試験結果を、超音波加振を行ったものと超音波加振を行わなかったものとで対比して示すグラフである。It is a graph which compares and shows the tensile test result obtained in the Example of this invention with what performed ultrasonic vibration, and what did not perform ultrasonic vibration.

符号の説明Explanation of symbols

1 鋳型
2 ホーン
3 超音波振動子
4 超音波発振器
M 溶融金属

1 Mold 2 Horn 3 Ultrasonic Vibrator 4 Ultrasonic Oscillator M Molten Metal

Claims (5)

溶融した金属を冷却する冷却過程において、前記金属の湯面に向けて、離間した位置から超音波を直接照射し、前記金属に超音波振動を付与することを特徴とする金属組織改質方法。   In the cooling process of cooling the molten metal, a method of modifying a metal structure is characterized by directly irradiating ultrasonic waves from a spaced position toward the molten metal surface to impart ultrasonic vibrations to the metal. 冷却過程が、鋳造過程であることを特徴とする請求項1に記載の金属組織改質方法。   The method of modifying a metal structure according to claim 1, wherein the cooling process is a casting process. 冷却過程が、溶接過程であることを特徴とする請求項1に記載の金属組織改質方法。   The method for modifying a metallographic structure according to claim 1, wherein the cooling process is a welding process. 冷却過程が、溶射過程であることを特徴とする請求項1に記載の金属組織改質方法。   The method for modifying a metallographic structure according to claim 1, wherein the cooling process is a thermal spraying process. 前記金属がはんだであり、冷却過程が、はんだ付け過程であることを特徴とする請求項1に記載の金属組織改質方法。

The metal structure modification method according to claim 1, wherein the metal is solder, and the cooling process is a soldering process.

JP2004297000A 2004-10-08 2004-10-08 Method for reforming metallic structure Pending JP2006102807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297000A JP2006102807A (en) 2004-10-08 2004-10-08 Method for reforming metallic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297000A JP2006102807A (en) 2004-10-08 2004-10-08 Method for reforming metallic structure

Publications (1)

Publication Number Publication Date
JP2006102807A true JP2006102807A (en) 2006-04-20

Family

ID=36373099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297000A Pending JP2006102807A (en) 2004-10-08 2004-10-08 Method for reforming metallic structure

Country Status (1)

Country Link
JP (1) JP2006102807A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049351A (en) * 2006-08-22 2008-03-06 Hitachi Ltd Method and apparatus for ultrasonic wave-applying welding
JP2008173668A (en) * 2007-01-18 2008-07-31 Toyota Motor Corp Solidifying method
JP2008200692A (en) * 2007-02-19 2008-09-04 National Institute For Materials Science Casting method
WO2011024040A1 (en) 2009-08-27 2011-03-03 Toyota Jidosha Kabushiki Kaisha Microcrystalline alloy, method for production of the same, apparatus for production of the same, and method for production of casting of the same
US7987897B2 (en) * 2008-03-27 2011-08-02 Oleg Vladimirovich Anisimov Method for making castings by directed solidification from a selected point of melt toward casting periphery
JP2011194411A (en) * 2010-03-17 2011-10-06 Nippon Steel Corp Spot welding method and spot welded joint
JP2011200881A (en) * 2010-03-24 2011-10-13 Jatco Ltd Casting apparatus and casting method
JP2011255392A (en) * 2010-06-07 2011-12-22 Nippon Light Metal Co Ltd Method for producing aluminum alloy
WO2012029363A1 (en) * 2010-09-01 2012-03-08 Jx日鉱日石金属株式会社 Indium target and method for manufacturing same
JP2012132054A (en) * 2010-12-21 2012-07-12 Toyota Central R&D Labs Inc Aluminum alloy casting and method of manufacturing the same
JP2014076454A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp METHOD FOR MANUFACTURING Al-Si BASED CASTING ALLOY
US9023487B2 (en) 2011-09-21 2015-05-05 Jx Nippon Mining & Metals Corporation Laminated structure and method for producing the same
US9139900B2 (en) 2011-03-01 2015-09-22 JX Nippon Mining Metals Corporation Indium target and manufacturing method thereof
US9327347B2 (en) 2008-03-05 2016-05-03 Southwire Company, Llc Niobium as a protective barrier in molten metals
US9382598B2 (en) 2010-04-09 2016-07-05 Southwire Company, Llc Ultrasonic device with integrated gas delivery system
JP2016141884A (en) * 2015-02-05 2016-08-08 トヨタ自動車株式会社 Method for removing inclusion
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US9528167B2 (en) 2013-11-18 2016-12-27 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US9617617B2 (en) 2010-04-09 2017-04-11 Southwire Company, Llc Ultrasonic degassing of molten metals
US9758860B2 (en) 2012-01-05 2017-09-12 Jx Nippon Mining & Metals Corporation Indium sputtering target and method for manufacturing same
US9761421B2 (en) 2012-08-22 2017-09-12 Jx Nippon Mining & Metals Corporation Indium cylindrical sputtering target and manufacturing method thereof
US9922807B2 (en) 2013-07-08 2018-03-20 Jx Nippon Mining & Metals Corporation Sputtering target and method for production thereof
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144862A (en) * 1980-04-11 1981-11-11 Hitachi Ltd Method for improving melt-stuck metal by ultrasonic wave
JPH02247314A (en) * 1989-03-22 1990-10-03 Natl Res Inst For Metals Method for adding ultrasonic oscillation into molten metal
JPH04158952A (en) * 1990-10-20 1992-06-02 Leotec:Kk Method for holding semi-solidified metal slurry
JPH05329613A (en) * 1992-06-01 1993-12-14 Mechatro Joban Internatl:Kk Casting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144862A (en) * 1980-04-11 1981-11-11 Hitachi Ltd Method for improving melt-stuck metal by ultrasonic wave
JPH02247314A (en) * 1989-03-22 1990-10-03 Natl Res Inst For Metals Method for adding ultrasonic oscillation into molten metal
JPH04158952A (en) * 1990-10-20 1992-06-02 Leotec:Kk Method for holding semi-solidified metal slurry
JPH05329613A (en) * 1992-06-01 1993-12-14 Mechatro Joban Internatl:Kk Casting method

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049351A (en) * 2006-08-22 2008-03-06 Hitachi Ltd Method and apparatus for ultrasonic wave-applying welding
JP2008173668A (en) * 2007-01-18 2008-07-31 Toyota Motor Corp Solidifying method
JP4594336B2 (en) * 2007-01-18 2010-12-08 トヨタ自動車株式会社 Solidification method
JP2008200692A (en) * 2007-02-19 2008-09-04 National Institute For Materials Science Casting method
US9327347B2 (en) 2008-03-05 2016-05-03 Southwire Company, Llc Niobium as a protective barrier in molten metals
US7987897B2 (en) * 2008-03-27 2011-08-02 Oleg Vladimirovich Anisimov Method for making castings by directed solidification from a selected point of melt toward casting periphery
CN101980809B (en) * 2008-03-27 2012-08-22 先进合金有限公司 Method for making castings by directed solidification from a selected point of melt toward casting periphery
DE112010003405T5 (en) 2009-08-27 2012-08-30 Toyota Jidosha Kabushiki Kaisha Microcrystalline alloy, process for producing the same, apparatus for producing the same, and process for producing a cast from the same
DE112010003405B4 (en) * 2009-08-27 2017-05-04 Toyota Jidosha Kabushiki Kaisha Process for producing a microcrystalline alloy
JP2011045909A (en) * 2009-08-27 2011-03-10 Toyota Motor Corp Al-Si BASED ALLOY HAVING FINE CRYSTAL STRUCTURE, METHOD FOR MANUFACTURING THE SAME, DEVICE FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING CASTING OF THE SAME
WO2011024040A1 (en) 2009-08-27 2011-03-03 Toyota Jidosha Kabushiki Kaisha Microcrystalline alloy, method for production of the same, apparatus for production of the same, and method for production of casting of the same
US8992705B2 (en) 2009-08-27 2015-03-31 Toyota Jidosha Kabushiki Kaisha Microcrystalline alloy, method for production of the same, apparatus for production of the same, and method for production of casting of the same
JP2011194411A (en) * 2010-03-17 2011-10-06 Nippon Steel Corp Spot welding method and spot welded joint
JP2011200881A (en) * 2010-03-24 2011-10-13 Jatco Ltd Casting apparatus and casting method
US9617617B2 (en) 2010-04-09 2017-04-11 Southwire Company, Llc Ultrasonic degassing of molten metals
US10640846B2 (en) 2010-04-09 2020-05-05 Southwire Company, Llc Ultrasonic degassing of molten metals
US9382598B2 (en) 2010-04-09 2016-07-05 Southwire Company, Llc Ultrasonic device with integrated gas delivery system
JP2011255392A (en) * 2010-06-07 2011-12-22 Nippon Light Metal Co Ltd Method for producing aluminum alloy
US9490108B2 (en) 2010-09-01 2016-11-08 Jx Nippon Mining & Metals Corporation Indium target and method for manufacturing same
KR101202232B1 (en) 2010-09-01 2012-11-16 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Indium target and method for manufacturing same
CN102656291A (en) * 2010-09-01 2012-09-05 Jx日矿日石金属株式会社 Indium target and method for manufacturing same
JP2012052193A (en) * 2010-09-01 2012-03-15 Jx Nippon Mining & Metals Corp Indium target and method for manufacturing the same
WO2012029363A1 (en) * 2010-09-01 2012-03-08 Jx日鉱日石金属株式会社 Indium target and method for manufacturing same
JP2012132054A (en) * 2010-12-21 2012-07-12 Toyota Central R&D Labs Inc Aluminum alloy casting and method of manufacturing the same
US9139900B2 (en) 2011-03-01 2015-09-22 JX Nippon Mining Metals Corporation Indium target and manufacturing method thereof
US9023487B2 (en) 2011-09-21 2015-05-05 Jx Nippon Mining & Metals Corporation Laminated structure and method for producing the same
US9758860B2 (en) 2012-01-05 2017-09-12 Jx Nippon Mining & Metals Corporation Indium sputtering target and method for manufacturing same
US9761421B2 (en) 2012-08-22 2017-09-12 Jx Nippon Mining & Metals Corporation Indium cylindrical sputtering target and manufacturing method thereof
JP2014076454A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp METHOD FOR MANUFACTURING Al-Si BASED CASTING ALLOY
US9922807B2 (en) 2013-07-08 2018-03-20 Jx Nippon Mining & Metals Corporation Sputtering target and method for production thereof
US10316387B2 (en) 2013-11-18 2019-06-11 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US9528167B2 (en) 2013-11-18 2016-12-27 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
JP2016141884A (en) * 2015-02-05 2016-08-08 トヨタ自動車株式会社 Method for removing inclusion
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US10441999B2 (en) 2015-02-09 2019-10-15 Hans Tech, Llc Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10639707B2 (en) 2015-09-10 2020-05-05 Southwire Company, Llc Ultrasonic grain refining and degassing procedures and systems for metal casting

Similar Documents

Publication Publication Date Title
JP2006102807A (en) Method for reforming metallic structure
CN105458264B (en) A kind of increasing material manufacturing method under contact type mechanical vibration condition
JP4836244B2 (en) Casting method
JP4594336B2 (en) Solidification method
JP2011045909A (en) Al-Si BASED ALLOY HAVING FINE CRYSTAL STRUCTURE, METHOD FOR MANUFACTURING THE SAME, DEVICE FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING CASTING OF THE SAME
JP2013215756A (en) METHOD FOR MANUFACTURING Al-Si-BASED CASTING ALLOY
JP2007239102A (en) Aluminum-based casting alloy and manufacturing method therefor
Meek et al. Ultrasonic processing of materials
JP7206965B2 (en) Method and apparatus for manufacturing titanium ingot
JP7457691B2 (en) Ultrasonic enhancement of direct chill casting materials
JP5905809B2 (en) Method for producing Al-Si casting alloy
KR101858520B1 (en) A ELECTRON PULSE GENERATOR FOR manufacturing of Al alloy
JP4683695B2 (en) Casting method or casting apparatus for slab or ingot having finely solidified structure
KR102650357B1 (en) Ultrasonic treatment for microstructural refinement of continuously cast products
JP5960634B2 (en) Manufacturing method of casting made of Al-Si-Cu eutectic alloy
RU2799570C2 (en) Ultrasonic improvement of materials produced by direct cooling casting
JP7211122B2 (en) titanium ingot
Suresh et al. A Review on Characteristics and Mechanical Behavior of Metal Castings under Ultrasonic Vibration Technique
KR101880428B1 (en) A ELECTRON PULSE GENERATOR FOR manufacturing of Al alloy
Wang et al. Effect of ultrasonic treatment on the as-cast grain structure during the solidification of an Al-2Cu alloy
JP5841028B2 (en) Method for producing Al-Cu casting alloy
Suresh et al. Microstructure and Mechanical Properties of Castings under Vibration Techniques-A Review
JPS5921462A (en) Pressure casting method
Kura et al. Literature Survey on the Effect of Sonic and Ultrasonic Vibrations in Controlling Grain Size During Solidification of Steel Ingots and Weldments
JP2001321908A (en) Method for casting cast slab or cast ingot having fine solidified structure and its casting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070405

A521 Written amendment

Effective date: 20070405

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A521 Written amendment

Effective date: 20100115

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20100217

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100602