JP2006100811A - RAW MATERIAL LIQUID FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION AND METHOD OF PRODUCING Hf-Si CONTAINING COMPLEX OXIDE FILM USING THE RAW MATERIAL LIQUID - Google Patents

RAW MATERIAL LIQUID FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION AND METHOD OF PRODUCING Hf-Si CONTAINING COMPLEX OXIDE FILM USING THE RAW MATERIAL LIQUID Download PDF

Info

Publication number
JP2006100811A
JP2006100811A JP2005250917A JP2005250917A JP2006100811A JP 2006100811 A JP2006100811 A JP 2006100811A JP 2005250917 A JP2005250917 A JP 2005250917A JP 2005250917 A JP2005250917 A JP 2005250917A JP 2006100811 A JP2006100811 A JP 2006100811A
Authority
JP
Japan
Prior art keywords
organic
compound
raw material
film
material liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005250917A
Other languages
Japanese (ja)
Other versions
JP4363383B2 (en
Inventor
Akio Yanagisawa
明男 柳澤
Atsushi Sai
篤 齋
Nobuyuki Soyama
信幸 曽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005250917A priority Critical patent/JP4363383B2/en
Priority to KR1020077005446A priority patent/KR20070051309A/en
Priority to US11/574,547 priority patent/US20080299312A1/en
Priority to PCT/JP2005/016082 priority patent/WO2006025515A1/en
Priority to TW094130173A priority patent/TW200615393A/en
Publication of JP2006100811A publication Critical patent/JP2006100811A/en
Application granted granted Critical
Publication of JP4363383B2 publication Critical patent/JP4363383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide raw material liquid for metal organic chemical vapor deposition (MOCVD) having a high film-forming rate and a method of producing an Hf-Si containing complex oxide film using the raw material liquid, and also provide a method of producing an Hf-Si containing complex oxide film using the raw material liquid for MOCVD having good adhesion to an underlay. <P>SOLUTION: The raw material liquid for MOCVD of the present invention is characterized in that it is prepared through the process of mixing an organic Si compound and organic Hf compound in a mixing ratio such that the weight ratio (organic Hf compound/organic Si compound) will be in a range of 0.001 to 0.5 weight% to dissolve the organic Hf compound into the organic Si compound and heating the resulting dissolution liquid at 20 to 100°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機金属化学気相成長法(Metal Organic Chemical Vapor Deposition、以下、MOCVD法という。)を用いてHfSiO膜やHfSiON膜等のHf−Si含有複合酸化物膜を成膜する際の金属原料を1液としたMOCVD法用原料液及び該原料液を用いたHf−Si含有複合酸化物膜の製造方法に関するものである。   The present invention relates to a metal used for forming an Hf-Si-containing composite oxide film such as an HfSiO film or an HfSiON film using a metal organic chemical vapor deposition (hereinafter referred to as MOCVD method). The present invention relates to a raw material liquid for MOCVD method using one raw material and a method for producing an Hf—Si-containing composite oxide film using the raw material liquid.

高誘電体ゲート絶縁膜としてシリコン酸化膜が使用されているが、近年LSIの高集積化に伴って、シリコン酸化膜の薄膜化が進んでいる。膜厚が100nm以下の薄さとなった薄膜にはトンネル電流が流れて絶縁効果が低下してしまうため、シリコン酸化膜でのこれ以上の薄膜化は限界となっている。
そのためシリコン酸化膜に代わるゲート絶縁膜が要望されており、候補としてハフニウムとシリコンが含有した酸化物膜、具体的にはHf-Si-O膜やHf-Si-O-N膜のようなHf−Si含有複合酸化物膜が注目されている。これらHf−Si含有複合酸化物膜の製造方法としては、スパッタリング、イオンプレーティング、塗布熱分解、ゾルゲル等のMOD(Metal Organic Deposition)が挙げられるが、上記製造方法に比べて組成制御性、段差被覆性に優れること、半導体製造プロセスとの整合性等の面からMOCVD法が最適な膜製造プロセスとして検討されている。
Hf−Si含有複合酸化物膜を成膜するための材料としては、金属塩化物や金属アルコキシド、DPM錯体などがある。有機Si化合物としては、テトラキスエトキシシラン(以下、Si(C25O)4という。)やSiCl6、有機Hf化合物としては、テトラキスターシャリーブトキシハフニウム(以下、Hf(t-C49O)4という。)やテトラキスジピバロイルメタネートハフニウム(以下、Hf(DPM)4という。)等が検討されている。
Although a silicon oxide film is used as the high dielectric gate insulating film, in recent years, the silicon oxide film is becoming thinner as the LSI is highly integrated. Since a tunnel current flows through a thin film having a thickness of 100 nm or less and the insulation effect is lowered, further reduction in the thickness of the silicon oxide film is limited.
Therefore, there is a demand for a gate insulating film that replaces the silicon oxide film. As a candidate, an oxide film containing hafnium and silicon, specifically, an Hf film such as an Hf-Si-O film or an Hf-Si-O-N film is used. -Si-containing composite oxide films have attracted attention. Examples of the method for producing these Hf-Si-containing composite oxide films include MOD (Metal Organic Deposition) such as sputtering, ion plating, coating pyrolysis, and sol-gel. The MOCVD method has been studied as an optimum film manufacturing process in terms of excellent coverage and compatibility with a semiconductor manufacturing process.
Examples of materials for forming the Hf—Si-containing composite oxide film include metal chlorides, metal alkoxides, and DPM complexes. Examples of the organic Si compound include tetrakisethoxysilane (hereinafter referred to as Si (C 2 H 5 O) 4 ) and SiCl 6 , and examples of the organic Hf compound include tetraxylary butoxyhafnium (hereinafter referred to as Hf (t—C 4 H 9). O) 4 ) and tetrakisdipivaloylmethanate hafnium (hereinafter referred to as Hf (DPM) 4 ) are being studied.

しかし、有機金属化合物を用いるMOCVD法では、適当な有機金属化合物原料の選択と合成が重要な課題となり、必ずしも所望の金属材料に対して適切な有機金属化合物原料が存在しているとは限らない。
このような上記問題点を解決する方策として、MOCVD法によりHf含有薄膜を成膜する方法として、成膜室内に、少なくとも1種若しくは複数種のM[N(C25)2]4(但し、Mは金属(Siを含む)元素)にて表される有機物原料を導入し、CVD法にて、金属(合金を含む)膜、若しくは、金属化合物膜を堆積し、堆積後に堆積中の温度よりも高い温度にて熱処理を行う成膜方法が開示されている(例えば、特許文献1参照。)。上記成膜方法により、半導体装置や電子装置の成膜面に凹凸があっても、金属及びその化合物を制御性と均一性良く堆積することができるようにして、良好な性能を持つ半導体装置や電子装置を製造できる。
特開2002−167672号公報(請求項1、段落[0005])
However, in the MOCVD method using an organometallic compound, selection and synthesis of an appropriate organometallic compound raw material is an important issue, and an appropriate organometallic compound raw material does not necessarily exist for a desired metal material. .
As a method for solving the above-described problems, as a method for forming an Hf-containing thin film by MOCVD, at least one or more kinds of M [N (C 2 H 5 ) 2 ] 4 ( However, M is an organic material represented by a metal (including Si) element, and a metal (including alloy) film or metal compound film is deposited by a CVD method. A film forming method in which heat treatment is performed at a temperature higher than the temperature is disclosed (for example, see Patent Document 1). With the above film formation method, even if the film formation surface of a semiconductor device or an electronic device has irregularities, the metal and the compound thereof can be deposited with good controllability and uniformity, Electronic devices can be manufactured.
JP 2002-167672 A (claim 1, paragraph [0005])

しかしながら、上記特許文献1に示される成膜方法では、所望の金属化合物膜を堆積した後に膜質の改善を目的とする熱処理を施さなければならないため、工程が煩雑になり、また、膜を堆積する温度よりも高い温度で熱処理を行うことから基材を痛めてしまうおそれがあった。
本発明の目的は、高い成膜速度を有するMOCVD法用原料液及び該原料液を用いたHf−Si含有複合酸化物膜の製造方法を提供することにある。
本発明の別の目的は、下地との密着性が良好なMOCVD法用原料液を用いたHf−Si含有複合酸化物膜の製造方法を提供することにある。
However, in the film forming method disclosed in Patent Document 1, since a heat treatment for improving the film quality must be performed after depositing a desired metal compound film, the process becomes complicated and the film is deposited. Since the heat treatment is performed at a temperature higher than the temperature, the substrate may be damaged.
An object of the present invention is to provide a raw material liquid for MOCVD method having a high film formation rate and a method for producing a Hf—Si-containing composite oxide film using the raw material liquid.
Another object of the present invention is to provide a method for producing an Hf—Si-containing composite oxide film using a raw material solution for MOCVD having good adhesion to the base.

請求項1に係る発明は、有機Hf化合物と有機Si化合物とを混合割合が重量比(有機Hf化合物/有機Si化合物)で0.001〜0.5重量%の範囲内となるように混合して有機Hf化合物を有機Si化合物中に溶解させ、この溶解液を20〜100℃で加熱して調製したことを特徴とするMOCVD法用原料液である。
請求項1に係る発明では、Hf−Si含有複合酸化物膜のような複数の金属を含有する膜の有機金属化合物原料を1液とした原料液であり、この原料液は有機Si化合物と有機Hf化合物とを所定の割合で混合して有機Hf化合物を有機Si化合物中に溶解させることにより1液とし、更に所定の温度範囲で加熱して調製することにより得られる。このようにして調製された1液MOCVD法用原料液には、有機Hf化合物と有機Si化合物とで形成されるHf−Si混合金属多核分子となった中間体が含まれると考えられ、この中間体が基材表面に初期成膜核を形成するため、本発明の原料液を使用することで高い成膜速度が得られる。
In the invention according to claim 1, the organic Hf compound and the organic Si compound are mixed so that the mixing ratio is within the range of 0.001 to 0.5% by weight (organic Hf compound / organic Si compound). An organic Hf compound is dissolved in an organic Si compound, and this solution is heated at 20 to 100 ° C. to prepare a MOCVD raw material solution.
The invention according to claim 1 is a raw material liquid in which an organic metal compound raw material of a film containing a plurality of metals such as a Hf-Si-containing composite oxide film is a single liquid, and this raw material liquid is an organic Si compound and an organic It is obtained by mixing the Hf compound at a predetermined ratio and dissolving the organic Hf compound in the organic Si compound to make one liquid, and further heating and preparing in a predetermined temperature range. It is considered that the raw material liquid for the one-liquid MOCVD method prepared in this way contains an intermediate formed as an Hf-Si mixed metal multinuclear molecule formed by an organic Hf compound and an organic Si compound. Since the body forms initial film formation nuclei on the substrate surface, a high film formation rate can be obtained by using the raw material liquid of the present invention.

請求項2に係る発明は、請求項1に係る発明であって、有機Si化合物が次の式(1)又は式(2)で表されるMOCVD法用原料液である。   The invention according to claim 2 is the invention according to claim 1, wherein the organic Si compound is a raw material liquid for MOCVD method represented by the following formula (1) or formula (2).

Figure 2006100811
但し、R1とR2とが互いに同一であるとき、R1及びR2は炭素数1〜4の直鎖又は分岐状アルキル基であり、R1とR2とが互いに異なるとき、R1は炭素数1〜2のアルキル基であり、R2は炭素数2〜4の直鎖又は分岐状アルキル基であり、nは1〜4の整数である。
Figure 2006100811
However, when R 1 and R 2 are the same as each other, R 1 and R 2 are linear or branched alkyl groups having 1 to 4 carbon atoms, and when R 1 and R 2 are different from each other, R 1 Is an alkyl group having 1 to 2 carbon atoms, R 2 is a linear or branched alkyl group having 2 to 4 carbon atoms, and n is an integer of 1 to 4.

Figure 2006100811
但し、R3は炭素数1〜4の直鎖又は分岐状アルキル基であり、mは1〜4の整数である。
Figure 2006100811
However, R < 3 > is a C1-C4 linear or branched alkyl group, and m is an integer of 1-4.

請求項2に係る発明では、上記式(1)又は式(2)で表される有機Si化合物は室温で液体として存在し、かつ有機Hf化合物を溶解することが可能であり、気化安定性、成膜速度及び段差被覆性に優れるため好適である。   In the invention which concerns on Claim 2, the organic Si compound represented by the said Formula (1) or Formula (2) exists as a liquid at room temperature, and it is possible to melt | dissolve an organic Hf compound, vaporization stability, It is suitable because it is excellent in film formation speed and step coverage.

請求項3に係る発明は、請求項1に係る発明であって、有機Hf化合物が次の式(3)で表されるMOCVD法用原料液である。   The invention according to claim 3 is the invention according to claim 1, wherein the organic Hf compound is a raw material liquid for MOCVD method represented by the following formula (3).

Figure 2006100811
但し、R4及びR5は炭素数1〜2のアルキル基であり、R4とR5は互いに同一でも異なっていてもよい。
Figure 2006100811
However, R 4 and R 5 is an alkyl group having 1 to 2 carbon atoms, R 4 and R 5 may be the same or different from each other.

請求項4に係る発明は、請求項1に係る発明であって、有機Hf化合物が次の式(4)で表されるMOCVD法用原料液である。   The invention according to claim 4 is the invention according to claim 1, wherein the organic Hf compound is a raw material liquid for MOCVD method represented by the following formula (4).

Figure 2006100811
但し、R6は炭素数1〜4の直鎖又は分岐状アルキル基である。
請求項3又は4に係る発明では、上記式(3)又は式(4)で表される有機Hf化合物は有機Si化合物に溶解し易く、気化安定性、成膜速度及び段差被覆性に優れるため好適である。
Figure 2006100811
However, R < 6 > is a C1-C4 linear or branched alkyl group.
In the invention according to claim 3 or 4, the organic Hf compound represented by the above formula (3) or formula (4) is easily dissolved in the organic Si compound, and is excellent in vaporization stability, film forming speed and step coverage. Is preferred.

請求項5に係る発明は、請求項1ないし4いずれか1項に記載のMOCVD法用原料液を用いてHf−Si含有複合酸化物膜を作製することを特徴とするHf−Si含有複合酸化物膜の製造方法である。
請求項5に係る発明では、前述した本発明の1液としたMOCVD法用原料液を用いることで、従来の2液からなるMOCVD法用原料液をそれぞれ供給して膜を作製した場合に比べて、高い成膜速度で膜を作製することができ、また得られたHf−Si含有複合酸化物膜は基材と高い密着性を有する。
請求項6に係る発明は、請求項1ないし4いずれか1項に記載のMOCVD法用原料液に使用される有機Si化合物と同一又は異なる組成を有する有機Si化合物を還元ガスとともに熱分解して基材表面にSi膜を成長させる工程と、請求項1ないし4いずれか1項に記載のMOCVD法用原料液を酸化剤とともに供給して熱分解させ、成長させたSi膜表面にHfSiO膜を作製する工程とを含むHf−Si含有複合酸化物膜の製造方法である。
請求項6に係る発明では、基材表面にSi膜を成長させた後に、このSi膜表面にHfSiO膜を作製するため、得られたHfSiO膜は基材との密着性がより向上する。
請求項7に係る発明は、請求項1ないし4いずれか1項に記載のMOCVD法用原料液に使用される有機Si化合物と同一又は異なる組成を有する有機Si化合物を還元ガスとともに熱分解して基材表面にSi膜を成長させる工程と、請求項1ないし4いずれか1項に記載のMOCVD法用原料液を酸化剤及び窒素源とともに供給して熱分解させ、成長させたSi膜表面にHfSiON膜を作製する工程とを含むHf−Si含有複合酸化物膜の製造方法である。
請求項7に係る発明では、基材表面にSi膜を成長させた後に、このSi膜表面にHfSiON膜を作製するため、得られたHfSiON膜は基材との密着性がより向上する。
According to a fifth aspect of the present invention, there is provided an Hf-Si-containing composite oxide characterized in that an Hf-Si-containing composite oxide film is produced using the MOCVD raw material liquid according to any one of the first to fourth aspects. It is a manufacturing method of a physical film.
In the invention according to claim 5, by using the MOCVD method raw material liquid which is one liquid of the present invention described above, compared with the conventional case where a film is prepared by supplying the MOCVD method raw material liquid consisting of two liquids, respectively. Thus, the film can be produced at a high film formation rate, and the obtained Hf—Si-containing composite oxide film has high adhesion to the substrate.
The invention according to claim 6 is obtained by thermally decomposing an organic Si compound having the same or different composition as the organic Si compound used in the MOCVD raw material liquid according to any one of claims 1 to 4 together with a reducing gas. A step of growing a Si film on the surface of the substrate, and supplying the MOCVD method raw material liquid according to any one of claims 1 to 4 together with an oxidizing agent to thermally decompose the HfSiO film on the surface of the grown Si film The manufacturing method of the Hf-Si containing complex oxide film including the process to produce.
In the invention according to claim 6, since the HfSiO film is formed on the surface of the Si film after the Si film is grown on the surface of the base material, the obtained HfSiO film has improved adhesion to the base material.
The invention according to claim 7 is obtained by thermally decomposing an organic Si compound having the same or different composition as the organic Si compound used in the MOCVD raw material liquid according to any one of claims 1 to 4 together with a reducing gas. A step of growing a Si film on the surface of the substrate, and supplying the MOCVD method raw material liquid according to any one of claims 1 to 4 together with an oxidizing agent and a nitrogen source to cause thermal decomposition and growing on the surface of the grown Si film And a process for producing a HfSiON film.
In the invention according to claim 7, since the HfSiON film is formed on the surface of the Si film after the Si film is grown on the surface of the base material, the obtained HfSiON film has more improved adhesion to the base material.

本発明のMOCVD法用原料液は、Hf−Si含有複合酸化物膜のような複数の金属を含有する膜の有機金属化合物原料を1液とした原料液であり、この原料液は有機Si化合物と有機Hf化合物とを所定の割合で混合して有機Hf化合物を有機Si化合物中に溶解させることにより1液とし、更に所定の温度範囲で加熱して調製することにより得られる。このようにして調製された1液MOCVD法用原料液には、有機Hf化合物と有機Si化合物とで形成されるHf−Si混合金属多核分子となった中間体が含まれると考えられ、この中間体が基材表面に初期成膜核を形成するため、本発明の原料液を使用することで高い成膜速度が得られる。
また、Hf−Si含有複合酸化物膜の製造方法は、前述した本発明のMOCVD法用原料液を用いてHf−Si含有複合酸化物膜を作製することを特徴とする。前述した本発明の1液としたMOCVD法用原料液を用いることで、従来の2液からなるMOCVD法用原料液をそれぞれ供給して膜を作製した場合に比べて、高い成膜速度で膜を作製することができ、また得られたHf−Si含有複合酸化物膜は基材と高い密着性を有する。
The raw material solution for MOCVD method of the present invention is a raw material solution in which one organic metal compound raw material of a film containing a plurality of metals such as an Hf-Si-containing composite oxide film is formed, and this raw material solution is an organic Si compound. And the organic Hf compound are mixed at a predetermined ratio to dissolve the organic Hf compound in the organic Si compound to obtain one liquid, and further heated in a predetermined temperature range for preparation. It is considered that the raw material liquid for the one-liquid MOCVD method prepared in this way contains an intermediate formed as an Hf-Si mixed metal multinuclear molecule formed by an organic Hf compound and an organic Si compound. Since the body forms initial film formation nuclei on the substrate surface, a high film formation rate can be obtained by using the raw material liquid of the present invention.
In addition, a method for producing an Hf—Si-containing composite oxide film is characterized in that an Hf—Si-containing composite oxide film is produced using the above-described raw material liquid for MOCVD method of the present invention. By using the MOCVD method raw material liquid as one liquid of the present invention described above, the film can be formed at a higher film forming speed than when the conventional MOCVD method raw material liquid consisting of two liquids is supplied to produce a film. In addition, the obtained Hf—Si-containing composite oxide film has high adhesion to the base material.

次に本発明を実施するための最良の形態を説明する。
本発明のMOCVD法用原料液は、Hf−Si含有複合酸化物膜のような複数の金属を含有する膜の有機金属化合物原料を1液とした原料液であり、有機Hf化合物と有機Si化合物とを混合割合が重量比(有機Hf化合物/有機Si化合物)で0.001〜0.5重量%の範囲内となるように混合して有機Hf化合物を有機Si化合物中に溶解させることにより1液とし、更にこの溶解液を20〜100℃で加熱して調製することにより得られる。このようにして調製された1液MOCVD法用原料液を使用することで高い成膜速度が得られ、更に緻密でかつ密着性の高いHf−Si含有複合酸化物膜が得られる。その理由としては、本発明の原料液には、混合液の大部分を占める有機Si化合物中に、有機Hf化合物と有機Si化合物とで形成される、例えば次の式(5)で表されるようなHf−Si混合金属多核分子となった中間体が含まれると考えられ、このような構造を有する中間体が基材表面に初期成膜核を形成し、更に有機Si化合物、有機Hf化合物及びこれらの中間体の蒸気が熱分解して酸化剤と反応することにより生成するHf−Si含有複合酸化物がこの初期成膜核を中心としてHf−Si含有複合酸化物が堆積し始めると推定される。このように初期成膜核を形成した後に、Hf−Si含有複合酸化物が堆積するため、高い成膜速度が得られる。また、初期成膜核を中心として成膜されるため、緻密な膜が形成される。更に、初期成膜核が基材との密着性を高めることから密着性の高いHf−Si含有複合酸化物膜が得られる。なお、式(5)中の点線は緩やかな結合を表している。
Next, the best mode for carrying out the present invention will be described.
The raw material solution for MOCVD method of the present invention is a raw material solution in which an organic metal compound raw material of a film containing a plurality of metals such as an Hf-Si-containing composite oxide film is one solution, and an organic Hf compound and an organic Si compound. And the organic Hf compound is dissolved in the organic Si compound by mixing so that the mixing ratio is 0.001 to 0.5% by weight (organic Hf compound / organic Si compound). It is obtained by preparing a solution and heating this solution at 20 to 100 ° C. By using the one-component MOCVD raw material solution thus prepared, a high film formation rate can be obtained, and a dense and highly adhesive Hf—Si-containing composite oxide film can be obtained. The reason is that the raw material liquid of the present invention is formed of an organic Hf compound and an organic Si compound in an organic Si compound that occupies most of the mixed liquid. For example, the raw material liquid is represented by the following formula (5): It is considered that an intermediate having become such a Hf-Si mixed metal multinuclear molecule is included, and the intermediate having such a structure forms an initial film formation nucleus on the surface of the substrate, and further, an organic Si compound and an organic Hf compound It is estimated that the Hf-Si-containing composite oxide produced by the thermal decomposition of the vapor of these intermediates and the reaction with the oxidant begins to deposit around the initial film formation nucleus. Is done. Since the Hf—Si-containing composite oxide is deposited after the initial film formation nuclei are thus formed, a high film formation rate can be obtained. Further, since the film is formed around the initial film formation nucleus, a dense film is formed. Furthermore, since the initial film formation nuclei increase the adhesion to the substrate, an Hf—Si-containing composite oxide film with high adhesion can be obtained. In addition, the dotted line in Formula (5) represents loose coupling.

Figure 2006100811
Figure 2006100811

なお、上記式(5)では有機Si化合物及び有機Hf化合物ともに窒素を含有する化合物を用いた際の中間体を表したが、有機Si化合物又は有機Hf化合物のいずれか一方又は双方の化合物として、酸素を含有する化合物を用いた場合であっても、上記式(5)に示される中間体に類似する構造を有するHf−Si混合金属多核分子の形態をとると考えられる。 In the above formula (5), both the organic Si compound and the organic Hf compound represent an intermediate when a nitrogen-containing compound is used. However, either one or both of the organic Si compound and the organic Hf compound, Even when a compound containing oxygen is used, it is considered to take the form of a Hf—Si mixed metal multinuclear molecule having a structure similar to the intermediate represented by the above formula (5).

有機Hf化合物と有機Si化合物との混合割合を上記範囲内に規定したのは、下限値未満であると有機Hf化合物の含有割合が少なすぎるため、良質なHf−Si含有複合酸化物膜を作製することができず、上限値を越えると有機Hf化合物の含有割合が多すぎてしまい、Hf−Si混合金属多核分子となった中間体が形成し難くなってしまうためである。特に好ましい混合割合は重量比(有機Hf化合物/有機Si化合物)で0.01〜0.1重量%の範囲内である。また、有機Hf化合物と有機Si化合物とを所定の割合で混合し更に溶解させた溶解液を上記温度範囲で加熱したのは、有機Hf化合物に有機Si化合物を安定に攻撃させてHf−Si混合金属多核分子となった中間体を形成させるためである。特に好ましい溶解液の加熱温度範囲は20〜100℃である。また加熱時間は30分〜1時間が好ましい。   The reason why the mixing ratio of the organic Hf compound and the organic Si compound is defined within the above range is that when the content is less than the lower limit, the content ratio of the organic Hf compound is too small, and thus a high-quality Hf-Si-containing composite oxide film is manufactured. If the upper limit is exceeded, the content of the organic Hf compound is too high, and it becomes difficult to form an intermediate that has become a Hf—Si mixed metal multinuclear molecule. A particularly preferred mixing ratio is in the range of 0.01 to 0.1% by weight (organic Hf compound / organic Si compound). Moreover, the organic Hf compound and the organic Si compound were mixed at a predetermined ratio and further dissolved, and the solution was heated in the above temperature range because the organic Si compound was stably attacked by the organic Hf compound and mixed with Hf-Si. This is to form an intermediate that has become a metal multinuclear molecule. A particularly preferable heating temperature range of the solution is 20 to 100 ° C. The heating time is preferably 30 minutes to 1 hour.

本発明のMOCVD法用原料液に使用される有機Si化合物は次の式(1)又は式(2)でそれぞれ表される。   The organic Si compound used for the raw material liquid for MOCVD method of the present invention is represented by the following formula (1) or formula (2), respectively.

Figure 2006100811
但し、R1とR2とが互いに同一であるとき、R1及びR2は炭素数1〜4の直鎖又は分岐状アルキル基であり、R1とR2とが互いに異なるとき、R1は炭素数1〜2のアルキル基であり、R2は炭素数2〜4の直鎖又は分岐状アルキル基であり、nは1〜4の整数である。
Figure 2006100811
However, when R 1 and R 2 are the same as each other, R 1 and R 2 are linear or branched alkyl groups having 1 to 4 carbon atoms, and when R 1 and R 2 are different from each other, R 1 Is an alkyl group having 1 to 2 carbon atoms, R 2 is a linear or branched alkyl group having 2 to 4 carbon atoms, and n is an integer of 1 to 4.

Figure 2006100811
但し、R3は炭素数1〜4の直鎖又は分岐状アルキル基であり、mは1〜4の整数である。
上記式(1)で表される化合物の代表例としては、Si[(CH3)2N]4、Si[(C25)2N]4、Si[(C37)2N]4、Si[(C49)2N]4、Si[(CH3)(C25)N]4、Si[(CH3)(C37)N]4、Si[(CH3)(C49)N]4、Si[(C25)(C37)N]4、Si[(C25)(C49)N]4、SiH[(CH3)2N]3などが挙げられる。
また上記式(2)で表される化合物の代表例としては、Si[(CH3)O]4、Si[(C25)O]4、Si[(C37)O]4、Si[(C49)O]4、SiH[(CH3)O]3などが挙げられる。なお、上記代表例で示した化合物以外であっても上記式(1)又は上記式(2)を満たす有機Si化合物であれば本発明の原料液とすることができることは言うまでもない。
上記式(1)又は式(2)でそれぞれ表される有機Si化合物は室温で液体として存在し、かつ有機Hf化合物を溶解することが可能であり、気化安定性、成膜速度及び段差被覆性に優れるため好適である。
Figure 2006100811
However, R < 3 > is a C1-C4 linear or branched alkyl group, and m is an integer of 1-4.
Representative examples of the compound represented by the above formula (1) include Si [(CH 3 ) 2 N] 4 , Si [(C 2 H 5 ) 2 N] 4 , Si [(C 3 H 7 ) 2 N ] 4 , Si [(C 4 H 9 ) 2 N] 4 , Si [(CH 3 ) (C 2 H 5 ) N] 4 , Si [(CH 3 ) (C 3 H 7 ) N] 4 , Si [ (CH 3 ) (C 4 H 9 ) N] 4 , Si [(C 2 H 5 ) (C 3 H 7 ) N] 4 , Si [(C 2 H 5 ) (C 4 H 9 ) N] 4 , Examples thereof include SiH [(CH 3 ) 2 N] 3 .
Further, as representative examples of the compound represented by the above formula (2), Si [(CH 3 ) O] 4 , Si [(C 2 H 5 ) O] 4 , Si [(C 3 H 7 ) O] 4 , Si [(C 4 H 9 ) O] 4 , SiH [(CH 3 ) O] 3 and the like. In addition, it cannot be overemphasized that it can be set as the raw material liquid of this invention if it is an organic Si compound which satisfy | fills the said Formula (1) or the said Formula (2) even if it is except the compound shown by the said representative example.
The organic Si compound represented by the above formula (1) or formula (2) exists as a liquid at room temperature, and can dissolve the organic Hf compound, and it has vaporization stability, film formation speed, and step coverage. It is suitable because of its excellent resistance.

また、本発明のMOCVD法用原料液に使用される有機Hf化合物は次の式(3)又は式(4)で表される。   Moreover, the organic Hf compound used for the raw material liquid for MOCVD method of this invention is represented by following Formula (3) or Formula (4).

Figure 2006100811
但し、R4及びR5は炭素数1〜2のアルキル基であり、R4とR5は互いに同一でも異なっていてもよい。
Figure 2006100811
However, R 4 and R 5 is an alkyl group having 1 to 2 carbon atoms, R 4 and R 5 may be the same or different from each other.

Figure 2006100811
但し、R6は炭素数1〜4の直鎖又は分岐状アルキル基である。
Figure 2006100811
However, R < 6 > is a C1-C4 linear or branched alkyl group.

上記式(3)で表される化合物の代表例としては、Hf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4が挙げられる。上記式(4)で表される化合物の代表例としては、Hf(t-C49O)4が挙げられる。なお、上記代表例で示した化合物以外であっても上記式(3)又は上記式(4)を満たす有機Hf化合物であれば本発明の原料液とすることができることは言うまでもない。
上記式(3)又は式(4)で表される有機Hf化合物は有機Si化合物に溶解し易く、気化安定性、成膜速度及び段差被覆性に優れるため好適である。
Representative examples of the compound represented by the above formula (3) include Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 . A typical example of the compound represented by the above formula (4) is Hf (t-C 4 H 9 O) 4 . In addition, it cannot be overemphasized that it can be set as the raw material liquid of this invention even if it is an organic Hf compound which satisfy | fills the said Formula (3) or the said Formula (4) even if it is except the compound shown by the said representative example.
The organic Hf compound represented by the above formula (3) or formula (4) is suitable because it is easily dissolved in the organic Si compound and is excellent in vaporization stability, film forming speed and step coverage.

なお、本発明のMOCVD法用原料液で使用される有機Hf化合物と有機Si化合物にそれぞれ配位している配位子は、同一構造の配位子からなる組合せでもよいが、異なる構造の配位子からなる組合せ、例えば、有機Si化合物としてSi原子にジメチルアミノ基が配位したSiH[(CH3)2N]3と有機Hf化合物としてHf原子にジエチルアミノ基が配位したHf[(C25)2N]4を使用した1液MOCVD法用原料液を用いることで、中間体として形成されるHf−Si混合金属多核分子に立体障害を生じ、この立体障害からHf元素とSi元素の四面***置が対称性が崩れてより分解し易くなるため、初期成膜核の形成が促進される。 The ligands coordinated to the organic Hf compound and the organic Si compound used in the MOCVD method raw material liquid of the present invention may be a combination of ligands having the same structure, but may have different structures. Combinations of ligands, for example, SiH [(CH 3 ) 2 N] 3 in which a dimethylamino group is coordinated to an Si atom as an organic Si compound and Hf [(C in which a diethylamino group is coordinated to an Hf atom as an organic Hf compound By using a raw material solution for one-liquid MOCVD method using 2 H 5 ) 2 N] 4 , steric hindrance occurs in the Hf—Si mixed metal polynuclear molecule formed as an intermediate, and from this steric hindrance, Hf element and Si Since the tetrahedral positions of the elements are broken in symmetry and are more easily decomposed, the formation of initial film formation nuclei is promoted.

次に本発明のHf−Si含有複合酸化物膜の製造方法を説明する。
本発明のHf−Si含有複合酸化物膜の製造方法は、前述した本発明のMOCVD法用原料液を用いてHf−Si含有複合酸化物膜を作製することを特徴とする。前述した本発明の1液としたMOCVD法用原料液を用いることで、従来の2液からなるMOCVD法用原料液をそれぞれ供給して膜を作製した場合に比べて、高い成膜速度で膜を作製することができる。その理由としては、MOCVD装置の成膜室に供給された原料液のうち、先ず中間体が熱分解して成膜に寄与する初期成膜核を形成し、この初期成膜核が基板表面に修飾する。続いて有機Si化合物、有機Hf化合物及びこれらの中間体の蒸気が熱分解して酸化剤と反応することによりHfSiOが生成する。生成したHfSiOが加熱された基板上に近づくと、基板表面に修飾した初期成膜核を中心としてHfSiOが堆積し始めるため、従来の2液からなるMOCVD法用原料液を使用した場合に比べて、高い成膜速度で膜を作製することができると考えられる。また初期成膜核を中心としてHfSiOが堆積するため、得られたHf−Si含有複合酸化物膜は緻密に形成され、かつ基材と高い密着性を有する。
Next, the manufacturing method of the Hf-Si containing complex oxide film of this invention is demonstrated.
The method for producing an Hf—Si-containing composite oxide film of the present invention is characterized in that an Hf—Si-containing composite oxide film is produced using the above-described raw material liquid for MOCVD method of the present invention. By using the MOCVD method raw material liquid as one liquid of the present invention described above, the film can be formed at a higher film forming speed than when the conventional MOCVD method raw material liquid consisting of two liquids is supplied to produce a film. Can be produced. The reason for this is that in the raw material liquid supplied to the film formation chamber of the MOCVD apparatus, the intermediate is first pyrolyzed to form initial film formation nuclei that contribute to film formation, and these initial film formation nuclei are formed on the substrate surface. Qualify. Subsequently, the organic Si compound, the organic Hf compound, and the vapors of these intermediates are thermally decomposed to react with an oxidant to produce HfSiO. As the generated HfSiO approaches the heated substrate, HfSiO begins to deposit around the modified initial film formation nuclei on the substrate surface, so compared with the case where a conventional liquid material for MOCVD consisting of two liquids is used. It is considered that a film can be produced at a high film formation rate. Further, since HfSiO is deposited around the initial film formation nucleus, the obtained Hf—Si-containing composite oxide film is densely formed and has high adhesion to the substrate.

本発明のHf−Si含有複合酸化物膜の製造方法をHf-Si-O膜を形成する方法を例にとって説明する。
図1に示すように、MOCVD装置は、成膜室10と蒸気発生装置11を備える。成膜室10の内部にはヒータ12が設けられ、ヒータ12上には基板13が保持される。この成膜室10の内部は圧力センサー14、コールドトラップ15及びニードルバルブ16を備える配管17により真空引きされる。成膜室10にはニードルバルブ36、ガス流量調節装置34を介して酸化剤供給管37が接続される。蒸気発生装置11は原料容器18を備え、この原料容器18は本発明のMOCVD法用原料液を貯蔵して密閉される。原料容器18にはガス流量調節装置19を介してキャリアガス供給管21が接続され、また原料容器18には供給管22が接続される。供給管22にはニードルバルブ23及び溶液流量調節装置24が設けられ、供給管22は気化器26に接続される。気化器26にはニードルバルブ31、ガス流量調節装置28を介してキャリアガス供給管29が接続される。気化器26は更に配管27により成膜室10に接続される。また気化器26には、ガスドレイン32及びドレイン33がそれぞれ接続される。
この装置では、N2、He、Ar等の不活性ガスからなるキャリアガスがキャリアガス供給管21から原料容器18内に供給され、原料容器18に供給されたキャリアガス圧により原料容器18に貯蔵されているMOCVD法用原料液を供給管22を介して気化器26に搬送する。気化器26で気化されて蒸気となった有機Si化合物、有機Hf化合物及びこれらの中間体は、更にキャリアガス供給管28から気化器26へ供給されたキャリアガスにより配管27を経て成膜室10内に供給される。供給された有機Si化合物、有機Hf化合物及びこれらの中間体の蒸気が熱分解して、酸化剤供給管37から成膜室10内に供給された酸化剤と反応することにより、HfSiOが生成し、これらが基材表面に積層することにより、Hf-Si-O膜が形成される。酸化剤としては、O2、H22、N2Oが挙げられる。
また、図2に示すように、ニードルバルブ39、ガス流量調節装置38を介して窒素源供給管41を成膜室10に接続し、窒素源を成膜室10内に直接供給するような構成とすることでHfSiON薄膜を作製することができる。窒素源としては、N2、NH3が挙げられる。
The method for producing an Hf—Si-containing composite oxide film according to the present invention will be described with reference to a method for forming an Hf—Si—O film.
As shown in FIG. 1, the MOCVD apparatus includes a film formation chamber 10 and a vapor generator 11. A heater 12 is provided inside the film forming chamber 10, and a substrate 13 is held on the heater 12. The inside of the film forming chamber 10 is evacuated by a pipe 17 including a pressure sensor 14, a cold trap 15 and a needle valve 16. An oxidant supply pipe 37 is connected to the film forming chamber 10 via a needle valve 36 and a gas flow rate adjusting device 34. The steam generator 11 includes a raw material container 18, which is sealed by storing the raw material liquid for MOCVD method of the present invention. A carrier gas supply pipe 21 is connected to the raw material container 18 through a gas flow rate control device 19, and a supply pipe 22 is connected to the raw material container 18. The supply pipe 22 is provided with a needle valve 23 and a solution flow rate adjusting device 24, and the supply pipe 22 is connected to a vaporizer 26. A carrier gas supply pipe 29 is connected to the vaporizer 26 via a needle valve 31 and a gas flow rate adjusting device 28. The vaporizer 26 is further connected to the film forming chamber 10 by a pipe 27. A gas drain 32 and a drain 33 are connected to the vaporizer 26, respectively.
In this apparatus, a carrier gas made of an inert gas such as N 2 , He, or Ar is supplied from the carrier gas supply pipe 21 into the raw material container 18 and stored in the raw material container 18 by the carrier gas pressure supplied to the raw material container 18. The raw material solution for MOCVD method is conveyed to the vaporizer 26 through the supply pipe 22. The organic Si compound, the organic Hf compound, and their intermediates, which are vaporized by the vaporizer 26 and their intermediates, are further passed through the pipe 27 by the carrier gas supplied from the carrier gas supply pipe 28 to the vaporizer 26, and the film forming chamber 10. Supplied in. The supplied organic Si compound, organic Hf compound, and vapors of these intermediates are thermally decomposed to react with the oxidizing agent supplied from the oxidizing agent supply pipe 37 into the film forming chamber 10, thereby generating HfSiO. These are laminated on the surface of the base material to form an Hf—Si—O film. Examples of the oxidizing agent include O 2 , H 2 O 2 , and N 2 O.
In addition, as shown in FIG. 2, a configuration in which a nitrogen source supply pipe 41 is connected to the film forming chamber 10 via a needle valve 39 and a gas flow rate control device 38 and a nitrogen source is directly supplied into the film forming chamber 10. Thus, an HfSiON thin film can be produced. Examples of the nitrogen source include N 2 and NH 3 .

また、本発明のHf−Si含有複合酸化物膜の別の製造方法を説明する。
基材、例えばシリコン基板を空気中に放置した状態を維持すると、空気中に含まれる酸素が基板表面のSiと反応して基板表面に自然酸化膜(SiO2)を形成する。この自然酸化膜を表面に有している状態でHf−Si含有複合酸化物膜を形成すると、形成したHf−Si含有複合酸化物膜の密着性に劣る問題がある。
そこで本発明のHf−Si含有複合酸化物膜の別の製造方法では、先ず有機Si化合物を還元ガスとともに熱分解して基材表面にSi膜を成長させる。具体的には、Si基板表面に形成されたSiO2表面にSi膜を成長させる。基材表面に成長させたSi膜の表層はSi−Hの構造になっていると考えられ、このSi−H構造が後に続く工程においてHf−Si含有複合酸化物膜を形成した際の密着性向上に寄与すると推定される。その具体的な理由としては、基材表面に成長させたSi−Hが原料液中の中間体が熱分解した初期成膜核と反応して、基材表面に初期成膜核がより容易に修飾し、続いて生成したHfSiOが加熱された基板上に近づくと、基板表面に修飾しているSi−Hと初期成膜核を中心としてHfSiOが堆積し始めるため、より密着性が高いHfSiO膜が得られると考えられる。Si膜を成長させるために使用する有機Si化合物は、前述した本発明のMOCVD法用原料液に使用される有機Si化合物と同一組成でもよいし、又は異なる組成を有していてもよい。また還元ガスとしては、H2ガスが好ましい。成長させるSi膜の膜厚は0.1〜10nm程度、好ましくは2nmであれば十分その効果が発現できる。
Further, another method for producing the Hf—Si-containing composite oxide film of the present invention will be described.
When a base material, for example, a silicon substrate is left in the air, oxygen contained in the air reacts with Si on the substrate surface to form a natural oxide film (SiO 2 ) on the substrate surface. When the Hf—Si-containing composite oxide film is formed with the natural oxide film on the surface, there is a problem that the adhesion of the formed Hf—Si-containing composite oxide film is inferior.
Therefore, in another method for producing the Hf—Si-containing composite oxide film of the present invention, first, an organic Si compound is pyrolyzed together with a reducing gas to grow a Si film on the surface of the substrate. Specifically, a Si film is grown on the surface of SiO 2 formed on the surface of the Si substrate. The surface layer of the Si film grown on the substrate surface is considered to have a Si—H structure, and the adhesion when the Hf—Si-containing composite oxide film is formed in the subsequent process of this Si—H structure. It is estimated that it contributes to improvement. The specific reason for this is that Si-H grown on the substrate surface reacts with the initial film formation nuclei in which the intermediate in the raw material liquid is thermally decomposed, and the initial film formation nuclei are more easily formed on the substrate surface. When the HfSiO generated after the modification approaches the heated substrate, HfSiO begins to deposit around the Si—H modified and the initial film formation nuclei on the substrate surface. Can be obtained. The organic Si compound used for growing the Si film may have the same composition as the organic Si compound used in the above-described raw material liquid for MOCVD method of the present invention, or may have a different composition. The reducing gas is preferably H 2 gas. If the thickness of the Si film to be grown is about 0.1 to 10 nm, preferably 2 nm, the effect can be sufficiently exhibited.

続いて前述した本発明のMOCVD法用原料液を酸化剤とともに供給して熱分解させ、成長させたSi膜表面にHfSiO膜を形成する。酸化剤には、O2、H22、N2Oなどを使用する。このように、基材表面にSi膜を成長させた後に、このSi膜表面にHfSiO膜を形成することでSi基板とHfSiO膜との界面層を安定に形成することができる。
また、前述した本発明のMOCVD法用原料液を酸化剤及び窒素源とともに供給して熱分解させることで、HfSiON薄膜を作製することができる。窒素源には、N2、NH3を使用する。
Subsequently, the above-described raw material liquid for MOCVD method of the present invention is supplied together with an oxidizing agent and thermally decomposed to form an HfSiO film on the surface of the grown Si film. As the oxidizing agent, O 2 , H 2 O 2 , N 2 O or the like is used. As described above, after the Si film is grown on the surface of the base material, the interface layer between the Si substrate and the HfSiO film can be stably formed by forming the HfSiO film on the surface of the Si film.
Moreover, the HfSiON thin film can be produced by supplying the above-described raw material liquid for MOCVD method of the present invention together with an oxidizing agent and a nitrogen source and causing thermal decomposition. N 2 and NH 3 are used as the nitrogen source.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、有機Hf化合物としてHf[(C25)2N]4を、有機Si化合物としてSi[(C25)2N]4をそれぞれ用意した。次に、有機Hf化合物と有機Si化合物とを混合割合が重量比(有機Hf化合物/有機Si化合物)で0.001重量%となるように室温で混合して有機Hf化合物を有機Si化合物中に溶解させた。続いてこの溶解液を60℃で2時間加熱して1液のMOCVD法用原料液を調製した。また、有機Hf化合物と有機Si化合物との混合割合を重量比(有機Hf化合物/有機Si化合物)で0.01重量%、0.1重量%、0.2重量%及び0.5重量%にそれぞれ変更して、混合割合の異なる合計5種類のMOCVD法用原料液を調製した。
続いて、調製した5種類のMOCVD法用原料液を用いてHf-Si-O薄膜をそれぞれ成膜した。具体的には、先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を5枚ずつ用意し、基板を図1に示すMOCVD装置の成膜室に設置した。次いで、基板温度を600℃、気化温度を70℃、圧力を約266Pa(2torr)にそれぞれ設定した。反応ガスとしてO2ガスを用い、その分圧を1000ccmとした。次に、キャリアガスとしてArガスを用い、MOCVD法用原料液を0.1g/分の割合でそれぞれ供給し、成膜時間が1分、2分、3分、4分及び5分となったときにそれぞれ1枚ずつ成膜室より取出した。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, Hf [(C 2 H 5 ) 2 N] 4 was prepared as an organic Hf compound, and Si [(C 2 H 5 ) 2 N] 4 was prepared as an organic Si compound. Next, the organic Hf compound and the organic Si compound are mixed at room temperature so that the mixing ratio is 0.001% by weight (organic Hf compound / organic Si compound), and the organic Hf compound is mixed into the organic Si compound. Dissolved. Subsequently, this solution was heated at 60 ° C. for 2 hours to prepare a one-component liquid material for MOCVD. Further, the mixing ratio of the organic Hf compound and the organic Si compound is 0.01%, 0.1%, 0.2% and 0.5% by weight (organic Hf compound / organic Si compound). A total of five types of MOCVD raw material solutions having different mixing ratios were prepared.
Subsequently, Hf—Si—O thin films were formed using the prepared five kinds of MOCVD raw material liquids. Specifically, first, five silicon substrates each having a SiO 2 film (thickness: 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in the deposition chamber of the MOCVD apparatus shown in FIG. Next, the substrate temperature was set to 600 ° C., the vaporization temperature was set to 70 ° C., and the pressure was set to about 266 Pa (2 torr). O 2 gas was used as the reaction gas, and its partial pressure was 1000 ccm. Next, Ar gas was used as the carrier gas, and the raw material liquid for MOCVD was supplied at a rate of 0.1 g / min, respectively, and the film formation time became 1, 2, 3, 4, and 5 minutes. Occasionally, one sheet was taken out from the film forming chamber.

<実施例2>
有機Si化合物をSiH[(CH3)2N]3に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例3>
有機Si化合物をSi[(CH3)2N]4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例4>
有機Hf化合物をHf[(CH3)2N]4に、有機Si化合物をSi[(CH3)2N]4にそれぞれ代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例5>
有機Hf化合物をHf[(CH3)2N]4に、有機Si化合物をSiH[(CH3)2N]3にそれぞれ代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例6>
有機Hf化合物をHf(t-C49O)4に、有機Si化合物をSiH[(CH3)2N]3にそれぞれ代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例7>
有機Hf化合物をHf[(CH3)2N]4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例8>
有機Hf化合物をHf(t-C49O)4に、有機Si化合物をSi[(CH3)2N]4にそれぞれ代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<Example 2>
Except that the organic Si compound was replaced with SiH [(CH 3 ) 2 N] 3 , five types of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1, and the same as in Example 1. An Hf—Si—O thin film was formed on the substrate.
<Example 3>
Except that the organic Si compound was replaced with Si [(CH 3 ) 2 N] 4 , five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1, and the same as in Example 1. An Hf—Si—O thin film was formed on the substrate.
<Example 4>
Except that the organic Hf compound was replaced with Hf [(CH 3 ) 2 N] 4 and the organic Si compound was replaced with Si [(CH 3 ) 2 N] 4 , five types having different mixing ratios were obtained in the same manner as in Example 1. A raw material solution for MOCVD was prepared, and an Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1.
<Example 5>
Except that the organic Hf compound was replaced with Hf [(CH 3 ) 2 N] 4 and the organic Si compound was replaced with SiH [(CH 3 ) 2 N] 3 , five types having different mixing ratios were obtained in the same manner as in Example 1. A raw material solution for MOCVD was prepared, and an Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1.
<Example 6>
Five types with different mixing ratios as in Example 1 except that the organic Hf compound was replaced with Hf (t-C 4 H 9 O) 4 and the organic Si compound was replaced with SiH [(CH 3 ) 2 N] 3. A raw material solution for MOCVD was prepared, and an Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1.
<Example 7>
Except that the organic Hf compound was replaced with Hf [(CH 3 ) 2 N] 4 , five types of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1, and the same as in Example 1. An Hf—Si—O thin film was formed on the substrate.
<Example 8>
Five types with different mixing ratios as in Example 1 except that the organic Hf compound was replaced with Hf (t-C 4 H 9 O) 4 and the organic Si compound was replaced with Si [(CH 3 ) 2 N] 4. A raw material solution for MOCVD was prepared, and an Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1.

<比較例1>
有機Hf化合物と有機Si化合物との混合割合を重量比(有機Hf化合物/有機Si化合物)で0.0005重量%及び0.6重量%にそれぞれ変更した以外は実施例1と同様にして、混合割合の異なる合計2種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<Comparative Example 1>
Mixing in the same manner as in Example 1 except that the mixing ratio of the organic Hf compound and the organic Si compound was changed to 0.0005 wt% and 0.6 wt% respectively by weight ratio (organic Hf compound / organic Si compound). A total of two types of raw material liquids for MOCVD methods having different ratios were prepared, and an Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1.

<比較例2>
先ず、有機Hf化合物としてHf[(C25)2N]4を、有機Si化合物としてSi[(C25)2N]4をそれぞれ用意し、これらの有機Si化合物と有機Hf化合物をそれぞれMOCVD法用原料液とした。即ち、用意した有機Si化合物と有機Hf化合物をそれぞれ独立した2液からなるMOCVD法用原料液とした。
続いて、調製したMOCVD法用原料液を用いてHf-Si-O薄膜を成膜した。具体的には、先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を5枚ずつ用意し、基板を図3に示すMOCVD装置の成膜室に設置した。また有機Si化合物原料液を原料容器18に、有機Hf化合物原料液を原料容器42にそれぞれ貯蔵密閉した。図3中の原料容器42にはガス流量調節装置43を介してキャリアガス供給管44が接続され、また原料容器42には供給管46が接続されている。供給管46にはニードルバルブ47及び溶液流量調節装置48が設けられ、供給管46は気化器26に接続されている。次いで、基板温度を600℃、気化温度を70℃、圧力を約266Pa(2torr)にそれぞれ設定した。反応ガスとしてO2ガスを用い、その分圧を1000ccmとした。次に、キャリアガスとしてArガスを用い、有機Si化合物原料液及び有機Hf化合物原料液をそれぞれ独立して供給し、成膜時間が1分、2分、3分、4分及び5分となったときにそれぞれ1枚ずつ成膜室より取出した。なお、成膜時における有機Si化合物原料液及び有機Hf化合物原料液の供給割合を変化させることにより、実施例1〜8における混合割合の異なる5種類のMOCVD法用原料液を用いて成膜したHf-Si-O薄膜と同様の組成となるHf-Si-O薄膜を成膜した。
<Comparative example 2>
First, Hf [(C 2 H 5 ) 2 N] 4 is prepared as an organic Hf compound, and Si [(C 2 H 5 ) 2 N] 4 is prepared as an organic Si compound. These organic Si compound and organic Hf compound are prepared, respectively. Were used as MOCVD raw material solutions. That is, the prepared organic Si compound and organic Hf compound were used as MOCVD raw material liquids composed of two independent liquids.
Subsequently, an Hf—Si—O thin film was formed using the prepared raw material liquid for MOCVD. Specifically, first, five silicon substrates each having a SiO 2 film (thickness: 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in the film formation chamber of the MOCVD apparatus shown in FIG. The organic Si compound raw material liquid was stored and sealed in the raw material container 18 and the organic Hf compound raw material liquid was stored in the raw material container 42, respectively. A carrier gas supply pipe 44 is connected to the raw material container 42 in FIG. 3 via a gas flow rate adjusting device 43, and a supply pipe 46 is connected to the raw material container 42. The supply pipe 46 is provided with a needle valve 47 and a solution flow rate adjusting device 48, and the supply pipe 46 is connected to the vaporizer 26. Next, the substrate temperature was set to 600 ° C., the vaporization temperature was set to 70 ° C., and the pressure was set to about 266 Pa (2 torr). O 2 gas was used as the reaction gas, and its partial pressure was 1000 ccm. Next, Ar gas is used as the carrier gas, and the organic Si compound raw material liquid and the organic Hf compound raw material liquid are supplied independently, and the film formation time is 1, 2, 3, 4, and 5 minutes. Each was taken out from the film formation chamber. In addition, it formed into a film using five types of raw material liquids for MOCVD methods from which the mixing ratio in Examples 1-8 differs by changing the supply ratio of the organic Si compound raw material liquid and organic Hf compound raw material liquid at the time of film-forming. An Hf—Si—O thin film having the same composition as the Hf—Si—O thin film was formed.

<比較試験1>
実施例1〜8及び比較例1,2でそれぞれ得られたHf-Si-O薄膜について、得られたHf-Si-O薄膜の成膜時間あたりの膜厚試験及び密着性を調べるピール試験を行った。
(1)膜厚試験
成膜を終えた基板上のHf-Si-O薄膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
(2)ピール試験
成膜を終えた基板の平坦部分に成膜された各薄膜について次のようなピール試験を行った。先ず、成膜を終えた各薄膜をカッターナイフを用いて所定の大きさに切断して100の切断マス目を作成した。次にマス目を作成した薄膜の上に粘着性セロハンテープを密着させた。続いてこのセロハンテープを薄膜から剥がし、100のマス目に切断された薄膜のうち、セロハンテープにより剥離した数と、基板上に残留した数とをそれぞれ調べた。
<評価>
得られた成膜時間あたりの膜厚及びピール試験の結果を表1及び表2にそれぞれ示す。なお、ピール試験は、切断マス目100枚当たりの基板残留数を示す。
<Comparison test 1>
About the Hf-Si-O thin film obtained in each of Examples 1 to 8 and Comparative Examples 1 and 2, a film thickness test per film formation time of the obtained Hf-Si-O thin film and a peel test for examining adhesion went.
(1) Film thickness test The film thickness of the Hf-Si-O thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.
(2) Peel test The following peel test was performed on each thin film formed on the flat portion of the substrate after film formation. First, each thin film after film formation was cut into a predetermined size using a cutter knife to create 100 cut squares. Next, an adhesive cellophane tape was adhered to the thin film on which the squares were formed. Subsequently, this cellophane tape was peeled off from the thin film, and among the thin films cut into 100 cells, the number peeled by the cellophane tape and the number remaining on the substrate were examined.
<Evaluation>
The obtained film thickness per film formation time and the result of the peel test are shown in Table 1 and Table 2, respectively. The peel test indicates the number of remaining substrates per 100 cut grids.

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

表1及び表2より明らかなように、比較例1の本発明の混合割合の範囲外とした原料液を用いて成膜した膜は、密着性、成膜速度に劣る結果となった。また比較例2の2液の原料液を用いて成膜した膜は、時間が進んでもあまり膜厚が厚くならず、成膜の安定性が悪いことが判る。これに対して実施例1〜8の1液とした原料液を用いて成膜した膜は、比較例1,2に比べて非常に成膜速度が高く、成膜安定性が高い結果が得られた。また、ピール試験において比較例1の本発明の混合割合の範囲外とした原料液を用いて成膜した膜や比較例2の2液による原料液を用いて成膜した膜ではほぼ半数のマス目が剥離しているのに対し、実施例1〜8の1液による原料液を用いて成膜した膜では殆どのマス目が基板に残留しており密着性が高い結果となった。   As is clear from Tables 1 and 2, the film formed using the raw material liquid outside the range of the mixing ratio of the present invention of Comparative Example 1 resulted in inferior adhesion and film forming speed. In addition, it can be seen that the film formed using the two raw material liquids of Comparative Example 2 does not become so thick as time progresses and the stability of the film formation is poor. On the other hand, the film formed using the raw material liquid as one liquid of Examples 1 to 8 has a higher film forming speed and higher film forming stability than Comparative Examples 1 and 2. It was. In the peel test, the film formed using the raw material liquid outside the range of the mixing ratio of the present invention of Comparative Example 1 and the film formed using the raw material liquid of the two liquids of Comparative Example 2 have almost half the mass. While the eyes were peeled off, most of the grids remained on the substrate in the film formed using the raw material liquid of one liquid of Examples 1 to 8, resulting in high adhesion.

<実施例9>
実施例1で使用された混合割合の異なる5種類のMOCVD法用原料液を用意し、このMOCVD法用原料液を用いてHf-Si-O薄膜を成膜した。具体的には、先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を5枚ずつ用意し、基板を図1に示すMOCVD装置の成膜室に設置した。次いで、基板温度を600℃、気化温度を70℃、圧力を約266Pa(2torr)にそれぞれ設定した。還元ガスとしてH2ガスを用い、その分圧を1ccmとした。次に、キャリアガスとしてArガスを用い、有機Si化合物としてSi[(C25)2N]4を0.1g/分の割合でそれぞれ供給し、Si[(C25)2N]4を熱分解して基板表面にSi膜を成長させた。成膜時間が2分となったときに有機Si化合物及び還元ガスの供給を停止した。次に、反応ガスとしてO2ガスを用い、その分圧を1000ccmとした。次に、キャリアガスとしてArガスを用い、MOCVD法用原料液を0.1g/分の割合でそれぞれ供給し、成長させたSi膜表面にHf-Si-O薄膜を作製した。成膜時間が1分、2分、3分、4分及び5分となったときにそれぞれ1枚ずつ成膜室より取出した。
<Example 9>
Five types of MOCVD method raw material liquids having different mixing ratios used in Example 1 were prepared, and an Hf—Si—O thin film was formed using the MOCVD method raw material solutions. Specifically, first, five silicon substrates each having a SiO 2 film (thickness: 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in the deposition chamber of the MOCVD apparatus shown in FIG. Next, the substrate temperature was set to 600 ° C., the vaporization temperature was set to 70 ° C., and the pressure was set to about 266 Pa (2 torr). H 2 gas was used as the reducing gas, and its partial pressure was 1 ccm. Next, Ar gas is used as a carrier gas, Si [(C 2 H 5 ) 2 N] 4 is supplied as an organic Si compound at a rate of 0.1 g / min, and Si [(C 2 H 5 ) 2 N 4 was pyrolyzed to grow a Si film on the substrate surface. When the film formation time was 2 minutes, the supply of the organic Si compound and the reducing gas was stopped. Next, O 2 gas was used as a reaction gas, and its partial pressure was set to 1000 ccm. Next, Ar gas was used as a carrier gas, and a MOCVD raw material solution was supplied at a rate of 0.1 g / min, and an Hf—Si—O thin film was formed on the surface of the grown Si film. When the film formation time was 1 minute, 2 minutes, 3 minutes, 4 minutes and 5 minutes, one sheet was taken out from the film formation chamber.

<比較例3>
有機Hf化合物と有機Si化合物との混合割合を重量比(有機Hf化合物/有機Si化合物)で0.0005重量%及び0.6重量%にそれぞれ変更した以外は実施例9と同様にして、混合割合の異なる合計2種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にHf-Si-O薄膜を成膜した。
<Comparative Example 3>
Mixing in the same manner as in Example 9 except that the mixing ratio of the organic Hf compound and the organic Si compound was changed to 0.0005 wt% and 0.6 wt% respectively by weight ratio (organic Hf compound / organic Si compound). A total of two types of raw material liquids for MOCVD method having different ratios were prepared, and an Hf—Si—O thin film was formed on the substrate in the same manner as in Example 9.

<比較例4>
比較例2で使用された有機Si化合物と有機Hf化合物がそれぞれ独立した2液からなるMOCVD法用原料液を用意した。
続いて、このMOCVD法用原料液を用いてHf-Si-O薄膜を成膜した。具体的には、先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を5枚ずつ用意し、基板を図3に示すMOCVD装置の成膜室に設置した。また有機Si化合物原料液を原料容器18に、有機Hf化合物原料液を原料容器42にそれぞれ貯蔵密閉した。次いで、基板温度を600℃、気化温度を70℃、圧力を約266Pa(2torr)にそれぞれ設定した。還元ガスとしてH2ガスを用い、その分圧を1ccmとした。次に、キャリアガスとしてArガスを用い、有機Si化合物としてSi[(C25)2N]4を0.1g/分の割合でそれぞれ供給し、Si[(C25)2N]4を熱分解して基板表面にSi膜を成長させた。成膜時間が2分となったときに有機Si化合物及び還元ガスの供給を停止した。次に、反応ガスとしてO2ガスを用い、その分圧を1000ccmとした。次に、キャリアガスとしてArガスを用い、有機Si化合物原料液及び有機Hf化合物原料液をそれぞれ独立して供給し、成長させたSi膜表面にHf-Si-O薄膜を作製した。成膜時間が1分、2分、3分、4分及び5分となったときにそれぞれ1枚ずつ成膜室より取出した。なお、成膜時における有機Si化合物原料液及び有機Hf化合物原料液の供給割合を変化させることにより、実施例9における混合割合の異なる5種類のMOCVD法用原料液を用いて成膜したHf-Si-O薄膜と同様の組成となるHf-Si-O薄膜を成膜した。
<Comparative example 4>
The raw material liquid for MOCVD method which the organic Si compound and the organic Hf compound which were used in Comparative Example 2 consist of two independent liquids was prepared.
Subsequently, an Hf—Si—O thin film was formed using this raw material liquid for MOCVD. Specifically, first, five silicon substrates each having a SiO 2 film (thickness: 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in the film formation chamber of the MOCVD apparatus shown in FIG. The organic Si compound raw material liquid was stored and sealed in the raw material container 18 and the organic Hf compound raw material liquid was stored in the raw material container 42, respectively. Next, the substrate temperature was set to 600 ° C., the vaporization temperature was set to 70 ° C., and the pressure was set to about 266 Pa (2 torr). H 2 gas was used as the reducing gas, and its partial pressure was 1 ccm. Next, Ar gas is used as a carrier gas, Si [(C 2 H 5 ) 2 N] 4 is supplied as an organic Si compound at a rate of 0.1 g / min, and Si [(C 2 H 5 ) 2 N 4 was pyrolyzed to grow a Si film on the substrate surface. When the film formation time was 2 minutes, the supply of the organic Si compound and the reducing gas was stopped. Next, O 2 gas was used as a reaction gas, and its partial pressure was set to 1000 ccm. Next, Ar gas was used as a carrier gas, and an organic Si compound raw material liquid and an organic Hf compound raw material liquid were supplied independently, and an Hf—Si—O thin film was formed on the surface of the grown Si film. When the film formation time was 1 minute, 2 minutes, 3 minutes, 4 minutes and 5 minutes, one sheet was taken out from the film formation chamber. It should be noted that by changing the supply ratio of the organic Si compound raw material liquid and the organic Hf compound raw material liquid at the time of film formation, the Hf − film was formed using the five types of MOCVD raw material liquids having different mixing ratios in Example 9. An Hf—Si—O thin film having the same composition as the Si—O thin film was formed.

<比較試験2>
実施例9及び比較例3,4でそれぞれ得られたHf-Si-O薄膜について、得られたHf-Si-O薄膜の成膜時間あたりの膜厚試験及び密着性を調べるピール試験を上記比較試験1と同様にして行った。
<評価>
得られた成膜時間あたりの膜厚及びピール試験の結果を表3にそれぞれ示す。なお、ピール試験は、切断マス目100枚当たりの基板残留数を示す。
<Comparison test 2>
For the Hf—Si—O thin films obtained in Example 9 and Comparative Examples 3 and 4, respectively, the film thickness test per film formation time of the obtained Hf—Si—O thin film and the peel test for examining the adhesion were compared with each other. It carried out like the test 1.
<Evaluation>
Table 3 shows the obtained film thickness per film formation time and the result of the peel test. The peel test indicates the number of remaining substrates per 100 cut grids.

Figure 2006100811
Figure 2006100811

表3より明らかなように、比較例3の本発明の混合割合の範囲外とした原料液を用いて成膜した膜は、密着性、成膜速度に劣る結果となった。また比較例4の2液の原料液を用いて成膜した膜は、時間が進んでもあまり膜厚が厚くならず、成膜の安定性が悪いことが判る。また、密着性を示すピール試験では、低い数値しか得られず、密着性が若干劣る結果となった。これに対して実施例9の1液とした原料液を用いて成膜した膜は、比較例3、4に比べて非常に成膜速度が高く、成膜安定性が高い結果が得られ、更に密着性に優れた膜が得られた。   As is clear from Table 3, the film formed using the raw material liquid outside the range of the mixing ratio of the present invention of Comparative Example 3 resulted in poor adhesion and film forming speed. In addition, it can be seen that the film formed using the two raw material liquids of Comparative Example 4 does not become too thick even with time, and the film formation stability is poor. Moreover, in the peel test which shows adhesiveness, only a low numerical value was obtained, and the adhesiveness was slightly inferior. On the other hand, the film formed by using the raw material liquid as one liquid in Example 9 has a very high film forming speed as compared with Comparative Examples 3 and 4, and results in high film forming stability are obtained. Furthermore, a film having excellent adhesion was obtained.

<実施例10>
先ず、有機Hf化合物としてHf[(C25)2N]4を、有機Si化合物としてSi[(C25)O]4をそれぞれ用意した。次に、有機Hf化合物と有機Si化合物とを混合割合が重量比(有機Hf化合物/有機Si化合物)で0.001重量%となるように室温で混合して有機Hf化合物を有機Si化合物中に溶解させた。続いてこの溶解液を60℃で1時間加熱して1液のMOCVD法用原料液を調製した。また、有機Hf化合物と有機Si化合物との混合割合を重量比(有機Hf化合物/有機Si化合物)で0.01重量%、0.1重量%、0.2重量%及び0.5重量%にそれぞれ変更して、混合割合の異なる合計5種類のMOCVD法用原料液を調製した。
続いて、調製した5種類のMOCVD法用原料液を用いて実施例1と同様にして基板上にHf-Si-O薄膜をそれぞれ成膜した。
<Example 10>
First, Hf [(C 2 H 5 ) 2 N] 4 was prepared as an organic Hf compound, and Si [(C 2 H 5 ) O] 4 was prepared as an organic Si compound. Next, the organic Hf compound and the organic Si compound are mixed at room temperature so that the mixing ratio is 0.001% by weight (organic Hf compound / organic Si compound), and the organic Hf compound is mixed into the organic Si compound. Dissolved. Subsequently, this solution was heated at 60 ° C. for 1 hour to prepare a single liquid material for MOCVD. Further, the mixing ratio of the organic Hf compound and the organic Si compound is 0.01%, 0.1%, 0.2% and 0.5% by weight (organic Hf compound / organic Si compound). A total of five types of MOCVD raw material solutions having different mixing ratios were prepared.
Subsequently, Hf—Si—O thin films were formed on the substrate in the same manner as in Example 1 by using the prepared five raw material liquids for MOCVD.

<実施例11>
有機Hf化合物をHf[(CH3)2N]4に代えた以外は実施例10と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例12>
有機Hf化合物をHf[(CH3)(C25)N]4に代えた以外は実施例10と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例13>
有機Hf化合物をHf(t-C49O)4に代えた以外は実施例10と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<Example 11>
Except that the organic Hf compound was replaced with Hf [(CH 3 ) 2 N] 4 , five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 10, and the same as in Example 1. An Hf—Si—O thin film was formed on the substrate.
<Example 12>
Five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 10 except that the organic Hf compound was replaced with Hf [(CH 3 ) (C 2 H 5 ) N] 4. In the same manner as in Example 1, an Hf—Si—O thin film was formed on the substrate.
<Example 13>
Except that the organic Hf compound was replaced with Hf (t—C 4 H 9 O) 4 , five types of MOCVD raw material solutions having different mixing ratios were prepared in the same manner as in Example 10 and the same as in Example 1. An Hf—Si—O thin film was formed on the substrate.

<比較試験3>
実施例10〜13でそれぞれ得られたHf-Si-O薄膜について、得られたHf-Si-O薄膜の成膜時間あたりの膜厚試験及び密着性を調べるピール試験を上記比較試験1と同様にして行った。
<評価>
得られた成膜時間あたりの膜厚及びピール試験の結果を表4にそれぞれ示す。なお、ピール試験は、切断マス目100枚当たりの基板残留数を示す。
<Comparison test 3>
About the Hf-Si-O thin film obtained in each of Examples 10 to 13, the film thickness test per film formation time of the obtained Hf-Si-O thin film and the peel test for examining the adhesion were the same as in Comparative Test 1 above. I went there.
<Evaluation>
Table 4 shows the obtained film thickness per film formation time and the result of the peel test. The peel test indicates the number of remaining substrates per 100 cut grids.

Figure 2006100811
Figure 2006100811

表4より明らかなように、実施例10〜13の1液とした原料液を用いて成膜した膜は、非常に成膜速度が高く、成膜安定性が高い結果が得られ、更に密着性に優れた膜が得られた。   As is apparent from Table 4, the film formed using the raw material liquid of Examples 10 to 13 has a very high film forming speed and results in high film forming stability. A film having excellent properties was obtained.

<実施例14〜18>
有機Si化合物をSi[(CH3)2N]4に、有機Hf化合物をHf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例19〜23>
有機Si化合物をSi[(C25)2N]4に、有機Hf化合物をHf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例24〜30>
有機Si化合物をSi[(n-C37)2N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例31〜37>
有機Si化合物をSi[(n-C49)2N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<Examples 14 to 18>
The organic Si compound is Si [(CH 3 ) 2 N] 4 , and the organic Hf compound is Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 5 types of MOCVD process materials having different mixing ratios as in Example 1 except that O) 4 , Hf (n—C 3 H 7 O) 4 and Hf (n—C 4 H 9 O) 4 were used. Each solution was prepared, and an Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1.
<Examples 19 to 23>
The organic Si compound is Si [(C 2 H 5 ) 2 N] 4 , and the organic Hf compound is Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 5 types of MOCVD methods having different mixing ratios as in Example 1 except that H 5 O) 4 , Hf (n—C 3 H 7 O) 4 and Hf (n—C 4 H 9 O) 4 were used. Each raw material solution was prepared, and an Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1.
<Examples 24 to 30>
The organic Si compound is Si [(n-C 3 H 7 ) 2 N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [ (CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 5 kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1 except that H 9 O) 4 was used, and the Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1. Was deposited.
<Examples 31 to 37>
The organic Si compound is Si [(n-C 4 H 9 ) 2 N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [ (CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 5 kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1 except that H 9 O) 4 was used, and the Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1. Was deposited.

<実施例38〜44>
有機Si化合物をSi[(CH3)(C25)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例45〜51>
有機Si化合物をSi[(CH3)(n-C37)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例52〜58>
有機Si化合物をSi[(CH3)(n-C49)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例59〜65>
有機Si化合物をSi[(C25)(n-C37)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例66〜72>
有機Si化合物をSi[(C25)(n-C49)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<Examples 38 to 44>
The organic Si compound is Si [(CH 3 ) (C 2 H 5 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O) Four different MOCVD raw material solutions having different mixing ratios were prepared in the same manner as in Example 1 except that 4 H 9 O) 4 was used, and Hf—Si—O was formed on the substrate in the same manner as in Example 1. A thin film was formed.
<Examples 45-51>
The organic Si compound is Si [(CH 3 ) (n-C 3 H 7 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n -C 4 H 9 O) 4 except that the five MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1 except that Hf-Si was formed on the substrate in the same manner as in Example 1. A -O thin film was formed.
<Examples 52 to 58>
The organic Si compound is Si [(CH 3 ) (n—C 4 H 9 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4. , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n -C 4 H 9 O) 4 except that the five MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1 except that Hf-Si was formed on the substrate in the same manner as in Example 1. A -O thin film was formed.
<Examples 59 to 65>
The organic Si compound is Si [(C 2 H 5 ) (n-C 3 H 7 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N ] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf Except for replacing with (n-C 4 H 9 O) 4 , five types of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1, and Hf was formed on the substrate in the same manner as in Example 1. A -Si-O thin film was formed.
<Examples 66 to 72>
The organic Si compound is Si [(C 2 H 5 ) (n-C 4 H 9 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N ] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf Except for replacing with (n-C 4 H 9 O) 4 , five types of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1, and Hf was formed on the substrate in the same manner as in Example 1. A -Si-O thin film was formed.

<実施例73〜79>
有機Si化合物をSi(CH3O)4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例80〜83>
有機Si化合物をSi(C25O)4に、有機Hf化合物をHf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例84〜90>
有機Si化合物をSi(n-C37O)4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<実施例91〜97>
有機Si化合物をSi(n-C49O)4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例1と同様にして基板上にHf-Si-O薄膜を成膜した。
<Examples 73 to 79>
The organic Si compound is Si (CH 3 O) 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 Instead of H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O) 4 Except for the above, five types of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1, and an Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1.
<Examples 80 to 83>
The organic Si compound is Si (C 2 H 5 O) 4 , and the organic Hf compound is Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf Except for replacing with (n-C 4 H 9 O) 4 , five types of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1, and Hf was formed on the substrate in the same manner as in Example 1. A -Si-O thin film was formed.
<Examples 84 to 90>
The organic Si compound is Si (n—C 3 H 7 O) 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O ) 5 types of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1 except that 4 was replaced, and an Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1. did.
<Examples 91 to 97>
The organic Si compound is Si (n-C 4 H 9 O) 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O ) 5 types of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1 except that 4 was replaced, and an Hf—Si—O thin film was formed on the substrate in the same manner as in Example 1. did.

<比較試験4>
実施例14〜97でそれぞれ得られたHf-Si-O薄膜について、得られたHf-Si-O薄膜の成膜時間あたりの膜厚試験及び密着性を調べるピール試験を上記比較試験1と同様にして行った。
<評価>
得られた成膜時間あたりの膜厚及びピール試験の結果を表5〜表21にそれぞれ示す。なお、ピール試験は、切断マス目100枚当たりの基板残留数を示す。
<Comparison test 4>
For the Hf—Si—O thin film obtained in each of Examples 14 to 97, the film thickness test per film formation time of the obtained Hf—Si—O thin film and the peel test for examining adhesion were the same as in Comparative Test 1 above. I went there.
<Evaluation>
The obtained film thickness per film formation time and the result of the peel test are shown in Tables 5 to 21, respectively. The peel test indicates the number of remaining substrates per 100 cut grids.

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

表5〜表21より明らかなように、実施例14〜97の1液とした原料液を用いて成膜した膜は、前述した比較例1に比べて非常に成膜速度が高く、成膜安定性が高い結果が得られた。また、ピール試験結果において、実施例14〜97の原料液を用いて成膜した膜は殆どのマス目が基板に残留しており密着性が高い結果となった。   As is clear from Tables 5 to 21, the film formed using the raw material liquids of Examples 14 to 97 has a very high film formation speed as compared with Comparative Example 1 described above, and the film formation is performed. High stability results were obtained. In the peel test results, most of the squares of the films formed using the raw material liquids of Examples 14 to 97 remained on the substrate, resulting in high adhesion.

<実施例98〜104>
有機Si化合物をSi[(CH3)2N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<実施例105〜110>
有機Hf化合物をHf[(CH3)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<実施例111〜117>
有機Si化合物をSi[(n-C37)2N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<実施例118〜124>
有機Si化合物をSi[(n-C49)2N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<Examples 98 to 104>
The organic Si compound is Si [(CH 3 ) 2 N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5) n] 4, Hf (CH 3 O) 4, Hf (C 2 H 5 O) 4, Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O) Except for the change to 4 , five different MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1, and a Si film was grown on the substrate in the same manner as in Example 9. A Hf—Si—O thin film was prepared.
<Examples 105 to 110>
The organic Hf compounds are Hf [(CH 3 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf Five kinds of MOCVD raw material solutions having different mixing ratios were prepared in the same manner as in Example 1 except that (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O) 4 were used. In the same manner as in Example 9, a Si film was grown on the substrate, and a Hf—Si—O thin film was produced on the surface of the Si film.
<Examples 111 to 117>
The organic Si compound is Si [(n-C 3 H 7 ) 2 N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [ (CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 5 types of MOCVD process raw material liquids having different mixing ratios were prepared in the same manner as in Example 1 except that H 9 O) 4 was used, and a Si film was grown on the substrate in the same manner as in Example 9. An Hf—Si—O thin film was formed on the surface of the Si film.
<Examples 118 to 124>
The organic Si compound is Si [(n-C 4 H 9 ) 2 N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [ (CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 5 types of MOCVD process raw material liquids having different mixing ratios were prepared in the same manner as in Example 1 except that H 9 O) 4 was used, and a Si film was grown on the substrate in the same manner as in Example 9. An Hf—Si—O thin film was formed on the surface of the Si film.

<実施例125〜131>
有機Si化合物をSi[(CH3)(C25)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<実施例132〜138>
有機Si化合物をSi[(CH3)(n-C37)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<実施例139〜145>
有機Si化合物をSi[(CH3)(n-C49)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<実施例146〜152>
有機Si化合物をSi[(C25)(n-C37)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<実施例153〜159>
有機Si化合物をSi[(C25)(n-C49)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<Examples 125 to 131>
The organic Si compound is Si [(CH 3 ) (C 2 H 5 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O) Except for the use of 4 except that the five MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1, and a Si film was grown on the substrate in the same manner as in Example 9. Then, a Hf—Si—O thin film was formed on the surface of the Si film.
<Examples 132 to 138>
The organic Si compound is Si [(CH 3 ) (n-C 3 H 7 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n -C 4 H 9 O) 4 except that the five MOCVD raw material solutions having different mixing ratios were prepared in the same manner as in Example 1 except that the Si film was formed on the substrate in the same manner as in Example 9. An Hf—Si—O thin film was formed on the surface of the Si film.
<Examples 139 to 145>
The organic Si compound is Si [(CH 3 ) (n—C 4 H 9 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4. , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n -C 4 H 9 O) 4 except that the five MOCVD raw material solutions having different mixing ratios were prepared in the same manner as in Example 1 except that the Si film was formed on the substrate in the same manner as in Example 9. An Hf—Si—O thin film was formed on the surface of the Si film.
<Examples 146 to 152>
The organic Si compound is Si [(C 2 H 5 ) (n-C 3 H 7 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N ] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf Except for replacing with (n-C 4 H 9 O) 4 , five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1, and Si was formed on the substrate in the same manner as in Example 9. A film was grown, and an Hf—Si—O thin film was formed on the surface of the Si film.
<Examples 153 to 159>
The organic Si compound is Si [(C 2 H 5 ) (n-C 4 H 9 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N ] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf Except for replacing with (n-C 4 H 9 O) 4 , five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1, and Si was formed on the substrate in the same manner as in Example 9. A film was grown, and an Hf—Si—O thin film was formed on the surface of the Si film.

<実施例160〜166>
有機Si化合物をSi(CH3O)4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<実施例167〜173>
有機Si化合物をSi(C25O)4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<実施例174〜180>
有機Si化合物をSi(n-C37O)4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<実施例181〜187>
有機Si化合物をSi(n-C49O)4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例9と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O薄膜を作製した。
<Examples 160 to 166>
The organic Si compound is Si (CH 3 O) 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 Instead of H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O) 4 In the same manner as in Example 1, five types of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1. A Si film was grown on the substrate in the same manner as in Example 9, and Hf- A Si—O thin film was prepared.
<Examples 167 to 173>
The organic Si compound is Si (C 2 H 5 O) 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) ( C 2 H 5) n] 4 , Hf (CH 3 O) 4, Hf (C 2 H 5 O) 4, Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O) 4 In the same manner as in Example 1, except for the above, five types of MOCVD raw material liquids having different mixing ratios were prepared, and a Si film was grown on the substrate in the same manner as in Example 9, and this Si film surface was formed. A Hf—Si—O thin film was produced.
<Examples 174 to 180>
The organic Si compound is Si (n—C 3 H 7 O) 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O 5) Five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1 except that they were replaced with 4. A Si film was grown on the substrate in the same manner as in Example 9, and this Si film An Hf—Si—O thin film was formed on the surface.
<Examples 181 to 187>
The organic Si compound is Si (n-C 4 H 9 O) 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O 5) Five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 1 except that they were replaced with 4. A Si film was grown on the substrate in the same manner as in Example 9, and this Si film An Hf—Si—O thin film was formed on the surface.

<比較試験5>
実施例98〜187でそれぞれ得られたHf-Si-O薄膜について、得られたHf-Si-O薄膜の成膜時間あたりの膜厚試験及び密着性を調べるピール試験を上記比較試験1と同様にして行った。
<評価>
得られた成膜時間あたりの膜厚及びピール試験の結果を表22〜表39にそれぞれ示す。なお、ピール試験は、切断マス目100枚当たりの基板残留数を示す。
<Comparative test 5>
About the Hf-Si-O thin film obtained in each of Examples 98 to 187, the film thickness test per film formation time of the obtained Hf-Si-O thin film and the peel test for examining the adhesion were the same as in Comparative Test 1 above. I went there.
<Evaluation>
The obtained film thickness per film formation time and the result of the peel test are shown in Table 22 to Table 39, respectively. The peel test indicates the number of remaining substrates per 100 cut grids.

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

表22〜表39より明らかなように、実施例98〜187の1液とした原料液を用いて成膜したHfSiO膜は、前述した比較例2に比べて非常に成膜速度が高く、成膜安定性が高い結果が得られた。また、ピール試験結果において、実施例98〜187の原料液を用いて成膜したHfSiO膜は殆どのマス目が基板に残留しており密着性が高い結果となった。   As is apparent from Tables 22 to 39, the HfSiO film formed using the raw material liquids of Examples 98 to 187 has a very high film formation rate compared to Comparative Example 2 described above, and the formation rate is high. Results with high membrane stability were obtained. Moreover, in the peel test results, the HfSiO film formed using the raw material liquids of Examples 98 to 187 had a high adhesion because most of the cells remained on the substrate.

<実施例188>
有機Si化合物をSi[(CH3)2N]4に、有機Hf化合物をHf[(CH3)2N]4に代えた以外は実施例1と同様にして混合割合の異なる5種類のMOCVD法用原料液を用意し、このMOCVD法用原料液を用いてHf-Si-O-N薄膜を成膜した。具体的には、先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を5枚ずつ用意し、基板を図1に示すMOCVD装置の成膜室に設置した。次いで、基板温度を600℃、気化温度を70℃、圧力を約266Pa(2torr)にそれぞれ設定した。還元ガスとしてH2ガスを用い、その分圧を1ccmとした。次に、キャリアガスとしてArガスを用い、有機Si化合物としてSi[(C25)2N]4を0.1g/分の割合でそれぞれ供給し、Si[(C25)2N]4を熱分解して基板表面にSi膜を成長させた。成膜時間が2分となったときに有機Si化合物及び還元ガスの供給を停止した。次に、反応ガスとしてO2ガス及びN2を用い、その分圧をそれぞれ1000ccmとした。次に、キャリアガスとしてArガスを用い、MOCVD法用原料液を0.1g/分の割合でそれぞれ供給し、成長させたSi膜表面にHf-Si-O-N薄膜を作製した。成膜時間が1分、2分、3分、4分及び5分となったときにそれぞれ1枚ずつ成膜室より取出した。
<Example 188>
Five types of MOCVD having different mixing ratios as in Example 1 except that the organic Si compound was replaced with Si [(CH 3 ) 2 N] 4 and the organic Hf compound was replaced with Hf [(CH 3 ) 2 N] 4. A method raw material solution was prepared, and an Hf—Si—O—N thin film was formed using this MOCVD method raw material solution. Specifically, first, five silicon substrates each having a SiO 2 film (thickness: 5000 mm) formed on the substrate surface were prepared as substrates, and the substrates were placed in the deposition chamber of the MOCVD apparatus shown in FIG. Next, the substrate temperature was set to 600 ° C., the vaporization temperature was set to 70 ° C., and the pressure was set to about 266 Pa (2 torr). H 2 gas was used as the reducing gas, and its partial pressure was 1 ccm. Next, Ar gas is used as a carrier gas, Si [(C 2 H 5 ) 2 N] 4 is supplied as an organic Si compound at a rate of 0.1 g / min, and Si [(C 2 H 5 ) 2 N 4 was pyrolyzed to grow a Si film on the substrate surface. When the film formation time was 2 minutes, the supply of the organic Si compound and the reducing gas was stopped. Then, O 2 gas and N 2 is used as the reaction gas was set to 1000ccm the partial pressures respectively. Next, Ar gas was used as a carrier gas, and a MOCVD raw material solution was supplied at a rate of 0.1 g / min to produce a Hf—Si—O—N thin film on the surface of the grown Si film. When the film formation time was 1 minute, 2 minutes, 3 minutes, 4 minutes and 5 minutes, one sheet was taken out from the film formation chamber.

<実施例189〜194>
有機Hf化合物をHf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<実施例195〜201>
有機Si化合物をSi[(C25)2N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<実施例202〜208>
有機Si化合物をSi[(n-C37)2N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<実施例209〜215>
有機Si化合物をSi[(n-C49)2N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<Examples 189 to 194>
The organic Hf compound is converted to Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n—C 3 H 7 O) 4 and Hf (n—C 4 H 9 O) 4 were used in the same manner as in Example 188 except that five types of MOCVD raw material liquids having different mixing ratios were used. Then, a Si film was grown on the substrate in the same manner as in Example 188, and a Hf—Si—O—N thin film was produced on the surface of the Si film.
<Examples 195 to 201>
The organic Si compound is Si [(C 2 H 5 ) 2 N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3) (C 2 H 5) n] 4, Hf (CH 3 O) 4, Hf (C 2 H 5 O) 4, Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O) Five MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 188 except that it was replaced with 4 ), and a Si film was grown on the substrate in the same manner as in Example 188. An Hf—Si—O—N thin film was formed on the film surface.
<Examples 202 to 208>
The organic Si compound is Si [(n-C 3 H 7 ) 2 N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [ (CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 5 types of MOCVD method raw material liquids having different mixing ratios were prepared in the same manner as in Example 188 except that H 9 O) 4 was used, and a Si film was grown on the substrate in the same manner as in Example 188. A Hf—Si—O—N thin film was formed on the surface of the Si film.
<Examples 209 to 215>
The organic Si compound is Si [(n-C 4 H 9 ) 2 N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [ (CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 5 types of MOCVD method raw material liquids having different mixing ratios were prepared in the same manner as in Example 188 except that H 9 O) 4 was used, and a Si film was grown on the substrate in the same manner as in Example 188. A Hf—Si—O—N thin film was formed on the surface of the Si film.

<実施例216〜222>
有機Si化合物をSi[(CH3)(C25)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<実施例223〜229>
有機Si化合物をSi[(CH3)(n-C37)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<実施例230〜236>
有機Si化合物をSi[(CH3)(n-C49)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<実施例237〜243>
有機Si化合物をSi[(C25)(n-C37)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<実施例244〜250>
有機Si化合物をSi[(C25)(n-C49)N]4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<Examples 216 to 222>
The organic Si compound is Si [(CH 3 ) (C 2 H 5 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O) 4 except that the five MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 188 except that the Si film was grown on the substrate in the same manner as in Example 188. Then, an Hf—Si—O—N thin film was formed on the surface of the Si film.
<Examples 223 to 229>
The organic Si compound is Si [(CH 3 ) (n-C 3 H 7 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n -C 4 H 9 O) 4 except that the five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 188 except that the Si film was formed on the substrate in the same manner as in Example 188. An Hf—Si—O—N thin film was formed on the surface of the Si film.
<Examples 230 to 236>
The organic Si compound is Si [(CH 3 ) (n—C 4 H 9 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4. , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n -C 4 H 9 O) 4 except that the five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 188 except that the Si film was formed on the substrate in the same manner as in Example 188. An Hf—Si—O—N thin film was formed on the surface of the Si film.
<Examples 237 to 243>
The organic Si compound is Si [(C 2 H 5 ) (n-C 3 H 7 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N ] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf Five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 188 except that (n-C 4 H 9 O) 4 was used, and Si was formed on the substrate in the same manner as in Example 188. A film was grown, and an Hf—Si—O—N thin film was formed on the surface of the Si film.
<Examples 244 to 250>
The organic Si compound is Si [(C 2 H 5 ) (n-C 4 H 9 ) N] 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N ] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf Five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 188 except that (n-C 4 H 9 O) 4 was used, and Si was formed on the substrate in the same manner as in Example 188. A film was grown, and an Hf—Si—O—N thin film was formed on the surface of the Si film.

<実施例251〜257>
有機Si化合物をSi(CH3O)4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<実施例258〜264>
有機Si化合物をSi(C25O)4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<実施例265〜271>
有機Si化合物をSi(n-C37O)4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<実施例272〜278>
有機Si化合物をSi(n-C49O)4に、有機Hf化合物をHf[(CH3)2N]4、Hf[(C25)2N]4、Hf[(CH3)(C25)N]4、Hf(CH3O)4、Hf(C25O)4、Hf(n-C37O)4並びにHf(n-C49O)4に代えた以外は実施例188と同様にして混合割合の異なる5種類のMOCVD法用原料液をそれぞれ調製し、実施例188と同様にして基板上にSi膜を成長させ、このSi膜表面にHf-Si-O-N薄膜を作製した。
<Examples 251 to 257>
The organic Si compound is Si (CH 3 O) 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 Instead of H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O) 4 Except for the above, five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 188, and a Si film was grown on the substrate in the same manner as in Example 188, and Hf- A Si—O—N thin film was prepared.
<Examples 258 to 264>
The organic Si compound is Si (C 2 H 5 O) 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) ( C 2 H 5) n] 4 , Hf (CH 3 O) 4, Hf (C 2 H 5 O) 4, Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O) 4 In the same manner as in Example 188, five types of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 188. A Si film was grown on the substrate in the same manner as in Example 188. A Hf—Si—O—N thin film was prepared.
<Examples 265 to 271>
The organic Si compound is Si (n—C 3 H 7 O) 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O ) Except for the change to 4 , except that five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 188, and a Si film was grown on the substrate in the same manner as in Example 188. An Hf—Si—O—N thin film was formed on the surface.
<Examples 272 to 278>
The organic Si compound is Si (n-C 4 H 9 O) 4 , and the organic Hf compound is Hf [(CH 3 ) 2 N] 4 , Hf [(C 2 H 5 ) 2 N] 4 , Hf [(CH 3 ) (C 2 H 5 ) N] 4 , Hf (CH 3 O) 4 , Hf (C 2 H 5 O) 4 , Hf (n-C 3 H 7 O) 4 and Hf (n-C 4 H 9 O ) Except for the change to 4 , except that five kinds of MOCVD raw material liquids having different mixing ratios were prepared in the same manner as in Example 188, and a Si film was grown on the substrate in the same manner as in Example 188. An Hf—Si—O—N thin film was formed on the surface.

<比較試験6>
実施例188〜278でそれぞれ得られたHf-Si-O-N薄膜について、得られたHf-Si-O-N薄膜の成膜時間あたりの膜厚試験及び密着性を調べるピール試験を上記比較試験1と同様にして行った。
<評価>
得られた成膜時間あたりの膜厚及びピール試験の結果を表40〜表58にそれぞれ示す。なお、ピール試験は、切断マス目100枚当たりの基板残留数を示す。
<Comparative test 6>
For the Hf—Si—O—N thin film obtained in each of Examples 188 to 278, the film thickness test per film formation time of the obtained Hf—Si—O—N thin film and the peel test for examining the adhesion were compared with each other. It carried out like the test 1.
<Evaluation>
The obtained film thickness per film formation time and the result of the peel test are shown in Table 40 to Table 58, respectively. The peel test indicates the number of remaining substrates per 100 cut grids.

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

Figure 2006100811
Figure 2006100811

表40〜表58より明らかなように、実施例188〜278の1液とした原料液を用いて成膜したHfSiON膜は、非常に成膜速度が高く、成膜安定性が高い結果が得られた。また、ピール試験結果において、実施例188〜278の原料液を用いて成膜したHfSiON膜は殆どのマス目が基板に残留しており密着性が高い結果となった。   As is apparent from Tables 40 to 58, the HfSiON film formed using the raw material solution that is one liquid of Examples 188 to 278 has a very high film formation rate and high film formation stability. It was. Further, in the peel test results, the HfSiON film formed using the raw material liquids of Examples 188 to 278 had a high adhesion because most of the cells remained on the substrate.

本発明の製造方法に用いるMOCVD装置の概略図。Schematic of the MOCVD apparatus used for the manufacturing method of this invention. 窒素源供給可能な構造を有するMOCVD装置の概略図。Schematic of an MOCVD apparatus having a structure capable of supplying a nitrogen source. 比較例2及び4の2液からなる原料液に用いるMOCVD装置の概略図。The schematic of the MOCVD apparatus used for the raw material liquid which consists of two liquids of the comparative examples 2 and 4. FIG.

Claims (7)

有機Si化合物と有機Hf化合物とを混合割合が重量比(有機Hf化合物/有機Si化合物)で0.001〜0.5重量%の範囲内となるように混合して前記有機Hf化合物を前記有機Si化合物中に溶解させ、前記溶解液を20〜100℃で加熱して調製したことを特徴とする有機金属化学気相成長法用原料液。   An organic Si compound and an organic Hf compound are mixed so that a mixing ratio is within a range of 0.001 to 0.5% by weight (organic Hf compound / organic Si compound), and the organic Hf compound is mixed with the organic compound. An organometallic chemical vapor deposition raw material solution prepared by dissolving in a Si compound and heating the solution at 20 to 100 ° C. 有機Si化合物が次の式(1)又は式(2)で表される請求項1記載の有機金属化学気相成長法用原料液。
Figure 2006100811
但し、R1とR2とが互いに同一であるとき、R1及びR2は炭素数1〜4の直鎖又は分岐状アルキル基であり、R1とR2とが互いに異なるとき、R1は炭素数1〜2のアルキル基であり、R2は炭素数2〜4の直鎖又は分岐状アルキル基であり、nは1〜4の整数である。
Figure 2006100811
但し、R3は炭素数1〜4の直鎖又は分岐状アルキル基であり、mは1〜4の整数である。
The organometallic chemical vapor deposition method raw material liquid according to claim 1, wherein the organic Si compound is represented by the following formula (1) or formula (2):
Figure 2006100811
However, when R 1 and R 2 are the same as each other, R 1 and R 2 are linear or branched alkyl groups having 1 to 4 carbon atoms, and when R 1 and R 2 are different from each other, R 1 Is an alkyl group having 1 to 2 carbon atoms, R 2 is a linear or branched alkyl group having 2 to 4 carbon atoms, and n is an integer of 1 to 4.
Figure 2006100811
However, R < 3 > is a C1-C4 linear or branched alkyl group, and m is an integer of 1-4.
有機Hf化合物が次の式(3)で表される請求項1記載の有機金属化学気相成長法用原料液。
Figure 2006100811
但し、R4及びR5は炭素数1〜2のアルキル基であり、R4とR5は互いに同一でも異なっていてもよい。
The raw material liquid for metal organic chemical vapor deposition according to claim 1, wherein the organic Hf compound is represented by the following formula (3).
Figure 2006100811
However, R 4 and R 5 is an alkyl group having 1 to 2 carbon atoms, R 4 and R 5 may be the same or different from each other.
有機Hf化合物が次の式(4)で表される請求項1記載の有機金属化学気相成長法用原料液。
Figure 2006100811
但し、R6は炭素数1〜4の直鎖又は分岐状アルキル基である。
The organometallic chemical vapor deposition method raw material liquid according to claim 1, wherein the organic Hf compound is represented by the following formula (4).
Figure 2006100811
However, R < 6 > is a C1-C4 linear or branched alkyl group.
請求項1ないし4いずれか1項に記載の有機金属化学気相成長法用原料液を用いてHf−Si含有複合酸化物膜を作製することを特徴とするHf−Si含有複合酸化物膜の製造方法。   An Hf—Si-containing composite oxide film is produced using the organometallic chemical vapor deposition raw material liquid according to claim 1. Production method. 請求項1ないし4いずれか1項に記載の有機金属化学気相成長法用原料液に使用される有機Si化合物と同一又は異なる組成を有する有機Si化合物を還元ガスとともに熱分解して基材表面にSi膜を成長させる工程と、
請求項1ないし4いずれか1項に記載の有機金属化学気相成長法用原料液を酸化剤とともに供給して熱分解させ、前記成長させたSi膜表面にHfSiO膜を作製する工程と
を含むHf−Si含有複合酸化物膜の製造方法。
The substrate surface obtained by thermally decomposing an organic Si compound having the same or different composition as the organic Si compound used in the organometallic chemical vapor deposition raw material liquid according to any one of claims 1 to 4 together with a reducing gas. A step of growing a Si film on
Supplying a raw material liquid for metal organic chemical vapor deposition according to any one of claims 1 to 4 together with an oxidant and thermally decomposing the same, and forming a HfSiO film on the surface of the grown Si film. Manufacturing method of Hf-Si containing complex oxide film.
請求項1ないし4いずれか1項に記載の有機金属化学気相成長法用原料液に使用される有機Si化合物と同一又は異なる組成を有する有機Si化合物を還元ガスとともに熱分解して基材表面にSi膜を成長させる工程と、
請求項1ないし4いずれか1項に記載の有機金属化学気相成長法用原料液を酸化剤及び窒素源とともに供給して熱分解させ、前記成長させたSi膜表面にHfSiON膜を作製する工程と
を含むHf−Si含有複合酸化物膜の製造方法。
The substrate surface obtained by thermally decomposing an organic Si compound having the same or different composition as the organic Si compound used in the organometallic chemical vapor deposition raw material liquid according to any one of claims 1 to 4 together with a reducing gas. A step of growing a Si film on
A process for producing a HfSiON film on the surface of the grown Si film by supplying the raw material liquid for metal organic chemical vapor deposition according to any one of claims 1 to 4 together with an oxidant and a nitrogen source to cause thermal decomposition. A method for producing a Hf—Si-containing composite oxide film comprising:
JP2005250917A 2004-09-02 2005-08-31 Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid Expired - Fee Related JP4363383B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005250917A JP4363383B2 (en) 2004-09-02 2005-08-31 Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid
KR1020077005446A KR20070051309A (en) 2004-09-02 2005-09-02 Raw material liquid for metal organic chemical vapor deposition and method for producing hf-si containing complex oxide film using such raw material liquid
US11/574,547 US20080299312A1 (en) 2004-09-02 2005-09-02 Raw Material Solution for Metal Organic Chemical Vapor Deposition Method and Method for Manufacturing Composite Oxide Film Containing Hf-Si Using the Raw Material Solution
PCT/JP2005/016082 WO2006025515A1 (en) 2004-09-02 2005-09-02 RAW MATERIAL LIQUID FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION AND METHOD FOR PRODUCING Hf-Si CONTAINING COMPLEX OXIDE FILM USING SUCH RAW MATERIAL LIQUID
TW094130173A TW200615393A (en) 2004-09-02 2005-09-02 Raw material liquid for metal organic chemical vapor deposition and method of producing hf-si containing complex oxide film using the raw material liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004255097 2004-09-02
JP2005250917A JP4363383B2 (en) 2004-09-02 2005-08-31 Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid

Publications (2)

Publication Number Publication Date
JP2006100811A true JP2006100811A (en) 2006-04-13
JP4363383B2 JP4363383B2 (en) 2009-11-11

Family

ID=36240274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005250917A Expired - Fee Related JP4363383B2 (en) 2004-09-02 2005-08-31 Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid

Country Status (1)

Country Link
JP (1) JP4363383B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132665A (en) * 2006-05-23 2014-07-17 Air Products And Chemicals Inc Process for producing silicon oxide films from organoaminosilane precursors
JP2020511797A (en) * 2017-03-15 2020-04-16 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Novel formulations for the deposition of silicon-doped hafnium oxide as a ferroelectric material
JP2020511796A (en) * 2017-03-15 2020-04-16 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Novel formulations for the deposition of silicon-doped hafnium oxide as a ferroelectric material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132665A (en) * 2006-05-23 2014-07-17 Air Products And Chemicals Inc Process for producing silicon oxide films from organoaminosilane precursors
JP2020511797A (en) * 2017-03-15 2020-04-16 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Novel formulations for the deposition of silicon-doped hafnium oxide as a ferroelectric material
JP2020511796A (en) * 2017-03-15 2020-04-16 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Novel formulations for the deposition of silicon-doped hafnium oxide as a ferroelectric material
JP2021180320A (en) * 2017-03-15 2021-11-18 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Novel formulation for deposition of silicon-doped hafnium oxide as ferroelectric materials
JP7230126B2 (en) 2017-03-15 2023-02-28 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー A novel formulation for the deposition of silicon-doped hafnium oxide as a ferroelectric material.

Also Published As

Publication number Publication date
JP4363383B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
TWI415855B (en) Hafnium-based compound, hafnium-based film-forming material, and hafnium-based film forming method
JP4644359B2 (en) Deposition method
EP2451989A2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films
JP2005029821A (en) Film-forming method
JP4363383B2 (en) Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid
WO2005122229A1 (en) Material for forming capacitor film
CN110804731B (en) Mn grown by atomic layer deposition technologyxN film method
JP2003342732A (en) Solution raw material for organometallic chemical vapor deposition method containing tantalum complex and tantalum-containing thin film produced by using the same
JP2005209766A (en) Method for manufacturing oxide film containing hafnium
US6576293B2 (en) Method to improve copper thin film adhesion to metal nitride substrates by the addition of water
TWI582260B (en) Method of manufacturing nickel thin film on si substrate by chemical vapor deposition method, and method of manufacturing ni silicide thin film on si substrate
WO2006025515A1 (en) RAW MATERIAL LIQUID FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION AND METHOD FOR PRODUCING Hf-Si CONTAINING COMPLEX OXIDE FILM USING SUCH RAW MATERIAL LIQUID
JP4338246B2 (en) Raw material for Cu-CVD process and Cu-CVD apparatus
JP2006100812A (en) RAW MATERIAL LIQUID FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION AND METHOD OF PRODUCING Hf-Si CONTAINING COMPLEX OXIDE FILM USING THE RAW MATERIAL LIQUID
TWI828023B (en) Organometallic precursor compound
TW201026876A (en) Nickel-containing film-formation material, and nickel-containing film-fabrication method
JP4289141B2 (en) ORGANIC SILICON COMPOUND, SOLUTION RAW MATERIAL, AND METHOD FOR FORMING SILICON-CONTAINING FILM USING THE COMPOUND
JP2003335740A (en) Tantalum complex and solution raw material containing the complex and used for organic metal chemical vapor deposition method and tantalum-containing thin film formed from the same
JP6941181B2 (en) A silicon precursor and a method for producing a silicon-containing thin film using the silicon precursor.
JP2008007471A (en) Raw material for metal organic chemical vapor deposition (mocvd) method and method for producing silicon-containing film using the raw material
JP2005187356A (en) Organic metal compound and its solution raw material and method for forming metal-containing film using the compound
JP2005023010A (en) Organovanadium compound, solution raw material containing the compound and method for forming vanadium-containing thin film
JP3894016B2 (en) Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material
Sun et al. Preparation of platinum thin films by metalorganic chemical vapor deposition using oxygen-assisted decomposition of (ethylcyclopentadienyl) trimethylplatinum
Kawano et al. Ruthenium and Ruthenium Oxide Films Deposition by MOCVD Using Ru (DMPD) 2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees