JP2006100783A - Resin magnet material - Google Patents

Resin magnet material Download PDF

Info

Publication number
JP2006100783A
JP2006100783A JP2005180050A JP2005180050A JP2006100783A JP 2006100783 A JP2006100783 A JP 2006100783A JP 2005180050 A JP2005180050 A JP 2005180050A JP 2005180050 A JP2005180050 A JP 2005180050A JP 2006100783 A JP2006100783 A JP 2006100783A
Authority
JP
Japan
Prior art keywords
resin
magnet
magnetic powder
extrusion
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005180050A
Other languages
Japanese (ja)
Inventor
Masaaki Sakuma
正哲 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Tochigi Kaneka Corp
Original Assignee
Kaneka Corp
Tochigi Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp, Tochigi Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005180050A priority Critical patent/JP2006100783A/en
Publication of JP2006100783A publication Critical patent/JP2006100783A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin magnet material which prevents rust in a formed product, also prevents a crack and stable in a dimensional profile at the time of an extrusion. <P>SOLUTION: In the resin magnet material for the extrusion forming of a mixture containing mainly a ferromagnetic material powder and a resin binder. The maximum melting torque at a labolatory plastomill test (a usage consisting of 92% of a mixer capacity, 180°C of the resin temperature, a rotation 60 rpm) for a mixture which contains an isotropic spherical NdFeB rare earth magnetic powder having a mean particle diameter of 25 to 65 μm and an ethylene ethyl acrylate resin is ranging from 330 kg×cm to 430 kg×cm and for the torque after 10 minutes from 260 kg×cm to 320 kg×cm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、例えば、複写機、プリンタ、ファクシミリ等の画像形成装置に組み込まれるマグネットローラ用樹脂磁石材料に関する。   The present invention relates to a resin magnet material for a magnet roller incorporated in an image forming apparatus such as a copying machine, a printer, and a facsimile machine.

複写機、プリンタ、ファクシミリ等における粉末トナーを用いた画像形成装置に組み込まれるマグネットローラは、次のように構成されているのが一般的である。   In general, a magnet roller incorporated in an image forming apparatus using powder toner in a copying machine, a printer, a facsimile machine or the like is configured as follows.

すなわち、(1)等方性希土類磁性粉と異方性フェライト磁性粉とを含む混合磁性粉と、樹脂バインダーとを混合して溶融混練し、ペレット状に成形した後に、磁場中で押出成形することによってマグネットピースを得るものである。(特許文献1)
(2)円筒状磁石が希土類元素と鉄を主体とする遷移金属およびほう素からなる希土類磁石粉末を樹脂成分とともに押出成形した等方性樹脂結合型磁石であるマグネットローラである。(特許文献2)
特開2002−231526 特開平4−21880
(1) A mixed magnetic powder containing an isotropic rare earth magnetic powder and an anisotropic ferrite magnetic powder and a resin binder are mixed, melt-kneaded, formed into a pellet, and then extruded in a magnetic field. Thus, a magnet piece is obtained. (Patent Document 1)
(2) A magnet roller which is an isotropic resin-bonded magnet in which a cylindrical magnet is formed by extruding a rare earth magnet powder composed of a transition metal mainly composed of rare earth elements and iron and boron together with a resin component. (Patent Document 2)
JP 2002-231526 A JP-A-4-21880

しかしながら、特許文献1は、通常環境下あるいは高湿環境下でマグネットピース表面(希土類磁性粉部分)に錆びが発生し、該錆びが磁気特性に悪影響(錆び部分の磁束密度が低下する)を与えたり、該錆びがマグネットローラから剥離し、軸受けとの嵌合部に入り込み、スリーブがロックしたり、また、押出成形時のトルクが大きいため、押出性が悪くなり、生産性が低下する場合があった。   However, in Patent Document 1, rust is generated on the surface of the magnet piece (rare earth magnetic powder portion) under a normal environment or a high humidity environment, and the rust adversely affects the magnetic properties (the magnetic flux density of the rust portion decreases). Or the rust peels off from the magnet roller and enters the fitting part with the bearing, the sleeve locks, and because the torque at the time of extrusion is large, the extrudability deteriorates and the productivity may decrease. there were.

また、特許文献2も上記と同様に、通常環境下あるいは高湿環境下でマグネットピース表面(希土類磁性粉部分)に錆びが発生し、該錆びが磁気特性に悪影響(錆び部分の磁束密度が低下する)を与えたり、該錆びがマグネットローラから剥離し、軸受けとの嵌合部に入り込み、スリーブがロックしたり、また、押出成形時のトルクが大きいため、押出性が悪くなり、生産性が低下する場合があった。   Also in Patent Document 2, as described above, rust is generated on the surface of the magnet piece (rare earth magnetic powder portion) in a normal environment or a high humidity environment, and the rust adversely affects the magnetic properties (the magnetic flux density of the rust portion decreases). Or the rust is peeled off from the magnet roller and enters the fitting part with the bearing, the sleeve is locked, and since the torque during extrusion is large, the extrudability deteriorates and the productivity is reduced. There was a case of decline.

本発明のマグネットローラは、強磁性体粉末と樹脂バインダーを主体とする混合物を押出成形したマグネットピースを複数個貼り合わせて形成したマグネットローラにおいて、強磁性体粉末として平均粒径が25〜65μmである等方性球状NdFeB系希土類磁性粉と樹脂バインダーとしてエチレンエチルアクリレート樹脂とを含む混合物のラボプラストミル試験(投入量はミキサー容量の92%、樹脂温度180℃、回転数60rpm)による最大溶融トルクを330kg・cm〜430kg・cmかつ10分後のトルクを260kg・cm〜320kg・cmとすることにより、押出時の溶融粘度が低下し、押出性が向上し、押出時の寸法形状が安定し、クラックも防止でき、また成形品の錆びが防止できる。   The magnet roller of the present invention is a magnet roller formed by laminating a plurality of magnet pieces obtained by extruding a mixture mainly composed of a ferromagnetic powder and a resin binder, and has an average particle size of 25 to 65 μm as the ferromagnetic powder. Maximum melting torque by a lab plast mill test (mixed volume is 92% of mixer capacity, resin temperature 180 ° C., rotation speed 60 rpm) of a mixture containing an isotropic spherical NdFeB rare earth magnetic powder and ethylene ethyl acrylate resin as a resin binder By setting the torque at 330 kg · cm to 430 kg · cm and the torque after 10 minutes to 260 kg · cm to 320 kg · cm, the melt viscosity at the time of extrusion is lowered, the extrudability is improved, and the dimensional shape at the time of extrusion is stabilized. Cracks can also be prevented and rusting of the molded product can be prevented.

また、本発明のマグネットローラは、上記強磁性体粉末と上記樹脂バインダーを主体とする混合物にヒンダードフェノール系安定剤を0.02重量%〜0.15重量%添加することにより、高温押出が可能となり、寸法形状の安定化、押出性の向上、押出時のクラック防止、成形品の錆び防止に加え、磁力の向上が図れる。   In addition, the magnet roller of the present invention is capable of high-temperature extrusion by adding 0.02 wt% to 0.15 wt% of a hindered phenol stabilizer to the mixture mainly composed of the ferromagnetic powder and the resin binder. This makes it possible to stabilize the dimensions and shape, improve extrudability, prevent cracking during extrusion, prevent rusting of the molded product, and improve the magnetic force.

また、上記強磁性粉末において、平均粒径が25〜65μmである等方性球状NdFeB系希土類磁性粉とフェライト系磁性粉を混合し、平均粒径が25〜65μmである等方性球状NdFeB系希土類磁性粉を10重量%以上含むことことにより、低コスト化が可能となり、高温押出での樹脂劣化を防止し、寸法形状が安定し、押出時の溶融粘度が低下し、押出性が向上し、押出時のクラックも防止でき、また成形品の錆びが防止できる。   In the above ferromagnetic powder, an isotropic spherical NdFeB system having an average particle size of 25 to 65 μm is mixed with an isotropic spherical NdFeB rare earth magnetic powder having an average particle size of 25 to 65 μm. Inclusion of 10% by weight or more of rare earth magnetic powder enables cost reduction, prevents resin deterioration during high temperature extrusion, stabilizes dimensions and shape, lowers melt viscosity during extrusion, and improves extrudability. Cracks during extrusion can be prevented and rusting of the molded product can be prevented.

本発明(請求項1)により、押出時の寸法形状が安定し、クラックも防止でき、また成形品の錆びが防止できる。   According to the present invention (claim 1), the dimensional shape at the time of extrusion can be stabilized, cracks can be prevented, and rusting of the molded product can be prevented.

本発明(請求項2)により、高温押出での樹脂劣化を防止し、押出時の寸法形状が安定し、クラックも防止でき、また成形品の錆びが防止でき、磁力が向上する。   According to the present invention (Claim 2), resin deterioration during high-temperature extrusion can be prevented, dimensions and shapes during extrusion can be stabilized, cracks can be prevented, rusting of molded products can be prevented, and magnetic force can be improved.

本発明(請求項3)により、高温押出での樹脂劣化を防止し、寸法形状が安定し、押出時の寸法形状が安定し、クラックも防止でき、また成形品の錆びが防止でき、コストの低減が可能となる。   According to the present invention (Claim 3), resin deterioration during high-temperature extrusion can be prevented, dimension and shape can be stabilized, dimension and shape during extrusion can be stabilized, cracks can be prevented, and rusting of the molded product can be prevented. Reduction is possible.

本発明は、強磁性体粉末と樹脂バインダーを主体とする混合物である押出成形用樹脂磁石材料において、強磁性体粉末として平均粒径が25〜65μmである等方性球状NdFeB系希土類磁性粉と樹脂バインダーとしてエチレンエチルアクリレート樹脂を含む混合物のラボプラストミル試験(投入量はミキサー容量の92%、樹脂温度180℃、回転数60rpm)による最大溶融トルクが330kg・cm〜430kg・cmかつ10分後のトルクが260kg・cm〜320kg・cmの範囲であることを特徴とする押出成形用樹脂磁石材料である。   The present invention relates to an isotropic spherical NdFeB rare earth magnetic powder having an average particle diameter of 25 to 65 μm as a ferromagnetic powder in an extrusion-molding resin magnet material that is a mixture mainly composed of a ferromagnetic powder and a resin binder. Labo plast mill test of a mixture containing ethylene ethyl acrylate resin as a resin binder (input amount is 92% of mixer capacity, resin temperature is 180 ° C., rotation speed is 60 rpm) and the maximum melting torque is 330 kg · cm to 430 kg · cm and after 10 minutes This is a resin magnet material for extrusion molding characterized by having a torque of 260 kg · cm to 320 kg · cm.

従来、特許文献1や2のように、等方性希土類磁性粉と樹脂バインダーを主体とする混合物を溶融混練し、ペレット状に成形した後、磁場を印加しながら円筒状のマグネット本体部やマグネットピースを押出成形し、マグネットローラを形成している。   Conventionally, as in Patent Documents 1 and 2, a mixture mainly composed of an isotropic rare earth magnetic powder and a resin binder is melt-kneaded, formed into a pellet, and then a cylindrical magnet body or magnet while applying a magnetic field. A piece is extruded to form a magnet roller.

本発明の押出成形用樹脂磁石材料は、平均粒径が25〜65μmである等方性球状NdFeB系希土類磁性粉を50重量%〜95重量%とエチレンエチルアクリレート樹脂を5重量%〜50重量%を含む混合物を主体とし、必要に応じて、磁性粉の表面処理剤としてシラン系やチタネート系等のカップリング剤、流動性を良好にするポリスチレン系・フッ素系滑剤等、可塑剤、もしくは難燃剤などを添加し、混合分散し、溶融混練し、ペレット状に成形した後に、押出成形する。   The resin magnet material for extrusion molding of the present invention comprises 50% to 95% by weight of isotropic spherical NdFeB rare earth magnetic powder having an average particle diameter of 25 to 65 μm and 5% to 50% by weight of ethylene ethyl acrylate resin. If necessary, as a surface treatment agent for magnetic powder, coupling agents such as silane and titanate, polystyrene and fluorine lubricants that improve fluidity, plasticizers, or flame retardants Etc. are added, mixed and dispersed, melt-kneaded, formed into pellets, and then extruded.

図1のような磁気回路をもつ金型にて押出成形することにより得られた円筒状マグネットは、金属製のシャフトを挿入し、マグネットローラ(図2)とし、また図3、図4、図5のような磁気回路をもつ金型にて押出成形することにより得られたマグネットピースは、金属製のシャフトの外周面に貼り合わされ、マグネットローラ(図6)を形成する。   A cylindrical magnet obtained by extrusion molding with a mold having a magnetic circuit as shown in FIG. 1 is inserted with a metal shaft to form a magnet roller (FIG. 2), and FIGS. A magnet piece obtained by extrusion molding with a mold having a magnetic circuit as shown in FIG. 5 is bonded to the outer peripheral surface of a metal shaft to form a magnet roller (FIG. 6).

成形時に印加する配向着磁磁場は、各磁極に要求される磁束密度仕様により適宜選択すればよい。また、要求磁気特性によっては成形時に配向着磁磁場を印加せず、成形後に着磁してもよい。   The orientation magnetization magnetic field applied at the time of molding may be appropriately selected according to the magnetic flux density specification required for each magnetic pole. Further, depending on the required magnetic properties, the orientation magnetization magnetic field may not be applied at the time of molding, and may be magnetized after molding.

円筒状マグネットやマグネットピースは、図1、図3、図4、図5のような金型を用いて、溶融樹脂磁石を電磁石あるいは永久磁石で、金型に配置した配向着磁用ヨークにより240K・A/m〜2400K・A/mの磁場を印加しながら押出し、磁性粒子を所望の方向に配向着磁し、硬化させ、円筒状マグネットやマグネットピースが得られる。得られた円筒状マグネットやマグネットピースは、射出成形よりも生産性が良く、金型も安く、低コストで円筒状マグネットやマグネットピースが得られる。   Cylindrical magnets and magnet pieces are 240 K by using a mold as shown in FIGS. 1, 3, 4 and 5 and using an orientation magnetizing yoke arranged on the mold as an electromagnet or permanent magnet as a molten resin magnet. Extrusion while applying a magnetic field of A / m to 2400 K · A / m, magnetic particles are oriented and magnetized in a desired direction and cured to obtain a cylindrical magnet or magnet piece. The obtained cylindrical magnet or magnet piece is more productive than injection molding, the mold is cheap, and a cylindrical magnet or magnet piece can be obtained at low cost.

本発明は、上記強磁性体粉末と樹脂バインダーを主体とする混合物のラボプラストミル試験(投入量はミキサー容量の92%、樹脂温度180℃、回転数60rpm)による最大溶融トルクが330kg・cm〜430kg・cmかつ10分後のトルクが260kg・cm〜320kg・cmの範囲にすることにより、押出成形にて成形された円筒状マグネットやマグネットピースは、1)寸法形状精度が向上かつ安定し、2)変形や反りがなく、3)押出トルクが低下し、4)適度な弾力性を持つため、取り扱い性や接着性が向上し、クラックも発生しない。   The present invention has a maximum melting torque of 330 kg · cm to a lab plast mill test of a mixture mainly composed of the above-mentioned ferromagnetic powder and resin binder (input amount is 92% of mixer capacity, resin temperature 180 ° C., rotation speed 60 rpm). By setting the torque at 430 kg · cm and the torque after 10 minutes to be in the range of 260 kg · cm to 320 kg · cm, the cylindrical magnet or magnet piece formed by extrusion molding has 1) improved and stable dimensional shape accuracy, 2) No deformation or warping, 3) Extrusion torque is reduced, and 4) With moderate elasticity, handling and adhesion are improved and cracks are not generated.

ここで、最大溶融トルクが330kg・cm未満の場合は、押出立ち上げ時の樹脂磁石材料の溶融粘度が低くなり過ぎ、寸法形状が維持できなくなる場合があり、また、430kg・cmを超えると押出立ち上げ時の樹脂磁石材料の溶融粘度が高くなり過ぎ、押出できない場合がある。   Here, when the maximum melting torque is less than 330 kg · cm, the melt viscosity of the resin magnet material at the time of starting up the extrusion becomes too low, and the dimensional shape may not be maintained. In some cases, the melt viscosity of the resin magnet material at the time of start-up becomes too high to be extruded.

10分後のトルクが260kg・cm未満の場合は、押出時の樹脂磁石材料の溶融粘度が低くなり過ぎ、寸法形状が維持できなくなる場合があり、また、320kg・cmを超えると押出時の樹脂磁石材料の溶融粘度が高くなり過ぎ、押出できない場合がある。   If the torque after 10 minutes is less than 260 kg · cm, the melt viscosity of the resin magnet material at the time of extrusion may become too low, and the dimensional shape may not be maintained. If it exceeds 320 kg · cm, the resin at the time of extrusion In some cases, the melt viscosity of the magnet material becomes too high to be extruded.

円筒状マグネットやマグネットピースは、図1、図3、図4、図5のような金型を用いて、溶融樹脂磁石を電磁石あるいは永久磁石で、金型に配置した配向着磁用ヨークにより240K・A/m〜2400K・A/mの磁場を印加しながら押出し、磁性粒子を所望の方向に配向着磁し、硬化させ、円筒状マグネットやマグネットピースが得られる。得られた円筒状マグネットやマグネットピースは、射出成形よりも生産性が良く、金型も安く、低コストで円筒状マグネットやマグネットピースが得られる。   Cylindrical magnets and magnet pieces are 240 K by using a mold as shown in FIGS. 1, 3, 4 and 5 and using an orientation magnetizing yoke arranged on the mold as an electromagnet or permanent magnet as a molten resin magnet. Extrusion while applying a magnetic field of A / m to 2400 K · A / m, magnetic particles are oriented and magnetized in a desired direction and cured to obtain a cylindrical magnet or magnet piece. The obtained cylindrical magnet or magnet piece is more productive than injection molding, the mold is cheap, and a cylindrical magnet or magnet piece can be obtained at low cost.

また、本発明は、強磁性体粉末と樹脂バインダーを主体する混合物にヒンダードフェノール系安定剤を0.02重量%〜0.15重量%添加することにより、押出成形にて成形された円筒状マグネットやマグネットピースは、1)高温(160℃〜180℃)での押出が可能となり、その結果1)マグネット表面磁束密度が1〜5%程度向上し、2)寸法形状精度が向上かつ安定し、3)変形や反りがなく、4)押出トルクが低下かつ安定し、5)適度な弾力性を持つため、取り扱い性や接着性が向上し、クラックも発生しない。   The present invention also provides a cylindrical shape formed by extrusion molding by adding 0.02 wt% to 0.15 wt% of a hindered phenol stabilizer to a mixture mainly composed of a ferromagnetic powder and a resin binder. Magnets and magnet pieces can be extruded 1) at high temperatures (160 ° C to 180 ° C). As a result, 1) magnetic surface magnetic flux density is improved by 1-5%, and 2) dimensional shape accuracy is improved and stable. 3) No deformation or warping, 4) Extrusion torque is reduced and stable, 5) Appropriate elasticity improves handling and adhesion, and no cracks occur.

ヒンダードフェノール系安定剤の添加量を0.02重量%未満とした場合、安定剤としての効果が発現せず、0.15重量%を超える場合は、押出成形性が悪くなり、磁気特性が低下する。   When the amount of the hindered phenol stabilizer is less than 0.02% by weight, the effect as a stabilizer is not exhibited, and when it exceeds 0.15% by weight, the extrusion moldability is deteriorated and the magnetic properties are deteriorated. descend.

また、本発明は、上記強磁性粉末において、平均粒径が25〜65μmである等方性球状NdFeB系希土類磁性粉とフェライト系磁性粉を混合し、平均粒径が25〜65μmである等方性球状NdFeB系希土類磁性粉を10重量%以上含むことを特徴とする請求項1、2記載の押出成形用樹脂磁石材料で、等方性球状NdFeB系希土類磁性粉を10重量%以上含むことにより、所望の磁気特性に調整でき、低コストで高磁気特性が実現できる。等方性球状NdFeB系希土類磁性粉が10重量%未満の場合、等方性球状NdFeB系希土類磁性粉を混在させた効果が発現しない。更に、フェライト磁性粉は等方性磁性粉、異方性磁性粉のどちらでもよいが、高磁気特性を要求される場合は、異方性フェライト磁性粉の方が好ましい。   The present invention also provides the above ferromagnetic powder, in which an isotropic spherical NdFeB rare earth magnetic powder having an average particle diameter of 25 to 65 μm and a ferrite magnetic powder are mixed, and an isotropic having an average particle diameter of 25 to 65 μm. The resin magnet material for extrusion molding according to claim 1 or 2, characterized by containing 10% by weight or more of spherical spherical NdFeB-based rare earth magnetic powder, and containing 10% by weight or more of isotropic spherical NdFeB-based rare earth magnetic powder. The desired magnetic characteristics can be adjusted, and high magnetic characteristics can be realized at low cost. When the isotropic spherical NdFeB rare earth magnetic powder is less than 10% by weight, the effect of mixing the isotropic spherical NdFeB rare earth magnetic powder does not appear. Further, the ferrite magnetic powder may be either an isotropic magnetic powder or an anisotropic magnetic powder. However, when a high magnetic property is required, the anisotropic ferrite magnetic powder is preferable.

ここで、磁性粉としては、MO・nFe23(nは自然数)で代表される化学式を持つ異方性フェライト磁性粉などがあげられる。式中のMとして、Sr、Baまたは鉛などの1種または2種以上が適宜選択して用いられる。 Here, examples of the magnetic powder include anisotropic ferrite magnetic powder having a chemical formula represented by MO.nFe 2 O 3 (n is a natural number). As M in the formula, one or more of Sr, Ba, lead and the like are appropriately selected and used.

上記に示した単独磁性粉あるいは混合磁性粉の含有率が50重量%未満では、磁性粉不足により、マグネットピースの磁気特性が低下して所望の磁力が得られにくくなり、またそれらの含有率が95重量%を超えると、バインダー不足となり成形性が損なわれるおそれがある。   If the content of the single magnetic powder or the mixed magnetic powder shown above is less than 50% by weight, the magnetic properties of the magnet piece are lowered due to insufficient magnetic powder, making it difficult to obtain a desired magnetic force. If it exceeds 95% by weight, the binder becomes insufficient and the moldability may be impaired.

また、本明細書においては、5極構成のマグネットロールを図示しているが、本発明は5極マグネットロールのみに限定されない。すなわち、所望の磁束密度と磁界分布により、マグネットピースの数量を選択し、磁極数や磁極位置も適宜設定すればよい。
さらに、成形と同時に磁場を印加する場合、成形物の脱型性の向上や、成形物のマグカス等のゴミ付着防止やマグネットピースの取り扱い性を容易にするために、成形後金型内あるいは金型外で一旦脱磁し、その後着磁してもよい。
Further, in this specification, a magnet roll having a five-pole configuration is illustrated, but the present invention is not limited to a five-pole magnet roll. That is, the number of magnet pieces may be selected according to the desired magnetic flux density and magnetic field distribution, and the number of magnetic poles and the magnetic pole position may be set as appropriate.
Furthermore, when a magnetic field is applied simultaneously with molding, in order to improve the demoldability of the molded product, to prevent the adhesion of dust such as magcus of the molded product, and to facilitate the handling of the magnet piece, It may be demagnetized once outside the mold and then magnetized.

以下に本発明を実施例および比較例に基づき具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1)
図7のマグネットピース材料として、樹脂バインダーにエチレンエチルアクリレート樹脂(日本ユニカー製PES210)を10重量%(滑剤等含む)、磁性粉として等方性NdFeB系磁性粉(MQ製MQP−S−11−9を平均粒径40μm)を90重量%とし、これらを混合し、溶融混練し、ペレット状に成形し、このペレットを溶融状態にし、図3(N1極)、図4(N2極、N3極)、図5(S1極およびS2極)の各金型を用いて、240K・A/m〜2400K・A/mの磁場を印加しながら溶融樹脂磁石の磁性粒子を配向着磁し、図7に示すマグネットピースを押出成形した。成形されたマグネットピースをシャフト外周面に貼り合わせてマグネットローラを形成した。
Example 1
As the magnet piece material of FIG. 7, 10% by weight of ethylene ethyl acrylate resin (Nihon Unicar PES210) is used as the resin binder, and isotropic NdFeB magnetic powder (MQP-S-11 made by MQ) is used as the magnetic powder. 9 has an average particle size of 40 μm) and is 90% by weight. These are mixed, melt-kneaded, formed into pellets, and the pellets are in a molten state. FIG. 3 (N1 pole), FIG. 4 (N2 pole, N3 pole) ) And FIG. 5 (S1 pole and S2 pole), the magnetic particles of the molten resin magnet are oriented and magnetized while applying a magnetic field of 240 K · A / m to 2400 K · A / m. The magnet piece shown in FIG. The molded magnet piece was bonded to the outer peripheral surface of the shaft to form a magnet roller.

マグネットローラ本体部(マグネット部)の外径はφ13.6、マグネット本体部の長さは320mm、シャフトの外径はφ6で、材質はSUM22を使用した。   The outer diameter of the magnet roller main body (magnet portion) was φ13.6, the length of the magnet main body was 320 mm, the outer diameter of the shaft was φ6, and the material used was SUM22.

形成されたマグネットローラの両端軸部を支持し、マグネットローラを回転させながら、マグネットローラの中心から8mm離れた位置(スリーブ上)にプローブ(磁束密度センサー)をセットし、ガウスメータにてマグネットローラの周方向磁束密度パターンを測定した。   A probe (magnetic flux density sensor) is set at a position (on the sleeve) 8 mm away from the center of the magnet roller while supporting the shafts at both ends of the formed magnet roller and rotating the magnet roller. The circumferential magnetic flux density pattern was measured.

樹脂磁石材料の溶融時のトルクは、東洋精機製18−125型のラボプラストミルにより、投入量はミキサー容量の92%、樹脂温度180℃、回転数60rpm、の条件にて測定した。   The torque at the time of melting of the resin magnet material was measured by a Toyo Seiki 18-125 type lab plast mill under the conditions of 92% of the mixer capacity, a resin temperature of 180 ° C., and a rotation speed of 60 rpm.

成形後のマグネットピース形状は、ノギス、投影機にて測定し、寸法形状のバラツキレベルを判断した。   The shape of the magnet piece after molding was measured with a vernier caliper and a projector, and the dimensional shape variation level was judged.

樹脂劣化は押出時の成形品の外観をみて判断し、また成形品の錆び及びクラックの有無は、シャフトの外周面に各マグネットピースを貼り合わせてマグネットローラとした状態で、ヒートサイクルテスト(条件:−40℃で3hr放置後直ちに70℃で3hr放置し、再び直ちに−40℃で3hr放置するテストを40回繰り返す)を行った後、マグネットローラ本体部のマグネットピースを観察した。
測定結果を表1に示す。
The deterioration of the resin is judged by looking at the appearance of the molded product at the time of extrusion, and the presence or absence of rust and cracks in the molded product is determined by the heat cycle test (conditions) with each magnet piece bonded to the outer peripheral surface of the shaft to form a magnet roller. The test was repeated 40 times after leaving at −40 ° C. for 3 hours, then immediately leaving at 70 ° C. for 3 hours, and then immediately leaving at −40 ° C. for 3 hours), and then the magnet piece of the magnet roller body was observed.
The measurement results are shown in Table 1.

(実施例2)
磁性粉として等方性NdFeB系磁性粉(MQ製MQP−S−11−9を平均粒径25μmにしたもの)を用いる以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Example 2)
All operations were performed in the same manner as in Example 1 except that isotropic NdFeB magnetic powder (MQP-S-11-9 manufactured by MQ having an average particle diameter of 25 μm) was used as the magnetic powder.
The measurement results are shown in Table 1.

(実施例3)
磁性粉として等方性NdFeB系磁性粉(MQ製MQP−S−11−9を平均粒径65μmにしたもの)を用いる以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Example 3)
All operations were performed in the same manner as in Example 1 except that isotropic NdFeB-based magnetic powder (MQP-S-11-9 manufactured by MQ having an average particle size of 65 μm) was used as the magnetic powder.
The measurement results are shown in Table 1.

(実施例4)
滑剤としてステアリン酸(旭電化製アデカ脂肪酸SA−200)をバインダー樹脂全体に対して1重量部添加することにより、強磁性体粉末と樹脂バインダーを主体とする混合物のラボプラストミル試験(投入量はミキサー容量の92%、樹脂温度180℃、回転数60rpm)による最大溶融トルクを350kg・cmかつ10分後のトルクを270kg・cmに設定した該混合物を用いる以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
Example 4
By adding 1 part by weight of stearic acid (Adeka Fatty Acid SA-200 manufactured by Asahi Denka Co., Ltd.) as a lubricant to the entire binder resin, a lab plastmill test of a mixture mainly composed of ferromagnetic powder and resin binder (input amount is The same procedure as in Example 1 was carried out except that the mixture was used in which the maximum melting torque was set to 350 kg · cm and the torque after 10 minutes was set to 270 kg · cm with a mixer capacity of 92%, a resin temperature of 180 ° C., and a rotational speed of 60 rpm. It was.
The measurement results are shown in Table 1.

(実施例5)
滑剤としてステアリン酸(旭電化製アデカ脂肪酸SA−200)をバインダー樹脂全体に対して5重量部添加することにより、強磁性体粉末と樹脂バインダーを主体とする混合物のラボプラストミル試験(投入量はミキサー容量の92%、樹脂温度180℃、回転数60rpm)による最大溶融トルクを330kg・cmかつ10分後のトルクを260kg・cmに設定した該混合物を用いる以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Example 5)
By adding 5 parts by weight of stearic acid (Adeka Fatty Acid SA-200 manufactured by Asahi Denka Co., Ltd.) as a lubricant to the whole binder resin, a lab plastmill test of a mixture mainly composed of a ferromagnetic powder and a resin binder (input amount is The same procedure as in Example 1 was performed except that the mixture was set such that the maximum melting torque at 330% of the mixer capacity, the resin temperature of 180 ° C., and the rotational speed of 60 rpm was set to 330 kg · cm and the torque after 10 minutes was set to 260 kg · cm. It was.
The measurement results are shown in Table 1.

(実施例6)
等方性NdFeB系磁性粉(MQ製MQP−S−11−9を平均粒径40μm)とエチレンエチルアクリレート樹脂を含有とする混合物に分子量が350であるヒンダードフェノール系安定剤(チバガイギー社製IRGANOX1222)を0.02重量%添加する以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Example 6)
A hindered phenol-based stabilizer (IRGANOX1222 manufactured by Ciba Geigy) having a molecular weight of 350 in a mixture containing isotropic NdFeB-based magnetic powder (MQ MQ-S-11-9 manufactured by MQ has an average particle size of 40 μm) and ethylene ethyl acrylate resin ) Was added in the same manner as in Example 1 except that 0.02 wt% was added.
The measurement results are shown in Table 1.

(実施例7)
等方性NdFeB系磁性粉(MQ製MQP−S−11−9を平均粒径40μm)とエチレンエチルアクリレート樹脂を含有する混合物に分子量が1200であるヒンダードフェノール系安定剤(チバガイギー社製IRGANOX1010)を0.15重量%添加する以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Example 7)
A hindered phenol-based stabilizer (IRGANOX 1010, manufactured by Ciba Geigy Co., Ltd.) having a molecular weight of 1200 in a mixture containing isotropic NdFeB-based magnetic powder (MQ MQ-S-11-9 manufactured by MQ has an average particle size of 40 μm) and ethylene ethyl acrylate resin All were carried out in the same manner as in Example 1 except that 0.15% by weight was added.
The measurement results are shown in Table 1.

(実施例8)
磁性粉として等方性NdFeB系磁性粉(MQ製MQP−S−11−9を平均粒径40μm)と異方性フェライト系磁性粉(ストロンチウムフェライト)を重量比で、1:9の割合で混合したものと樹脂バインダーとしてエチレンエチルアクリレート樹脂を用いる以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Example 8)
Isotropic NdFeB-based magnetic powder (MQP-S-11-9 made by MQ has an average particle size of 40 μm) and anisotropic ferrite-based magnetic powder (strontium ferrite) are mixed at a weight ratio of 1: 9 as magnetic powder. The same procedure as in Example 1 was conducted except that ethylene ethyl acrylate resin was used as the resin binder.
The measurement results are shown in Table 1.

(比較例1)
磁性粉として等方性NdFeB系磁性粉(MQ製MQP−S−11−9を平均粒径20μmに調整したもの)を用いる以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Comparative Example 1)
All operations were performed in the same manner as in Example 1 except that isotropic NdFeB-based magnetic powder (MQP-S-11-9 manufactured by MQ was adjusted to an average particle size of 20 μm) was used as the magnetic powder.
The measurement results are shown in Table 1.

(比較例2)
磁性粉として等方性NdFeB系磁性粉(MQ製MQP−S−11−9を平均粒径70μmに調整したもの)を用いる以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Comparative Example 2)
All operations were performed in the same manner as in Example 1 except that isotropic NdFeB-based magnetic powder (MQP-S-11-9 manufactured by MQ was adjusted to an average particle size of 70 μm) was used as the magnetic powder.
The measurement results are shown in Table 1.

(比較例3)
滑剤としてステアリン酸(旭電化製アデカ脂肪酸SA−200)をバインダー樹脂全体に対して6重量部添加することにより、等方性NdFeB系磁性粉(MQ製MQP−S−11−9を平均粒径40μm)とエチレンエチルアクリレート樹脂を含有する混合物のラボプラストミル試験(投入量はミキサー容量の92%、樹脂温度180℃、回転数60rpm)による最大溶融トルクを320kg・cmかつ10分後のトルクが250kg・cmに設定した該混合物を用いる以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Comparative Example 3)
By adding 6 parts by weight of stearic acid (Adeka fatty acid SA-200 manufactured by Asahi Denka Co., Ltd.) as a lubricant to the entire binder resin, isotropic NdFeB-based magnetic powder (MQP-S-11-9 manufactured by MQ has an average particle size) 40 μm) and a mixture containing ethylene ethyl acrylate resin, the maximum melting torque by the lab plast mill test (the input amount is 92% of the mixer capacity, the resin temperature is 180 ° C., the rotation speed is 60 rpm) is 320 kg · cm and the torque after 10 minutes is The same procedure as in Example 1 was performed except that the mixture set at 250 kg · cm was used.
The measurement results are shown in Table 1.

(比較例4)
磁性粉として等方性NdFeB系磁性粉(MQ製MQP−S−11−9を平均粒径40μm)と異方性フェライト系磁性粉(ストロンチウムフェライト)を重量比で、0.5:9.5の割合で混合したものと樹脂バインダーとしてエチレンエチルアクリレート樹脂を用いる以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Comparative Example 4)
As a magnetic powder, isotropic NdFeB magnetic powder (MQP-S-11-9 made by MQ has an average particle size of 40 μm) and anisotropic ferrite magnetic powder (strontium ferrite) in a weight ratio of 0.5: 9.5. The same procedure as in Example 1 was performed except that ethylene ethyl acrylate resin was used as a resin binder.
The measurement results are shown in Table 1.

(比較例5)
磁性粉として等方性NdFeB系磁性粉(MQ製MQP−Bを平均粒径150μmもの)を用いる以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Comparative Example 5)
All operations were performed in the same manner as in Example 1 except that isotropic NdFeB-based magnetic powder (MQP-B manufactured by MQ having an average particle size of 150 μm) was used as the magnetic powder.
The measurement results are shown in Table 1.

(比較例6)
磁性粉として、等方性NdFeB系磁性粉(MQ製MQP−S−11−9を平均粒径40μm)を90重量%、樹脂バインダーとして塩素化ポリエチレン(昭和電工製エバスレン410P)と塩化ビニル−酢酸ビニル(鐘淵化学工業製MB1008)を10重量%
を含有する混合物を用いる以外はすべて実施例1と同様に行った。
測定結果を表1に示す。
(Comparative Example 6)
90% by weight of isotropic NdFeB magnetic powder (MQP-S-11-9, MQ, average particle size 40 μm) as magnetic powder, chlorinated polyethylene (Ebaslene 410P, Showa Denko) and vinyl chloride-acetic acid as resin binder 10% by weight of vinyl (MB1008 manufactured by Kaneka Corporation)
All were carried out in the same manner as in Example 1 except that a mixture containing was used.
The measurement results are shown in Table 1.

Figure 2006100783
Figure 2006100783

実施例1と比較例5を比べると、実施例1は、クラックや錆びが発生していないことがわかる。   Comparing Example 1 and Comparative Example 5, it can be seen that Example 1 is free from cracks and rust.

実施例1と比較例6を比べると、実施例1は、成形品の寸法バラツキが小さいことがわかる。   Comparing Example 1 and Comparative Example 6, it can be seen that Example 1 has small dimensional variation of the molded product.

実施例2と比較例1を比べると、実施例2は、N1極の磁力が約9%程度高いことがわかり、実施例3と比較例2を比べると、実施例3は、N1極の磁力が約4%程度高いことがわかり、また、比較例2はクラックや錆が発生している。
従って、等方性球状NdFeB系希土類磁性粉の平均粒径は25〜65μmが最適であることがわかる。
Comparing Example 2 and Comparative Example 1, it can be seen that Example 2 has a magnetic force of N1 pole about 9% higher. Comparing Example 3 and Comparative Example 2, Example 3 has a magnetic force of N1 pole. Is about 4% higher, and Comparative Example 2 is cracked or rusted.
Therefore, it is understood that the average particle diameter of the isotropic spherical NdFeB rare earth magnetic powder is optimally 25 to 65 μm.

実施例4と比較例3を比べると、実施例4は、成形品の寸法バラツキが小さいことがわかる。
従って、本発明の樹脂磁石材料のプラストミル試験での最大トルクは330kg・cm〜430kg・cmかつ10分後のトルクが260kg・cm〜320kg・cmが適切であることがわかる。
Comparing Example 4 and Comparative Example 3, it can be seen that Example 4 has small dimensional variation of the molded product.
Therefore, it can be seen that it is appropriate that the maximum torque in the plastmill test of the resin magnet material of the present invention is 330 kg · cm to 430 kg · cm and the torque after 10 minutes is 260 kg · cm to 320 kg · cm.

実施例6、7は高温押出による樹脂劣化がなく、溶融樹脂磁石材料中の磁性粒子が配向しやすくなり、実施例1よりN1極の磁力が約1〜5%向上している。従って、樹脂磁石材料にヒンダードフェノール系安定剤を添加することにより、高温押出が可能となり、結果的に磁気特性の良いマグネットピースが得られ、また、樹脂磁石材料に添加するヒンダードフェノール系安定剤は、重量比で0.02%〜0.15%添加することが望ましいことがわかる。   In Examples 6 and 7, there is no resin deterioration due to high temperature extrusion, the magnetic particles in the molten resin magnet material are easily oriented, and the magnetic force of the N1 pole is improved by about 1 to 5% compared to Example 1. Therefore, by adding a hindered phenol stabilizer to the resin magnet material, high-temperature extrusion is possible, resulting in a magnet piece with good magnetic properties, and the hindered phenol stabilizer added to the resin magnet material. It can be seen that it is desirable to add 0.02% to 0.15% by weight of the agent.

実施例8と比較例4を比べると、実施例8のN1極の磁力は約5%程度高いことがわかる。これは、比較例4の等方性球状NdFeB系希土類磁性粉の割合が少なすぎ、等方性球状NdFeB系希土類磁性粉の効果が発現していない。従って、本発明の樹脂磁石材料において、等方性球状NdFeB系希土類磁性粉の含有量が10重量%以上が適切であることがわかる。   Comparing Example 8 and Comparative Example 4, it can be seen that the magnetic force of the N1 pole of Example 8 is about 5% higher. This is because the proportion of the isotropic spherical NdFeB rare earth magnetic powder of Comparative Example 4 is too small, and the effect of the isotropic spherical NdFeB rare earth magnetic powder is not exhibited. Therefore, it can be seen that the content of the isotropic spherical NdFeB-based rare earth magnetic powder in the resin magnet material of the present invention is 10% by weight or more.

マグネット本体部の押出成形用金型(磁気回路)Mold for magnet body extrusion (magnetic circuit) 本発明のマグネットローラMagnet roller of the present invention マグネットピースの押出成形用金型Mold for extrusion of magnet pieces マグネットピースの押出成形用金型Mold for extrusion of magnet pieces マグネットピースの押出成形用金型Mold for extrusion of magnet pieces 本発明の別のマグネットローラAnother magnet roller of the present invention 本発明のマグネットローラ断面図とその磁束密度パターンCross section of the magnet roller of the present invention and its magnetic flux density pattern

符号の説明Explanation of symbols

1 マグネット本体部
2 空間部
3 電磁石あるいは永久磁石
4 ヨーク
5 シャフト
6 ヨーク
7 マグネットピース
8 磁性粒子の配向着磁方向
9 マグネットピース
10 マグネットピース
11 マグネットピース
12 マグネットローラ中心点
13 磁束密度パターン
14 磁束密度ピーク位置
15 スリーブ
DESCRIPTION OF SYMBOLS 1 Magnet body part 2 Space part 3 Electromagnet or permanent magnet 4 Yoke 5 Shaft 6 Yoke 7 Magnet piece 8 Orientation magnetization direction of magnetic particle 9 Magnet piece 10 Magnet piece 11 Magnet piece 12 Magnet roller center point 13 Magnetic flux density pattern 14 Magnetic flux density Peak position 15 Sleeve

Claims (3)

強磁性体粉末と樹脂バインダーを主体とする混合物である押出成形用樹脂磁石材料において、強磁性体粉末として平均粒径が25〜65μmである等方性球状NdFeB系希土類磁性粉と樹脂バインダーとしてエチレンエチルアクリレート樹脂を含有する混合物のラボプラストミル試験(投入量はミキサー容量の92%、樹脂温度180℃、回転数60rpm)による最大溶融トルクが330kg・cm〜430kg・cmかつ10分後のトルクが260kg・cm〜320kg・cmであることを特徴とする押出成形用樹脂磁石材料。   In a resin magnet material for extrusion which is a mixture mainly composed of a ferromagnetic powder and a resin binder, an isotropic spherical NdFeB rare earth magnetic powder having an average particle diameter of 25 to 65 μm as a ferromagnetic powder and ethylene as a resin binder The maximum melt torque from 330 kg · cm to 430 kg · cm and the torque after 10 minutes is measured by a lab plastmill test (mixing amount is 92% of mixer capacity, resin temperature 180 ° C., rotation speed 60 rpm) of the mixture containing ethyl acrylate resin. A resin magnet material for extrusion molding, which is 260 kg · cm to 320 kg · cm. 強磁性体粉末と樹脂バインダーを主体とする混合物にヒンダードフェノール系安定剤を0.02重量%〜0.15重量%添加することを特徴とする請求項1記載の押出成形用樹脂磁石材料。   2. The resin magnet material for extrusion molding according to claim 1, wherein 0.02% by weight to 0.15% by weight of a hindered phenol stabilizer is added to a mixture mainly composed of ferromagnetic powder and resin binder. 上記強磁性粉末において、平均粒径が25〜65μmである等方性球状NdFeB系希土類磁性粉とフェライト系磁性粉を混合し、平均粒径が25〜65μmである等方性球状NdFeB系希土類磁性粉を10重量%以上含むことを特徴とする請求項1、2記載の押出成形用樹脂磁石材料。   In the above ferromagnetic powder, an isotropic spherical NdFeB rare earth magnetic powder having an average particle diameter of 25 to 65 μm and an isotropic spherical NdFeB rare earth magnetic powder having an average particle diameter of 25 to 65 μm are mixed. The resin magnet material for extrusion molding according to claim 1 or 2, characterized by containing 10% by weight or more of powder.
JP2005180050A 2004-09-01 2005-06-21 Resin magnet material Pending JP2006100783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180050A JP2006100783A (en) 2004-09-01 2005-06-21 Resin magnet material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004254015 2004-09-01
JP2005180050A JP2006100783A (en) 2004-09-01 2005-06-21 Resin magnet material

Publications (1)

Publication Number Publication Date
JP2006100783A true JP2006100783A (en) 2006-04-13

Family

ID=36240251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180050A Pending JP2006100783A (en) 2004-09-01 2005-06-21 Resin magnet material

Country Status (1)

Country Link
JP (1) JP2006100783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363228A (en) * 2019-12-16 2020-07-03 横店集团东磁股份有限公司 EEA filling modified magnetic particle material for injection molding and preparation method thereof
CN114456540A (en) * 2022-01-14 2022-05-10 滁州杰事杰新材料有限公司 Melamine formaldehyde resin composite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036403A (en) * 1998-07-21 2000-02-02 Seiko Epson Corp Rare earth bonded magnet composition, rare earth bonded magnet, and manufacture thereof
JP2002190421A (en) * 2000-10-13 2002-07-05 Bridgestone Corp Molded item for resin magnet and its manufacturing method therefor
JP2004228274A (en) * 2003-01-22 2004-08-12 Mate Co Ltd Magnet composition and its molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036403A (en) * 1998-07-21 2000-02-02 Seiko Epson Corp Rare earth bonded magnet composition, rare earth bonded magnet, and manufacture thereof
JP2002190421A (en) * 2000-10-13 2002-07-05 Bridgestone Corp Molded item for resin magnet and its manufacturing method therefor
JP2004228274A (en) * 2003-01-22 2004-08-12 Mate Co Ltd Magnet composition and its molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363228A (en) * 2019-12-16 2020-07-03 横店集团东磁股份有限公司 EEA filling modified magnetic particle material for injection molding and preparation method thereof
CN114456540A (en) * 2022-01-14 2022-05-10 滁州杰事杰新材料有限公司 Melamine formaldehyde resin composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4952957B2 (en) Rotating machine, bonded magnet, magnet roll, and method for producing sintered ferrite magnet
WO2001041162A1 (en) Magnetic rubber composition for encoder
JP2006100783A (en) Resin magnet material
WO2002033002A1 (en) Composition for synthetic resin composition and formed resin magnet
JP4650042B2 (en) Resin magnet composition
JP2006308663A (en) Magnet roller and its manufacture method
JP4747772B2 (en) Resin magnet material
JP2008270286A (en) Magnet material composition
JP5518286B2 (en) Magnet roller
JP2006199804A (en) Resin magnet material
JP4556649B2 (en) Magnet roller manufacturing method
JP2006024606A (en) Magnet roller
JP4530228B2 (en) Semi-rigid bonded magnet
JP4960642B2 (en) Magnet roller
JP2002146136A (en) Non-cured heat-resistant magnetic molding
JP2005236225A (en) Compound for bonded magnet and rare-earth bonded magnet
JP2005352414A (en) Magnet roller
JP2006215148A (en) Magnet roller
JP2007219254A (en) Magnet roller
JP2009242544A (en) Magnet material composition
JP2007033623A (en) Magnet roller
JP2009272429A (en) Resin magnet composition
JP3301382B2 (en) Composition for resin magnet and magnet roller using the composition
JP2008300729A (en) Magnet roller
JP2007129168A (en) Resin magnet composition and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201