JP2006098321A - Semiconductor-type three-axis acceleration sensor - Google Patents

Semiconductor-type three-axis acceleration sensor Download PDF

Info

Publication number
JP2006098321A
JP2006098321A JP2004287077A JP2004287077A JP2006098321A JP 2006098321 A JP2006098321 A JP 2006098321A JP 2004287077 A JP2004287077 A JP 2004287077A JP 2004287077 A JP2004287077 A JP 2004287077A JP 2006098321 A JP2006098321 A JP 2006098321A
Authority
JP
Japan
Prior art keywords
section
flexible
support frame
piezoresistive
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004287077A
Other languages
Japanese (ja)
Other versions
JP4431475B2 (en
Inventor
Yoshio Ikeda
由夫 池田
Isao Sakaguchi
勇夫 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004287077A priority Critical patent/JP4431475B2/en
Priority to TW094132470A priority patent/TWI277735B/en
Priority to EP05020680A priority patent/EP1643255B1/en
Priority to DE602005022149T priority patent/DE602005022149D1/en
Priority to KR1020050089124A priority patent/KR100656698B1/en
Priority to US11/238,012 priority patent/US7222536B2/en
Priority to CNB2005101315902A priority patent/CN100381825C/en
Publication of JP2006098321A publication Critical patent/JP2006098321A/en
Application granted granted Critical
Publication of JP4431475B2 publication Critical patent/JP4431475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor-type three-axis acceleration sensor that has low offset voltage with a high power and has a sufficient temperature characteristic of offset voltage. <P>SOLUTION: The acceleration sensor comprises a support frame section formed in a rim section of a silicon single crystal substrate, a mass section formed in a center section, a thin beam-like flexible section that is disposed over the mass section and the support frame section and connects the mass section to the support frame section, and a plurality of pairs of piezoresistors and a pipe section formed on the upper side of an elastic section. A plurality of piezoresistors are disposed at positions symmetric with respect to the center line of the flexible section, one end of each of the plurality of piezoresistors is arranged in a boundary region between the support frame section and the flexible section or between the mass section and the flexible section, the plurality of piezoresistors are connected in series on a high-concentration diffusion layer on the flexible section, and the connecting part of the piezoresistors with a metal pipe is preferably disposed in the mass section or the support frame section. The boundary region means a dimension range from a boundary where the support frame section comes into contact with the flexible section to the support frame section side and the flexible section side by about twice in the width direction of the piezoresistors, and indicates the range of substantially ±10 μm boundary. The boundary region between the mass section and the flexible section is similar. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車、航空機、家電製品、ゲーム機、ロボット、セキュリティーシステム
等に使用される、半導体型の3軸加速度センサに関するものである。
The present invention relates to a semiconductor-type three-axis acceleration sensor used in automobiles, aircraft, home appliances, game machines, robots, security systems, and the like.

従来のピエゾ抵抗型3軸加速度センサの構造について詳細に説明する。図8に、特許文
献1に記載されている加速度センサの展開斜視図を示す。加速度センサ10は、加速度セ
ンサ素子1がケース2に接着剤で固定され、蓋3がケース2に接着剤で固定されている。
加速度センサ素子1の端子7とケース2の端子5は金属線4で接続され、外部端子6から
加速度センサ素子の出力が外部に取り出されるものである。本願では、加速度センサ素子
1を加速度センサと称することもある。
The structure of a conventional piezoresistive triaxial acceleration sensor will be described in detail. FIG. 8 shows a developed perspective view of the acceleration sensor described in Patent Document 1. In FIG. In the acceleration sensor 10, the acceleration sensor element 1 is fixed to the case 2 with an adhesive, and the lid 3 is fixed to the case 2 with an adhesive.
The terminal 7 of the acceleration sensor element 1 and the terminal 5 of the case 2 are connected by a metal wire 4, and the output of the acceleration sensor element is taken out from the external terminal 6 to the outside. In the present application, the acceleration sensor element 1 may be referred to as an acceleration sensor.

加速度センサ素子1の斜視図を図9に、ピエゾ抵抗素子の配置を図10に示す。図10
はピエゾ抵抗素子の配置が判り易くなるように、金属配線17や端子7の記載は省略して
いる。シリコン単結晶基板の厚肉部から成る質量部13とそれを取り囲むように配された
支持枠部11と、該質量部13および支持枠部11とを接続するシリコン単結晶基板の薄
肉部より成る2対の互いに直交する梁状の可撓部21、21’、22、22’と該可撓部
上の2つの直交する方向(XとY)及び該可撓部21、21’、22、22’に垂直な方
向(Z)に対応するように設けられた各軸複数のピエゾ抵抗素子51と51’、52と5
2’、61と61’、62と62’、71と71’、72と72’とから構成される。ま
た、可撓部21、21’、22、22’は薄肉部に貫通穴14を設けることによって梁形
状となっており、変形しやすく、高感度化に向いた構造となっている。
A perspective view of the acceleration sensor element 1 is shown in FIG. 9, and the arrangement of the piezoresistive elements is shown in FIG. FIG.
The illustration of the metal wiring 17 and the terminal 7 is omitted so that the arrangement of the piezoresistive elements can be easily understood. A mass portion 13 composed of a thick portion of the silicon single crystal substrate, a support frame portion 11 disposed so as to surround the mass portion 13, and a thin portion of the silicon single crystal substrate connecting the mass portion 13 and the support frame portion 11. Two pairs of beam-like flexible portions 21, 21 ', 22, 22' orthogonal to each other, two orthogonal directions (X and Y) on the flexible portion, and the flexible portions 21, 21 ', 22, A plurality of piezoresistive elements 51 and 51 ', 52 and 5 provided for each axis so as to correspond to a direction (Z) perpendicular to 22'
2 ', 61 and 61', 62 and 62 ', 71 and 71', 72 and 72 '. Further, the flexible portions 21, 21 ', 22, and 22' have a beam shape by providing the through-hole 14 in the thin portion, and are easily deformed and have a structure suitable for high sensitivity.

特開2004−184373 図3Japanese Patent Laid-Open No. 2004-184373 FIG.

加速度の検出原理は、中央の質量部13が加速度に比例した力を受けて変位したとき、
可撓部21、21’、22、22’の撓みを、可撓部に形成されたピエゾ抵抗素子群51
と51’、52と52’、61と61’、62と62’、71と71’、72と72’の
抵抗値変化として検出することで、3軸方向の加速度を検出するものである。ここで、可
撓部21、21’上の4つのピエゾ抵抗素子51、51’、52、52’はX軸方向の加
速度を、また、他の4つのピエゾ抵抗素子71、71’、72、72’は素子面に垂直な
Z軸方向の加速度を検出し、また可撓部22、22’上の4つのピエゾ抵抗素子61、6
1’、62、62’はX軸方向と直交するY軸方向の加速度を検出する。これら各軸4つ
のピエゾ抵抗素子は、独立してブリッジ回路を構成するように金属配線で結線されており
、X軸においては51と51’および52と52’をそれぞれピエゾ抵抗素子対と呼び、
同様にY軸においては61と61’および62と62’、Z軸においては71と71’お
よび72と72’がピエゾ抵抗素子対を成す。また、X,Y軸は出力検出原理、結線方法
およびピエゾ抵抗素子の配置が同じであり、それぞれ他方の軸と入れ替えることができる
ため、以降X軸およびY軸を、特に断りの無い限りX軸と表記することとする。
The principle of acceleration detection is that when the mass part 13 at the center is displaced by receiving a force proportional to the acceleration,
The piezoresistive element group 51 formed in the flexible portion is bent by the flexible portions 21, 21 ', 22, 22'.
, 51 ′, 52 and 52 ′, 61 and 61 ′, 62 and 62 ′, 71 and 71 ′, and 72 and 72 ′, the acceleration in the three-axis direction is detected. Here, the four piezoresistive elements 51, 51 ′, 52, 52 ′ on the flexible portions 21, 21 ′ have acceleration in the X-axis direction, and the other four piezoresistive elements 71, 71 ′, 72, 72 ′ detects acceleration in the Z-axis direction perpendicular to the element surface, and four piezoresistive elements 61, 6 on the flexible portions 22, 22 ′.
Reference numerals 1 ′, 62, and 62 ′ detect accelerations in the Y-axis direction orthogonal to the X-axis direction. These four piezoresistive elements on each axis are connected by metal wiring so as to form a bridge circuit independently. In the X-axis, 51 and 51 ′ and 52 and 52 ′ are called piezoresistive element pairs, respectively.
Similarly, 61 and 61 ′ and 62 and 62 ′ in the Y axis, and 71 and 71 ′ and 72 and 72 ′ in the Z axis form a piezoresistive element pair. Also, the X and Y axes have the same output detection principle, connection method, and arrangement of piezoresistive elements, and can be replaced with the other axis. Therefore, the X axis and Y axis are hereinafter referred to as the X axis unless otherwise specified. It shall be written as

従来の3軸加速度センサにおけるピエゾ抵抗素子の配置について説明する。図10に示
すように、X軸用ピエゾ抵抗素子対とZ軸用ピエゾ抵抗素子対の片端が、可撓部と支持枠
部の境界領域および可撓部と質量部の境界領域に配される構造となっていた。これは可撓
部が加速度を受けて撓んだとき、可撓部における支持枠部および質量部近傍の領域に応力
が集中するため、最大のセンサ出力が得られるためである。本願では、ピエゾ抵抗素子の
ブリッジ出力を、出力電圧や感度、出力と称している。
The arrangement of piezoresistive elements in a conventional triaxial acceleration sensor will be described. As shown in FIG. 10, one end of the X-axis piezoresistive element pair and the Z-axis piezoresistive element pair is arranged in the boundary area between the flexible part and the support frame part and in the boundary area between the flexible part and the mass part. It was a structure. This is because when the flexible portion is bent under acceleration, stress concentrates on the support frame portion and the mass portion vicinity of the flexible portion, so that the maximum sensor output can be obtained. In the present application, the bridge output of the piezoresistive element is referred to as output voltage, sensitivity, or output.

図11に、従来の3軸加速度センサ可撓部の構造を示す。図11a)に、可撓部に形成
されたピエゾ抵抗素子と金属配線のX,Z軸の接続図を、図11b)に、Y軸接続図を示
す。可撓部22の両端に配置されたピエゾ抵抗素子対61,61’は、その内側端同士を
金属配線17で接続し、可撓部中央から金属配線17を分岐して支持枠部11上へと引き
出している。またピエゾ抵抗素子対の外側端は支持枠部11上または質量部13上へと引
き出している。これらの金属配線17は可撓部外の領域でブリッジ結線を成している。図
11c)は、Y軸のc−c’断面図で、ピエゾ抵抗素子と金属配線の接続方法を説明する
。可撓部のシリコン45に形成されたピエゾ抵抗素子61、61’の両端に高濃度拡散層
41が形成される。シリコン45と金属配線17の電気的絶縁を得るため全面に絶縁層3
1を設ける。高濃度拡散層41上の絶縁層31にスルーホールを形成し、金属配線17を
付与することで高濃度拡散層41と電気的に接続している。ピエゾ抵抗素子61,61と
金属配線17を接続する部位に高濃度拡散層41を設けることで、ピエゾ抵抗素子61、
61’と金属配線17の間の良好な電気的接続(オーミックコンタクト)が得られる。ピ
エゾ抵抗素子と金属配線を直接接続すると接触抵抗が大きくなり良好な接続が得られない
が、高濃度拡散層を介することでピエゾ抵抗素子および金属配線の何れとも良好な接続が
得られる。図11c)の電気的接続経路は図の左側から、金属配線−高濃度拡散層−ピエ
ゾ抵抗体−高濃度拡散層−金属配線−高濃度拡散層−ピエゾ抵抗体−高濃度拡散層−金属
配線となる。
FIG. 11 shows a structure of a conventional three-axis acceleration sensor flexible portion. FIG. 11a) shows a connection diagram of the piezoresistive element formed on the flexible portion and the metal wiring on the X and Z axes, and FIG. 11b) shows a Y axis connection diagram. The pair of piezoresistive elements 61 and 61 ′ arranged at both ends of the flexible portion 22 are connected to the inner ends thereof by a metal wiring 17, branching the metal wiring 17 from the center of the flexible portion and onto the support frame portion 11. And pull out. Further, the outer end of the piezoresistive element pair is drawn out onto the support frame portion 11 or the mass portion 13. These metal wirings 17 form a bridge connection in a region outside the flexible portion. FIG. 11 c) is a cross-sectional view along the cc ′ line on the Y axis, and illustrates a method of connecting the piezoresistive element and the metal wiring. High concentration diffusion layers 41 are formed at both ends of the piezoresistive elements 61 and 61 ′ formed in the silicon 45 of the flexible part. In order to obtain electrical insulation between the silicon 45 and the metal wiring 17, the insulating layer 3 is formed on the entire surface.
1 is provided. A through hole is formed in the insulating layer 31 on the high concentration diffusion layer 41 and the metal wiring 17 is provided so as to be electrically connected to the high concentration diffusion layer 41. By providing the high-concentration diffusion layer 41 at a site connecting the piezoresistive elements 61 and 61 and the metal wiring 17, the piezoresistive element 61,
A good electrical connection (ohmic contact) between 61 'and the metal wiring 17 is obtained. When the piezoresistive element and the metal wiring are directly connected, the contact resistance increases and a good connection cannot be obtained, but a good connection can be obtained with both the piezoresistive element and the metal wiring through the high concentration diffusion layer. The electrical connection path of FIG. 11c is from the left side of the figure, metal wiring-high concentration diffusion layer-piezoresistor-high concentration diffusion layer-metal wiring-high concentration diffusion layer-piezoresistor-high concentration diffusion layer-metal wiring. It becomes.

ピエゾ抵抗素子や高濃度拡散層41はN型のシリコン基板にP型のボロン等を部分的に
拡散することにより形成される。ピエゾ抵抗素子については、応力に対する抵抗変化が大
きく、温度にしては抵抗変化の小さいことが求められるため、拡散濃度は2×1019
子/cm程度としている。高濃度拡散層は、シート抵抗値が小さく、応力に対しても抵
抗変化が小さいことが求められるため、ピエゾ抵抗素子よりも3桁程度拡散濃度を高くし
ている。ピエゾ抵抗素子は、N型のシリコン基板にP型のボロン等を拡散させても、P型
のシリコン基板にN型のリン等を拡散させても作ることができ、これらの高濃度拡散層の
呼称は前者をP+、後者をN+としている。
The piezoresistive element and the high-concentration diffusion layer 41 are formed by partially diffusing P-type boron or the like on an N-type silicon substrate. The piezoresistive element is required to have a large resistance change with respect to stress and a small resistance change with respect to temperature, so the diffusion concentration is set to about 2 × 10 19 atoms / cm 3 . Since the high-concentration diffusion layer is required to have a small sheet resistance value and a small resistance change against stress, the diffusion concentration is increased by about three orders of magnitude compared to the piezoresistive element. A piezoresistive element can be made by diffusing P-type boron or the like in an N-type silicon substrate or by diffusing N-type phosphorus or the like in a P-type silicon substrate. The name is P + for the former and N + for the latter.

加速度センサの出力電圧を上げるために、X軸用ピエゾ抵抗素子対とZ軸用ピエゾ抵抗
素子対の片端が、可撓部と支持枠部の境界領域および可撓部と質量部の境界領域に配され
た構造としていた。可撓部の応力は、支持枠部端および質量部端に集中しており、両端か
ら離れるに従い急激に低下し、可撓部中央では応力が零となっている。ピエゾ抵抗素子の
抵抗変化はピエゾ抵抗素子の長さ全体の平均応力変化に対応するため、センサの高感度化
のためにはピエゾ抵抗素子の長さを短くして、支持枠部端領域もしくは質量部端領域の応
力集中部に選択的に配置するのが効率的である。しかし、単純にピエゾ抵抗素子を短くす
ると素子抵抗値が低くなり消費電力が大きくなってしまう問題がある。また、ピエゾ抵抗
素子の幅を狭くすると、製造プロセスに起因する寸法ばらつきによる抵抗値ばらつきが大
きくなってしまう問題があった。このことから、短くした複数本のピエゾ抵抗素子を応力
集中部に配して、直列に結ぶことで出力電圧を大きくすることが好ましいことが理解でき
る。
In order to increase the output voltage of the acceleration sensor, one end of the X-axis piezoresistive element pair and the Z-axis piezoresistive element pair is located at the boundary area between the flexible part and the support frame part and between the flexible part and the mass part. The structure was arranged. The stress of the flexible portion is concentrated at the end of the support frame portion and the end of the mass portion, and rapidly decreases as the distance from both ends increases, and the stress is zero at the center of the flexible portion. The resistance change of the piezoresistive element corresponds to the average stress change of the entire length of the piezoresistive element. Therefore, to increase the sensitivity of the sensor, the length of the piezoresistive element is shortened and the support frame end region or mass It is efficient to selectively dispose in the stress concentration part of the part end region. However, if the piezoresistive element is simply shortened, there is a problem that the element resistance value is lowered and the power consumption is increased. Further, when the width of the piezoresistive element is narrowed, there is a problem that the resistance value variation due to the dimensional variation due to the manufacturing process increases. From this, it can be understood that it is preferable to increase the output voltage by arranging a plurality of shortened piezoresistive elements in the stress concentration portion and connecting them in series.

しかし、従来のピエゾ抵抗素子と金属配線の方法を用いて、短くした複数本のピエゾ抵
抗素子を接続すると、従来品に比べて出力電圧が大きくなり感度は向上するが、オフセッ
ト電圧とオフセット電圧の温度変化率が悪化すると言う結果しか得られなかった。原因と
して考えられるのは、可撓部上でのピエゾ抵抗素子と金属配線の接続部が増えたためと考
えられる。接続部は絶縁層にスルーホールを開けて、ピエゾ抵抗素子と金属配線を形成す
る構成となっており、接続部近傍は熱膨張係数や応力の異なる材料が複雑な形状で組み合
わされている。このため、可撓部が変形した時に接続部がピエゾ抵抗素子に加わる変形を
阻害する方向に働き、ブリッジを構成するピエゾ抵抗素子のバランスを崩し、加速度セン
サのオフセット電圧をばらつかせる大きな要因となっていたと考えられる。同様に、加速
度センサ素子の温度が変化し、可撓部が熱膨張収縮することでピエゾ抵抗素子に不必要な
力を与え、オフセット電圧を発生させることになる。特に、質量部が上下するZ軸方向で
オフセット電圧のばらつきが大きくなる。X軸,Y軸もオフセット電圧は大きくなるがZ
軸に比べると小さいため、特にZ軸のオフセット電圧を抑えることが重要である。温度に
よって各材料の伸び縮みの量に微妙な差が生じるため、温度を変化させたときのオフセッ
ト電圧の直線性を乱す要因ともなっていた。温度変化時のオフセット電圧の直線性が悪い
と、オフセット電圧を補正する回路が複雑となり、技術的にもコスト的にも難しくなる。
However, when a plurality of shortened piezoresistive elements are connected using the conventional piezoresistive element and metal wiring method, the output voltage becomes larger and the sensitivity is improved compared to the conventional product, but the offset voltage and offset voltage Only the result that the rate of temperature change deteriorated was obtained. A possible reason is that the number of connecting portions between the piezoresistive element and the metal wiring on the flexible portion is increased. The connecting portion has a structure in which a through-hole is formed in the insulating layer to form a piezoresistive element and a metal wiring. In the vicinity of the connecting portion, materials having different coefficients of thermal expansion and stress are combined in a complicated shape. For this reason, when the flexible part is deformed, the connecting part works in a direction to hinder the deformation applied to the piezoresistive element, the balance of the piezoresistive element constituting the bridge is lost, and the offset voltage of the acceleration sensor varies. It is thought that it was. Similarly, when the temperature of the acceleration sensor element changes and the flexible portion thermally expands and contracts, an unnecessary force is applied to the piezoresistive element and an offset voltage is generated. In particular, variation in offset voltage increases in the Z-axis direction in which the mass part moves up and down. X-axis and Y-axis also have larger offset voltage but Z
Since it is smaller than the axis, it is particularly important to suppress the Z-axis offset voltage. Since a slight difference occurs in the amount of expansion / contraction of each material depending on the temperature, it has become a factor that disturbs the linearity of the offset voltage when the temperature is changed. If the linearity of the offset voltage at the time of temperature change is poor, the circuit for correcting the offset voltage becomes complicated, and it becomes difficult both technically and in terms of cost.

本発明の目的は、高出力でオフセット電圧が小さく、オフセット電圧の温度特性が良好
な半導体型3軸加速度センサを提供することにある。
An object of the present invention is to provide a semiconductor three-axis acceleration sensor having a high output, a small offset voltage, and a good temperature characteristic of the offset voltage.

本発明の半導体型3軸加速度センサは、シリコン単結晶基板の周縁部に形成された支持
枠部と、中央部に形成された質量部と、前記質量部及び前記支持枠部の上方側に設けられ
、該質量部及び支持枠部を接続する薄肉梁状の可撓部と、該弾性部の上面側に形成された
複数対のピエゾ抵抗素子および配線部とを具備し、複数本のピエゾ抵抗素子を可撓部の中
心線に対称の位置に配し、該複数本のピエゾ抵抗素子の一方の端は支持枠部と可撓部の境
界領域もしくは質量部と可撓部の境界領域に配され、該複数本のピエゾ抵抗素子は可撓部
上では高濃度拡散層で直列になるように接続し、ピエゾ抵抗素子と金属配線の接続部は質
量部もしくは支持枠部に設けることが望ましい。
The semiconductor type triaxial acceleration sensor of the present invention is provided on the upper side of the support frame portion formed on the peripheral portion of the silicon single crystal substrate, the mass portion formed in the center portion, and the mass portion and the support frame portion. A plurality of piezoresistors, comprising: a thin-walled flexible portion connecting the mass portion and the support frame portion; and a plurality of pairs of piezoresistive elements and wiring portions formed on the upper surface side of the elastic portion. The element is arranged at a position symmetrical to the center line of the flexible portion, and one end of the plurality of piezoresistive elements is arranged in the boundary region between the support frame portion and the flexible portion or the boundary region between the mass portion and the flexible portion. Preferably, the plurality of piezoresistive elements are connected in series with a high-concentration diffusion layer on the flexible part, and the connecting part between the piezoresistive element and the metal wiring is preferably provided in the mass part or the support frame part.

境界領域とは、支持枠部と可撓部が接する境界から、支持枠側および可撓部側にピエゾ
抵抗素子の幅方向の2倍程度の寸法範囲を言い、略境界±10μmの範囲を指すものであ
る。質量部と可撓部の境界領域も同様である。ピエゾ抵抗素子の一方の端を境界領域外に
配すると、可撓部の支持枠部および質量部近傍の部位に集中した応力を、出力電圧に変換
する効率が低下してしまい、出力の低下つまり感度の低下を起こす。境界領域は固定され
た範囲ではなく、可撓部の幅やピエゾ抵抗素子の幅等が異なる加速度センサ素子では、境
界領域幅は異なっていても良いものである。
The boundary region refers to a size range of about twice the width direction of the piezoresistive element from the boundary where the support frame portion and the flexible portion are in contact to the support frame side and the flexible portion side, and indicates a range of approximately boundary ± 10 μm. Is. The same applies to the boundary area between the mass part and the flexible part. If one end of the piezoresistive element is placed outside the boundary region, the efficiency of converting stress concentrated on the support frame portion of the flexible portion and the portion near the mass portion to the output voltage is reduced, and the output is reduced. It causes a decrease in sensitivity. The boundary region is not a fixed range, and the boundary region width may be different in the acceleration sensor elements having different widths of the flexible portion and the piezoresistive element.

本発明の半導体型3軸加速度センサは、可撓部上では複数のピエゾ抵抗素子は高濃度拡
散層で接続され、ピエゾ抵抗素子と金属配線を直接接続することはない。そのため、絶縁
層にスルーホールを開ける必要が無く、ピエゾ抵抗素子をスルーホールの無い均一な絶縁
層で覆うことができる。スルーホールや金属配線等の形状によって引き起こされていたと
考える、接続部でのピエゾ抵抗素子に加わる変形を阻害する変形を大幅に低減でき、オフ
セット電圧を下げることができる。ピエゾ抵抗素子と高濃度拡散層は、不純物濃度が異な
るだけで同じシリコンであるため、金属配線等との熱膨張係数の差によって生ずると考え
られる、オフセット電圧や温度変化によるオフセット電圧の直線性を改善できるものであ
る。
In the semiconductor triaxial acceleration sensor of the present invention, a plurality of piezoresistive elements are connected by a high-concentration diffusion layer on the flexible part, and the piezoresistive elements and the metal wiring are not directly connected. Therefore, it is not necessary to open a through hole in the insulating layer, and the piezoresistive element can be covered with a uniform insulating layer having no through hole. It is possible to greatly reduce the deformation that hinders the deformation applied to the piezoresistive element at the connection portion, which is considered to be caused by the shape of the through hole, the metal wiring, etc., and the offset voltage can be lowered. Since the piezoresistive element and the high-concentration diffusion layer are the same silicon with different impurity concentrations, the linearity of the offset voltage and the offset voltage due to temperature change, which is considered to be caused by the difference in the thermal expansion coefficient from the metal wiring, etc. It can be improved.

ピエゾ抵抗素子の長さは、ピエゾ抵抗素子幅の5倍以上とするのが望ましい。可撓部の
長さ方向の変形による応力変化を、ピエゾ抵抗素子の長さ方向の抵抗変化で検知している
。しかし、可撓部は長さ方向だけでなく幅方向にも応力変化をしており、ピエゾ抵抗素子
の幅が長さの1/5以上あると、可撓部の幅方向の応力変化に伴うピエゾ抵抗素子の抵抗
変化分が無視できなくなり、ノイズを増加させることになる。また、ピエゾ抵抗素子の幅
は2μm以上で可撓部の幅の1/10未満とするのが好ましい。2μm未満のピエゾ抵抗
素子幅の形成は、フォトリソグラフィー工程やピエゾ抵抗素子形成時のイオン打ち込み工
程でのプロセス安定性が悪くなり、出力電圧やオフセット電圧のばらつきを大きくしてし
まう。ピエゾ抵抗素子の幅を可撓部の幅の1/10以上とすると、可撓部の捻れ等による
幅方向の応力変化の影響が出やすくなってしまうためである。
It is desirable that the length of the piezoresistive element is at least five times the width of the piezoresistive element. A change in stress due to deformation in the length direction of the flexible portion is detected by a change in resistance in the length direction of the piezoresistive element. However, the flexible portion changes in stress not only in the length direction but also in the width direction. If the width of the piezoresistive element is 1/5 or more of the length, the stress changes in the width direction of the flexible portion. The resistance change of the piezoresistive element cannot be ignored, increasing noise. The width of the piezoresistive element is preferably 2 μm or more and less than 1/10 of the width of the flexible portion. The formation of a piezoresistive element width of less than 2 μm deteriorates the process stability in the photolithography process and the ion implantation process when forming the piezoresistive element, and increases the variation in output voltage and offset voltage. This is because if the width of the piezoresistive element is set to 1/10 or more of the width of the flexible portion, the influence of the stress change in the width direction due to the twist of the flexible portion is likely to occur.

ピエゾ抵抗素子を複数本とするメリットについて、2本の場合を例に挙げ説明する。同
じ幅のピエゾ抵抗素子の場合、長さが半分のピエゾ抵抗素子2本を直列に繋ぐことにより
1本の場合と同じ抵抗値とすることができる。半分の長さのピエゾ抵抗素子を2本可撓部
上の応力集中部に隣合せて配置することで、可撓部の最大応力は同じでも検出感度をより
高めることができる。同じ抵抗値なので、消費電力や耐衝撃性は変わらず検出感度を高め
ることができる。可撓部の幅の制約がなければ、ピエゾ抵抗素子数を3本以上とすること
で、検出感度をより高めることが可能となる。複数本のピエゾ抵抗素子の配置については
、全てのピエゾ抵抗素子の片端が可撓部と支持枠部の境界および、可撓部と質量部の境界
と一致するように配置するのが望ましい。可撓部が加速度を受けて撓んだとき、可撓部に
おける支持枠部および質量部近傍の部位に応力集中するため、最大のセンサ出力が得られ
るためである。
The merit of using a plurality of piezoresistive elements will be described by taking two cases as an example. In the case of the piezoresistive elements having the same width, the same resistance value as that in the case of one can be obtained by connecting two piezoresistive elements having a half length in series. By arranging two half-length piezoresistive elements next to the stress concentration part on the flexible part, the detection sensitivity can be further increased even if the maximum stress of the flexible part is the same. Since the resistance values are the same, the detection sensitivity can be increased without changing the power consumption and impact resistance. If there is no restriction on the width of the flexible portion, the detection sensitivity can be further increased by setting the number of piezoresistive elements to three or more. With respect to the arrangement of the plurality of piezoresistive elements, it is desirable to arrange the piezoresistive elements so that one end of each piezoresistive element coincides with the boundary between the flexible portion and the support frame portion and the boundary between the flexible portion and the mass portion. This is because when the flexible portion is bent under acceleration, stress concentrates on the support frame portion and the mass portion vicinity of the flexible portion, so that the maximum sensor output can be obtained.

ピエゾ抵抗素子の本数は偶数が好ましい。偶数本とすることでピエゾ抵抗素子の可撓部
中央側端を高濃度拡散層で直列に接続でき、ピエゾ抵抗素子の他の端部は支持枠部もしく
は質量部上で高濃度拡散層と金属配線を、スルーホールを介して接続することできる。ピ
エゾ抵抗素子を偶数本とすることで簡易な接続パターンで、可撓部上からピエゾ抵抗素子
と金属配線の接続部を無くすことができる。
The number of piezoresistive elements is preferably an even number. By using an even number, the central end of the flexible part of the piezoresistive element can be connected in series with a high-concentration diffusion layer, and the other end of the piezoresistive element is connected to the high-concentration diffusion layer and metal on the support frame or mass part. Wiring can be connected through a through hole. By using an even number of piezoresistive elements, the connection part between the piezoresistive element and the metal wiring can be eliminated from the flexible part with a simple connection pattern.

ピエゾ抵抗素子の配置は可撓部の中心線に対称とするのが望ましい。可撓部に加速度と
して検出したくない捻れ(他軸の加速度)が発生したとき、中心線に対称に配置されたピ
エゾ抵抗素子にはそれぞれ逆方向の応力が加わることになる。逆方向に応力が加わったピ
エゾ抵抗素子を直列に接続することで、応力を相殺することができるため、他軸感度の影
響を最小限に抑えることができる。ピエゾ抵抗素子を奇数本とすると中心線に対称に配置
するのが難しくまた、ピエゾ抵抗素子の接続も難しくなる。奇数本のピエゾ抵抗素子の場
合、可撓部上で金属配線との接続部を無くすため、高濃度拡散層をピエゾ抵抗素子の代わ
り挿入し、偶数本とすることも考えられる。しかし、高濃度拡散層は配線抵抗が金属配線
より3桁程度高いため、配線に用いるとブリッジ抵抗が極端に大きくなってしまい、ピエ
ゾ抵抗の抵抗変化率は同じでもブリッジ回路としての抵抗変化率、すなわち検出感度を著
しく低下させることとなる。ピエゾ抵抗素子を接続する高濃度拡散層の長さは短いことが
好ましいし、不必要に多用は避けることが好ましいものでる。
The arrangement of the piezoresistive elements is preferably symmetric with respect to the center line of the flexible portion. When a twist (acceleration on the other axis) that is not desired to be detected as an acceleration occurs in the flexible portion, stress in the opposite direction is applied to the piezoresistive elements arranged symmetrically with respect to the center line. By connecting the piezoresistive elements to which stress is applied in the opposite direction in series, the stress can be canceled out, so that the influence of other axis sensitivity can be minimized. If the number of piezoresistive elements is an odd number, it is difficult to arrange them symmetrically with respect to the center line, and it becomes difficult to connect the piezoresistive elements. In the case of an odd number of piezoresistive elements, it is conceivable that a high-concentration diffusion layer is inserted in place of the piezoresistive elements in order to eliminate the connection portion with the metal wiring on the flexible portion. However, since the high-concentration diffusion layer has a wiring resistance that is about three orders of magnitude higher than that of metal wiring, the bridge resistance becomes extremely large when used for wiring, and even if the resistance change rate of the piezoresistor is the same, the resistance change rate as a bridge circuit, That is, the detection sensitivity is significantly reduced. The length of the high-concentration diffusion layer connecting the piezoresistive elements is preferably short, and it is preferable to avoid unnecessary use.

本発明により、可撓部上の応力集中部に従来の半分以下の長さのピエゾ抵抗素子を、可
撓部中心線に対し対称配置し、高濃度拡散層で接続することで、センサの耐衝撃性に影響
する可撓部の最大応力は変えずに、センサの高感度化が実現できた。ピエゾ抵抗素子と金
属配線の接続部を可撓部外に配することで、可撓部自体は均質なシリコンと絶縁膜、対称
配置した配線構造とできた。これにより、可撓部を異常変形させる応力を著しく低減する
ことができ、オフセット電圧ばらつきが小さくオフセット電圧の温度特性が良好な半導体
型3軸加速度センサを提供することができた。
According to the present invention, a piezoresistive element having a length less than half the conventional length is placed symmetrically with respect to the center line of the flexible part at the stress concentration part on the flexible part and connected by a high-concentration diffusion layer. The sensitivity of the sensor could be increased without changing the maximum stress of the flexible part that affected the impact. By arranging the connection portion between the piezoresistive element and the metal wiring outside the flexible portion, the flexible portion itself can be made into a wiring structure in which homogeneous silicon and an insulating film are arranged symmetrically. As a result, the stress that abnormally deforms the flexible portion can be remarkably reduced, and a semiconductor-type triaxial acceleration sensor having a small offset voltage variation and a good temperature characteristic of the offset voltage can be provided.

以下、本発明の実施例について、図を用いて詳細に説明する。説明を判り易くするため
、同じ部品、部位には同一の符号を用いている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In order to make the explanation easy to understand, the same reference numerals are used for the same parts and parts.

図1は、本発明の加速度センサ素子の斜視図である。半導体型3軸加速度センサの基本
的な構成、構造は加速度センサ素子が異なるだけで、図8に示した従来例の展開斜視図と
同じであるので図示は省略している。本願で実施した加速度センサの構成、構造を簡単に
述べる。加速度センサ素子1は、ケース2にφ10μmの硬質プラスチック球を含有した
接着剤で固着した。加速度センサ素子1の質量部13の底面と、ケース2の内底との間隔
gは、硬質プラスチックの球径で規制し10μmとした。この間隔gは、過度の加速度が
加わった時に、質量部13の動きを規制し可撓部の破損を防ぐものである。加速度センサ
素子1の端子7とケース2の端子5は金属線4で接続した。金属線4はφ25μmの金の
裸線を超音波ボンディングで端子5,7に熔接した。図示はしていないが、加速度センサ
素子1の上にφ10μmの硬質プラスチック球を含有した接着剤でストッパーを固着した
。ストッパーには、厚さ0.3mmの青板ガラスを用いた。このストッパーと加速度セン
サとの間隔gも、質量部13の過度の動きを規制し可撓部の破損を防ぐものである。ケー
スの蓋3をケース2にエポキシ系の樹脂で固着して加速度センサ10を得た。図1に示す
本願の加速度センサ素子1は、周縁部に設けられた支持枠部11と、中央部に形成された
質量部13と、質量部と支持枠部を接続する薄肉梁状の可撓部21,22からなり、可撓
部21,22の上面側には複数対の高濃度拡散層で接続された、ピエゾ抵抗素子51,5
2,61,62,71,72を形成している。配線パターンおよび端子の図示は省略した
FIG. 1 is a perspective view of an acceleration sensor element of the present invention. The basic configuration and structure of the semiconductor triaxial acceleration sensor is the same as the developed perspective view of the conventional example shown in FIG. The configuration and structure of the acceleration sensor implemented in this application will be briefly described. The acceleration sensor element 1 was fixed to the case 2 with an adhesive containing φ10 μm hard plastic spheres. The distance g between the bottom surface of the mass portion 13 of the acceleration sensor element 1 and the inner bottom of the case 2 is regulated by the spherical diameter of the hard plastic and is 10 μm. This gap g is intended to restrict the movement of the mass portion 13 and prevent the flexible portion from being damaged when excessive acceleration is applied. The terminal 7 of the acceleration sensor element 1 and the terminal 5 of the case 2 were connected by a metal wire 4. As the metal wire 4, a bare gold wire having a diameter of 25 μm was welded to the terminals 5 and 7 by ultrasonic bonding. Although not shown, a stopper was fixed on the acceleration sensor element 1 with an adhesive containing a hard plastic sphere having a diameter of 10 μm. A blue plate glass having a thickness of 0.3 mm was used for the stopper. The gap g between the stopper and the acceleration sensor also restricts excessive movement of the mass portion 13 and prevents breakage of the flexible portion. The case lid 3 was fixed to the case 2 with an epoxy resin to obtain an acceleration sensor 10. The acceleration sensor element 1 of the present application shown in FIG. 1 includes a support frame portion 11 provided at a peripheral portion, a mass portion 13 formed at a central portion, and a thin-walled flexible member connecting the mass portion and the support frame portion. The piezoresistive elements 51 and 5 are composed of portions 21 and 22 and are connected to the upper surface side of the flexible portions 21 and 22 by a plurality of pairs of high-concentration diffusion layers.
2, 61, 62, 71, 72 are formed. Illustration of wiring patterns and terminals is omitted.

図2にピエゾ抵抗素子の配置を示す。可撓部21,21’にはX軸用のピエゾ抵抗素子
51,51’,52,52’とZ軸用のピエゾ抵抗素子71,71’,72,72’を、
可撓部22,22’にはY軸用のピエゾ抵抗素子61,61’,62,62’を設けてい
る。応力集中部である可撓部と質量部、支持枠部の境界部にピエゾ抵抗素子の端部を配置
した。これらのピエゾ抵抗素子は、従来ピエゾ抵抗素子と幅が同じで長さが半分のピエゾ
抵抗素子を高濃度拡散層で直列に接続した。X軸用ピエゾ抵抗素子2本を可撓部中心軸対
称に配置し、Z軸用のピエゾ抵抗素子2本は、X軸用ピエゾ抵抗素子を挟むように配置し
た。逆に、Z軸用のピエゾ抵抗素子を挟むようにX軸用のピエゾ抵抗素子を配することも
可能である。本実施例では、X軸用ピエゾ抵抗素子の位置をY軸のピエゾ抵抗素子の位置
に合わせることで、X軸とY軸のピエゾ抵抗素子位置によって発生する可能性のある、出
力電圧やオフセット電圧の値を排除して測定精度を上げた。各軸用の2本のピエゾ抵抗素
子は可撓部内側端を高濃度拡散層で接続し、外側端は支持枠部または質量部上でスルーホ
ールを介し金属配線に接続した。
FIG. 2 shows the arrangement of the piezoresistive elements. The flexible portions 21 and 21 ′ include piezoresistive elements 51, 51 ′, 52, and 52 ′ for X-axis and piezoresistive elements 71, 71 ′, 72, and 72 ′ for Z-axis,
Y-axis piezoresistive elements 61, 61 ', 62, 62' are provided on the flexible portions 22, 22 '. An end portion of the piezoresistive element is arranged at a boundary portion between the flexible portion and the mass portion, which are the stress concentration portions, and the support frame portion. In these piezoresistive elements, piezoresistive elements having the same width and half the length as conventional piezoresistive elements are connected in series with a high-concentration diffusion layer. Two X-axis piezoresistive elements were arranged symmetrically with respect to the central axis of the flexible portion, and two Z-axis piezoresistive elements were arranged so as to sandwich the X-axis piezoresistive element. Conversely, an X-axis piezoresistive element may be arranged so as to sandwich the Z-axis piezoresistive element. In this embodiment, by adjusting the position of the X-axis piezoresistive element to the position of the Y-axis piezoresistive element, an output voltage or offset voltage that may be generated depending on the X-axis and Y-axis piezoresistive element positions. The measurement accuracy was improved by eliminating the value of. The two piezoresistive elements for each axis were connected to the inner end of the flexible part with a high-concentration diffusion layer, and the outer end was connected to the metal wiring via a through hole on the support frame part or mass part.

図3に、ピエゾ抵抗素子の配置の詳細と断面構造を示す。図3a)はX,Z軸であり、
図3b)はY軸、図3c)はY軸のd−d’断面図である。図3c)では、ピエゾ抵抗素
子61と61’の接続部40間を繋ぐ金属配線の図示は省略している。図3a)のX,Z
軸は、可撓部21の中心線に対して対称にX軸用のピエゾ抵抗素子51を配し、ピエゾ抵
抗素子を高濃度拡散層41で接続している。Z軸のピエゾ抵抗素子71はX軸用のピエゾ
抵抗素子51を挟むように配し、高濃度拡散層41で接続した。金属配線17とピエゾ抵
抗素子との接続部40は、質量部13と支持枠部11の領域に形成している。図3b)の
Y軸用も、同じ構成である。ピエゾ抵抗素子や高濃度拡散層を図示しているが、シリコン
内の不純物濃度が異なるだけで、肉眼的には他のシリコン部と区別できるものではない。
そのため、可撓部にはシリコン45上に絶縁層31と金属配線17があるのみで、接続部
40はない。
FIG. 3 shows details of the arrangement of the piezoresistive elements and a cross-sectional structure. 3a) is the X and Z axes,
3b) is a Y-axis view, and FIG. 3c) is a dd ′ cross-sectional view of the Y-axis. In FIG. 3c), the illustration of the metal wiring connecting the connection portions 40 of the piezoresistive elements 61 and 61 ′ is omitted. X, Z in Fig. 3a)
The axis is arranged with an X-axis piezoresistive element 51 symmetrically with respect to the center line of the flexible portion 21, and the piezoresistive elements are connected by a high-concentration diffusion layer 41. The Z-axis piezoresistive element 71 is arranged so as to sandwich the X-axis piezoresistive element 51 and is connected by a high concentration diffusion layer 41. The connection part 40 between the metal wiring 17 and the piezoresistive element is formed in the area of the mass part 13 and the support frame part 11. The configuration for the Y-axis in FIG. 3b) is the same. Although a piezoresistive element and a high-concentration diffusion layer are illustrated, they are different from other silicon portions by the naked eye only by different impurity concentrations in silicon.
Therefore, the flexible part has only the insulating layer 31 and the metal wiring 17 on the silicon 45, and there is no connection part 40.

図4に、X,Z軸の可撓部上のピエゾ抵抗素子や高濃度拡散層、これらの配置関係の寸
法を示す。可撓部の幅L1は75μmで長さL2は540μmである。ピエゾ抵抗素子の
幅L3は5μmで長さL4は50μmである。ピエゾ抵抗素子の幅方向端からの高濃度拡
散層のはみ出し量L5は1μmで各素子とも同じとした。X軸用のピエゾ抵抗素子の間隔
L6は11μm、Z軸用のピエゾ抵抗素子の間隔L7は33μmとした。X軸用のピエゾ
抵抗素子を接続する高濃度拡散層の幅L8は12μm、Z軸用のL9は56μmとした。
X軸用とZ軸用の高濃度拡散層の間隔L10は8μmとした。
FIG. 4 shows the dimensions of the piezoresistive element and the high-concentration diffusion layer on the X and Z-axis flexible parts and their arrangement relation. The width L1 of the flexible part is 75 μm and the length L2 is 540 μm. The width L3 of the piezoresistive element is 5 μm and the length L4 is 50 μm. The protruding amount L5 of the high-concentration diffusion layer from the end in the width direction of the piezoresistive element was 1 μm, which was the same for each element. The distance L6 between the X-axis piezoresistive elements was 11 μm, and the distance L7 between the Z-axis piezoresistive elements was 33 μm. The width L8 of the high-concentration diffusion layer connecting the piezoresistive elements for the X axis was 12 μm, and L9 for the Z axis was 56 μm.
The distance L10 between the X-axis and Z-axis high-concentration diffusion layers was 8 μm.

実施した加速度センサ素子1の製造方法を説明する。625μm厚のシリコン板に1μ
m程度のシリコン酸化層と6μmのシリコン層の積層構造を有するSOI(Silico
n on Insulator)ウェファーを使用した。フォトレジストでパターニング
を行い、シリコン層にボロンを1〜3×1019原子/cm打ち込みピエゾ抵抗素子を
作製した。高濃度拡散層はシリコン層にボロンを1〜3×1021原子/cm打ち込ん
だ。ピエゾ抵抗素子を外部のイオンから保護するためと、シリコンとアルミ配線、電極の
絶縁を確保するために、0.2〜0.5μm厚に酸化シリコンの絶縁層を形成した。ピエ
ゾ抵抗素子に接続するアルミ配線と電極、可撓部等を、フォトレジストのパターニングと
スパッタリング成膜装置、ドライエッチング装置等を用いて形成した。SOIウェファー
のシリコン酸化層がエッチングストッパーとなるため、エッチングされるのはシリコン層
のみである。ピエゾ素子面側を下にして、熱伝導の高い金属粉末を樹脂に混錬したものを
用いて、ダミー基板に接着した。SOIウェファーのシリコン板部分の625μmをドラ
イエッチングするには、SFと酸素を導入したプラズマ内で長時間行うため、被加工物
の冷却が重要であり、熱伝導の良い接着剤で放熱性の高いダミー基板に接着するものであ
る。ドライエッチングされるのはシリコンのみであるので、シリコン板はエッチングされ
るが、シリコン酸化層は残っている。ダミー基板に付けたまま弗酸溶液に漬け、シリコン
酸化層を化学エッチングで除去した。可撓部と質量部、支持枠部が形成されたSOIウェ
ファーがダミー基板に接着された状態で、切断砥石を使って加速度センサ素子のチップに
分離した後、溶剤で接着剤を除去し加速度センサ素子単体を得た。
A method of manufacturing the implemented acceleration sensor element 1 will be described. 1μ on 625μm thick silicon plate
SOI (Silico) having a laminated structure of a silicon oxide layer of about m and a silicon layer of 6 μm
n on Insulator) wafers were used. Patterning was performed with a photoresist, and boron was implanted into the silicon layer at 1 to 3 × 10 19 atoms / cm 3 to produce a piezoresistive element. In the high concentration diffusion layer, boron was implanted into the silicon layer by 1 to 3 × 10 21 atoms / cm 3 . In order to protect the piezoresistive element from external ions and to ensure insulation between the silicon and aluminum wiring and the electrode, an insulating layer of silicon oxide was formed to a thickness of 0.2 to 0.5 μm. Aluminum wiring, electrodes, flexible portions, and the like connected to the piezoresistive elements were formed using a photoresist patterning and sputtering film forming apparatus, a dry etching apparatus, and the like. Since the silicon oxide layer of the SOI wafer serves as an etching stopper, only the silicon layer is etched. With the piezoelectric element surface side down, a metal plate having high thermal conductivity kneaded with resin was adhered to the dummy substrate. In order to dry-etch 625 μm of the silicon plate portion of the SOI wafer, it is performed for a long time in a plasma in which SF 6 and oxygen are introduced. Therefore, it is important to cool the work piece. It adheres to a high dummy substrate. Since only silicon is dry etched, the silicon plate is etched but the silicon oxide layer remains. The silicon oxide layer was removed by chemical etching while immersed in a hydrofluoric acid solution while attached to the dummy substrate. After the SOI wafer on which the flexible part, the mass part, and the support frame part are formed is bonded to the dummy substrate, it is separated into chips of the acceleration sensor element using a cutting grindstone, and then the adhesive is removed with a solvent and the acceleration sensor is removed. The element simple substance was obtained.

本願の可撓部上からピエゾ抵抗素子と金属配線の接続部を廃した加速度センサ素子と、
従来の加速度センサ素子を用いた加速度センサを各1000個製作し、感度とオフセット
電圧、オフセット電圧の温度特性、耐衝撃性の測定評価を行った。加振器に加速度センサ
を取り付け、5Vの駆動電圧を印加した状態で3Gの加速度を加え、X,Y,Z軸の出力
を測定し1G当りの感度を求めた。感度は1G当りの出力電圧h(mV)で表している。
オフセット電圧は、5Vの駆動電圧を印加した状態で加速度センサを傾け、傾きにより生
じる1Gの重力加速度を用いて測定した。オフセット電圧の温度特性は、5Vの駆動電圧
を印加した状態で加速度センサを傾けた状態で保持し恒温槽に入れ、温度を−40℃から
95℃まで変化させて測定した。オフセット電圧の温度特性は、加速度換算誤差Y(%)
で表している。基準とする25℃での1G当たりの出力電圧h(mV)と、所定温度での
オフセット電圧j(mV)と25℃のオフセット電圧k(mV)の差から求めた。Y=(
j−k)/h(%)である。例を挙げると、1G当たりの出力電圧hが3.6(mV)の
加速度センサで、25℃でのオフセット電圧kが2(mV)、80℃でのオフセット電圧
jが3(mV)の場合、Y=(3−2)/3.6≒0.28=28(%)と計算される。
この28%は、言い換えると80℃と25℃の温度差で、0.28Gの検出誤差が生じる
と言うことになる。オフセット電圧の温度特性の測定に供した加速度センサの個数は各3
0個である。X,Y,Z軸の出力電圧hを測定した加速度センサを、厚さ100mmの板
に高さ1mから自然落下させ耐衝撃性を測定した。この高さから落下させると、約150
0から2000Gの衝撃が加速度センサに加わることになる。耐衝撃性試験の後、加振器
で3Gの加速度を加え、出力が出るか否かで判断し、出力が出ない加速度センサは破壊し
たと判定した。耐衝撃性試験に供した加速度センサの個数は各30個である。
An acceleration sensor element that eliminates the connection between the piezoresistive element and the metal wiring from the flexible part of the present application;
1000 acceleration sensors each using conventional acceleration sensor elements were manufactured, and the sensitivity, offset voltage, temperature characteristics of the offset voltage, and impact resistance were measured and evaluated. An acceleration sensor was attached to the vibrator, 3G acceleration was applied with a 5V drive voltage applied, and outputs on the X, Y, and Z axes were measured to determine the sensitivity per 1G. Sensitivity is expressed as an output voltage h (mV) per 1G.
The offset voltage was measured using 1 G gravity acceleration generated by tilting the acceleration sensor while applying a 5 V drive voltage. The temperature characteristics of the offset voltage were measured by holding the acceleration sensor in an inclined state with a drive voltage of 5 V applied and placing it in a thermostatic bath, and changing the temperature from −40 ° C. to 95 ° C. Offset voltage temperature characteristics are acceleration conversion error Y (%)
It is represented by The output voltage h (mV) per 1 G at 25 ° C. as a reference, and the difference between the offset voltage j (mV) at a predetermined temperature and the offset voltage k (mV) at 25 ° C. were obtained. Y = (
j−k) / h (%). For example, an acceleration sensor with an output voltage h per 1 G of 3.6 (mV), an offset voltage k at 25 ° C. of 2 (mV), and an offset voltage j at 80 ° C. of 3 (mV) , Y = (3-2) /3.6≈0.28=28 (%).
In other words, this 28% means that a detection error of 0.28 G occurs due to a temperature difference between 80 ° C. and 25 ° C. The number of acceleration sensors used for measuring the temperature characteristics of the offset voltage is 3 each.
0. The acceleration sensor that measured the output voltage h of the X, Y, and Z axes was naturally dropped from a height of 1 m onto a 100 mm thick plate, and the impact resistance was measured. When dropped from this height, about 150
An impact of 0 to 2000 G is applied to the acceleration sensor. After the impact resistance test, 3G acceleration was applied with a vibrator, and it was determined whether or not an output was output. It was determined that an acceleration sensor that did not output was broken. The number of acceleration sensors subjected to the impact resistance test is 30 each.

図5に、3Gの加速度を加えた時のX,Y,Z軸の1G当りの出力電圧h(mV)を示
す。X,Y,Z軸の出力電圧h(mV)の分布状態は同じであったので、X軸の値を代表
して記載している。図中の白棒は本実施例1で、黒棒が従来品の結果である。従来品の加
速度センサの出力電圧の平均値は3.6(mV)で、本実施例の出力電圧の平均値は4.
4(mV)と、約1.22倍大きな値が得られた。これは、ピエゾ抵抗素子を短くして応
力が集中する領域に配して直列に接続し、全体的にピエゾ抵抗素子が受ける応力を従来の
加速度センサ素子より大きくできた効果である。また、本実施例で、加速度センサの出力
電圧h(mV)の分布幅は小さくなっている。出力電圧のばらつきが小さくなったのは、
ピエゾ抵抗素子を絶縁層のスルーホールを介して金属配線で繋ぐ接続部を、可撓部上から
廃した効果と考えられる。接続部を無くすことで、スルーホール形状、寸法や金属配線の
厚み等のばらつき等が起因と考えられる、出力電圧のばらつき要因を排除できた効果と考
えられる。
FIG. 5 shows the output voltage h (mV) per 1 G of the X, Y, and Z axes when 3 G acceleration is applied. Since the distribution state of the output voltage h (mV) on the X, Y, and Z axes is the same, the value on the X axis is shown as a representative. The white bar in the figure is the result of Example 1, and the black bar is the result of the conventional product. The average value of the output voltage of the conventional acceleration sensor is 3.6 (mV), and the average value of the output voltage of this embodiment is 4.
4 (mV), a value about 1.22 times larger was obtained. This is an effect that the piezoresistive element is shortened and arranged in a region where the stress is concentrated and connected in series, so that the stress applied to the piezoresistive element as a whole is larger than that of the conventional acceleration sensor element. In this embodiment, the distribution width of the output voltage h (mV) of the acceleration sensor is small. The variation in output voltage has become smaller.
This is considered to be an effect of eliminating the connection portion connecting the piezoresistive element with the metal wiring through the through hole of the insulating layer from the flexible portion. It is considered that the effect of eliminating the variation factor of the output voltage, which is considered to be caused by variations in the through-hole shape, dimensions, metal wiring thickness, and the like, is eliminated by eliminating the connection portion.

図6に、オフセット電圧の分布を示す。図6a)は本実施例で、図6b)は従来品の結
果である。本実施例の加速度センサのオフセット電圧は、−4.2(mV)から4.6(
mV)の範囲に入ったが、従来品は−9.7(mV)から9.5(mV)と約2倍のばら
つきであった。可撓部上から、熱膨張係数や応力の異なる材料が複雑な形状で組み合わさ
れた接続部を廃することで、可撓部が変形した時に接続部がピエゾ抵抗素子に加える変形
を阻害する方向に働き、ブリッジを構成するピエゾ抵抗素子のバランスを崩す、不必要な
抵抗変化を小さくすることができた効果と考えられる。
FIG. 6 shows the distribution of the offset voltage. FIG. 6a) shows the result of this example, and FIG. 6b) shows the result of the conventional product. The offset voltage of the acceleration sensor of the present embodiment is -4.2 (mV) to 4.6 (
Although it was in the range of mV), the conventional product had a variation of about twice from -9.7 (mV) to 9.5 (mV). Direction of obstructing deformation that the connecting part applies to the piezoresistive element when the flexible part is deformed by eliminating the connecting part in which materials having different thermal expansion coefficients and stresses are combined in a complicated shape from above the flexible part This is considered to be an effect that can reduce the unnecessary resistance change by breaking the balance of the piezoresistive elements constituting the bridge.

図7にオフセット電圧の温度特性を示す。図7a)は本実施例で、図7b)は従来品の
結果である。各々8試料のデーターを記載している。加速度センサの温度を、−40℃か
ら95℃まで変化させた時の各温度でのオフセット電圧を、25℃のオフセット電圧を基
準にして加速度換算誤差(%)で表している。温度の上昇に伴い加速度換算誤差が増える
方向のものと減る方向に変化するものが出現している。一義的な増減の方向であれば、補
正回路で容易に処理できるので、増減の方向に付いては特に論じない。本実施例の加速度
センサは従来品に比べ、加速度換算誤差の量が半分以下になっていることが判る。また、
従来品は加速度換算誤差が非直線的に変化しているが、実施例では一次関数近似ができる
程度まで直線化されていることが判る。一次関数化できたことで、簡易な補正回路で容易
に補正することができた。温度変化に対する加速度換算誤差の変化量を減らし、変化を一
次関数で近似できる程度まで直線化できたのは、可撓部上から接続部を廃した効果である
と考えられる。
FIG. 7 shows the temperature characteristics of the offset voltage. FIG. 7a) shows the result of this example, and FIG. 7b) shows the result of the conventional product. Data for 8 samples each are given. The offset voltage at each temperature when the temperature of the acceleration sensor is changed from −40 ° C. to 95 ° C. is expressed as an acceleration conversion error (%) based on the offset voltage of 25 ° C. There are some cases where the acceleration conversion error increases and decreases in response to the temperature rise. If the direction is a unique increase / decrease direction, it can be easily processed by the correction circuit, so the direction of increase / decrease is not particularly discussed. It can be seen that the acceleration sensor according to the present embodiment has an acceleration conversion error that is less than half that of the conventional product. Also,
In the conventional product, the acceleration conversion error changes non-linearly, but in the embodiment, it is understood that the linearization is performed to the extent that the linear function can be approximated. By making it a linear function, it could be easily corrected with a simple correction circuit. It can be considered that the effect of eliminating the connecting portion from the flexible portion is that the amount of change in the acceleration conversion error with respect to the temperature change can be reduced and the change can be linearized to an extent that can be approximated by a linear function.

耐衝撃性試験の結果に付いて述べる。自然落下衝撃を加えた後で、30個全ての加速度
センサで出力電圧が確認でき、破壊したものは無かった。可撓部から接続部を廃した本願
の加速度センサ素子は、従来品と同等の耐衝撃性を有することが確認できた。
The results of the impact resistance test will be described. After the natural drop impact was applied, the output voltage could be confirmed by all 30 acceleration sensors, and none were destroyed. It was confirmed that the acceleration sensor element of the present application in which the connecting portion was eliminated from the flexible portion had impact resistance equivalent to that of the conventional product.

実施例1の加速度センサ素子の斜視図である。It is a perspective view of the acceleration sensor element of Example 1. FIG. 実施例1のピエゾ抵抗素子の配置を示す図である。1 is a diagram illustrating an arrangement of piezoresistive elements of Example 1. FIG. 実施例1のピエゾ抵抗素子の配置を示す図である。1 is a diagram illustrating an arrangement of piezoresistive elements of Example 1. FIG. 実施例1のピエゾ抵抗素子等の寸法関係を示す図である。It is a figure which shows the dimensional relationship of the piezoresistive element etc. of Example 1. FIG. 実施例1の出力電圧hの分布状態を示す図である。FIG. 3 is a diagram illustrating a distribution state of an output voltage h according to the first embodiment. 実施例1のオフセット電圧の分布を示す図である。FIG. 6 is a diagram illustrating an offset voltage distribution according to the first embodiment. 実施例1のオフセット電圧の温度特性を示す図である。It is a figure which shows the temperature characteristic of the offset voltage of Example 1. FIG. 従来の加速度センサの展開斜視図である。It is a development perspective view of the conventional acceleration sensor. 従来の加速度センサ素子の斜視図である。It is a perspective view of the conventional acceleration sensor element. 従来のピエゾ抵抗素子の配置を示す図である。It is a figure which shows arrangement | positioning of the conventional piezoresistive element. 従来の加速度センサ素子の可撓部の詳細図である。It is detail drawing of the flexible part of the conventional acceleration sensor element.

符号の説明Explanation of symbols

1 加速度センサ素子、2 ケース、3 蓋、4 金属線、5 端子、6 外部端子、
7 端子、10 加速度センサ、11 支持枠部、13 質量部、14 貫通穴、
17 金属配線、21,22 可撓部、31 絶縁層、40 接続部、
41 高濃度拡散層、42 スルーホール、45 シリコン、
51,52,61,62,71,72 ピエゾ抵抗素子。
1 acceleration sensor element, 2 case, 3 lid, 4 metal wire, 5 terminal, 6 external terminal,
7 terminals, 10 acceleration sensors, 11 support frame parts, 13 mass parts, 14 through holes,
17 metal wiring, 21, 22 flexible part, 31 insulating layer, 40 connection part,
41 high-concentration diffusion layer, 42 through-hole, 45 silicon,
51, 52, 61, 62, 71, 72 Piezoresistive elements.

Claims (1)

シリコン単結晶基板の周縁部に形成された支持枠部と、中央部に形成された質量部と、
前記質量部及び前記支持枠部の上方側に設けられ、該質量部及び支持枠部を接続する薄肉
梁状の可撓部と、該弾性部の上面側に形成された複数対のピエゾ抵抗素子および配線部と
を具備してなる半導体型3軸加速度センサであって、複数本のピエゾ抵抗素子を可撓部の
中心線に対称の位置に配し、該複数本のピエゾ抵抗素子の一方の端は支持枠部と可撓部の
境界領域もしくは質量部と可撓部の境界領域に配され、該複数本のピエゾ抵抗素子は可撓
部上では高濃度拡散層で直列になるように接続され、ピエゾ抵抗素子と金属配線の接続部
は質量部もしくは支持枠部に設けられたことを特徴とする半導体型3軸加速度センサ。
A support frame portion formed on the peripheral portion of the silicon single crystal substrate, a mass portion formed in the central portion,
A plurality of pairs of piezoresistive elements provided on the upper side of the mass part and the support frame part, and formed on the upper surface side of the elastic part, and a thin-walled flexible part connecting the mass part and the support frame part And a wiring portion, wherein a plurality of piezoresistive elements are arranged symmetrically with respect to the center line of the flexible portion, and one of the piezoresistive elements is arranged. The ends are arranged in the boundary region between the support frame and the flexible part or the boundary region between the mass part and the flexible part, and the plurality of piezoresistive elements are connected in series with the high-concentration diffusion layer on the flexible part. A connection part between the piezoresistive element and the metal wiring is provided on a mass part or a support frame part.
JP2004287077A 2004-09-30 2004-09-30 Semiconductor type 3-axis acceleration sensor Expired - Fee Related JP4431475B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004287077A JP4431475B2 (en) 2004-09-30 2004-09-30 Semiconductor type 3-axis acceleration sensor
TW094132470A TWI277735B (en) 2004-09-30 2005-09-20 Semiconductor acceleration sensor
DE602005022149T DE602005022149D1 (en) 2004-09-30 2005-09-22 Semiconductor accelerometer
EP05020680A EP1643255B1 (en) 2004-09-30 2005-09-22 Semiconductor acceleration sensor
KR1020050089124A KR100656698B1 (en) 2004-09-30 2005-09-26 Semiconductor acceleration sensor
US11/238,012 US7222536B2 (en) 2004-09-30 2005-09-29 Semiconductor acceleration sensor
CNB2005101315902A CN100381825C (en) 2004-09-30 2005-09-29 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287077A JP4431475B2 (en) 2004-09-30 2004-09-30 Semiconductor type 3-axis acceleration sensor

Publications (2)

Publication Number Publication Date
JP2006098321A true JP2006098321A (en) 2006-04-13
JP4431475B2 JP4431475B2 (en) 2010-03-17

Family

ID=36238271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287077A Expired - Fee Related JP4431475B2 (en) 2004-09-30 2004-09-30 Semiconductor type 3-axis acceleration sensor

Country Status (1)

Country Link
JP (1) JP4431475B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009064A (en) * 2007-06-29 2009-01-15 Nippon Signal Co Ltd:The Planar type actuator
JP2009236756A (en) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd Sensor and its manufacturing method
JP2009257869A (en) * 2008-04-15 2009-11-05 Dainippon Printing Co Ltd Physical quantity sensor and its manufacturing method
US20100005886A1 (en) * 2008-07-11 2010-01-14 Dai Nippon Printing Co., Ltd. Sensor and its fabrication process
JP2010032389A (en) * 2008-07-29 2010-02-12 Dainippon Printing Co Ltd Physical quantity sensor and manufacturing method therefor
JP2010085142A (en) * 2008-09-30 2010-04-15 Torex Semiconductor Ltd Acceleration sensor
JP2010085143A (en) * 2008-09-30 2010-04-15 Torex Semiconductor Ltd Acceleration sensor
WO2010146818A1 (en) * 2009-06-17 2010-12-23 ミツミ電機株式会社 Three-dimensional acceleration sensor
JP2012042274A (en) * 2010-08-17 2012-03-01 Dainippon Printing Co Ltd Sensor chip, sensor device and method of manufacturing sensor chip
US8418558B2 (en) 2009-05-29 2013-04-16 Torex Semiconductor Ltd. Acceleration sensor element and acceleration sensor having same
US8474318B2 (en) 2007-07-27 2013-07-02 Hitachi Metals, Ltd. Acceleration sensor
CN106946211A (en) * 2017-04-28 2017-07-14 华南理工大学 A kind of pressure sensor for micro electro-mechanical system chip of Liang Mo mechanisms and preparation method thereof
JP2017191112A (en) * 2017-07-26 2017-10-19 株式会社東芝 Inertial sensor
KR20220084505A (en) * 2020-12-14 2022-06-21 한국생산기술연구원 Piezo-resistive MEMS accelerometer using electric field effect

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009064A (en) * 2007-06-29 2009-01-15 Nippon Signal Co Ltd:The Planar type actuator
US8474318B2 (en) 2007-07-27 2013-07-02 Hitachi Metals, Ltd. Acceleration sensor
JP2009236756A (en) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd Sensor and its manufacturing method
JP2009257869A (en) * 2008-04-15 2009-11-05 Dainippon Printing Co Ltd Physical quantity sensor and its manufacturing method
US20100005886A1 (en) * 2008-07-11 2010-01-14 Dai Nippon Printing Co., Ltd. Sensor and its fabrication process
US8387458B2 (en) * 2008-07-11 2013-03-05 Dai Nippon Printing Co., Ltd. Sensor having improved thermal stability
JP2010032389A (en) * 2008-07-29 2010-02-12 Dainippon Printing Co Ltd Physical quantity sensor and manufacturing method therefor
JP2010085142A (en) * 2008-09-30 2010-04-15 Torex Semiconductor Ltd Acceleration sensor
JP2010085143A (en) * 2008-09-30 2010-04-15 Torex Semiconductor Ltd Acceleration sensor
US8418558B2 (en) 2009-05-29 2013-04-16 Torex Semiconductor Ltd. Acceleration sensor element and acceleration sensor having same
WO2010146818A1 (en) * 2009-06-17 2010-12-23 ミツミ電機株式会社 Three-dimensional acceleration sensor
JP2012042274A (en) * 2010-08-17 2012-03-01 Dainippon Printing Co Ltd Sensor chip, sensor device and method of manufacturing sensor chip
CN106946211A (en) * 2017-04-28 2017-07-14 华南理工大学 A kind of pressure sensor for micro electro-mechanical system chip of Liang Mo mechanisms and preparation method thereof
JP2017191112A (en) * 2017-07-26 2017-10-19 株式会社東芝 Inertial sensor
KR20220084505A (en) * 2020-12-14 2022-06-21 한국생산기술연구원 Piezo-resistive MEMS accelerometer using electric field effect
KR102513689B1 (en) * 2020-12-14 2023-03-24 한국생산기술연구원 Piezo-resistive MEMS accelerometer using electric field effect

Also Published As

Publication number Publication date
JP4431475B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US10775248B2 (en) MEMS strain gauge sensor and manufacturing method
KR100824926B1 (en) Semiconductor type 3-axis acceleration sensor
US7051595B2 (en) Monolithic multi-functional integrated sensor and method for fabricating the same
KR100715644B1 (en) Acceleration sensor
JP4431475B2 (en) Semiconductor type 3-axis acceleration sensor
EP3534126B1 (en) Sensing device, in particular load sensing device
JP4335545B2 (en) Sensor for detecting both pressure and acceleration and manufacturing method thereof
JP2003232803A (en) Semiconductor type acceleration sensor
KR100580440B1 (en) Semiconductor acceleration sensor using doped semiconductor layer as wiring
KR100817736B1 (en) Acceleration sensor
US11320324B2 (en) Sensor device
US6763719B2 (en) Acceleration sensor
US20030057447A1 (en) Acceleration sensor
JP4589605B2 (en) Semiconductor multi-axis acceleration sensor
JP2008008672A (en) Acceleration sensor
JP2006098323A (en) Semiconductor-type three-axis acceleration sensor
JP5475946B2 (en) Sensor module
JP4637074B2 (en) Piezoresistive acceleration sensor
EP3056865B1 (en) Sensor arrangement
JP2010122144A (en) Acceleration sensor and semiconductor device using the same
JP2010008123A (en) Sensor module
JP5067295B2 (en) Sensor and manufacturing method thereof
JP2006300904A (en) Physical quantity sensor
JP2008185407A (en) Acceleration sensor
JP2010225746A (en) Sensor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070618

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees