JP2006098172A - Bubble type level gage - Google Patents

Bubble type level gage Download PDF

Info

Publication number
JP2006098172A
JP2006098172A JP2004283394A JP2004283394A JP2006098172A JP 2006098172 A JP2006098172 A JP 2006098172A JP 2004283394 A JP2004283394 A JP 2004283394A JP 2004283394 A JP2004283394 A JP 2004283394A JP 2006098172 A JP2006098172 A JP 2006098172A
Authority
JP
Japan
Prior art keywords
air supply
electromagnetic valve
compressed air
supply pipe
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004283394A
Other languages
Japanese (ja)
Other versions
JP3992153B2 (en
Inventor
Iwao Yamada
巖 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musasino Co Ltd
Original Assignee
Musasino Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musasino Co Ltd filed Critical Musasino Co Ltd
Priority to JP2004283394A priority Critical patent/JP3992153B2/en
Priority to JP2004303463A priority patent/JP3983240B2/en
Priority to KR1020050006880A priority patent/KR100828697B1/en
Priority to CNB2005100088704A priority patent/CN100365395C/en
Publication of JP2006098172A publication Critical patent/JP2006098172A/en
Priority to HK06106863A priority patent/HK1086880A1/en
Application granted granted Critical
Publication of JP3992153B2 publication Critical patent/JP3992153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/16Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid
    • G01F23/165Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid of bubbler type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/16Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid
    • G01F23/164Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid using a diaphragm, bellow as transmitting element

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bubble type level gage generating few failures with a simple structure, requiring little consumption of compressed air, having no pulsation of the compressed air and no fluctuation of an indication value, and capable of stable display. <P>SOLUTION: This level gage has an air supply pipe 12 at least whose lower end is sunk into liquid 14 in a tank 10, a compressed air supply source 34 for supplying the compressed air into the air supply pipe 12, a pressure sensor 54 for measuring the pressure in the air supply pipe 12, and a display part 58 for displaying the liquid level in the tank 10 based on a detection signal by the pressure sensor 54. The level gage also has the first solenoid valve 65 for opening/closing a compressed air supply route from the compressed air supply source 34 to the air supply pipe 12, and the second solenoid valve 66 for opening/closing a pressure detection route from the air supply pipe 12 to the pressure sensor 54. In an air supply mode wherein the first solenoid valve 65 opens the compressed air supply route, the second solenoid valve 66 closes the pressure detection route, and in a measuring mode wherein the second solenoid valve 66 opens the pressure detection route, the first solenoid valve 65 closes the compressed air supply route. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、船舶等のタンクに貯留されている液面のレベルを測定するための気泡式液面計に関するものである。   The present invention relates to a bubble type liquid level gauge for measuring the level of a liquid level stored in a tank of a ship or the like.

コンテナ船やタンカーのような船舶におけるバラストタンクや油タンク、水タンク等には、貯留されている液体のレベルを検出するための液面計が設置されている。このような液面計の計測方式としては、フロート式、気泡式等が従来から知られている。従来の気泡式液面計の多くは、複数配置されたタンクごとに給気管を設置し、タンクに貯留された液中に没した上記給気管に、機械室または他の区画に設置されたコンプレッサでつくられた圧縮空気を、配管を通して配送するようになっている。   Level gauges for detecting the level of stored liquid are installed in ballast tanks, oil tanks, water tanks and the like in ships such as container ships and tankers. As a measurement method of such a liquid level gauge, a float type, a bubble type and the like are conventionally known. Many conventional bubble-type liquid level gauges have an air supply pipe installed for each of a plurality of tanks, and a compressor installed in a machine room or other compartment in the air supply pipe submerged in the liquid stored in the tank. Compressed air produced by is delivered through piping.

液体を入れるタンク内に、下端部が自由開口となったパイプからなる給気管を鉛直方向に配し、タンク内に液体が入っているときに、給気管の下端部より気泡となって排出されるように、上記配管を通じて給気管に圧縮空気を供給する。そのときの給気管の内圧Pは、液体の深さHに液体の密度ρを乗じたヘッドρHに、液体上部のガス圧を加えたもの、すなわち「全圧」と等しいので、検出された全圧から液体上部のガス圧を差し引いたものを液体のレベルとして指示計に表示する。圧縮空気は機関室のコンプレッサでつくられ、甲板上に敷設された主管から枝管を経て各タンクのレベル検出部に供給されるか、または独立の配管を経て各タンクのレベル検出部に供給されるようになっている。   An air supply pipe consisting of a pipe whose lower end is a free opening is arranged vertically in the tank for storing liquid, and when liquid is in the tank, it is discharged as bubbles from the lower end of the air supply pipe. As described above, compressed air is supplied to the air supply pipe through the pipe. The internal pressure P of the air supply pipe at that time is equal to the head ρH obtained by multiplying the liquid depth H by the liquid density ρ and the gas pressure above the liquid, that is, “total pressure”. The pressure minus the gas pressure above the liquid is displayed on the indicator as the liquid level. Compressed air is produced by the compressor in the engine room, and is supplied from the main pipe laid on the deck via the branch pipe to the level detection part of each tank or supplied to the level detection part of each tank via an independent pipe. It has become so.

パイプからなる給気管内の圧力は液体のヘッド(液体の深さ)により異なるとともに、液体のヘッドは個々のタンクごとに異なる。しかし、従来型の気泡式液面計は、圧縮空気は一つのコンプレッサから供給されるため、圧縮空気の気圧は、計測しようとする最大液体ヘッドに見合った最大圧を保つ必要があり、タンク深さやそのときどきの液体ヘッドに対しては気圧が高すぎることとなって、計測値が微妙に変化する欠点があった。   The pressure in the air supply pipe composed of pipes varies depending on the liquid head (liquid depth), and the liquid head varies from one tank to another. However, since the conventional bubble level gauge is supplied with compressed air from a single compressor, the pressure of the compressed air must be kept at the maximum pressure that matches the maximum liquid head to be measured. In some cases, the atmospheric pressure was too high for the liquid head at that time, and the measured value slightly changed.

そこで本出願人は、タンク内の液中に没入する給気管と、給気管内に圧縮気体を供給可能なポンプと、ポンプと給気管との間に設けられたチェック弁と、給気管内の気圧を計測する圧力センサと、圧力センサから送られてきた圧力データによりポンプを制御する制御手段とを有してなる気圧式液面計であって、上記給気管とポンプとチェック弁と圧力センサが、タンクごとに設けられていることを特徴とする気圧式液面計に関して特許権を取得した(特許文献1参照)。特許文献1でいう「気圧式液面計」は、「気泡式液面計」のことである。   Therefore, the applicant of the present invention is to provide an air supply pipe that is immersed in the liquid in the tank, a pump that can supply compressed gas into the air supply pipe, a check valve that is provided between the pump and the air supply pipe, A pneumatic level gauge comprising a pressure sensor for measuring atmospheric pressure and a control means for controlling the pump based on pressure data sent from the pressure sensor, wherein the air supply pipe, the pump, the check valve, and the pressure sensor However, the patent right was acquired regarding the atmospheric | air pressure type liquid level gauge characterized by being provided for every tank (refer patent document 1). The “atmospheric pressure level gauge” referred to in Patent Document 1 is a “bubble level gauge”.

特許文献1記載の発明によれば、
1.繁雑な配管が不要となり、単独に作動する電気機器として簡便に取り扱うことができる。
2.計測部の給気管を充たすだけの圧縮気体があれば足りるため、小容量のポンプの装着で十分である。
3.計測部の至近距離から圧縮気体を供給するので、外部温度の影響がほとんどない。
4.計測部の至近距離から圧縮気体を供給するので、簡便な制御でよく、計測部は検出部端子箱の中に収まっているので、保守点検が簡単である。
というような効果を得ることができる。
According to the invention described in Patent Document 1,
1. Complicated piping is not required, and it can be easily handled as an electric device that operates independently.
2. Since it is sufficient to have compressed gas sufficient to fill the air supply pipe of the measurement unit, it is sufficient to install a small capacity pump.
3. Since compressed gas is supplied from a close distance of the measurement unit, there is almost no influence of external temperature.
4). Since compressed gas is supplied from a close distance of the measuring unit, simple control is sufficient, and the measuring unit is housed in the detection unit terminal box, so that maintenance and inspection are simple.
Such an effect can be obtained.

特許第2951954号公報Japanese Patent No. 2995154

最近、液面計の簡略化を図って経費を節減するために、タンカーやケミカル船、あるいはLNG船の防爆区画で、低価格の割には故障が少なく、安全性の高い気泡式液面計が、それほど高い計測精度を必要としないタンクに採用されるようになってきている。   Recently, in order to save money by simplifying the liquid level gauge, it is an explosion-proof section of a tanker, chemical ship, or LNG ship. However, it has come to be used in tanks that do not require so high measurement accuracy.

そこで、最近の気泡式液面計の例を説明する。図11、図12において、船舶のタンク10には、油、水などの液体14が貯留される。タンク10の天井上面側にはスタンドピース16を介してエアパージヘッド20が取り付けられていて、エアパージヘッド20からは、タンク10の底面に向かって給気管12が、垂下した形で取り付けられている。エアパージヘッド20には、配管30と配管32が接続されている。配管30は圧縮空気を供給するための配管であり、配管32はシグナルエアを取り出すための配管である。   Therefore, an example of a recent bubble type liquid level gauge will be described. 11 and 12, a liquid 14 such as oil or water is stored in the tank 10 of the ship. An air purge head 20 is attached to the upper surface of the ceiling of the tank 10 via a stand piece 16, and an air supply pipe 12 is attached from the air purge head 20 toward the bottom surface of the tank 10 in a suspended manner. A pipe 30 and a pipe 32 are connected to the air purge head 20. The pipe 30 is a pipe for supplying compressed air, and the pipe 32 is a pipe for taking out signal air.

図12に示すように、エアパージヘッド20はカップを上下反転したような形で、その内部は隔壁21で上下に二分されるとともに、隔壁21にダイアフラム22が取り付けられている。隔壁21で分けられた上側の部屋はパイプを介して上記配管30に連通している。配管30はまたオリフィス26を経て、また、流量制御バルブ28を経て給気管12に連通している。給気管12は、流量制御バルブ28とパイプを介して上記配管32に連通している。給気管12はまた、適宜のパイプを介して上記ダイアフラム22の内部空間に連通している。したがって、ダイアフラム22の内部の空気圧と給気管12内の空気圧は同じである。ダイアフラム22の内部にはコイル状のばね24が配置されていて、ダイアフラム22を図12において上方に向かい、したがって、隔壁21で区画された上側の空間を狭める向きに付勢している。上記流量制御バルブ28はダイアフラム22の天井から垂下したロッドと一体に連結されている。   As shown in FIG. 12, the air purge head 20 has a shape in which a cup is turned upside down, and the inside thereof is divided into two vertically by a partition wall 21, and a diaphragm 22 is attached to the partition wall 21. The upper room divided by the partition wall 21 communicates with the pipe 30 through a pipe. The pipe 30 also communicates with the air supply pipe 12 through the orifice 26 and through the flow control valve 28. The air supply pipe 12 communicates with the pipe 32 through a flow rate control valve 28 and a pipe. The air supply pipe 12 also communicates with the internal space of the diaphragm 22 through an appropriate pipe. Therefore, the air pressure inside the diaphragm 22 and the air pressure inside the air supply pipe 12 are the same. A coiled spring 24 is disposed inside the diaphragm 22, and biases the diaphragm 22 upward in FIG. 12, and therefore, in a direction to narrow the upper space defined by the partition wall 21. The flow control valve 28 is integrally connected to a rod hanging from the ceiling of the diaphragm 22.

エアパージヘッド20は次のように動作する。給気管12の下端部がタンク10内の液体14に没している状態で配管30から圧縮空気が供給されると、上側の空間の気圧すなわちダイアフラム22の外側の気圧が、ダイアフラム22内部の気圧すなわち給気管12内の気圧よりも高くなり、ダイアフラム22がばね24の弾力に抗して圧縮される。このダイアフラム22の作動により流量制御バルブ28が押し下げられてバルブが開かれ、オリフィス26を経て給気管12内に圧縮空気が一定の流量で供給される。この圧縮空気によって給気管12内の液面が押し下げられ、やがて給気管12の下端から圧縮空気が放出され、液体14内を泡となって上昇し、大気中に放出される。給気管12内の液体14のレベルが低くなるにしたがって給気管12内の空気圧は高くなるので、給気管12内の空気圧を測定することによって液体14のレベルを測定することができる。給気管12に圧縮空気を供給し始めた当初は流量制御バルブ28が大きく押し下げられて圧縮空気の流量が多く、給気管12内の液面が押し下げられるにしたがって流量制御バルブ28の開口量が小さくなって流量が少なくなる。気泡が放出されて液面レベルを測定しているときは、給気管12の下端から一定量ずつ圧縮空気が放出される。このように、エアパージヘッド20は定流量メカニズムを構成している。   The air purge head 20 operates as follows. When compressed air is supplied from the pipe 30 with the lower end portion of the air supply pipe 12 submerged in the liquid 14 in the tank 10, the air pressure in the upper space, that is, the air pressure outside the diaphragm 22 is changed to the air pressure inside the diaphragm 22. That is, the pressure in the air supply pipe 12 becomes higher, and the diaphragm 22 is compressed against the elasticity of the spring 24. By the operation of the diaphragm 22, the flow rate control valve 28 is pushed down to open the valve, and compressed air is supplied into the supply pipe 12 through the orifice 26 at a constant flow rate. The liquid level in the air supply pipe 12 is pushed down by this compressed air, and then the compressed air is released from the lower end of the air supply pipe 12, rises as a bubble in the liquid 14, and is released into the atmosphere. Since the air pressure in the air supply pipe 12 increases as the level of the liquid 14 in the air supply pipe 12 decreases, the level of the liquid 14 can be measured by measuring the air pressure in the air supply pipe 12. At the beginning of supplying compressed air to the air supply pipe 12, the flow rate control valve 28 is largely pushed down to increase the flow rate of the compressed air, and the opening amount of the flow rate control valve 28 decreases as the liquid level in the air supply pipe 12 is pushed down. As a result, the flow rate decreases. When bubbles are released and the liquid level is measured, compressed air is released from the lower end of the supply pipe 12 by a certain amount. Thus, the air purge head 20 constitutes a constant flow rate mechanism.

図11において、上記配管30には、コンプレッサ34から圧縮空気が供給される。コンプレッサ34と配管30との間には、船内レギュレータ36とエアサプライユニット40が介在している。船内レギュレータ36は、コンプレッサ34から送り出される圧縮空気の圧力を例えば7kg/cm程度に調整する。エアサプライユニット40はコントロールルーム38に配置されていて、コンプレッサ34側から順に、ストップバルブ42、フィルタ44、レギュレータ46、圧力計48を有している。コントロールルーム38には、切換弁50、空電変換器52、指示計58が配置されている。空電変換器52は空気圧を検出して電気信号に変換するもので、圧力センサ54とこの圧力センサ54の出力に応じて指示計58による気圧指示値を制御する制御基板56を有してなる。切り替え弁50は、図示のように給気管12内の気圧を空電変換器40に導く態様と、図示の状態から時計方向に90度回転操作することによって、空電変換器40にかかる気圧を大気中に開放するゼロ補正態様に切り換えることができるようになっている。 In FIG. 11, compressed air is supplied from the compressor 34 to the pipe 30. An inboard regulator 36 and an air supply unit 40 are interposed between the compressor 34 and the pipe 30. The inboard regulator 36 adjusts the pressure of the compressed air sent out from the compressor 34 to, for example, about 7 kg / cm 2 . The air supply unit 40 is disposed in the control room 38, and has a stop valve 42, a filter 44, a regulator 46, and a pressure gauge 48 in order from the compressor 34 side. In the control room 38, a switching valve 50, an aeroelectric converter 52, and an indicator 58 are arranged. The aeroelectric converter 52 detects air pressure and converts it into an electrical signal, and includes a pressure sensor 54 and a control board 56 that controls the pressure indication value by the indicator 58 according to the output of the pressure sensor 54. . The switching valve 50 controls the atmospheric pressure applied to the aeroelectric converter 40 by rotating the air pressure in the air supply pipe 12 to the aeroelectric converter 40 as shown in the figure and by rotating 90 degrees clockwise from the illustrated state. It is possible to switch to a zero correction mode that opens to the atmosphere.

切換弁50が図11に示されている切換態様にあるときは、給気管12内の気圧が圧力センサ54にかかる。この気圧は、前述のとおり、タンク10に貯留されている液体14のレベルに依存する。圧力センサ54はこれにかかる気圧に応じた電気信号を出力する。この電気信号は制御基板56において指示計58による液体レベル表示に必要な処理がなされ、指示計58によって液体レベルが表示される。   When the switching valve 50 is in the switching mode shown in FIG. 11, the atmospheric pressure in the air supply pipe 12 is applied to the pressure sensor 54. This atmospheric pressure depends on the level of the liquid 14 stored in the tank 10 as described above. The pressure sensor 54 outputs an electrical signal corresponding to the atmospheric pressure applied thereto. The electrical signal is processed on the control board 56 to display the liquid level by the indicator 58, and the indicator 58 displays the liquid level.

以上説明した従来の気泡式液面計によれば、給気管に圧縮空気を一定量ずつ供給するために、ダイアフラム、ばね、流量制御バルブを備えたエアパージヘッドを有しており、構造が複雑で、故障しやすく、コスト高になる難点がある。また、圧縮空気供給源から常時給気管に圧縮空気を供給する必要があるため、圧縮空気の消費量が多くなり、加えて、圧縮空気の放出による脈動があり、これが圧力センサに伝わって、表示値がふらついて不安定になる難点がある。   According to the conventional bubble-type liquid level gauge described above, it has an air purge head equipped with a diaphragm, a spring, and a flow rate control valve in order to supply a constant amount of compressed air to the air supply pipe. There are drawbacks that are easy to break down and costly. In addition, since it is necessary to constantly supply compressed air from the compressed air supply source to the air supply pipe, the amount of compressed air consumption increases, and in addition, there is pulsation due to the release of compressed air, which is transmitted to the pressure sensor and displayed. There is a difficulty that the value fluctuates and becomes unstable.

本発明は、上記従来の気泡式液面計の問題点を解消するためになされたもので、構造が簡単で故障が少なく、コストの安い気泡式液面計を提供することを目的とする。
本発明はまた、圧縮空気の消費量を少なくすることができ、圧縮空気の脈動が無く、指示値のふらつきが無く安定した表示が可能な気泡式液面計を提供することを目的とする。
本発明はまた、検出プロセスの切換、圧縮空気の供給量の調整を、あらかじめタンクの積荷パターンあるいは揚げ荷パターンを想定して設定した自動制御プログラムの実行により測定することが可能な気泡式液面計を提供することを目的とする。
本発明はまた、上記自動制御プログラムの実行および信号処理などの電気的処理ないしは制御は制御室内において行うことができ、甲板上では電気機器が存在せず、本質安全防爆型の条件を満たす気泡式液面計を提供することを目的とする。
The present invention has been made to solve the problems of the conventional bubble type liquid level gauge, and an object thereof is to provide a bubble type liquid level gauge that is simple in structure, has few failures, and is low in cost.
Another object of the present invention is to provide a bubble-type liquid level gauge that can reduce the consumption of compressed air, has no pulsation of compressed air, and does not fluctuate the indicated value and can be stably displayed.
The present invention also provides a bubble-type liquid level that can be measured by executing an automatic control program that is set in advance assuming a tank load pattern or a lifted load pattern, and switching of the detection process and adjustment of the supply amount of compressed air. The purpose is to provide a total.
The present invention is also capable of performing electrical processing or control such as execution of the automatic control program and signal processing in the control room, and there is no electrical equipment on the deck, and a bubble type satisfying the intrinsically safe explosion-proof type condition. An object is to provide a level gauge.

本発明は、少なくとも下端部がタンク内の液体中に没入する給気管と、給気管内に圧縮空気を供給する圧縮空気供給源と、給気管内の気圧を計測する圧力センサと、圧力センサの検出信号に基づいて上記タンク内の液体レベルを表示する表示部と、を有する気泡式液面計であって、圧縮空気供給源から給気管への圧縮空気供給経路を開閉する第1の電磁バルブと、給気管から圧力センサへの気圧検出経路を開閉する第2の電磁バルブを有することを最も主要な特徴とする。   The present invention includes an air supply pipe having at least a lower end portion immersed in a liquid in a tank, a compressed air supply source that supplies compressed air into the air supply pipe, a pressure sensor that measures the atmospheric pressure in the air supply pipe, and a pressure sensor A bubble type liquid level gauge having a display unit for displaying a liquid level in the tank based on a detection signal, wherein the first electromagnetic valve opens and closes a compressed air supply path from a compressed air supply source to a supply pipe And a second electromagnetic valve that opens and closes an air pressure detection path from the air supply pipe to the pressure sensor.

第1の電磁バルブを開くことによって圧縮空気供給源から給気管へ圧縮空気が供給され、給気管内の気圧が上昇する。給気管内の液面が給気管の下端部まで下がると吸気管内の圧縮空気が液中に泡状に漏れ、吸気管内の気圧が液面レベルに対応した気圧になる。第1の電磁バルブを閉じ、第2の電磁バルブを開くことによって給気管内の空気圧を圧力センサで検出し、検出信号に基づいて表示部にタンク内の液体レベルを表示する。従来の気泡式液面計で用いられている流量制御バルブに代わって電磁バルブを用いたことによって、全体の構成が簡単になり、故障が少なく、コストの安い気泡式液面計を得ることができる。
電磁バルブは、その動作を自動制御プログラムで制御することができ、手動的な操作は不要となる。また、自動制御プログラムによる制御は制御室内において行うことができ、甲板上に電気機器を設置する必要がないから、本質安全防爆型の条件を満たすことができる。加えて、圧縮空気の供給量の調整を、あらかじめタンクの積荷パターンあるいは揚げ荷パターンを想定して設定した自動制御プログラムを実行することにより測定することができる。
圧縮空気の消費量を少なくすることができ、圧縮空気の脈動が無く、表示値のふらつきが無く安定した表示を行うことができる。
By opening the first electromagnetic valve, compressed air is supplied from the compressed air supply source to the supply pipe, and the air pressure in the supply pipe rises. When the liquid level in the air supply pipe falls to the lower end of the air supply pipe, the compressed air in the intake pipe leaks into the liquid in a bubble shape, and the air pressure in the intake pipe becomes a pressure corresponding to the liquid level. By closing the first electromagnetic valve and opening the second electromagnetic valve, the air pressure in the air supply pipe is detected by the pressure sensor, and the liquid level in the tank is displayed on the display unit based on the detection signal. By using an electromagnetic valve in place of the flow control valve used in the conventional bubble type liquid level gauge, the overall configuration becomes simple, there is little failure, and a low cost bubble type liquid level gauge can be obtained. it can.
The operation of the electromagnetic valve can be controlled by an automatic control program, and no manual operation is required. Further, the control by the automatic control program can be performed in the control room, and it is not necessary to install an electric device on the deck, so that the intrinsically safe explosion-proof condition can be satisfied. In addition, the adjustment of the supply amount of compressed air can be measured by executing an automatic control program set in advance assuming a tank load pattern or a lift pattern.
The consumption of compressed air can be reduced, there is no pulsation of compressed air, and there is no wobbling of the display value, so that stable display can be performed.

以下、本発明にかかる気泡式液面計の実施例を、図面を参照しながら説明する。なお、図11に示す従来例の構成と同じ構成部分には同じ符号を付した。   Hereinafter, embodiments of the bubble type liquid level gauge according to the present invention will be described with reference to the drawings. In addition, the same code | symbol was attached | subjected to the same component as the structure of the prior art example shown in FIG.

図1において、船舶のタンク10には、油、水などの液体14が貯留される。タンク10の天井上面側にはスタンドピース16とフランジ60を介して配管30がつながれている。前述の従来例と異なって、エアパージヘッドは設置されていない。しかし、ここに、必要に応じて逆支弁を設けることもある。配管30は、例えば船舶のデッキ上の配管であって、コントロールルーム38内に配置されたマニホルド64につながれている。配管30は、第1、第2の電磁バルブ65,66の開閉制御によって、圧縮空気供給用配管としても機能し、また、シグナルエアを取り出すための配管としても機能する。上記スタンドピース16からは、給気管12がタンク10の底面に向かって垂下した形で取り付けられ、給気管12はその下端部からタンク10内の液体14中に没入するようになっている。   In FIG. 1, a liquid 14 such as oil or water is stored in a tank 10 of a ship. A pipe 30 is connected to the top surface of the tank 10 via a stand piece 16 and a flange 60. Unlike the above-described conventional example, no air purge head is installed. However, a reverse valve may be provided here if necessary. The pipe 30 is, for example, a pipe on a ship deck, and is connected to a manifold 64 disposed in the control room 38. The pipe 30 functions as a compressed air supply pipe by opening / closing control of the first and second electromagnetic valves 65 and 66, and also functions as a pipe for taking out signal air. An air supply pipe 12 is attached to the stand piece 16 so as to hang down toward the bottom surface of the tank 10, and the air supply pipe 12 is immersed in the liquid 14 in the tank 10 from its lower end.

上記マニホルド64はあらかじめ複数の電磁バルブを装着するための穴と装着された電磁バルブ相互間および外部の配管につながる空気流通穴が形成されている。この実施例においてはマニホルド64に3個の電磁バルブ65,66,67が装着されている。各電磁バルブは、空電変換器52が有している制御基板56によって動作が制御されるようになっている。各電磁バルブは、駆動コイルが励磁されることにより一方向に移動して空気の流入側と出口側を連通させ、駆動コイルが非励磁のときは付勢力で移動して空気の流入側と出口側を遮断するように構成された、比較的簡単な構造のものである。マニホルド64は、各電磁バルブ65,66,67を直列的につなぐ空気流通穴と、電磁バルブ65,66間の空気流通穴を分岐させて上記配管30につながる空気流通穴と、電磁バルブ66,67間の空気流通穴を分岐させ、空電変換器52内の圧力センサ54に至る配管につながる空気流通穴を有している。また、電磁バルブ65の空気流入側とエアサプライユニット40からの配管につながる空気流通穴と、電磁バルブ67の空気の出口側を大気中に開放するための空気流通穴を有している。   The manifold 64 is previously formed with holes for mounting a plurality of electromagnetic valves and air circulation holes connected to the mounted electromagnetic valves and to external piping. In this embodiment, three solenoid valves 65, 66, 67 are mounted on the manifold 64. The operation of each electromagnetic valve is controlled by a control board 56 that the aeroelectric converter 52 has. Each solenoid valve moves in one direction when the drive coil is excited to connect the air inflow side and the outlet side, and when the drive coil is not excited, it moves with an urging force to move the air inflow side and the outlet side. It is of a relatively simple construction configured to block the sides. The manifold 64 includes an air circulation hole that connects the electromagnetic valves 65, 66, and 67 in series, an air circulation hole that branches the air circulation hole between the electromagnetic valves 65, 66 and connects to the pipe 30, and an electromagnetic valve 66, The air circulation hole 67 is branched and has an air circulation hole connected to a pipe reaching the pressure sensor 54 in the aeroelectric converter 52. Moreover, it has the air circulation hole connected to the air inflow side of the electromagnetic valve 65 and piping from the air supply unit 40, and the air circulation hole for opening the air outlet side of the electromagnetic valve 67 to the atmosphere.

図11に示す従来例と同様に、圧縮空気供給源であるコンプレッサ34を有し、コンプレッサ34とマニホルド64との間には、船内レギュレータ36とエアサプライユニット40が介在している。船内レギュレータ36は、コンプレッサ34から送り出される圧縮空気の圧力を例えば7kg/cm程度に調整する。エアサプライユニット40はコントロールルーム38に配置されていて、コンプレッサ34側から順に、ストップバルブ42、フィルタ44、レギュレータ46、圧力計48を有している。コントロールルーム38には、空電変換器52、指示計58が配置されている。空電変換器52は空気圧を検出して電気信号に変換するもので、圧力センサ54とこの圧力センサ54の出力に応じて指示計58による気圧指示値を制御する制御基板56を有してなる。前述のように、電磁バルブ66,67間の空気流通穴が分岐し、配管を介して圧力センサ54につながっている。制御基板56は、圧力センサ54の検出出力を演算してタンク10内の液面レベルに変換し、液面レベルを指示計58に表示させる演算機能を有している。制御基板56はまた、各電磁バルブ65,66,67の開閉動作を制御するソフトウエアがインストールされている。 As in the conventional example shown in FIG. 11, the compressor 34 is a compressed air supply source, and an inboard regulator 36 and an air supply unit 40 are interposed between the compressor 34 and the manifold 64. The inboard regulator 36 adjusts the pressure of the compressed air sent out from the compressor 34 to, for example, about 7 kg / cm 2 . The air supply unit 40 is disposed in the control room 38, and has a stop valve 42, a filter 44, a regulator 46, and a pressure gauge 48 in order from the compressor 34 side. An aeroelectric converter 52 and an indicator 58 are disposed in the control room 38. The aeroelectric converter 52 detects air pressure and converts it into an electrical signal, and includes a pressure sensor 54 and a control board 56 that controls the pressure indication value by the indicator 58 according to the output of the pressure sensor 54. . As described above, the air circulation hole between the electromagnetic valves 66 and 67 is branched and connected to the pressure sensor 54 through a pipe. The control board 56 has a calculation function for calculating the detection output of the pressure sensor 54 and converting it to the liquid level in the tank 10 and displaying the liquid level on the indicator 58. The control board 56 is also installed with software for controlling the opening and closing operations of the electromagnetic valves 65, 66, and 67.

次に、上記実施例1の動作を説明する。3個の電磁バルブ65,66,67の開閉作動態様によって、図3に示すように、エア供給モード、エア停止モード、測定圧大気放出モードの三つの動作モードがある。「エア供給モード」とは圧縮空気供給源から給気管12に圧縮空気を供給するモードすなわち「給気モード」であり、「エア停止モード」とは、エアの給気を停止して液面レベルを測定するモードすなわち「測定モード」のことである。「測定圧大気放出モード」とは、圧力センサにかかる圧縮空気を大気に開放して大気圧とし、このときの指示計58の指示値をゼロとするゼロ点調整を行うための動作モードである。図3において、SV1は第1の電磁バルブ65、SV2は第2の電磁バルブ66、SV3は第3の電磁バルブ67を指している。   Next, the operation of the first embodiment will be described. Depending on the opening / closing operation mode of the three electromagnetic valves 65, 66, 67, there are three operation modes, that is, an air supply mode, an air stop mode, and a measured pressure atmospheric discharge mode, as shown in FIG. The “air supply mode” is a mode in which compressed air is supplied from the compressed air supply source to the air supply pipe 12, that is, “air supply mode”, and the “air stop mode” is a liquid level level by stopping air supply. This is a mode for measuring, ie, “measurement mode”. The “measured pressure atmospheric release mode” is an operation mode for performing zero point adjustment in which the compressed air applied to the pressure sensor is opened to the atmosphere to atmospheric pressure, and the indicated value of the indicator 58 at this time is zero. . In FIG. 3, SV1 indicates the first electromagnetic valve 65, SV2 indicates the second electromagnetic valve 66, and SV3 indicates the third electromagnetic valve 67.

「給気モード」では、第1の電磁バルブ65が圧縮空気供給経路を開き、第2の電磁バルブ66は圧力センサにつながる気圧検出経路を閉じ、圧縮空気が給気管12に供給される。「エア停止モード」では、第1の電磁バルブ65は圧縮空気供給経路を閉じ、第2の電磁バルブ66のみがバルブが開いて上記気圧検出経路を開き、給気管12内の気圧が空電変換器52の圧力センサ54にかかるようにする。「測定圧大気放出モード」では、第3の電磁バルブ67のみがバルブを開き、圧力センサ54にかかる気圧を大気圧と同じにする。   In the “air supply mode”, the first electromagnetic valve 65 opens the compressed air supply path, the second electromagnetic valve 66 closes the atmospheric pressure detection path connected to the pressure sensor, and compressed air is supplied to the air supply pipe 12. In the “air stop mode”, the first electromagnetic valve 65 closes the compressed air supply path, only the second electromagnetic valve 66 opens to open the pressure detection path, and the atmospheric pressure in the air supply pipe 12 is converted to aeroelectric conversion. The pressure sensor 54 of the vessel 52 is applied. In the “measured pressure atmospheric release mode”, only the third electromagnetic valve 67 opens and the pressure applied to the pressure sensor 54 is the same as the atmospheric pressure.

第1の電磁バルブのみを開く「給気モード」と、第2の電磁バルブのみを開く「測定モード」は、図2に示すように、間歇的に交互に切り換え制御される。図2(a)において、「a1」は最初の給気モードを示し、この給気モードa1の次の測定モードを「b1」で示している。「an」はn回目の給気モード、「bn」はn回目の測定モードを示している。給気モードの開始直前までは、給気管12内の液面はタンクに貯留されている液体の液面と同じレベルにあり、給気モードが実行されることによって給気管12内の気圧が上昇し、給気管12内の液面のレベルが図2(c)に示すように降下する。給気モードと測定モードは交互に実行されるので、給気開始当初は、図2(b)の左側に示すように、給気管12内の気圧が段階的に上昇する。   The “supply mode” in which only the first electromagnetic valve is opened and the “measurement mode” in which only the second electromagnetic valve is opened are intermittently and alternately controlled as shown in FIG. In FIG. 2A, “a1” indicates the first air supply mode, and the next measurement mode after the air supply mode a1 is indicated by “b1”. “An” indicates the nth supply mode, and “bn” indicates the nth measurement mode. Until the start of the air supply mode, the liquid level in the air supply pipe 12 is at the same level as the liquid level of the liquid stored in the tank, and the air pressure in the air supply pipe 12 is increased by executing the air supply mode. Then, the level of the liquid level in the air supply pipe 12 falls as shown in FIG. Since the air supply mode and the measurement mode are executed alternately, at the beginning of the air supply, as shown on the left side of FIG. 2B, the air pressure in the air supply pipe 12 increases stepwise.

給気管12内の気圧が上昇して、給気管12内の液面が給気管12の下端部まで達すると、図2(d)に示すように給気管12の下端部から圧縮空気が漏れ、タンク10内の液体14内を泡となって上昇し、大気に開放される。したがって、給気管12内の気圧は、タンク10内の液体14のレベル(深さ)に対応した気圧となり、液体14のレベルが変動しない限り、給気管12内の気圧も変動しない。そこで、測定モードにおいて測定値が変動しなくなった時点での測定値を読むことによって、そのときの液面14のレベルを測定することができる。図2(b)における記号「I」は、給気管12内の液面降下運転中であることを示しており、記号「II」は給気管12からの泡放出運転中、すなわち液面14のレベルを測定可能な運転中であることを示している。また、前記記号「an」は泡放出運転に切り替わった直後の給気モードを示し、記号「bn」は泡放出運転に切り替わった直後の測定モードを示している。   When the air pressure in the supply pipe 12 rises and the liquid level in the supply pipe 12 reaches the lower end of the supply pipe 12, compressed air leaks from the lower end of the supply pipe 12, as shown in FIG. The liquid 14 in the tank 10 rises as bubbles and is released to the atmosphere. Accordingly, the air pressure in the air supply pipe 12 becomes an air pressure corresponding to the level (depth) of the liquid 14 in the tank 10, and the air pressure in the air supply pipe 12 does not change unless the level of the liquid 14 changes. Therefore, the level of the liquid level 14 at that time can be measured by reading the measured value when the measured value no longer fluctuates in the measurement mode. The symbol “I” in FIG. 2B indicates that the liquid level lowering operation in the air supply pipe 12 is being performed, and the symbol “II” is during the bubble discharge operation from the air supply pipe 12, that is, the liquid level 14. It indicates that the system is in operation where the level can be measured. The symbol “an” indicates the air supply mode immediately after switching to the bubble discharge operation, and the symbol “bn” indicates the measurement mode immediately after switching to the bubble discharge operation.

給気開始当初の液面降下運転Iは短時間で完了し、なるべく早く泡放出運転IIに切り替わるようにするのが望ましい。そこで、図2(a)のa1,b1で示すように、給気モードでの運転時間が、これと交互に行われる測定モードの運転時間よりも長くなるように、前記第1、第2の電磁バルブ65,66の動作が制御される。そして、泡放出運転に切り替わったあとは、給気管12内の気圧を維持できる程度に圧縮空気を供給できればよいので、記号「an」「bn」で示すように、測定モードでの運転時間が、給気モードでの運転時間よりも長くなるように、第1、第2の電磁バルブ65,66の動作が制御される。さらに、測定値が安定してくると、図2(a)(b)の右半分に示すように、測定モードでの運転時間が、給気モードでの運転時間よりも長くなるばかりでなく、給気モードと測定モードの周期を長くして、無駄な給気が行われないように考慮されている。   It is desirable that the liquid level lowering operation I at the beginning of the supply of air is completed in a short time and switched to the bubble discharge operation II as soon as possible. Therefore, as shown by a1 and b1 in FIG. 2A, the first and second operations are performed so that the operation time in the air supply mode is longer than the operation time in the measurement mode performed alternately. The operation of the electromagnetic valves 65 and 66 is controlled. Then, after switching to the bubble discharge operation, it is only necessary to supply compressed air to such an extent that the air pressure in the air supply pipe 12 can be maintained. Therefore, as indicated by the symbols “an” and “bn”, the operation time in the measurement mode is The operations of the first and second electromagnetic valves 65 and 66 are controlled so as to be longer than the operation time in the air supply mode. Further, when the measured value becomes stable, as shown in the right half of FIGS. 2 (a) and 2 (b), not only the operation time in the measurement mode becomes longer than the operation time in the air supply mode, The cycle of the air supply mode and the measurement mode is lengthened so that unnecessary air supply is not performed.

いま、タンク10内の液体14の実際の深さをHmとする。船舶のデッキ上の配管は長いため、この配管の中を通過する圧縮空気には圧力損失ΔPが生じる。したがって、給気モードでの運転中における前記マニホルド64での圧力を考えると、第2の電磁バルブ66の上流側、A1,P2ポートでの圧力は高くなり、
(H×0.1+ΔP)[kg/cm
となる。したがって、給気モードから測定モードに切り換えたとき、圧力センサ54につながるPsポートでの圧力が安定するまでに時間がかかる。図2(b)に示す波形図において、測定モードに切り換えられるたびに、圧力がΔPだけ上昇し、その後なだらかに低下して安定しているのは、このことを示している。
Now, let the actual depth of the liquid 14 in the tank 10 be Hm. Since the piping on the ship deck is long, pressure loss ΔP occurs in the compressed air passing through the piping. Therefore, considering the pressure in the manifold 64 during operation in the air supply mode, the pressure at the upstream side of the second electromagnetic valve 66, the A1 and P2 ports,
(H × 0.1 + ΔP) [kg / cm 2 ]
It becomes. Therefore, when the supply mode is switched to the measurement mode, it takes time until the pressure at the Ps port connected to the pressure sensor 54 is stabilized. In the waveform diagram shown in FIG. 2 (b), this indicates that each time the mode is switched to the measurement mode, the pressure increases by ΔP, and then gradually decreases and stabilizes.

そこで、図4に示すように、Psポートでの圧力が、許容精度範囲、例えば、±1.0%FS相当の圧力
H×0.1+ΔPo
より降下したときに、Psポートでの圧力を指示計58に水深で表示するようにする。例えば、H=3の場合、3+0.03=3.03(kg/cm)より降下したとき指示計58に表示する。換言すれば、測定モードでは、あらかじめ、制御室からレベル検出部までの距離により増減する圧力損失およびレベル検出部の液面深さに関係した要因に配慮した実験値により、圧力変動を予測し、その修正を加えた「読み」を表示することで、測定モードへの移行時点から、許容誤差に収まる正確な液面レベルを表示するようになっている。液面計の運用開始後、すなわち本船就航後は、実測値に基づき自動的に補正することができる学習能力を持たせるとよい。図4において、T1は給気モードでの作動時間、T2は測定モードへの移行時点から測定を許容できるまでに要する時間、T3は完全安定に至るまでに要する時間を示す。
なお、第1、第2の電磁バルブ65,66を閉じ、第3の電磁バルブ67を開いた「測定圧大気放出モード」では、圧力センサ54にかかる気圧が大気圧と同じになるので、このときの表示計58の指示値をゼロにする。すなわち、測定圧大気放出モードは、ゼロ点調整のためのモードである。
Therefore, as shown in FIG. 4, the pressure at the Ps port is within an allowable accuracy range, for example, a pressure equivalent to ± 1.0% FS H × 0.1 + ΔPo.
When the pressure drops further, the pressure at the Ps port is displayed on the indicator 58 as the water depth. For example, in the case of H = 3, when it falls below 3 + 0.03 = 3.03 (kg / cm 2 ), it is displayed on the indicator 58. In other words, in the measurement mode, pressure fluctuations are predicted in advance based on experimental values that take into account factors related to pressure loss that increases or decreases depending on the distance from the control room to the level detection unit and the liquid level depth of the level detection unit, By displaying the “reading” with the correction, the accurate liquid level that falls within the allowable error is displayed from the time of transition to the measurement mode. It is advisable to provide a learning ability that can be automatically corrected based on the actual measurement values after the operation of the liquid level gauge, that is, after the ship enters service. In FIG. 4, T1 indicates an operation time in the air supply mode, T2 indicates a time required until the measurement can be permitted from the time of transition to the measurement mode, and T3 indicates a time required until complete stabilization.
In the “measured pressure atmospheric release mode” in which the first and second electromagnetic valves 65 and 66 are closed and the third electromagnetic valve 67 is opened, the pressure applied to the pressure sensor 54 is the same as the atmospheric pressure. The indication value of the indicator 58 at the time is set to zero. That is, the measured pressure atmospheric release mode is a mode for zero point adjustment.

以上説明した実施例1によれば、圧縮空気の流量調整は電磁バルブのオン・オフで制御するだけでよく、流量調整バルブのような微妙な開閉制御を必要とする部材を設ける必要がないため、構成が簡単で、安価で、故障の少ない気泡式液面計を得ることができる。給気モードから測定モードに切り換えて測定するため、圧縮空気の消費量が少なく、加えて、高精度の液面測定を行うことができる。   According to the first embodiment described above, the flow rate of the compressed air need only be controlled by turning on and off the electromagnetic valve, and there is no need to provide a member that requires delicate opening / closing control, such as a flow rate adjustment valve. Therefore, it is possible to obtain a bubble type liquid level gauge that is simple in construction, inexpensive, and has few failures. Since measurement is performed by switching from the air supply mode to the measurement mode, the amount of compressed air consumed is small, and in addition, highly accurate liquid level measurement can be performed.

上記実施例にかかる気泡式液面計は一つ一つのタンクごとに設けられ、各液面計のエアサプライユニット40、マニホルド68、空電変換器52、表示計58は、コントロールルーム38に一括して配置され、集中制御および集中監視が行われる。各電磁バルブ65,66,67の自動制御プログラムは、タンクの積荷パターンあるいは揚げ荷パターンを想定してあらかじめ設定され、自動制御プログラムの実行によって、検出プロセスの切換、圧縮空気の供給量の調整が行われる。   The bubble type liquid level gauge according to the above embodiment is provided for each tank, and the air supply unit 40, manifold 68, static electricity converter 52, and indicator 58 of each liquid level gauge are collectively placed in the control room 38. Centralized control and centralized monitoring are performed. The automatic control program for each electromagnetic valve 65, 66, 67 is set in advance assuming a tank load pattern or a lift pattern, and the execution of the automatic control program allows switching of the detection process and adjustment of the supply amount of compressed air. Done.

次に、図5に示す実施例2について説明する。実施例2が実施例1と異なる点は、圧縮空気供給源であるコンプレッサ34から、船内レギュレータ36とエアサプライユニット40を経て第1の電磁バルブ65に至る圧縮空気供給経路に、圧縮空気の流量を制限するオリフィス69が配置されている点である。オリフィス69は、マニホルド68内に、第1の電磁バルブ65の圧縮空気入り口側に配置されている。その他の構成および電磁バルブ65,66,67の制御は実施例1と同じであるから説明は省略する。   Next, Example 2 shown in FIG. 5 will be described. The second embodiment differs from the first embodiment in that the flow rate of the compressed air flows from the compressor 34, which is a compressed air supply source, to the compressed air supply path from the inboard regulator 36 and the air supply unit 40 to the first electromagnetic valve 65. This is the point that an orifice 69 for limiting the above is disposed. The orifice 69 is disposed in the manifold 68 on the compressed air inlet side of the first electromagnetic valve 65. Since other configurations and control of the electromagnetic valves 65, 66, and 67 are the same as those in the first embodiment, the description is omitted.

実施例2の気泡式液面計によれば、オリフィス69によって第1の電磁バルブ65に流入する圧縮空気の流量が制限されて少なくなるため、船舶のデッキ上に配置された配管内を通過する圧縮空気の前記圧力損失ΔPが少なくなる。したがって、給気モードから、給気を停止して測定モードに切り換えた後、Psポートの気圧が短時間で安定し、長い時間待つことなく給気管12内の気圧を測定することができる利点がある。また、実施例1と同様に、制御部の演算処理により計測値の読み精度が向上する。   According to the bubble type liquid level gauge of the second embodiment, the flow rate of the compressed air flowing into the first electromagnetic valve 65 is limited and reduced by the orifice 69, so that it passes through the piping arranged on the ship deck. The pressure loss ΔP of compressed air is reduced. Therefore, after the supply mode is stopped and the supply mode is switched to the measurement mode, the Ps port pressure is stabilized in a short time, and the pressure inside the supply pipe 12 can be measured without waiting for a long time. is there. Further, as in the first embodiment, the reading accuracy of the measurement value is improved by the calculation process of the control unit.

図6は本発明にかかる気泡式液面計の実施例3を示す。実施例3は、実施例2における第1の電磁弁65と並列的に第4の電磁バルブ70が配置されていることを特徴としている。より正確には、オリフィス69と第1の電磁バルブ65とが直列的につながれた部分に第4の電磁バルブ70が並列的につながれている。実施例1に第4の電磁バルブ70を付加するとすれば、第1の電磁バルブ65と直接的に第4の電磁バルブ70をつなげばよい。図7に示すように、第4の電磁バルブ70は、制御基板56によって第1の電磁バルブ65と同時にかつ第1の電磁バルブ65と同様に開閉制御される。もっとも、給気管12内の液面を降下させる場合にのみ第1の電磁バルブ65とともに第4の電磁バルブ70を開閉し、給気管12内の液面が降下して給気管12の下端部から圧縮空気が漏れ始めたら、第4の電磁バルブ70は閉じたままになるように制御するとよい。その他の構成および制御は実施例1、実施例2と同じであるから説明は省略する。   FIG. 6 shows Example 3 of the bubble type liquid level gauge according to the present invention. The third embodiment is characterized in that a fourth electromagnetic valve 70 is arranged in parallel with the first electromagnetic valve 65 in the second embodiment. More precisely, the fourth electromagnetic valve 70 is connected in parallel to the portion where the orifice 69 and the first electromagnetic valve 65 are connected in series. If the fourth electromagnetic valve 70 is added to the first embodiment, the fourth electromagnetic valve 70 may be directly connected to the first electromagnetic valve 65. As shown in FIG. 7, the fourth electromagnetic valve 70 is controlled to be opened and closed simultaneously with the first electromagnetic valve 65 and similarly to the first electromagnetic valve 65 by the control board 56. Of course, only when the liquid level in the supply pipe 12 is lowered, the fourth electromagnetic valve 70 is opened and closed together with the first electromagnetic valve 65, and the liquid level in the supply pipe 12 is lowered to start from the lower end of the supply pipe 12. When the compressed air starts to leak, the fourth electromagnetic valve 70 may be controlled to remain closed. Since other configurations and controls are the same as those in the first and second embodiments, the description thereof will be omitted.

実施例3の気泡式液面計によれば、第4の電磁バルブ70が存在することにより、第1の電磁バルブの流量が2倍になったのと実質的に同じとなる。したがって、給気管12内の液面を迅速に降下させることができ、気泡式液面計の作動開始からタンク内の液体のレベルを測定可能となるまでの時間を短縮することができる。また、船舶の揺動等によって給気管12内に液体14が侵入したときなどに、給気管12内の液体14を迅速に排出することができるという効果を得ることができる。また、実施例1と同様に、制御部の演算処理により計測値の読み精度が向上する。   According to the bubble type liquid level gauge of the third embodiment, the presence of the fourth electromagnetic valve 70 is substantially the same as the flow rate of the first electromagnetic valve is doubled. Therefore, the liquid level in the supply pipe 12 can be quickly lowered, and the time from the start of the operation of the bubble-type liquid level gauge until the level of the liquid in the tank can be measured can be shortened. Moreover, when the liquid 14 penetrates into the air supply pipe 12 due to, for example, rocking of the ship, the effect that the liquid 14 in the air supply pipe 12 can be quickly discharged can be obtained. Further, as in the first embodiment, the reading accuracy of the measurement value is improved by the calculation process of the control unit.

図8は本発明にかかる気泡式液面計の実施例4を示す。この実施例は、実施例1に配管を追加した構成になっている。すなわち、第1の電磁バルブ65の圧縮空気出口側ポートA1は圧縮空気供給経路30を介して給気管12につながれ、第2の電磁バルブ66の空気入口側ポートP2は気圧検出経路32を介して給気管12につながれている。実施例1では第1、第2の電磁バルブ65,66が直結され、その途中が分岐して一つの配管によって給気管12につながれていたのに対し、実施例4では、上記のように、第1、第2の電磁バルブ65,66間が分断され、それぞれ圧縮空気供給経路30を介して、また、気圧検出経路32を介して給気管12につながれている。それ以外は実施例1の構成と同じである。   FIG. 8 shows Example 4 of the bubble type liquid level gauge according to the present invention. This embodiment is configured by adding piping to the first embodiment. That is, the compressed air outlet side port A1 of the first electromagnetic valve 65 is connected to the air supply pipe 12 via the compressed air supply path 30, and the air inlet side port P2 of the second electromagnetic valve 66 is connected via the atmospheric pressure detection path 32. It is connected to the supply pipe 12. In the first embodiment, the first and second electromagnetic valves 65 and 66 are directly connected, the middle of which is branched and connected to the air supply pipe 12 by one pipe. In the fourth embodiment, as described above, The first and second electromagnetic valves 65 and 66 are separated from each other and connected to the supply pipe 12 via the compressed air supply path 30 and the atmospheric pressure detection path 32, respectively. Other than that, the configuration is the same as that of the first embodiment.

実施例4によれば、気圧検出経路32には常時給気管12内の気圧がかかっていて、圧縮空気は流れていない。そのため、気圧検出経路32が長くても、気圧検出経路32内の前記圧力損失ΔPは発生せず、図9に示すように、給気モードから測定モードに切り替わったとき、気圧検出経路32内の圧力には圧力損失ΔPに相当する脈動状の立ち上がりが存在しない。図10に示すように、エア供給モードすなわち「給気モード」で運転中に、給気管から圧縮空気が気泡となって漏れるときに、給気管内の気圧が波上に変動するだけで、エア停止モードすなわち「測定モード」に切り替わると、給気管12内の圧力および気圧検出経路32内の圧力は直ちに安定する。   According to the fourth embodiment, the atmospheric pressure in the air supply pipe 12 is constantly applied to the atmospheric pressure detection path 32, and the compressed air does not flow. Therefore, even if the atmospheric pressure detection path 32 is long, the pressure loss ΔP in the atmospheric pressure detection path 32 does not occur, and when the supply mode is switched to the measurement mode as shown in FIG. There is no pulsating rise corresponding to the pressure loss ΔP in the pressure. As shown in FIG. 10, when compressed air leaks from the air supply pipe as bubbles during operation in the air supply mode, that is, the “air supply mode”, the air pressure in the air supply pipe fluctuates to the wave only. When the mode is switched to the stop mode, that is, the “measurement mode”, the pressure in the supply pipe 12 and the pressure in the atmospheric pressure detection path 32 are immediately stabilized.

実施例4にかかる気泡式液面計によれば、マニホルド68と給気管12との間の配管が一つ増える難点があるが、「給気モード」から「測定モード」に切り替わると直ちに給気管12内の圧力を圧力センサ54で検出して、表示計58に液体のレベルを表示させることができるため、待ち時間がなく迅速な測定が可能である。また、「測定モード」に切り替わると直ちに給気管12内の圧力が安定するので、精度のよい液面測定が可能になる。   According to the bubble type liquid level gauge according to the fourth embodiment, there is a problem that the number of pipes between the manifold 68 and the air supply pipe 12 is increased by one, but the air supply pipe is immediately switched from the “air supply mode” to the “measurement mode”. 12 can be detected by the pressure sensor 54 and the liquid level can be displayed on the display 58, so that a quick measurement can be performed without waiting time. Further, since the pressure in the air supply pipe 12 is stabilized immediately after switching to the “measurement mode”, the liquid level can be measured with high accuracy.

本発明にかかる気泡式液面計は、タンカー、LNG船、貨物船などの船舶における積荷貯留タンク、バラストタンク、清水タンクなどの諸タンクの液面レベル計測や、喫水計として適用することができるとともに、船舶以外の輸送手段のタンク、地上に設置される各種用途のタンクに適用することができる。
なお、給気管に供給される気体は、各実施例においては空気として説明したが、積荷の種類によっては、空気以外のガスである場合もある。
The bubble-type liquid level gauge according to the present invention can be applied as a liquid level measurement of various tanks such as a cargo storage tank, a ballast tank, and a fresh water tank in a ship such as a tanker, an LNG ship, or a cargo ship, or a draft gauge. In addition, it can be applied to tanks for transportation means other than ships and tanks for various purposes installed on the ground.
In addition, although the gas supplied to an air supply pipe | tube was demonstrated as air in each Example, depending on the kind of cargo, it may be gases other than air.

本発明にかかる気泡式液面計の実施例1を示す系統図である。It is a systematic diagram which shows Example 1 of the bubble-type liquid level gauge concerning this invention. 実施例1の動作を示すもので、(a)は動作モードを示すタイミングチャート、(b)は圧力変化を示すタイミングチャート、(c)は液面降下運転での給気管の概念図、(d)は泡放出運転での給気管の概念図である。FIG. 4 shows the operation of Embodiment 1, wherein (a) is a timing chart showing an operation mode, (b) is a timing chart showing a pressure change, (c) is a conceptual diagram of an air supply pipe in a liquid level lowering operation, and (d) ) Is a conceptual diagram of the air supply pipe in the bubble discharge operation. 実施例1の各電磁バルブの各動作モードでの開閉動作を示す図である。It is a figure which shows the opening / closing operation | movement in each operation mode of each electromagnetic valve of Example 1. FIG. 実施例1において給気モードから測定モードに切り換えたときの圧力変化の様子を示すグラフである。It is a graph which shows the mode of a pressure change when it switches from supply mode to measurement mode in Example 1. FIG. 本発明にかかる気泡式液面計の実施例2を示す系統図である。It is a systematic diagram which shows Example 2 of the bubble-type liquid level meter concerning this invention. 本発明にかかる気泡式液面計の実施例3を示す系統図である。It is a systematic diagram which shows Example 3 of the bubble type liquid level gauge concerning this invention. 実施例3の各電磁バルブの各動作モードでの開閉動作を示す図である。It is a figure which shows the opening / closing operation | movement in each operation mode of each electromagnetic valve of Example 3. FIG. 本発明にかかる気泡式液面計の実施例4を示す系統図である。It is a systematic diagram which shows Example 4 of the bubble-type liquid level meter concerning this invention. 実施例4の動作を示すもので、(a)は動作モードを示すタイミングチャート、(b)は圧力変化を示すタイミングチャート、(c)は液面降下運転での給気管の概念図、(d)は泡放出運転での給気管の概念図である。FIG. 4 shows the operation of Example 4, wherein (a) is a timing chart showing an operation mode, (b) is a timing chart showing a pressure change, (c) is a conceptual diagram of an air supply pipe in a liquid level lowering operation, (d) ) Is a conceptual diagram of the air supply pipe in the bubble discharge operation. 実施例4において給気モードから測定モードに切り換えたときの圧力変化の様子を示すグラフである。It is a graph which shows the mode of a pressure change when switching from supply mode to measurement mode in Example 4. FIG. 従来の気泡式液面計の例を示す系統図である。It is a systematic diagram which shows the example of the conventional bubble type liquid level gauge. 上記従来の気泡式液面計中のエアパージヘッドの内部構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure of the air purge head in the said conventional bubble type liquid level gauge.

符号の説明Explanation of symbols

10 タンク
12 給気管
14 液体
30 配管
34 圧縮空気供給源としてのコンプレッサ
38 コントロールルーム
52 空電変換器
54 圧力センサ
64 マニホルド
65 第1の電磁バルブ
66 第2の電磁バルブ
67 第3の電磁バルブ
DESCRIPTION OF SYMBOLS 10 Tank 12 Supply pipe 14 Liquid 30 Piping 34 Compressor as compressed air supply source 38 Control room 52 Electrostatic converter 54 Pressure sensor 64 Manifold 65 First electromagnetic valve 66 Second electromagnetic valve 67 Third electromagnetic valve

Claims (11)

少なくとも下端部がタンク内の液体中に没入する給気管と、給気管内に圧縮空気を供給する圧縮空気供給源と、給気管内の気圧を計測する圧力センサと、圧力センサの検出信号に基づいて上記タンク内の液体レベルを表示する表示部と、を有する気泡式液面計であって、
圧縮空気供給源から給気管への圧縮空気供給経路を開閉する第1の電磁バルブと、
給気管から圧力センサへの気圧検出経路を開閉する第2の電磁バルブを有することを特徴とする気泡式液面計。
Based on an air supply pipe having at least a lower end immersed in the liquid in the tank, a compressed air supply source for supplying compressed air into the air supply pipe, a pressure sensor for measuring the atmospheric pressure in the air supply pipe, and a detection signal of the pressure sensor A bubble level gauge having a display for displaying the liquid level in the tank.
A first electromagnetic valve for opening and closing a compressed air supply path from a compressed air supply source to a supply pipe;
A bubble type liquid level gauge comprising a second electromagnetic valve for opening and closing a pressure detection path from an air supply pipe to a pressure sensor.
給気管から圧力センサへの気圧検出経路を開放することができる第3の電磁バルブを有する請求項1記載の気泡式液面計。   The bubble type liquid level gauge according to claim 1, further comprising a third electromagnetic valve capable of opening a pressure detection path from the supply pipe to the pressure sensor. 各電磁バルブの開閉動作はソフトウエアによって制御される請求項1または2記載の気泡式液面計。   The bubble type liquid level gauge according to claim 1 or 2, wherein the opening / closing operation of each electromagnetic valve is controlled by software. 第1の電磁バルブが圧縮空気供給経路を開く給気モードでは第2の電磁バルブが気圧検出経路を閉じ、第2の電磁バルブが気圧検出経路を開く測定モードでは第1の電磁バルブが圧縮空気供給経路を閉じる請求項1記載の気泡式液面計。   In the air supply mode in which the first electromagnetic valve opens the compressed air supply path, the second electromagnetic valve closes the atmospheric pressure detection path, and in the measurement mode in which the second electromagnetic valve opens the atmospheric pressure detection path, the first electromagnetic valve is compressed air. The bubble type liquid level gauge according to claim 1, wherein the supply path is closed. 第1の電磁バルブと第2の電磁バルブは、給気モードと測定モードが交互に行われるように制御される請求項1記載の気泡式液面計。   The bubble type liquid level gauge according to claim 1, wherein the first electromagnetic valve and the second electromagnetic valve are controlled so that an air supply mode and a measurement mode are alternately performed. 給気管への圧縮空気供給開始当初は測定モードの時間に対して給気モードの時間が長く、測定値が安定した後は測定モードの時間に対して給気モードの時間が短く制御される請求項5記載の気泡式液面計。   At the beginning of the supply of compressed air to the supply pipe, the time of the supply mode is longer than the time of the measurement mode, and after the measurement value is stabilized, the time of the supply mode is controlled to be shorter than the time of the measurement mode Item 6. A bubble type liquid level gauge according to item 5. 測定モードでは、測定モードへの移行時点から測定値が安定するまでの所定時間経過後に測定する請求項6記載の気泡式液面計。   The bubble-type liquid level meter according to claim 6, wherein in the measurement mode, the measurement is performed after a predetermined time has elapsed from when the measurement mode is shifted to when the measurement value is stabilized. 圧縮空気供給源から第1の電磁バルブに至る圧縮空気供給経路に、圧縮空気の流量を制限するオリフィスが配置されている請求項1記載の気泡式液面計。   The bubble type liquid level gauge according to claim 1, wherein an orifice for restricting a flow rate of the compressed air is arranged in a compressed air supply path from the compressed air supply source to the first electromagnetic valve. 第1の電磁バルブと並列的に第4の電磁バルブが配置され、計測モードが定常的に作動するまでの圧縮空気供給開始当初は第4の電磁バルブと第1の電磁バルブが同時に開閉され、計測モードが定常的に作動しているときは第4の電磁バルブは閉じ、第1の電磁バルブと第2の電磁バルブが交互に開閉するように制御される請求項1記載の気泡式液面計。   A fourth electromagnetic valve is arranged in parallel with the first electromagnetic valve, and at the beginning of the supply of compressed air until the measurement mode is steadily operated, the fourth electromagnetic valve and the first electromagnetic valve are simultaneously opened and closed, The bubble-type liquid level according to claim 1, wherein when the measurement mode is steadily operating, the fourth electromagnetic valve is closed and the first electromagnetic valve and the second electromagnetic valve are controlled to open and close alternately. Total. 第1の電磁バルブと第2の電磁バルブは直列に接続され、第1の電磁バルブと第2の電磁バルブの中間が分岐して給気管に配管されている請求項1記載の気泡式液面計。   The bubble-type liquid level according to claim 1, wherein the first electromagnetic valve and the second electromagnetic valve are connected in series, and the middle of the first electromagnetic valve and the second electromagnetic valve branches off and is connected to the supply pipe. Total. 第1の電磁バルブの圧縮空気出口側は圧縮空気供給経路を介して給気管につながれ、第2の電磁バルブの空気入口側は気圧検出経路を介して給気管につながれている請求項1記載の気泡式液面計。   The compressed air outlet side of the first electromagnetic valve is connected to an air supply pipe via a compressed air supply path, and the air inlet side of the second electromagnetic valve is connected to an air supply pipe via an atmospheric pressure detection path. Bubble type liquid level gauge.
JP2004283394A 2004-09-29 2004-09-29 Bubble level gauge Active JP3992153B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004283394A JP3992153B2 (en) 2004-09-29 2004-09-29 Bubble level gauge
JP2004303463A JP3983240B2 (en) 2004-09-29 2004-10-18 Bubble level gauge
KR1020050006880A KR100828697B1 (en) 2004-09-29 2005-01-25 Air bubble type liquid-level meter
CNB2005100088704A CN100365395C (en) 2004-09-29 2005-02-24 Air bubble type liquid level gauge
HK06106863A HK1086880A1 (en) 2004-09-29 2006-06-15 Air bubble gague

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004283394A JP3992153B2 (en) 2004-09-29 2004-09-29 Bubble level gauge
JP2004303463A JP3983240B2 (en) 2004-09-29 2004-10-18 Bubble level gauge

Publications (2)

Publication Number Publication Date
JP2006098172A true JP2006098172A (en) 2006-04-13
JP3992153B2 JP3992153B2 (en) 2007-10-17

Family

ID=37139343

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004283394A Active JP3992153B2 (en) 2004-09-29 2004-09-29 Bubble level gauge
JP2004303463A Active JP3983240B2 (en) 2004-09-29 2004-10-18 Bubble level gauge

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2004303463A Active JP3983240B2 (en) 2004-09-29 2004-10-18 Bubble level gauge

Country Status (4)

Country Link
JP (2) JP3992153B2 (en)
KR (1) KR100828697B1 (en)
CN (1) CN100365395C (en)
HK (1) HK1086880A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290475A (en) * 2006-04-24 2007-11-08 Sumitomo Heavy Industries Marine & Engineering Co Ltd Device and method of detecting level and gas of ballast tank in ship
WO2007147355A1 (en) * 2006-06-15 2007-12-27 Dongsheng Wang A fluid sensor
CN106525193A (en) * 2016-12-26 2017-03-22 重庆美科华仪科技有限公司 Bubble type water level indicator
CN110455372A (en) * 2019-08-12 2019-11-15 深圳市宏电技术股份有限公司 A kind of air bubble type liquid level gauge detection device, system and method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4995287B2 (en) * 2010-01-14 2012-08-08 ムサシノ機器株式会社 Bubble level gauge
CN101858769B (en) * 2010-05-19 2012-01-04 河海大学 Weighing water level gauge
CN102012247B (en) * 2010-10-27 2012-07-04 江苏科技大学 Blowing level meter with flow and temperature compensation functions
CN104176007A (en) * 2014-07-07 2014-12-03 江苏名和集团有限公司 Method and system for monitoring abnormal change of fuel oil in fuel oil tank
CN104568051B (en) * 2014-12-31 2018-07-13 东莞市海川博通信息科技有限公司 Anti-condensation bubble type water level gauge
CN105021253A (en) * 2015-07-17 2015-11-04 烟台东泽电气科技有限公司 Bubble type liquid level remote-measuring system
CN105300471A (en) * 2015-12-04 2016-02-03 重庆多邦科技股份有限公司 Bubble liquid level detection device of industrial liquid level control system
CN105526988A (en) * 2016-02-16 2016-04-27 唐山现代工控技术有限公司 Using method of bubble type water gauge and bubble type water gauge device
JP5918458B1 (en) 2016-02-17 2016-05-18 ムサシノ機器株式会社 Fluid pressure measurement unit and level gauge
KR102243337B1 (en) * 2020-08-26 2021-04-22 주식회사 티엔에스 Level gauge through controlling open area of air gate hole
CN113431980B (en) * 2021-07-02 2022-09-06 中国核电工程有限公司 Crystallization device is prevented to gas blow pipeline, measurement system and spent fuel aftertreatment system blow

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163522A (en) 1983-03-09 1984-09-14 Toshiba Corp Apparatus for measuring liquid level
JPS63173923A (en) 1987-01-14 1988-07-18 Toshiba Corp Purge type liquid-level meter
JP3076893B2 (en) * 1994-04-20 2000-08-14 東京エレクトロン株式会社 Liquid level detector and pressure detector
JPH1090038A (en) * 1996-09-12 1998-04-10 Sony Corp Liquid level detector
JPH10318818A (en) 1997-05-21 1998-12-04 Sony Corp Liquid level detector and liquid level controller
JP3954713B2 (en) * 1998-02-23 2007-08-08 株式会社キーエンス Pressure gauge, moving device, contact confirmation device, and liquid ejecting device
JP2002054972A (en) * 2000-08-09 2002-02-20 Semuko Kk Pressure type level gauge
JP2002148095A (en) 2000-11-07 2002-05-22 Nissan Motor Co Ltd Method and equipment for detecting liquid level
JP3511374B2 (en) * 2001-03-06 2004-03-29 日野自動車株式会社 Exhaust pressure measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290475A (en) * 2006-04-24 2007-11-08 Sumitomo Heavy Industries Marine & Engineering Co Ltd Device and method of detecting level and gas of ballast tank in ship
JP4536680B2 (en) * 2006-04-24 2010-09-01 住友重機械マリンエンジニアリング株式会社 Ballast tank level and gas detection apparatus and method in a ship
WO2007147355A1 (en) * 2006-06-15 2007-12-27 Dongsheng Wang A fluid sensor
CN106525193A (en) * 2016-12-26 2017-03-22 重庆美科华仪科技有限公司 Bubble type water level indicator
CN106525193B (en) * 2016-12-26 2023-09-29 重庆美科华仪科技有限公司 Bubble type water level gauge
CN110455372A (en) * 2019-08-12 2019-11-15 深圳市宏电技术股份有限公司 A kind of air bubble type liquid level gauge detection device, system and method

Also Published As

Publication number Publication date
CN100365395C (en) 2008-01-30
KR20060028755A (en) 2006-04-03
KR100828697B1 (en) 2008-05-09
JP3992153B2 (en) 2007-10-17
HK1086880A1 (en) 2006-09-29
JP3983240B2 (en) 2007-09-26
JP2006113030A (en) 2006-04-27
CN1755333A (en) 2006-04-05

Similar Documents

Publication Publication Date Title
KR100828697B1 (en) Air bubble type liquid-level meter
KR101961978B1 (en) Fuel supply system with leakage detection means
JP3679004B2 (en) Liquid chemical substance delivery system and delivery method
US10060779B2 (en) Device and method for continuous measurement of the dynamic fuel consumption of an internal combustion engine
JP4995287B2 (en) Bubble level gauge
KR101862830B1 (en) System and Method for for measuring density of chemical solution and Measuring method for level of chemical solution using the same
JP6577267B2 (en) Gas detection system
JP2013124484A (en) Storage device
JP4913379B2 (en) Barometric liquid level detector
CN109162910B (en) Cargo oil pump performance testing device and testing method
JP7228909B2 (en) Bubble type liquid level gauge and immersion detection device
JP2020173210A (en) Bubble-type liquid level indicator and water immersion detector
KR20140088974A (en) Suction pot level control apparatus of high pressure pump for vessel and method for operating the apparatus
KR101732381B1 (en) Buoyancy control system of offshore structure
CN220773458U (en) Gas holder liquid level control device
CN212059017U (en) Float type liquid level meter transmission test device
JP2649576B2 (en) Engine oil consumption measurement device
US8229687B2 (en) System and method for measuring a level of a liquid in a container
JPH0736061U (en) Liquid detection sensor
CN208155396U (en) Aviation kerosine caliberating device
JPH0754282Y2 (en) Alcohol supply device to heat treatment furnace
JP2007114082A (en) Underground tank leakage detector
JP2007107582A (en) Liquefied gas fuel supply device and residual amount detecting method
JPH10274597A (en) Engine testing fuel feeder
JP2006112943A (en) Leakage detecting apparatus for underground tank

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

R150 Certificate of patent or registration of utility model

Ref document number: 3992153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170803

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250