JP2006097223A - Three-dimensional network structure and method for producing three-dimensional network structure - Google Patents

Three-dimensional network structure and method for producing three-dimensional network structure Download PDF

Info

Publication number
JP2006097223A
JP2006097223A JP2005255378A JP2005255378A JP2006097223A JP 2006097223 A JP2006097223 A JP 2006097223A JP 2005255378 A JP2005255378 A JP 2005255378A JP 2005255378 A JP2005255378 A JP 2005255378A JP 2006097223 A JP2006097223 A JP 2006097223A
Authority
JP
Japan
Prior art keywords
network structure
dimensional network
hardness
nozzle
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005255378A
Other languages
Japanese (ja)
Inventor
Motoyuki Shiraki
基之 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JATECX KK
Jatecx Co Ltd
Original Assignee
JATECX KK
Jatecx Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JATECX KK, Jatecx Co Ltd filed Critical JATECX KK
Priority to JP2005255378A priority Critical patent/JP2006097223A/en
Publication of JP2006097223A publication Critical patent/JP2006097223A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/12Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton
    • A47C27/122Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton with special fibres, such as acrylic thread, coconut, horsehair
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/12Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton
    • A47C27/121Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton with different inlays

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional network structure having good body pressure-dispersing properties even when the three-dimensional network structure 1 is formed so as to have a thin thickness, hardly causing bottoming, produced in good productivity at a low production cost; and to provide a method for producing the three-dimensional network structure. <P>SOLUTION: The three-dimensional network structure obtained by three-dimensional irregular entanglement of many wires 3 made from a resin, and partial fusing thereof is regulated so that the three-dimensional network structure may be gradually harder from the front surface 8 side at the use to the back surface 9 side. The method for producing the three-dimensional network structure 1 obtained by three-dimensional irregular entanglement of the many wires 3 made from the resin and having elasticity, and partial fusing thereof comprises changing the intervals and/or diameters of many holes 12 formed in a nozzle 11 so as to correspond to the front and back surface direction and/or the direction orthogonal to the front and back surface direction, extruding the resin from the many holes 12 of the nozzle 11 to form the wires 3, and to provide the three-dimensional network structure 1 regulated so that the hardness in the front and back surface direction and/or the direction orthogonal to the front and back surface direction may be changed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、体圧分散性の優れた立体網状構造体及び立体網状構造体の製造方法に関する。   The present invention relates to a three-dimensional network structure having excellent body pressure dispersibility and a method for producing a three-dimensional network structure.

従来、立体網状構造体で形成されたクッション材が知られている。該立体網状構造体は、樹脂材料により長尺に連続した連続線条が多数本立体的に不規則に絡み合って、その相互の接触部が溶着され、連続線条間に所定の空隙率の空隙を有して弾性を有するものである。   Conventionally, a cushion material formed of a three-dimensional network structure is known. The three-dimensional network structure has a plurality of continuous filaments that are continuously elongated by a resin material, and a plurality of three-dimensionally irregular filaments are entangled irregularly, and their mutual contact portions are welded. And has elasticity.

次に、該立体網状構造体の従来の製造方法について説明する。
押出成形機のノズルに形成した多数の穴から前記の原料を、溶融状態で押し出して線条とし、これを下降させ、この線条を並設された一対の無端状のコンベア間に供給する。前記ノズルの穴は全て同径で、等間隔に配設されている。また、一対のコンベアは冷却水内に配設されている。
Next, a conventional method for producing the three-dimensional network structure will be described.
The raw material is extruded in a molten state from a large number of holes formed in the nozzles of the extrusion molding machine to form a line, which is lowered, and the line is supplied between a pair of endless conveyors arranged side by side. The nozzle holes are all the same diameter and are equally spaced. Moreover, a pair of conveyor is arrange | positioned in the cooling water.

これにより、押出成形機から押し出された溶融樹脂の線条は、コンベア間の水中において浮力などにより3次元方向に湾曲し、線条相互が部分的に接触して溶着し、その後、この溶着部が冷却水により冷却されて、その接触部が強固に結合されるとともに線条が固化して立体網状構造体が製造される。   Thereby, the filaments of the molten resin extruded from the extruder are curved in a three-dimensional direction by buoyancy or the like in the water between the conveyors, and the filaments are partially in contact with each other and welded. Is cooled by cooling water, the contact portions are firmly bonded, and the filaments are solidified to produce a three-dimensional network structure.

上記の方法により製造された立体網状構造体の内部の密度は均一で、その内部の硬さ(柔軟性)は一定である。   The internal density of the three-dimensional network structure manufactured by the above method is uniform, and the internal hardness (flexibility) is constant.

ところで、マットレスとしては、体圧分散性の良いものが望まれている。
また、マットレスは、そのマットレスをベッドの上に載せた状態で、マットレスの上に人が座り、人の足が地面につくことが望まれている。したがって、マットレスとしては、薄くて底付き感のないものが望まれている。
By the way, a mattress having good body pressure dispersibility is desired.
In addition, it is desired that a mattress sits on the mattress while the mattress is placed on a bed, and a person's feet are on the ground. Therefore, a mattress that is thin and has no bottoming is desired.

更に、マットレスは、その上に人が寝た時に、底づきしないことが望ましい。
前記立体網状構造体(クッション材)は、その厚みを厚くすれば、底づきすることを防止できるが、立体網状構造体を薄く形成した場合(例えば、15cm以下)において、底づきを防止するには、立体網状構造体の弾力性を硬くする必要がある。しかし、このように硬くすると、体圧分散性能が悪くなるという問題点がある。
Furthermore, it is desirable that the mattress does not run out when a person sleeps on it.
The three-dimensional network structure (cushion material) can be prevented from bottoming out if the thickness is increased. However, when the three-dimensional network structure is formed thin (for example, 15 cm or less), it is possible to prevent bottoming out. It is necessary to make the elasticity of the three-dimensional network structure hard. However, there is a problem that the body pressure dispersion performance deteriorates when it is hardened in this way.

そこで、本発明は前記の問題点を解決した立体網状構造体及び立体網状構造体の製造方法を提供することを目的とするものである。   Then, this invention aims at providing the manufacturing method of the solid network structure which solved the said problem, and a solid network structure.

前記の課題を解決するために、請求項1記載の発明は、複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体であって、
該立体網状構造体を、その使用時における表面側が柔らかく、その裏面側が硬くなるように、該立体網状構造体の硬さを変化させて形成したことを特徴とする立体網状構造体である。
In order to solve the above-mentioned problem, the invention according to claim 1 is a three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
The three-dimensional network structure is formed by changing the hardness of the three-dimensional network structure so that the front side is soft and the back side is hard when used.

請求項2記載の発明は、複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体であって、
該立体網状構造体を、その使用時における表面側が柔らかく、その裏面側が硬くなるように、該立体網状構造体の硬さを変化させて、同時に一体成形したことを特徴とする立体網状構造体である。
The invention according to claim 2 is a three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
The three-dimensional network structure is characterized in that the three-dimensional network structure is integrally molded at the same time by changing the hardness of the three-dimensional network structure so that the front side is soft and the back side is hard when used. is there.

請求項3記載の発明は、請求項1又は2記載の立体網状構造体において、前記立体網状構造体を、前記表面側から前記裏面側に向って徐々に硬くなるようにしたことを特徴とするものである。   According to a third aspect of the present invention, in the three-dimensional network structure according to the first or second aspect, the three-dimensional network structure is gradually hardened from the front surface side toward the back surface side. Is.

請求項4記載の発明は、複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体であって、
該立体網状構造体を、その表裏方向の一方の面側から他方の面側に向かって硬さを徐々に変化させて、同時に一体成形したことを特徴とする立体網状構造体である。
The invention according to claim 4 is a three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
The three-dimensional network structure is characterized in that the three-dimensional network structure is formed integrally at the same time by gradually changing the hardness from one surface side to the other surface side in the front and back direction.

また、請求項1乃至4のいずれかに記載の立体網状構造体において、前記立体網状構造体の前記表面側から裏面側への硬さの変化の度合いを、前記表面側ほど緩やかにしてもよい。   Further, in the three-dimensional network structure according to any one of claims 1 to 4, the degree of change in hardness from the front surface side to the back surface side of the three-dimensional network structure may be made gentler toward the front surface side. .

請求項5記載の発明は、複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体であって、
該立体網状構造体を、その使用時における表面側に表層部を設け、該表層部の下部に主体部を設け、前記表層部と前記主体部を一体に形成し、
該主体部の前記表面側が柔らかく、前記裏面側が硬くなるように、該主体部の硬さを変化させて形成し、
前記表層部を、前記主体部の前記表面側よりも硬く形成したことを特徴とする立体網状構造体である。
The invention according to claim 5 is a three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
The three-dimensional network structure is provided with a surface layer portion on the surface side in use, a main body portion is provided below the surface layer portion, and the surface layer portion and the main body portion are integrally formed,
The main body is formed by changing the hardness of the main body so that the front side is soft and the back side is hard,
It is a three-dimensional network structure characterized in that the surface layer portion is formed harder than the surface side of the main body portion.

また、請求項5記載の立体網状構造体において、前記主体部を、前記表面側から前記裏面側に向って徐々に硬くなるようにしてもよい。   Further, in the three-dimensional network structure according to claim 5, the main body may be gradually hardened from the front surface side toward the back surface side.

また、複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体であって、
前記立体網状構造体の使用時における表面側に人が寝た場合における、人の身長方向において、その人体の部位に応じて硬さを徐々に変化させて形成してもよい。
Also, a three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
In the case where a person lies on the surface side when the three-dimensional network structure is used, it may be formed by gradually changing the hardness according to the part of the human body in the height direction of the person.

また、前記立体網状構造体の前記表面側に人が寝た場合における、その人の背骨を中心線とし、該中心線に近いほど前記立体網状構造体が軟らかく、該中心線と直交する方向の立体網状構造体の側部に向かうほど、前記立体網状構造体が硬くなるように、前記立体網状構造体の硬さを変化させてもよい。   In addition, when a person lies on the surface side of the three-dimensional network structure, the backbone of the person is the center line, and the closer to the center line, the softer the three-dimensional network structure is in a direction perpendicular to the center line. The hardness of the three-dimensional network structure may be changed so that the three-dimensional network structure becomes harder toward the side of the three-dimensional network structure.

また、前記線条の密度を変化させることにより、前記立体網状構造体の硬さを変化させてもよい。   Moreover, you may change the hardness of the said three-dimensional network structure by changing the density of the said filament.

また、前記線条の太さを変えることにより、前記立体網状構造体の硬さを変化させてもよい。   Moreover, you may change the hardness of the said solid network structure by changing the thickness of the said filament.

前記のような複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体であって、前記のような立体網状構造体を製造するために、例えば、前記の樹脂製の線条をノズルの複数の穴から押し出す押出成形機を有する立体網状構造体の製造装置において、前記ノズルにおける穴間の距離を、前記ノズルの一方の側部の中心と他方の側部の中心を結んだ線に近いほど広く、該線から該線に直交する方向の側部に向うほど狭くなるように、前記ノズルにおける穴間の距離を変えたことを特徴とする立体網状構造体の製造装置を用いることにより製造できる。   A three-dimensional network structure in which a plurality of resin filaments as described above are three-dimensionally irregularly entangled and partially fused. In the manufacturing apparatus of a three-dimensional network structure having an extrusion molding machine that extrudes the resin filaments from a plurality of holes in the nozzle, the distance between the holes in the nozzle is set to the center of one side of the nozzle and the other The distance between the holes in the nozzle is changed so that it is wider as it is closer to the line connecting the centers of the sides of the nozzle and narrower toward the side of the line in a direction perpendicular to the line. It can be manufactured by using a network structure manufacturing apparatus.

また、前記ノズルにおける穴径を、前記一方の側部の中心と他方の側部の中心を結んだ線に近いほど小さく、該線から該線に直交する方向の側部に向うほど大きくなるように、前記ノズルにおける穴径を変えた立体網状構造体の製造装置を用いても製造できる。   Further, the hole diameter in the nozzle is smaller as it is closer to the line connecting the center of the one side and the center of the other side, and is larger as it goes from the line to the side perpendicular to the line. In addition, it can be manufactured using a manufacturing apparatus of a three-dimensional network structure in which the hole diameter in the nozzle is changed.

また、前記線条を熱可塑性樹脂で形成してもよい。
請求項6記載の発明は、複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体の製造方法であって、
ノズルに形成した複数の穴の間隔及び/又は穴径を、成形される立体網状構造体の使用時における表裏方向及び/又は該表裏方向と直交する方向に対応して変え、
前記ノズルの複数の穴から樹脂を押出して前記線条を形成し、前記立体網状構造体を、その表裏方向及び/又は該表裏方向と直交する方向の硬さを変化させて一体に形成することを特徴とする立体網状構造体の製造方法である。
Moreover, you may form the said filament with a thermoplastic resin.
The invention according to claim 6 is a method for manufacturing a three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
The interval between the plurality of holes formed in the nozzle and / or the hole diameter is changed in accordance with the front and back direction and / or the direction perpendicular to the front and back direction when using the molded three-dimensional network structure,
Resin is extruded from a plurality of holes of the nozzle to form the filament, and the three-dimensional network structure is integrally formed by changing the front and back direction and / or the hardness in the direction orthogonal to the front and back direction. This is a method for producing a three-dimensional network structure.

また、複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体の製造方法であって、
ノズルに形成した複数の穴から樹脂を押出して前記線条を形成し、該線条を一対に配設したコンベア間に供給し、該コンベアの回転速度を徐々に変化させることにより、前記立体網状構造体の前記表面側に人が寝た場合における、人の身長方向において、その人体の部位に応じて硬さを徐々に変化させるようにしてもよい。
Further, a method for producing a three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
Resin is extruded from a plurality of holes formed in the nozzle to form the filaments, the filaments are supplied between a pair of conveyors, and the rotational speed of the conveyors is gradually changed to form the three-dimensional network When a person lies on the surface side of the structure, the hardness may be gradually changed in the height direction of the person in accordance with the part of the human body.

また、前記線条を一対に配設したコンベア間に供給し、該コンベアの回転速度を徐々に変化させることにより、前記立体網状構造体の前記表面側に人が寝た場合における、人の身長方向において、その人体の部位に応じて硬さを徐々に変化させるようにしてもよい。   Further, the height of the person when the person sleeps on the surface side of the three-dimensional network structure by supplying the wire between a pair of conveyors and gradually changing the rotation speed of the conveyor. In the direction, the hardness may be gradually changed according to the part of the human body.

また、複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体を製造するために、前記の樹脂製の線条をノズルの複数の穴から押し出す押出成形機を有する立体網状構造体の製造装置において、
前記ノズルにおける穴間の距離が、ノズルの一方の側部ほど広く、他方の側ほど狭くなるように、前記ノズルにおける穴間の距離を変えて前記ノズルの穴を形成したことを特徴とする立体網状構造体の製造装置を用いることにより請求項1乃至4記載の立体網状構造体を製造することができる。
Further, in order to manufacture a three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused, the resin filaments are extruded from a plurality of nozzle holes. In the manufacturing apparatus of a three-dimensional network structure having an extruder,
The nozzle hole is formed by changing the distance between the holes in the nozzle so that the distance between the holes in the nozzle is wider toward one side of the nozzle and narrower toward the other side. The three-dimensional network structure according to any one of claims 1 to 4 can be manufactured by using a network-structure manufacturing apparatus.

また、複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体を製造するために、前記の樹脂製の線条をノズルの複数の穴から押し出す押出成形機を有する立体網状構造体の製造装置において、
前記ノズルにおける穴径が、ノズルの一方の側部ほど小さく、他方の側ほど大きくなるように、前記ノズルにおける穴径を変えて前記ノズルの穴を形成したことを特徴とする立体網状構造体の製造装置を用いることにより請求項1乃至4記載の立体網状構造体を製造することができる。
Further, in order to manufacture a three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused, the resin filaments are extruded from a plurality of nozzle holes. In the manufacturing apparatus of a three-dimensional network structure having an extruder,
A three-dimensional network structure, wherein the nozzle hole is formed by changing the hole diameter in the nozzle so that the hole diameter in the nozzle is smaller on one side of the nozzle and larger on the other side. The three-dimensional network structure according to claims 1 to 4 can be manufactured by using a manufacturing apparatus.

本発明の立体網状構造体は、連続した空隙を有し、かつ、この空隙率が大きいことから、従来からあるウレタンやエアーマットと比べて通気性が良く、体温の上昇を抑え、不必要な汗をかくことを防止できる。また、上記の構造を有することから軽い。上記の点で、本発明の立体網状構造体をマットレスに適用して特に有効であり、健常の人にも寝たきりの人にも適したマットレスを提供できる。   Since the three-dimensional network structure of the present invention has continuous voids and the void ratio is large, it has better air permeability than conventional urethane and air mats, suppresses an increase in body temperature, and is unnecessary. You can prevent sweating. Moreover, since it has said structure, it is light. In view of the above, the mattress of the present invention is particularly effective when applied to a mattress, and a mattress suitable for both healthy and bedridden people can be provided.

また、立体網状構造体は、空隙率が大きくかつ樹脂の線条で形成されるため、軽量で、かつ、洗浄や消毒が容易で、持ち運びや衛生的に良い。   Further, since the three-dimensional network structure has a large porosity and is formed of resin filaments, it is lightweight, easy to clean and disinfect, and is easy to carry and hygienically.

また、立体網状構造体を、その使用時における表面側ほど軟らかく、裏面側ほど硬くなるように立体網状構造体の硬さを変化させて形成したことで、立体網状構造体の厚みを薄くした場合であっても立体網状構造体の表面側に人が座ったり寝たりしたときに、体圧分散性が良く、かつ、底づきを防止できる。   Also, when the thickness of the three-dimensional network structure is reduced by forming the three-dimensional network structure by changing the hardness of the three-dimensional network structure so that it is softer on the front side and harder on the back side when used. Even so, when a person sits or sleeps on the surface side of the three-dimensional network structure, body pressure dispersibility is good, and bottoming out can be prevented.

また、仮に複数の立体網状構造体を積層することにより厚み方向の硬さを変化させたものと比較して、本願発明は1枚で形成できるために、生産効率が高い。また、従来の立体網状構造体よりも薄く形成できることから原材料が減少し、製造コストを低く抑えることができる。   Moreover, compared with what changed the hardness of the thickness direction by laminating | stacking a some three-dimensional network structure, since this invention can be formed by one sheet, production efficiency is high. In addition, since it can be formed thinner than a conventional three-dimensional network structure, raw materials are reduced, and manufacturing costs can be kept low.

請求項3記載の発明によれば、更に、表面側から裏面側に向かって徐々に立体網状構造体を硬く形成したことでより体圧分散性が向上する。   According to the invention described in claim 3, the body pressure dispersibility is further improved by gradually forming the three-dimensional network structure harder from the front surface side toward the back surface side.

請求項5記載の発明によれば、更に、主体部の上部より硬い表層部を設けたことにより、立体網状構造体の耐久性が増加する。   According to the fifth aspect of the present invention, the durability of the three-dimensional network structure is increased by providing the surface layer portion harder than the upper portion of the main portion.

請求項6記載の発明である製造方法を用いることにより、請求項1乃至5記載の立体網状構造体を製造することができる。   By using the manufacturing method according to the sixth aspect of the present invention, the three-dimensional network structure according to the first to fifth aspects can be manufactured.

本発明を実施するための最良の形態を図に示す実施例に基づいて説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described based on an embodiment shown in the drawings.

本発明の立体網状構造体1は、図1に示すように、直方体に形成され、その大きさ、厚みは任意に設定する。本実施例においては、マットレスとして使用できる任意の大きさ(面積)、厚みに設定するが、本実施例1においては厚みが15cm以下に設定されている。   As shown in FIG. 1, the three-dimensional network structure 1 of the present invention is formed in a rectangular parallelepiped, and its size and thickness are arbitrarily set. In this embodiment, an arbitrary size (area) and thickness that can be used as a mattress are set, but in this embodiment, the thickness is set to 15 cm or less.

また、前記立体網状構造体1は、図2に示すように、樹脂、例えば熱可塑性樹脂からなる弾性又は伸縮性を有する材料により長尺に連続した連続線条3が多数本立体的に不規則に絡み合って、その相互の接触部4が溶着され、連続線条間に所定の空隙率の空隙5を有する構造体である。   Further, as shown in FIG. 2, the three-dimensional network structure 1 has a large number of continuous filaments 3 that are long and continuous with a material having elasticity or elasticity made of a resin, for example, a thermoplastic resin. In this structure, the mutual contact portions 4 are welded to each other, and a gap 5 having a predetermined porosity is provided between the continuous filaments.

また、その線条3の直径は所望に設定するが、本実施例においては1mm程度である。
前記弾性又は伸縮性を有する連続線条3の原料としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエチレンテレフタレートなどのポリエステル、ナイロン66などのポリアミド、ポリ塩化ビニル、ポリスチレン、こられの樹脂をベースとし共重合したコポリマやエラストマー、EVA樹脂(エチレン酢酸ビニルコポリマー)、EMMA樹脂(エチレン・メチルメタクリレートコポリマー)、上記各種の樹脂を混合したものなどである。これらの原料のうち、好ましくはEVA樹脂や低密度ポリエチレンやポリエステルである。
Moreover, although the diameter of the filament 3 is set as desired, in this embodiment, it is about 1 mm.
The raw material of the continuous filament 3 having elasticity or stretchability includes polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polyamides such as nylon 66, polyvinyl chloride, polystyrene, and copolymers based on these resins. Copolymers and elastomers, EVA resin (ethylene vinyl acetate copolymer), EMMA resin (ethylene methyl methacrylate copolymer), and a mixture of the above-mentioned various resins. Of these raw materials, EVA resin, low-density polyethylene and polyester are preferable.

EVA樹脂は、伸縮性が大きいため後述する立体網状構造体1の体圧分散性をより向上できる。また、低密度ポリエチレンは、融点が高いために、立体網状構造体1の熱湯消毒や蒸気殺菌が可能となる。   Since EVA resin has a large stretchability, the body pressure dispersibility of the three-dimensional network structure 1 described later can be further improved. Moreover, since low-density polyethylene has a high melting point, hot water disinfection and steam sterilization of the three-dimensional network structure 1 are possible.

また、前記の線条3は、図3(a)に示すように無中空に形成した線条3や図3(b)に示すように中空状にした線条3を用いても良い。図3(b)に示すような中空状の線条3の方が、立体網状構造体1は軽くなり好ましい。   Moreover, the said filament 3 may use the filament 3 formed hollow as shown in Fig.3 (b), or the filament 3 formed hollow as shown in Fig.3 (b). The hollow filament 3 as shown in FIG. 3B is preferable because the three-dimensional network structure 1 becomes lighter.

立体網状構造体1は、図4の模式図(硬さを濃淡で表したもので、淡いほど軟らかく、濃いほど硬く表されている)に示すように、その一方の面である使用時における表面(以下、表面という)8側から他方の面である裏面9側に向かって、線条3の密度を徐々に高くすることにより、立体網状構造体1の表面8側から裏面9側に向かって徐々に(次第に)硬くなるように形成されている。つまり、立体網状構造体1は、その表面8側から裏面9側に向かって柔軟性が徐々に(段階的に)小さくなる一体多層構造、すなわち、複数のクッション材を積み重ねることなく一体の多層構造で形成されている。   As shown in the schematic diagram of FIG. 4 (the hardness is expressed in light and shade, the softer the light, the harder the darker), the three-dimensional network structure 1 is a surface at the time of use, as shown in FIG. By gradually increasing the density of the filaments 3 from the 8 side (hereinafter referred to as the front surface) toward the back surface 9 side, which is the other surface, the surface 8 side of the three-dimensional network structure 1 is directed toward the back surface 9 side. It is formed so as to be gradually (and gradually) harder. That is, the three-dimensional network structure 1 has an integrated multilayer structure in which flexibility gradually decreases in steps from the front surface 8 side to the rear surface 9 side, that is, an integrated multilayer structure without stacking a plurality of cushion materials. It is formed with.

立体網状構造体1は、前記のように樹脂製で弾性又は伸縮性を有する多数本の線条3が湾曲して部分的に結合されているため弾力性(クッション性)を有する。   The three-dimensional network structure 1 has elasticity (cushioning property) because a large number of the filaments 3 made of resin and having elasticity or stretchability are curved and partially joined as described above.

次に、前記立体網状構造体1の製造方法について述べる。
立体網状構造体1を製造するための、図5に示すような押出成形機10の下部には、板状のノズル11を有する。該ノズル11には、図5に示すように、上下に貫通する多数の穴12が設けられている。該穴12の位置、大きさ、隣接する穴12、12間の距離は製造する立体網状構造体1に応じて任意に設定する。
Next, a method for manufacturing the three-dimensional network structure 1 will be described.
A plate-like nozzle 11 is provided at the lower part of the extruder 10 as shown in FIG. 5 for manufacturing the three-dimensional network structure 1. As shown in FIG. 5, the nozzle 11 is provided with a number of holes 12 penetrating vertically. The position and size of the holes 12 and the distance between the adjacent holes 12 and 12 are arbitrarily set according to the three-dimensional network structure 1 to be manufactured.

次に本実施例1におけるノズル11について図5及び図6により説明する。図6は、ノズル11の上面図である。   Next, the nozzle 11 in the first embodiment will be described with reference to FIGS. FIG. 6 is a top view of the nozzle 11.

ノズル11の穴12の径L3は全て1mmである。
また、製造される立体網状構造体1の表裏方向(厚み方向)に対応するノズルの縦X方向の穴12の列数は任意に設定されるが、本実施例1においては、図6に示すように15列とし、その穴12の列は等間隔で配設され、該列間の距離L1は任意に設定されるが、本実施例1においては8〜15mmに設定されている。
The diameter L3 of the hole 12 of the nozzle 11 is all 1 mm.
Moreover, although the number of rows of the holes 12 in the vertical X direction of the nozzle corresponding to the front and back direction (thickness direction) of the three-dimensional network structure 1 to be manufactured is arbitrarily set, in the first embodiment, as shown in FIG. Thus, the rows 12 are arranged at equal intervals, and the distance L1 between the rows is arbitrarily set, but in the first embodiment, it is set to 8 to 15 mm.

該縦X方向と直交する横方向Yの穴12は、立体網状構造体1の表面8を形成する側Aほど横方向Yの穴12、12間の距離L2を広く、立体網状構造体1の裏面9を形成する側Bほど狭く設定して形成されている。本実施例においては、横方向Yの穴12、12間の距離L2を、表面8を形成する側Aから立体網状構造体1の裏面9を形成する側Bに向かって順に22mm×2列、20mm×2列、18mm×2列、16mm×2列、14mm×2列、12mm×3列、10mm×2列とした。   The holes 12 in the horizontal direction Y orthogonal to the vertical X direction have a wider distance L2 between the holes 12 and 12 in the horizontal direction Y toward the side A that forms the surface 8 of the three-dimensional network structure 1. The side B on which the back surface 9 is formed is set narrower. In this example, the distance L2 between the holes 12 in the horizontal direction Y is set to 22 mm × 2 rows in order from the side A forming the front surface 8 toward the side B forming the back surface 9 of the three-dimensional network structure 1. 20 mm × 2 rows, 18 mm × 2 rows, 16 mm × 2 rows, 14 mm × 2 rows, 12 mm × 3 rows, 10 mm × 2 rows.

また、各列の穴12は、その列に隣接する両側の列の穴12と穴12との間に位置するように設定されている。   The holes 12 in each row are set so as to be positioned between the holes 12 and 12 in the rows on both sides adjacent to the row.

前記ノズル11に設けた多数の穴12から前記の原料を、溶融状態で押し出して線条3とし、これを下降させ、この線条3を、図5に示すように、垂直方向に設置され、かつ、並設された一対の無端状のコンベア13A、13B間に供給する。   The raw material is extruded in a molten state from a large number of holes 12 provided in the nozzle 11 to form a line 3, which is lowered, and the line 3 is installed in a vertical direction as shown in FIG. And it supplies between a pair of endless conveyors 13A and 13B arranged in parallel.

この一対のコンベア13A、13Bの間隔は、押し出された溶融樹脂の線条3からなる集合群の幅と略同等か若干狭く設定されており、この一対のコンベア13A、13Bは、前記線条3の下降速度よりも遅く回転するようになっている。また、一対のコンベア13A、13Bは冷却水14内に配設されている。   The interval between the pair of conveyors 13A and 13B is set to be substantially equal to or slightly narrower than the width of the aggregate group composed of the extruded molten resin filaments 3. It is designed to rotate slower than the descent speed. The pair of conveyors 13A and 13B is disposed in the cooling water 14.

これにより、押出成形機10から押し出された(吐出された)溶融樹脂の線条3は、コンベア13A、13B間の冷却水14中において浮力などにより3次元方向に湾曲し、図2に示すように、線条相互が部分的に接触して溶着し、その後、この溶着部が冷却水14により冷却されて、その接触部4が強固に結合されるとともに線条3が固化する。   Thereby, the filament 3 of the molten resin extruded (discharged) from the extruder 10 is curved in a three-dimensional direction due to buoyancy in the cooling water 14 between the conveyors 13A and 13B, as shown in FIG. In addition, the filaments are in partial contact with each other and welded. Then, the welded portion is cooled by the cooling water 14, and the contact portion 4 is firmly bonded and the filament 3 is solidified.

そして、コンベア13A、13Bから流れ出ることにより、所定の厚みの平板状の立体網状構造体1が得られ、これを必要な寸法に切断する。   Then, by flowing out from the conveyors 13A and 13B, a flat three-dimensional network structure 1 having a predetermined thickness is obtained and cut into necessary dimensions.

上記製法により、立体網状構造体1は、その表面8側から裏面9側に向かって、線条3の密度が徐々に高い、すなわち、徐々に硬い一体構造に形成される。   By the above manufacturing method, the three-dimensional network structure 1 is formed into a monolithic structure in which the density of the filaments 3 is gradually increased from the front surface 8 side toward the back surface 9 side, that is, gradually.

なお、前記穴12の位置、穴12の径L3、穴12、12間の距離L2、ノズル11からの樹脂の供給速度や一対のコンベア13Aと13Bの間の間隔、コンベア13A、13Bの速度などを所望に設定することにより、空隙率、すなわち線条3の密度を所望に設定することができ、この密度を所望に設定することにより、所望の弾性係数の立体網状構造体1が得られる。   The position of the hole 12, the diameter L3 of the hole 12, the distance L2 between the holes 12 and 12, the supply speed of the resin from the nozzle 11, the interval between the pair of conveyors 13A and 13B, the speed of the conveyors 13A and 13B, etc. Can be set as desired, and the density of the filament 3 can be set as desired. By setting this density as desired, the three-dimensional network structure 1 having a desired elastic modulus can be obtained.

また、立体網状構造体1の空隙率については所望に設定するが、70〜98%の範囲がよく、より好ましくは85〜98%がよい。   The porosity of the three-dimensional network structure 1 is set as desired, but it is preferably in the range of 70 to 98%, more preferably 85 to 98%.

次に、本発明の立体網状構造体1の効果について説明する。
立体網状構造体1は、樹脂からなる立体網状構造体1のみから構成され、かつ、軽量であるため、水洗い等による洗浄が容易で、かつ、水洗い後に立体網状構造体1を振るのみで水切りが行える。また、水切りをしなくても洗浄後の乾燥性も極めてよいため、衛生面に優れている。
Next, the effect of the three-dimensional network structure 1 of the present invention will be described.
The three-dimensional network structure 1 is composed only of the three-dimensional network structure 1 made of resin and is lightweight, so that it can be easily washed with water and the like, and can be drained by simply shaking the three-dimensional network structure 1 after washing. Yes. Moreover, since the drying property after washing | cleaning is very good even if it does not drain, it is excellent in the sanitary surface.

また、乾燥性が良いため、アルコールや安定化二酸化塩素による消毒も容易に行える。また、線条3を低密度ポリエチレン等の融点の高い樹脂で作成した場合には、熱湯消毒や蒸気殺菌を実施でき衛生面に優れている。   In addition, since it has good drying properties, it can be easily disinfected with alcohol or stabilized chlorine dioxide. Moreover, when the filament 3 is made of a resin having a high melting point such as low density polyethylene, hot water disinfection and steam sterilization can be performed, which is excellent in terms of hygiene.

また、立体網状構造体1は、樹脂のみからなるためリサイクルも容易である。
そのため、立体網状構造体1をマットレスとして使用する場合には、立体網状構造体1の表面に薄い表皮を設け、更に、カバー等により全体を***するだけでよい。表皮は薄くて良い為、立体網状構造体1に加えられた荷重を、弾性又は伸縮性を有するそれぞれの線条3が受け止めることができ体圧分散性に優れる。なお、表皮は設けず、カバーにより全体を***するだけでもよい。
Moreover, since the three-dimensional network structure 1 consists only of resin, it is easy to recycle.
Therefore, when the three-dimensional network structure 1 is used as a mattress, it is only necessary to provide a thin skin on the surface of the three-dimensional network structure 1 and further cover the whole with a cover or the like. Since the skin may be thin, the load applied to the three-dimensional network structure 1 can be received by each of the filaments 3 having elasticity or stretchability, and the body pressure dispersibility is excellent. It should be noted that the entire skin may be covered with a cover without providing a skin.

また、立体網状構造体1は、線条3が絡み合って、連続した空隙5を有し、かつ、その空隙率が大きいため、通気性が良く、更に前記のように表皮やカバーを通気性が良く薄い材料で形成できることから、通気性が良く、かつ、軽く容易に移動することができる。また、うつ伏せに寝た場合でも、通気性が良いために安全である。   In addition, the three-dimensional network structure 1 has continuous air gaps 5 in which the filaments 3 are intertwined with each other, and has a large porosity, so that the air permeability is good. Since it can be formed of a good and thin material, it has good air permeability and can be moved lightly and easily. Even when lying on its face, it is safe because of its good breathability.

また、寝たきりの人において、寝返りができない人や寝返りができる人に合わせた硬さや優れた体圧分散性を容易に設定できるため褥瘡対策としても効果がある。   In addition, in a bedridden person, hardness and excellent body pressure dispersibility suitable for those who cannot turn over or who can turn over can be easily set, and this is also effective as a measure against pressure ulcers.

また、立体網状構造体1の表面8側から裏面9側に向かって、線条3の密度が徐々に高くなるように形成したことで、立体網状構造体1の表面8側から裏面9側に向かうほど段階的に(徐々に)硬くなる。これにより、立体網状構造体1を、15cm以下の厚みに形成した場合においても、その表面8側に人が座ったり、寝たりした時に、体圧分散性が良く、かつ、底づきを防止することができる。   In addition, the density of the filaments 3 is gradually increased from the front surface 8 side to the back surface 9 side of the three-dimensional network structure 1, so that the three-dimensional network structure 1 has a surface 8 side to a back surface 9 side. The more you head, the harder you are. Thereby, even when the three-dimensional network structure 1 is formed with a thickness of 15 cm or less, when a person sits on the surface 8 side or sleeps, the body pressure dispersibility is good and the bottom is prevented. be able to.

また、一体に形成された1枚の立体網状構造体の内部の硬さを変化させることで、底づきを防止することができる。また、仮に複数の立体網状構造体を積層することにより厚み方向の硬さを変化させたものと比較して、本願発明は1枚で形成できるために、生産効率が高い。また、前記従来の立体網状構造体と比較して、薄く形成できることから原材料が減少し、製造コストを低く抑えることができる。   In addition, bottoming out can be prevented by changing the internal hardness of one integrally formed three-dimensional network structure. Moreover, compared with what changed the hardness of the thickness direction by laminating | stacking a some three-dimensional network structure, since this invention can be formed by one sheet, production efficiency is high. Moreover, since it can form thinly compared with the said conventional three-dimensional network structure, a raw material reduces and manufacturing cost can be held down low.

図7は実施例2を示す。
本実施例2は、前記実施例1のノズル11の変形例である。
FIG. 7 shows a second embodiment.
The second embodiment is a modification of the nozzle 11 of the first embodiment.

本実施例2のノズル21は、前記実施例1のノズル11と同様に、立体網状構造体1の表裏方向(厚み方向)に対応するノズル21の縦X方向には、図7に示すように、15列の穴22が等間隔に配設され、該列間L1の距離は8〜15mmに設定されている。また、ノズル21の穴22の径L3は全て1mmである。   The nozzle 21 of the second embodiment is similar to the nozzle 11 of the first embodiment in the vertical X direction of the nozzle 21 corresponding to the front and back direction (thickness direction) of the three-dimensional network structure 1 as shown in FIG. , 15 rows of holes 22 are arranged at equal intervals, and the distance between the rows L1 is set to 8 to 15 mm. The diameter L3 of the hole 22 of the nozzle 21 is all 1 mm.

また、該縦X方向と直交する横方向Yの穴22、22間の距離L2を、表面8を形成する側Aから立体網状構造体1の裏面9を形成する側Bに向かって順に20mm×6列、17mm×5列、14mm×3列、10mm×1列としたものである。   Further, the distance L2 between the holes 22 in the lateral direction Y perpendicular to the longitudinal X direction is set to 20 mm × in order from the side A forming the front surface 8 toward the side B forming the back surface 9 of the three-dimensional network structure 1. 6 rows, 17 mm × 5 rows, 14 mm × 3 rows, 10 mm × 1 row.

上記のようにノズル間隔を設定したことで、立体網状構造体1の硬さの変化の度合いが、表面8側ほど緩やかで、裏面9側ほど急に形成される。つまり、立体網状構造体1の表面8から裏面9までの硬さは、放物線に近似したものとなる。   By setting the nozzle interval as described above, the degree of change in the hardness of the three-dimensional network structure 1 is more gradual toward the front surface 8 side and abruptly formed toward the back surface 9 side. That is, the hardness from the front surface 8 to the back surface 9 of the three-dimensional network structure 1 is approximate to a parabola.

その他の部材、製造方法は前記実施例1と同様であるので、その説明を省略する。
また、前記実施例1と同様の作用、効果を奏する。
Since other members and the manufacturing method are the same as those in the first embodiment, description thereof is omitted.
In addition, the same operations and effects as the first embodiment are achieved.

本実施例2においては、更に、立体網状構造体1の硬さの変化の度合いを、表面8側ほど緩やかに形成したことで、立体網状構造体1の表面側に人が寝た場合に、その人体に近いほど軟らかいために、寝心地がよい。また、裏面9に向かうほど硬さの変化の度合いを高くすることで底づき感が減少する。つまり、体圧分散性を向上させ、かつ、底づきを防止できる。   In the second embodiment, the degree of change in the hardness of the three-dimensional network structure 1 is more gradually formed toward the surface 8 side, so that when a person lies on the surface side of the three-dimensional network structure 1, The closer to the human body, the softer it is, the better it is to sleep. In addition, the feeling of bottoming is reduced by increasing the degree of change in hardness toward the back surface 9. That is, body pressure dispersibility can be improved and bottoming out can be prevented.

図8は実施例3を示す。
本実施例3は、前記実施例1、2のノズル11、21の変形例である。
FIG. 8 shows a third embodiment.
The third embodiment is a modification of the nozzles 11 and 21 of the first and second embodiments.

本実施例3のノズル31は、前記実施例1、2のノズル11、21と同様に、立体網状構造体1の表裏方向(厚み方向)に対応するノズルの縦X方向には、図8に示すように、15列の穴32が等間隔に配設され、該列間の距離L1は8〜15mmに設定されている。また、ノズル31の穴32の径L3は全て1mmである。   The nozzle 31 of the third embodiment is similar to the nozzles 11 and 21 of the first and second embodiments in the vertical X direction of the nozzle corresponding to the front and back direction (thickness direction) of the three-dimensional network structure 1 as shown in FIG. As shown, 15 rows of holes 32 are arranged at equal intervals, and the distance L1 between the rows is set to 8 to 15 mm. Further, the diameter L3 of the hole 32 of the nozzle 31 is all 1 mm.

また、該縦X方向に直交する横方向Yの穴32、32間の距離L2を、表面8を形成する側Aから立体網状構造体1の裏面9を形成する側Bに向かって順に22mm×10列、18mm×5列としたものである。   Further, the distance L2 between the holes 32 in the horizontal direction Y orthogonal to the vertical X direction is set to 22 mm × in order from the side A forming the front surface 8 toward the side B forming the back surface 9 of the three-dimensional network structure 1. 10 rows, 18 mm × 5 rows.

その他の部材、製造方法は前記実施例1、2と同様であるので、その説明を省略する。
また、前記実施例1、2と同様の作用、効果を奏する。
Since other members and the manufacturing method are the same as those in the first and second embodiments, description thereof will be omitted.
In addition, the same operations and effects as the first and second embodiments are achieved.

本実施例4は、前記実施例1、2のノズル11、21の変形例である。
本実施例4のノズルは、前記実施例1乃至3のノズル11、21、31と同様に、立体網状構造体1の表裏方向(厚み方向)に対応するノズルの縦X方向には、15列の穴が等間隔に配設され、該列間の距離L1は8〜15mmに設定されている。また、ノズルの穴の径L3は全て1mmである。
The fourth embodiment is a modification of the nozzles 11 and 21 of the first and second embodiments.
As with the nozzles 11, 21, and 31 of Examples 1 to 3, the nozzles of Example 4 have 15 rows in the vertical X direction of the nozzles corresponding to the front and back direction (thickness direction) of the three-dimensional network structure 1. Are arranged at equal intervals, and the distance L1 between the rows is set to 8 to 15 mm. The diameters L3 of the nozzle holes are all 1 mm.

また、該縦X方向に直交する横方向Yの穴間の距離L2を、表面8を形成する側Aから立体網状構造体1の裏面9を形成する側Bに向かって連続的に(徐々に)狭くなるように、横方向Yの穴間の距離L2を変えたものである。つまり、横方向Yの穴間の距離L2を15列全てに亘って変えたものである。   Further, the distance L2 between the holes in the horizontal direction Y orthogonal to the vertical X direction is continuously (gradually) from the side A forming the front surface 8 toward the side B forming the back surface 9 of the three-dimensional network structure 1. ) The distance L2 between the holes in the lateral direction Y is changed so as to be narrower. That is, the distance L2 between the holes in the horizontal direction Y is changed over all 15 rows.

その他の部材、製造方法は前記実施例1乃至3と同様であるので、その説明を省略する。   Since other members and the manufacturing method are the same as those in the first to third embodiments, description thereof will be omitted.

また、前記実施例1乃至3と同様の作用、効果を奏する。   In addition, the same operations and effects as the first to third embodiments are obtained.

図9は実施例5を示す。
前記実施例1乃至4においては、ノズル11、21、31の穴12、22、32の径を全て1mmとしたが、本実施例5におけるノズル41は、図9に示すように、横方向Yの穴42は全て同じ穴径とし、該横Y方向と直交する縦方向Xの穴42の穴径を、立体網状構造体1の表面8を形成する側Aほど小さく、立体網状構造体1の裏面9を形成する側Bほど大きく設定されている。なお、図9は、本実施例5を示す模式図であり、ノズル41のX方向の穴42の列数、列間の距離L1、横Y方向の穴42の数、穴42、42間の距離L2は任意に設定する。
FIG. 9 shows a fifth embodiment.
In the first to fourth embodiments, the diameters of the holes 12, 22, and 32 of the nozzles 11, 21, and 31 are all set to 1 mm. However, as shown in FIG. The holes 42 have the same hole diameter, and the hole diameter in the vertical direction X perpendicular to the transverse Y direction is smaller on the side A that forms the surface 8 of the three-dimensional network structure 1. The side B on which the back surface 9 is formed is set larger. FIG. 9 is a schematic diagram showing the fifth embodiment. The number of rows of the holes 42 in the X direction of the nozzle 41, the distance L1 between the rows, the number of the holes 42 in the horizontal Y direction, and the space between the holes 42, 42. The distance L2 is set arbitrarily.

なお、X方向の穴42の列間の距離L1を全て同じに設定しても良いし、前記実施例1乃至4のように縦方向Xにしたがって変えても良い。   The distances L1 between the rows of the holes 42 in the X direction may all be set to be the same, or may be changed according to the vertical direction X as in the first to fourth embodiments.

その他の部材、製造方法は前記実施例1乃至4と同様であるので、その説明を省略する。   Since other members and the manufacturing method are the same as those in the first to fourth embodiments, the description thereof is omitted.

上記のようにノズル41の穴42の径を設定することにより、立体網状構造体1の表面8側から裏面9側に向かって線条3の径が太くなり、これにより、立体網状構造体1の表面8から裏面9側に向って、立体網状構造体1を徐々に(次第に)硬くすることが出来、前記実施例1乃至4と同様の作用、効果を奏する。   By setting the diameter of the hole 42 of the nozzle 41 as described above, the diameter of the filament 3 increases from the front surface 8 side to the back surface 9 side of the three-dimensional network structure 1, and thereby the three-dimensional network structure 1. From the front surface 8 to the back surface 9 side, the three-dimensional network structure 1 can be gradually and gradually hardened, and the same operations and effects as in the first to fourth embodiments are achieved.

図10は実施例6を示す。
前記実施例1乃至5においては、立体網状構造体1の表面8側から裏面9側に向かって、線条3の密度を徐々に高く形成したが、本実施例6においては、立体網状構造体50の表面8側に表層部51を設け、該表層部51の下部に主体部52を設け、該表層部51と主体部52を一体に形成し、該主体部52の表面8側より裏面9側に向かって、線条3の密度を徐々に(次第に)高く形成したものである。また、前記表層部51の線条3の密度は、主体部52の表面8側付近における線条3の密度よりも高く形成されている。つまり、表層部51は、主体部52の表面8側付近よりも硬く形成されている。
FIG. 10 shows a sixth embodiment.
In Examples 1 to 5, the density of the filaments 3 was gradually increased from the front surface 8 side to the back surface 9 side of the three-dimensional network structure 1, but in the sixth example, the three-dimensional network structure was formed. 50, a surface layer portion 51 is provided on the front surface 8 side, a main body portion 52 is provided below the surface layer portion 51, the surface layer portion 51 and the main body portion 52 are integrally formed, and a back surface 9 is formed from the front surface 8 side of the main body portion 52. The density of the filament 3 is gradually increased toward the side. Further, the density of the filament 3 in the surface layer portion 51 is formed higher than the density of the filament 3 in the vicinity of the surface 8 side of the main body portion 52. That is, the surface layer portion 51 is formed to be harder than the vicinity of the surface 8 side of the main body portion 52.

前記表層部51の厚み、硬さは、任意に設定する。
次に、本実施例6の立体網状構造体50の製造方法について説明する。
The thickness and hardness of the surface layer portion 51 are arbitrarily set.
Next, a method for manufacturing the three-dimensional network structure 50 according to the sixth embodiment will be described.

本実施例5の立体網状構造体50の製造方法は、前記実施例と同様に前記ノズル11、21、31、41に設けた多数の穴12、22、32、42から前記の原料を、溶融状態で押し出して線条3とし、これを下降させ、この線条3を、垂直方向に設置し、かつ、並設された一対の無端状のコンベア13A、13B間に供給する。該無端状のコンベア13A、13Bの間隔を、押し出された溶融樹脂の線条3からなる集合群の幅より短く設定し、図10に示すように、板55等により押し出された溶融樹脂の線条3のうち側部に位置する線条3Aを、内側に移動させることにより、立体網状構造体50の表面8及び裏面9における線条3の密度が高くなり、表層部51が形成される。   In the manufacturing method of the three-dimensional network structure 50 according to the fifth embodiment, the raw material is melted from a large number of holes 12, 22, 32, and 42 provided in the nozzles 11, 21, 31, and 41 in the same manner as the previous embodiment. The strip 3 is extruded in a state to be lowered, and the strip 3 is lowered, and is supplied between a pair of endless conveyors 13A and 13B arranged in the vertical direction and arranged side by side. The interval between the endless conveyors 13A and 13B is set to be shorter than the width of the aggregate group composed of the extruded molten resin filaments 3, and as shown in FIG. 10, the molten resin line extruded by the plate 55 or the like. By moving the line 3 </ b> A located on the side of the line 3 to the inside, the density of the line 3 on the front surface 8 and the back surface 9 of the three-dimensional network structure 50 is increased, and the surface layer part 51 is formed.

無端状のコンベア13A、13Bの間隔を調節することにより、表層部51の厚みを調節することができる。   The thickness of the surface layer portion 51 can be adjusted by adjusting the interval between the endless conveyors 13A and 13B.

その他の部材、製造方法は前記実施例1乃至5と同様であるので、その説明を省略する。   Since other members and the manufacturing method are the same as those in the first to fifth embodiments, the description thereof is omitted.

本実施例6においても前記実施例1乃至5と同様の作用、効果を奏する。
また、本実施例6においては、表層部51を設けたことにより、立体網状構造体50の耐久性が増加する。
In the sixth embodiment, the same operations and effects as the first to fifth embodiments are achieved.
In the sixth embodiment, the provision of the surface layer portion 51 increases the durability of the three-dimensional network structure 50.

図11は実施例7を示す。
前記実施例1乃至6においては、立体網状構造体1の厚み方向(表面8から裏面9方向)αのみ立体網状構造体1の硬さを変化させたが、本実施例7は、立体網状構造体60の厚み方向α及び縦方向β(図11の模式図に示すように、人65が上部に寝た場合における人体の身長方向)の硬さを徐々に変化させたものである。なお、図11は、模式図で硬さを濃淡で表し、淡いほど軟らかく、濃いほど硬く表されている。また、図11は、立体網状構造体60の縦方向βの変化を見やすくするために、立体網状構造体60の厚み方向αへの硬さの変化については図示していない。また、立体網状構造体60を表面8側からみた場合、縦方向βについては硬さを変化させるが、人体65から側方向への硬さについては略同じになるように形成されている。
FIG. 11 shows a seventh embodiment.
In Examples 1 to 6, the hardness of the three-dimensional network structure 1 was changed only in the thickness direction (from the front surface 8 to the back surface 9) α of the three-dimensional network structure 1, but in the seventh example, the three-dimensional network structure The hardness of the body 60 in the thickness direction α and the longitudinal direction β (the height direction of the human body when the person 65 lies down as shown in the schematic diagram of FIG. 11) is gradually changed. In addition, FIG. 11 is a schematic diagram showing the hardness in light and shade, where the lighter is softer and the darker is harder. Further, FIG. 11 does not show the change in the hardness of the three-dimensional network structure 60 in the thickness direction α in order to make the change in the vertical direction β of the three-dimensional network structure 60 easier to see. Further, when the three-dimensional network structure 60 is viewed from the surface 8 side, the hardness is changed in the longitudinal direction β, but the hardness in the lateral direction from the human body 65 is substantially the same.

立体網状構造体60の厚み方向αの硬さの変化は前記実施例1乃至6と同様に形成されている。   The change in the hardness in the thickness direction α of the three-dimensional network structure 60 is formed in the same manner as in the first to sixth embodiments.

また、立体網状構造体60は、図11に示すように、人65が寝た場合における、人体65の頭部、肩胛骨、臀部、踵部が位置する部位を横方向全体に亘って軟らかく形成し、該部位から身長方向に向かうほど徐々に硬く形成されている。   In addition, as shown in FIG. 11, the three-dimensional network structure 60 softly forms a portion where the head, shoulder ribs, buttocks, and buttocks of the human body 65 are located in the horizontal direction when the person 65 is sleeping. It is gradually formed so hard that it goes to the height direction from this part.

その他の部材等は前記実施例1乃至6と同様であるので、その説明を省略する。
次に、本実施例7の立体網状構造体60の製造方法について説明する。
Since other members are the same as those in the first to sixth embodiments, the description thereof is omitted.
Next, a method for manufacturing the three-dimensional network structure 60 of Example 7 will be described.

立体網状構造体60を製造するための、押出成形機10及び、そのノズル11、21、31、41については、前記実施例1乃至6と同様のものを使用する。   As for the extruder 10 and its nozzles 11, 21, 31, 41 for producing the three-dimensional network structure 60, the same ones as in the first to sixth embodiments are used.

前記ノズル11、21、31、41に設けた多数の穴12、22、32、42から前記実施例と同様の原料を、溶融状態で押し出して線条3とし、これを下降させ、この線条3を、前記実施例と同様の一対の無端状のコンベア13A、13B間に供給する。   The same raw material as in the above embodiment is extruded in a molten state from a large number of holes 12, 22, 32, and 42 provided in the nozzles 11, 21, 31, and 41 to form a line 3, and this is lowered. 3 is supplied between a pair of endless conveyors 13A and 13B similar to the above embodiment.

このコンベア13A、13Bの回転速度を徐々に速めると、線条3の密度は徐々に疎となりその部位における立体網状構造体60は徐々に軟らかく形成される。一方、コンベア13A、13Bの回転速度を徐々に遅くすると、線条3の密度は徐々に密となりその部位における立体網状構造体60は徐々に硬く形成される。このように、コンベア13A、13Bの回転速度を緩やかに変化させることにより、上記のように人体65の部位に応じて立体網状構造体60の縦方向βの硬さを徐々に変化させることが出来る。   When the rotational speeds of the conveyors 13A and 13B are gradually increased, the density of the filament 3 gradually becomes sparse, and the three-dimensional network structure 60 at the portion is gradually softened. On the other hand, when the rotational speed of the conveyors 13A and 13B is gradually decreased, the density of the filaments 3 is gradually increased, and the three-dimensional network structure 60 at the portion is gradually formed to be hard. Thus, by gradually changing the rotation speed of the conveyors 13A and 13B, the hardness in the longitudinal direction β of the three-dimensional network structure 60 can be gradually changed according to the portion of the human body 65 as described above. .

その他の製造方法は前記1乃至6と同様であるので、その説明を省略する。
また、本実施例7においても前記実施例1乃至6と同様の作用、効果を奏する。
Since other manufacturing methods are the same as those in 1 to 6, description thereof will be omitted.
Also in the seventh embodiment, the same operations and effects as the first to sixth embodiments are achieved.

また、本実施例7においては、立体網状構造体60の厚み方向α及び人体65の部位に応じて立体網状構造体60の縦方向βの硬さを徐々に変化させた、つまり、立体網状構造体60の二方向について硬さを変化させたことにより、より立体網状構造体60の体圧分散性が向上する。   In the seventh embodiment, the hardness in the longitudinal direction β of the three-dimensional network structure 60 is gradually changed according to the thickness direction α of the three-dimensional network structure 60 and the part of the human body 65, that is, the three-dimensional network structure. By changing the hardness in two directions of the body 60, the body pressure dispersibility of the three-dimensional network structure 60 is further improved.

なお、本実施例7においては、立体網状構造体60の厚み方向α及び人体65の部位に応じて立体網状構造体60の縦方向βの硬さを徐々に変化させたが、立体網状構造体60の厚み方向αの硬さを変化させず、人体65の部位に応じて立体網状構造体60の縦方向βの硬さのみを徐々に変化させてもよい。   In Example 7, although the hardness in the longitudinal direction β of the three-dimensional network structure 60 was gradually changed according to the thickness direction α of the three-dimensional network structure 60 and the part of the human body 65, the three-dimensional network structure Instead of changing the hardness in the thickness direction α of 60, only the hardness in the vertical direction β of the three-dimensional network structure 60 may be gradually changed according to the part of the human body 65.

図12、図13は実施例8を示す。
前記実施例6においては、立体網状構造体60の厚み方向α及び縦方向β(図11に示すように、人65が立体網状構造体60の上部に寝た場合における人体65の身長方向)の硬さを変化させたものであるが、本実施例8においては、厚み方向α及び縦方向β及び図12の模式図に示すように、横方向γ(人体75の身長方向に直交する方向)の三方向において立体網状構造体70の硬さを変化させたものである。なお、図12は、模式図で硬さを濃淡で表し、淡いほど軟らかく、濃いほど硬く表されている。また、図12は、立体網状構造体70の横方向γの変化を見やすくするために、立体網状構造体70の縦方向βの硬さの変化については図示していない。
12 and 13 show an eighth embodiment.
In the sixth embodiment, the thickness direction α and the vertical direction β of the three-dimensional network structure 60 (the height direction of the human body 65 when the person 65 lies on the top of the three-dimensional network structure 60 as shown in FIG. 11). Although the hardness is changed, in the eighth embodiment, as shown in the thickness direction α and the vertical direction β and the schematic diagram of FIG. 12, the horizontal direction γ (the direction orthogonal to the height direction of the human body 75). The hardness of the three-dimensional network structure 70 is changed in the three directions. In addition, FIG. 12 is a schematic diagram showing the hardness in light and shade, where the lighter is softer and the darker is harder. Further, FIG. 12 does not show the change in the hardness in the vertical direction β of the three-dimensional network structure 70 in order to make the change in the horizontal direction γ of the three-dimensional network structure 70 easier to see.

立体網状構造体70の厚み方向αの硬さの変化は前記実施例1乃至6と同様に形成されている。また、立体網状構造体70の縦方向βの硬さの変化は前記実施例7と同様に形成されている。   The change in the hardness in the thickness direction α of the three-dimensional network structure 70 is formed in the same manner as in the first to sixth embodiments. Further, the change in the hardness in the longitudinal direction β of the three-dimensional network structure 70 is formed in the same manner as in the seventh embodiment.

また、立体網状構造体70は、図12に示すように、人75が寝た場合における、その人75の背骨を中心線70aとし、該中心線と直交する方向γの立体網状構造体70の側部70bに向かうほど、前記立体網状構造体70を徐々に(次第に)硬く形成している。   In addition, as shown in FIG. 12, the three-dimensional network structure 70 has a three-dimensional network structure 70 in a direction γ perpendicular to the center line, with the spine of the person 75 as the center line 70 a when the person 75 is sleeping. The three-dimensional network structure 70 is gradually and gradually formed harder toward the side part 70b.

その他の部材等は前記実施例1乃至7と同様であるので、その説明を省略する。
次に、本実施例8の立体網状構造体70の製造方法について説明する。
Other members and the like are the same as those in the first to seventh embodiments, and the description thereof is omitted.
Next, a method for manufacturing the three-dimensional network structure 70 of Example 8 will be described.

立体網状構造体70を製造するための、押出成形機10に設けられるノズル71は図13に示すものを用いる。該ノズル71には複数の穴72が設けられている。該穴72は、図13に示すように、立体網状構造体70の表裏方向(厚み方向)αに対応するノズルの縦X方向には穴72の列間が等間隔に配設され、かつ、立体網状構造体70の表面8を形成する側Aほど横方向Yの穴72の穴径を小さくし、立体網状構造体70の裏面9を形成する側Bほど穴72の穴径が大きく設定され、かつ、横方向Yにおける中心線C−Cから横方向Yの側部D、Eに向かって、穴径が徐々に大きく設定されている。   The nozzle 71 provided in the extruder 10 for producing the three-dimensional network structure 70 is the one shown in FIG. The nozzle 71 is provided with a plurality of holes 72. As shown in FIG. 13, the holes 72 are arranged at equal intervals between the rows of holes 72 in the longitudinal X direction of the nozzle corresponding to the front and back direction (thickness direction) α of the three-dimensional network structure 70, and The hole diameter of the hole 72 in the lateral direction Y is made smaller toward the side A forming the surface 8 of the three-dimensional network structure 70, and the hole diameter of the hole 72 is set larger as the side B forming the back surface 9 of the three-dimensional network structure 70. In addition, the hole diameter is gradually increased from the center line C-C in the lateral direction Y toward the side portions D and E in the lateral direction Y.

なお、図13は、本実施例7を示す模式図であり、ノズル71のX方向の穴72の列数、列間の距離L1、横方向Yの穴72の数、穴72、72間の距離L2は任意に設定する。   FIG. 13 is a schematic diagram illustrating the seventh embodiment. The number of rows of the holes 72 in the X direction of the nozzle 71, the distance L1 between the rows, the number of the holes 72 in the lateral direction Y, and between the holes 72 and 72 are illustrated. The distance L2 is set arbitrarily.

前記ノズル71を使用することにより、径が大きい穴72から押出された線条3は太く、径が小さい穴72から押出された線条3は細くなり、立体網状構造体70の三方向の硬さを変化させることができる。   By using the nozzle 71, the filament 3 extruded from the hole 72 having a large diameter is thick, the filament 3 extruded from the hole 72 having a small diameter is thin, and the three-dimensional network structure 70 is hardened in three directions. It can be changed.

なお、前記のようにノズル71の穴72の穴径L3を変化させるのではなく、穴72の穴径L3を一定に設定し、立体網状構造体70の部位を硬くするところは穴72、72間の距離L2を狭くし、立体網状構造体70の部位を軟らかくするところは穴72、72間の距離L2を広く設定しても良い。   Instead of changing the hole diameter L3 of the hole 72 of the nozzle 71 as described above, the holes 72, 72 are set so that the hole diameter L3 of the hole 72 is set constant and the portion of the three-dimensional network structure 70 is hardened. The distance L2 between the holes 72 and 72 may be set wide to reduce the distance L2 between them and soften the portion of the three-dimensional network structure 70.

また、ノズル71の穴72の径L3及び穴72、72間の距離L2を変えることで、上記のように立体網状構造体70の三方向の硬さを変化させることが出来る。   Further, by changing the diameter L3 of the hole 72 of the nozzle 71 and the distance L2 between the holes 72 and 72, the hardness in the three directions of the three-dimensional network structure 70 can be changed as described above.

その他の部材や製造方法は前記1乃至7と同様であるので、その説明を省略する。
また、前記実施例1乃至7と同様の作用、効果を奏する。
Since other members and manufacturing methods are the same as those in 1 to 7, the description thereof is omitted.
In addition, the same operations and effects as the first to seventh embodiments are obtained.

また、本実施例8においては、前記立体網状構造体70を中心線70aほど軟らかく側部70bほど硬く形成したことで人75の中心ほど沈み易く、人75の側部ほど沈み込みにくくなり、立体網状構造体70は、その中心線70aに近いほど、人75の体重を支え難く、その側部70bに向うほど人75の体重を支え易くなり、立体網状構造体70の体圧分散性は向上する。   In the eighth embodiment, the three-dimensional network structure 70 is formed so that the center line 70a is softer and the side portions 70b are harder, so that the center of the person 75 is more likely to sink, and the side of the person 75 is less likely to sink. As the network structure 70 is closer to the center line 70a, the weight of the person 75 is less likely to be supported, and the weight of the person 75 is more easily supported toward the side portion 70b, and the body pressure dispersibility of the three-dimensional network structure 70 is improved. To do.

このように、立体網状構造体70の横方向γについても硬さを変化させることにより、つまり、立体網状構造体70の三方向において硬さを変化させることにより、より一層立体網状構造体70の体圧分散性が向上する。   Thus, by changing the hardness also in the lateral direction γ of the three-dimensional network structure 70, that is, by changing the hardness in the three directions of the three-dimensional network structure 70, the three-dimensional network structure 70 is further improved. Body pressure dispersibility is improved.

その他の実施例Other examples

前記実施例1乃至8のいずれの立体網状構造体1、50、60、70も、従来のウレタンやばねなどを有するクッション体よりも構造が簡単で、かつ、軽量であるため、本発明の立体網状構造体1、50、60、70を自動車やバイクなどのシートのクッション体として用いることにより、そのシートを軽量に製作でき、車体の軽量化につながり、自動車やバイク等の燃費の向上を図ることができ、環境面にも良い。   Any of the three-dimensional network structures 1, 50, 60, and 70 of Examples 1 to 8 are simpler in structure and lighter than conventional cushions having urethane or springs. By using the net-like structures 1, 50, 60, and 70 as cushion bodies for seats of automobiles, motorcycles, etc., the seats can be made lightweight, leading to weight reduction of the vehicle body, and improving fuel economy of automobiles, motorcycles, etc. Can be environmentally friendly.

本発明は、前記実施例のようなマットレスに適用できる外、椅子、ソファー、自動車・バイク等のシートなどのあらゆるクッション体としても適用可能である。   The present invention can be applied not only to the mattress as in the above embodiment, but also to any cushion body such as a seat for a chair, a sofa, an automobile or a motorcycle.

本発明に用いる立体網状構造体の斜視図Perspective view of three-dimensional network structure used in the present invention 図1の立体網状構造体の線条の絡み状態を示す拡大図。The enlarged view which shows the entanglement state of the filament of the solid network structure of FIG. 図1の線条の2例を示す斜視図。The perspective view which shows two examples of the filament of FIG. 本発明の実施例1における立体網状構造体の模式図。The schematic diagram of the three-dimensional network structure in Example 1 of this invention. 本発明の実施例1における立体網状構造体の製造方法を示す模式図。The schematic diagram which shows the manufacturing method of the solid network structure in Example 1 of this invention. 本発明の実施例1に用いるノズルの上面図。The top view of the nozzle used for Example 1 of this invention. 本発明の実施例2に用いるノズルの上面図。The top view of the nozzle used for Example 2 of this invention. 本発明の実施例3に用いるノズルの上面図。The top view of the nozzle used for Example 3 of this invention. 本発明の実施例5に用いるノズルの上面図の模式図。The schematic diagram of the top view of the nozzle used for Example 5 of this invention. 本発明の実施例6における立体網状構造体の製造方法を示す模式図。The schematic diagram which shows the manufacturing method of the three-dimensional network structure in Example 6 of this invention. 本発明の実施例7における立体網状構造体の模式図。The schematic diagram of the three-dimensional network structure in Example 7 of this invention. 本発明の実施例8における立体網状構造体の模式図。The schematic diagram of the three-dimensional network structure in Example 8 of this invention. 本発明の実施例8に用いるノズルの上面図の模式図。The schematic diagram of the top view of the nozzle used for Example 8 of this invention.

符号の説明Explanation of symbols

1、50、60、70 立体網状構造体
3 線条
4 溶着部(接触部)
5 空隙
8 表面
9 裏面
10 押出成形機
11、21、31、41、71 ノズル
12、22、32、42、72 穴
51 表層部
52 主体部
1, 50, 60, 70 Three-dimensional network structure 3 Wire 4 Welding part (contact part)
5 Gaps 8 Surface 9 Back 10 Extruder 11, 21, 31, 41, 71 Nozzle 12, 22, 32, 42, 72 Hole 51 Surface layer portion 52 Main portion

Claims (6)

複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体であって、
該立体網状構造体を、その使用時における表面側が柔らかく、その裏面側が硬くなるように、該立体網状構造体の硬さを変化させて形成したことを特徴とする立体網状構造体。
A three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
A three-dimensional network structure formed by changing the hardness of the three-dimensional network structure so that the front side is soft and the back side is hard when used.
複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体であって、
該立体網状構造体を、その使用時における表面側が柔らかく、その裏面側が硬くなるように、該立体網状構造体の硬さを変化させて、同時に一体成形したことを特徴とする立体網状構造体。
A three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
A three-dimensional network structure, wherein the three-dimensional network structure is integrally molded at the same time by changing the hardness of the three-dimensional network structure so that the front side is soft and the back side is hard when used.
前記立体網状構造体を、前記表面側から前記裏面側に向って徐々に硬くなるようにしたことを特徴とする請求項1又は2記載の立体網状構造体。   3. The three-dimensional network structure according to claim 1, wherein the three-dimensional network structure is gradually hardened from the front surface side toward the back surface side. 複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体であって、
該立体網状構造体を、その表裏方向の一方の面側から他方の面側に向かって硬さを徐々に変化させて、同時に一体成形したことを特徴とする立体網状構造体。
A three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
A three-dimensional network structure, wherein the three-dimensional network structure is integrally molded at the same time by gradually changing the hardness from one surface side to the other surface side in the front and back direction.
複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体であって、
該立体網状構造体を、その使用時における表面側に表層部を設け、該表層部の下部に主体部を設け、前記表層部と前記主体部を一体に形成し、
該主体部の前記表面側が柔らかく、前記裏面側が硬くなるように、該主体部の硬さを変化させて形成し、
前記表層部を、前記主体部の前記表面側よりも硬く形成したことを特徴とする立体網状構造体。
A three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
The three-dimensional network structure is provided with a surface layer portion on the surface side in use, a main body portion is provided below the surface layer portion, and the surface layer portion and the main body portion are integrally formed,
The main body is formed by changing the hardness of the main body so that the front side is soft and the back side is hard,
The three-dimensional network structure characterized in that the surface layer portion is harder than the surface side of the main body portion.
複数の樹脂製の線条が立体的に不規則に絡まって部分的に融着された立体網状構造体の製造方法であって、
ノズルに形成した複数の穴の間隔及び/又は穴径を、成形される立体網状構造体の使用時における表裏方向及び/又は該表裏方向と直交する方向に対応して変え、
前記ノズルの複数の穴から樹脂を押出して前記線条を形成し、前記立体網状構造体を、その表裏方向及び/又は該表裏方向と直交する方向の硬さを変化させて一体に形成することを特徴とする立体網状構造体の製造方法。
A method for producing a three-dimensional network structure in which a plurality of resin filaments are three-dimensionally irregularly entangled and partially fused,
The interval between the plurality of holes formed in the nozzle and / or the hole diameter is changed in accordance with the front and back direction and / or the direction perpendicular to the front and back direction when using the molded three-dimensional network structure,
Resin is extruded from a plurality of holes of the nozzle to form the filament, and the three-dimensional network structure is integrally formed by changing the front and back direction and / or the hardness in the direction orthogonal to the front and back direction. A method for producing a three-dimensional network structure characterized by the above.
JP2005255378A 2004-09-02 2005-09-02 Three-dimensional network structure and method for producing three-dimensional network structure Pending JP2006097223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255378A JP2006097223A (en) 2004-09-02 2005-09-02 Three-dimensional network structure and method for producing three-dimensional network structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004255578 2004-09-02
JP2005255378A JP2006097223A (en) 2004-09-02 2005-09-02 Three-dimensional network structure and method for producing three-dimensional network structure

Publications (1)

Publication Number Publication Date
JP2006097223A true JP2006097223A (en) 2006-04-13

Family

ID=36237301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255378A Pending JP2006097223A (en) 2004-09-02 2005-09-02 Three-dimensional network structure and method for producing three-dimensional network structure

Country Status (1)

Country Link
JP (1) JP2006097223A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106380A (en) * 2007-10-26 2009-05-21 Taiyo Kogyo Corp Floor mat
JP2010154965A (en) * 2008-12-26 2010-07-15 Weava Japan Inc Mattress manufacturing method and equipment, and mattress
JP2012029735A (en) * 2010-07-29 2012-02-16 Iwata & Co Ltd Mattress
WO2012035736A1 (en) * 2010-09-15 2012-03-22 株式会社ウィーヴァジャパン Reticular structure manufacturing device and reticular structure manufacturing method
ITPD20100378A1 (en) * 2010-12-16 2012-06-17 Ramina S R L ERGONOMIC MATTRESS, PARTICULARLY OF THE TYPE IN SYNTHETIC MATERIAL, OR HIGHLY SYNTHETIC
JP2013075233A (en) * 2013-01-31 2013-04-25 Taiyo Kogyo Corp Spread mat and method of forming the same
US20130189472A1 (en) * 2011-05-18 2013-07-25 C-Eng Co., Ltd. Three-dimensional net-shaped structure and method and apparatus for manufacturing thereof
CN104975434A (en) * 2014-04-09 2015-10-14 耀亿工业股份有限公司 Three-dimensional elastic cushion technology with multiple wire rods
JP5796263B1 (en) * 2014-07-30 2015-10-21 有限会社 トラスト21 Knitting resin manufacturing apparatus and knitting resin manufacturing method
JP2016221250A (en) * 2016-03-28 2016-12-28 株式会社シーエンジ Three-dimensional crosspiece structure
JP2017086321A (en) * 2015-11-06 2017-05-25 株式会社エコ・ワールド Mattress
JP2017150100A (en) * 2016-02-23 2017-08-31 株式会社エアウィーヴマニュファクチャリング Apparatus for manufacturing filament three-dimensional conjugate
JP2017160553A (en) * 2016-03-08 2017-09-14 株式会社エアウィーヴマニュファクチャリング Apparatus for manufacturing filament three-dimensional conjugate and filament three-dimensional conjugate
JP2018089281A (en) * 2016-12-07 2018-06-14 ラッキー工業株式会社 Baby carrier
WO2019004221A1 (en) * 2017-06-30 2019-01-03 本田技研工業株式会社 Seat
WO2019065729A1 (en) * 2017-09-26 2019-04-04 株式会社シーエンジ Care bed
US11304536B2 (en) * 2016-07-28 2022-04-19 Airweave Inc. Bedding and bedding cover sheet
JP2022144253A (en) * 2021-03-18 2022-10-03 株式会社ブレインスリープ mattress
WO2023210220A1 (en) * 2022-04-25 2023-11-02 株式会社エアウィーヴ Seat cushion, and method for manufacturing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189105A (en) * 1993-12-24 1995-07-25 Toyobo Co Ltd Netlike structure having different fineness and its production
JPH07189104A (en) * 1993-12-22 1995-07-25 Toyobo Co Ltd Netlike structure having different density and its production
JPH07238459A (en) * 1994-02-28 1995-09-12 Toyobo Co Ltd Laminated network material, its production and product using the same
JP2002088631A (en) * 2000-09-14 2002-03-27 Shiienji:Kk Method for producing three-dimensional reticulate structure and apparatus for producing three- dimensional reticulate structure
JP2003230605A (en) * 2001-12-06 2003-08-19 Achilles Corp Mattress
JP2003310395A (en) * 2002-04-26 2003-11-05 Ain Kk Sogo Kenkyusho Bed composed of spring structure resin molding, production process therefor and bed cushion composed of spring structure resin molding
JP2003310394A (en) * 2002-04-22 2003-11-05 Paramount Bed Co Ltd Overlay mattress
JP2005224453A (en) * 2004-02-16 2005-08-25 Jatecx:Kk Jumping implement and apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189104A (en) * 1993-12-22 1995-07-25 Toyobo Co Ltd Netlike structure having different density and its production
JPH07189105A (en) * 1993-12-24 1995-07-25 Toyobo Co Ltd Netlike structure having different fineness and its production
JPH07238459A (en) * 1994-02-28 1995-09-12 Toyobo Co Ltd Laminated network material, its production and product using the same
JP2002088631A (en) * 2000-09-14 2002-03-27 Shiienji:Kk Method for producing three-dimensional reticulate structure and apparatus for producing three- dimensional reticulate structure
JP2003230605A (en) * 2001-12-06 2003-08-19 Achilles Corp Mattress
JP2003310394A (en) * 2002-04-22 2003-11-05 Paramount Bed Co Ltd Overlay mattress
JP2003310395A (en) * 2002-04-26 2003-11-05 Ain Kk Sogo Kenkyusho Bed composed of spring structure resin molding, production process therefor and bed cushion composed of spring structure resin molding
JP2005224453A (en) * 2004-02-16 2005-08-25 Jatecx:Kk Jumping implement and apparatus

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106380A (en) * 2007-10-26 2009-05-21 Taiyo Kogyo Corp Floor mat
JP2010154965A (en) * 2008-12-26 2010-07-15 Weava Japan Inc Mattress manufacturing method and equipment, and mattress
JP2012029735A (en) * 2010-07-29 2012-02-16 Iwata & Co Ltd Mattress
US9334593B2 (en) 2010-09-15 2016-05-10 Airweave Manufacturing Inc. Apparatus for manufacturing a netted structure and method for manufacturing a netted structure
WO2012035736A1 (en) * 2010-09-15 2012-03-22 株式会社ウィーヴァジャパン Reticular structure manufacturing device and reticular structure manufacturing method
JP4966438B2 (en) * 2010-09-15 2012-07-04 株式会社ウィーヴァジャパン Network structure manufacturing apparatus and network structure manufacturing method
CN102959151A (en) * 2010-09-15 2013-03-06 日本威法股份有限公司 Reticular structure manufacturing device and reticular structure manufacturing method
ITPD20100378A1 (en) * 2010-12-16 2012-06-17 Ramina S R L ERGONOMIC MATTRESS, PARTICULARLY OF THE TYPE IN SYNTHETIC MATERIAL, OR HIGHLY SYNTHETIC
US20130189472A1 (en) * 2011-05-18 2013-07-25 C-Eng Co., Ltd. Three-dimensional net-shaped structure and method and apparatus for manufacturing thereof
US9528209B2 (en) * 2011-05-18 2016-12-27 C-Eng Co., Ltd. Three-dimensional net-shaped structure and method and apparatus for manufacturing thereof
JP2016194190A (en) * 2011-05-18 2016-11-17 株式会社シーエンジ Manufacturing method of three-dimensional reticular structure
JP2016027222A (en) * 2011-05-18 2016-02-18 株式会社シーエンジ Method for manufacturing three-dimensional net-like structure and apparatus for manufacturing three-dimensional net-like structure
JP2013075233A (en) * 2013-01-31 2013-04-25 Taiyo Kogyo Corp Spread mat and method of forming the same
CN104975434A (en) * 2014-04-09 2015-10-14 耀亿工业股份有限公司 Three-dimensional elastic cushion technology with multiple wire rods
JP5796263B1 (en) * 2014-07-30 2015-10-21 有限会社 トラスト21 Knitting resin manufacturing apparatus and knitting resin manufacturing method
JP2017086321A (en) * 2015-11-06 2017-05-25 株式会社エコ・ワールド Mattress
JP2017150100A (en) * 2016-02-23 2017-08-31 株式会社エアウィーヴマニュファクチャリング Apparatus for manufacturing filament three-dimensional conjugate
JP2017160553A (en) * 2016-03-08 2017-09-14 株式会社エアウィーヴマニュファクチャリング Apparatus for manufacturing filament three-dimensional conjugate and filament three-dimensional conjugate
JP2016221250A (en) * 2016-03-28 2016-12-28 株式会社シーエンジ Three-dimensional crosspiece structure
US11304536B2 (en) * 2016-07-28 2022-04-19 Airweave Inc. Bedding and bedding cover sheet
JP2018089281A (en) * 2016-12-07 2018-06-14 ラッキー工業株式会社 Baby carrier
JPWO2019004221A1 (en) * 2017-06-30 2020-04-02 本田技研工業株式会社 Sheet
CN110831844A (en) * 2017-06-30 2020-02-21 本田技研工业株式会社 Chair (Ref. now to FIGS)
CN110831844B (en) * 2017-06-30 2022-02-08 本田技研工业株式会社 Chair
WO2019004221A1 (en) * 2017-06-30 2019-01-03 本田技研工業株式会社 Seat
JP6535946B1 (en) * 2017-09-26 2019-07-03 株式会社シーエンジ Care mattress
CN110573124A (en) * 2017-09-26 2019-12-13 喜恩吉股份有限公司 Nursing bed
WO2019065729A1 (en) * 2017-09-26 2019-04-04 株式会社シーエンジ Care bed
JP2022144253A (en) * 2021-03-18 2022-10-03 株式会社ブレインスリープ mattress
WO2023210220A1 (en) * 2022-04-25 2023-11-02 株式会社エアウィーヴ Seat cushion, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2006097223A (en) Three-dimensional network structure and method for producing three-dimensional network structure
US9615670B2 (en) Core material for cushion, and cushion
WO2018003456A1 (en) Core material for mattress and bed mattress
JP2006130283A (en) Body pressure dispersing structure and manufacturing method thereof
US10233073B2 (en) Three-dimensional striped structure
JP5030393B2 (en) Cushion for bed and manufacturing method thereof
CN101874691B (en) Damp-proof mattress
WO2013049570A1 (en) Cellular mattress assemblies and related methods
CN100588347C (en) Elastic mattress for bed and producing method thereof
JP3836851B2 (en) Cushion material
EP3621492A1 (en) Cushioning structure
JP2010154965A (en) Mattress manufacturing method and equipment, and mattress
JP3613711B2 (en) Laminated body
JP3584424B2 (en) Manufacturing method of multilayered different hardness cushion body, multilayered different hardness cushion body manufactured by the method, and seat and back of chair using the cushion body
KR101998556B1 (en) Pillow enabling temperature controlling
JPH10243843A (en) Core material for mattress
WO2023210220A1 (en) Seat cushion, and method for manufacturing same
JP7441691B2 (en) Manufacturing device and manufacturing method for three-dimensional filament composite
JP6777747B2 (en) Mattress core and bed mattress
JP6539912B2 (en) Bedding bedding
JP2023025494A (en) Mattress
US20220338641A1 (en) Mattresses, cushions, and body-support pads or mats with deformable walls having fiber strands embedded therein
JP6566900B2 (en) 3D crosspiece structure
JP2022011364A (en) Mattress made of knitted resin netlike structure
JPH08336443A (en) Bed mattress and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108