JP2006097119A - Method for measuring thickness of electrodeposited film - Google Patents

Method for measuring thickness of electrodeposited film Download PDF

Info

Publication number
JP2006097119A
JP2006097119A JP2004288169A JP2004288169A JP2006097119A JP 2006097119 A JP2006097119 A JP 2006097119A JP 2004288169 A JP2004288169 A JP 2004288169A JP 2004288169 A JP2004288169 A JP 2004288169A JP 2006097119 A JP2006097119 A JP 2006097119A
Authority
JP
Japan
Prior art keywords
current value
electrode
coating
amount
coulomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004288169A
Other languages
Japanese (ja)
Other versions
JP4876383B2 (en
Inventor
Shigenori Kazama
重徳 風間
Tomoyuki Natsume
智之 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004288169A priority Critical patent/JP4876383B2/en
Publication of JP2006097119A publication Critical patent/JP2006097119A/en
Application granted granted Critical
Publication of JP4876383B2 publication Critical patent/JP4876383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodeposition coating apparatus for controlling the quantity of a coated film or the thickness of the coated film when actually coating an article to be coated, by a simple method. <P>SOLUTION: The electrodeposition coating apparatus 1 is provided with an electrodeposition tank 11, a plurality of electrodes 12 and a voltage-applying circuit 13, and comprises: ampere meters 14A to 14L for measuring a chronological change of an electric current passing through each electrode or an electrode group consisting of a plurality of the electrodes in proximity to each other; an extraction circuit 15 for extracting the measured chronological change of the current passing through each electrode or each electrode group, by the ampere meters, on the basis of a chronological transportation history of the article which is an object to be measured; an arithmetic circuit 16 for determining a coulomb quantity having passed through the article of the object to be measured, by chronologically integrating the changes of the current having passed through each electrode or each electrode group extracted in the extraction circuit; and a voltage control circuit 17 for controlling a voltage applied to the electrode or the electrode group on the basis of the determined coulomb quantity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電着塗装におけるクーロン量を測定する方法及び装置、電着塗装の塗膜量又は膜厚を測定する方法及び装置、並びに電着塗装方法、電着塗装の制御装置及び電着塗装装置に関する。   The present invention relates to a method and apparatus for measuring the amount of coulomb in electrodeposition coating, a method and apparatus for measuring the coating amount or film thickness of electrodeposition coating, an electrodeposition coating method, a control apparatus for electrodeposition coating, and electrodeposition coating. Relates to the device.

自動車ボディの下塗り塗装として採用されている電着塗装方法においては、電着塗装装置の能力仕様と、被塗物である自動車ボディと、印加電圧が決定されると、所望の電着膜厚を再現良く確保することができるが、品質保証の観点から膜厚の予測手法や膜厚の微調整がさらに望まれ、特許文献1や特許文献2において提案されている。   In the electrodeposition coating method adopted as the undercoat for automobile bodies, once the capability specifications of the electrodeposition coating equipment, the automobile body to be coated, and the applied voltage are determined, the desired electrodeposition film thickness is obtained. Although it can be ensured with good reproducibility, a film thickness prediction method and a fine adjustment of the film thickness are further desired from the viewpoint of quality assurance, and proposed in Patent Document 1 and Patent Document 2.

前者の特許文献1には、電着槽内の固形物含有量とクーロン量とを用いて複数のクーロン効率(mg/C)を演算により求め、これらのクーロン効率により得られる塗装膜厚を予め測定しておき、さらに互いに異なるクーロン効率を有する2つの電着塗料により形成される2つの塗装膜厚d1,d2から予め係数k(k=d1/d2)を複数個求める方法が開示されている。この方法によれば、実際の電着塗装時のクーロン効率と所望の塗装膜厚を得るために、係数kを求めたのち、この係数kを用いて、目標電圧V1=実際の印加電圧V×kの式より、目標電圧V1を求めることができる。   In the former Patent Document 1, a plurality of coulomb efficiencies (mg / C) are obtained by calculation using the solid content and the coulomb amount in the electrodeposition tank, and the coating film thickness obtained by these coulomb efficiencies is obtained in advance. A method is disclosed in which a plurality of coefficients k (k = d1 / d2) are determined in advance from two coating film thicknesses d1 and d2 formed by two electrodeposition paints having different Coulomb efficiencies. . According to this method, in order to obtain the coulomb efficiency and the desired coating thickness at the time of actual electrodeposition coating, the coefficient k is obtained, and the target voltage V1 = the actual applied voltage V × is obtained using this coefficient k. The target voltage V1 can be obtained from the equation of k.

後者の特許文献2には、電着塗料が収容された電着槽に、電流密度測定器が装着された試験用被塗物を浸漬して電着塗装を行い、印加電圧と電流密度の経時変化とを計測してこれらの関係を求めるとともに、電着塗装時における試験用被塗物の単位面積当たりのクーロン量と電着塗料の塗膜量とを測定してこれらの関係を求め、電流密度の経時変化と単位面積当たりのクーロン量との相関に基づき、印加電圧の経時変化と電着塗料の予測塗膜量との関係を求めることで、膜厚を予測する方法が開示されている。この方法によれば、試験用被塗物の電着塗装予備試験により、実測可能な印加電圧と予測塗膜量との関係を得ることができるので、この予備試験により得られた印加電圧の経時変化と予測塗膜量との関係を用い、実際の被塗物への電着塗装時の印加電圧を調整することによって、所望の塗膜量を得ることができる。   In the latter Patent Document 2, electrodeposition coating is performed by immersing a test coating object equipped with a current density measuring device in an electrodeposition tank in which an electrodeposition coating material is housed, and the applied voltage and current density over time. The change is measured to obtain these relationships, and the coulomb amount per unit area of the test object during electrodeposition coating and the coating amount of the electrodeposition paint are measured to obtain these relationships. A method for predicting the film thickness by determining the relationship between the change over time in the applied voltage and the predicted coating amount of the electrodeposition paint based on the correlation between the change over time in the density and the amount of coulomb per unit area is disclosed. . According to this method, it is possible to obtain the relationship between the actually measured applied voltage and the predicted coating amount by the electrodeposition coating preliminary test of the test object. By using the relationship between the change and the predicted coating amount, and adjusting the applied voltage at the time of electrodeposition coating on the actual object to be coated, a desired coating amount can be obtained.

ところで、何れの方法も被塗物に供給される電流値を測定することが前提条件となるが、自動車ボディの電着塗装ラインにおいては電着槽に同時に複数台(通常2〜3台)の自動車ボディが浸漬された状態で電着塗装が行われるので、後者の特許文献2のように試験用被塗物を用いた予備試験を行う場合は別として、電源装置側から1台の自動車ボディに流れる電流値を測定することはできない。すなわち、電源装置側(電圧印加回路)を流れる電流値は、電着槽全体に流れる電流値であることから、電着槽に浸漬された自動車ボディに流れる電流値の総和になってしまう。特に電着総表面積が異なる被塗物が、非周期的に同時に電着槽に浸漬された場合には、測定された電流値の総和のデータも非周期的な変化をするので、一つの被塗物に流れた電流値を判別することは困難である。   By the way, although it is a precondition for any method to measure the electric current value supplied to a to-be-coated object, in the electrodeposition coating line of a motor vehicle body, several units (usually 2 to 3 units) are simultaneously provided in an electrodeposition tank. Since the electrodeposition coating is performed in a state where the automobile body is immersed, a single automobile body is provided from the power supply device side, except when the preliminary test using the test object is performed as in the latter patent document 2. It is not possible to measure the value of the current flowing through That is, since the current value flowing through the power supply device side (voltage application circuit) is the current value flowing through the entire electrodeposition tank, it becomes the sum of the current values flowing through the automobile body immersed in the electrodeposition tank. In particular, when objects to be coated with different total electrodeposition surface areas are aperiodically simultaneously immersed in the electrodeposition tank, the total data of the measured current values also changes aperiodically, so one object It is difficult to determine the value of the current flowing through the paint.

ちなみに、後者の特許文献2に開示された試験用被塗物を用いた予備試験では、予備試験において1台の試験用被塗物を電着槽に浸漬させることでこうした問題を解決することはできるものの、煩雑な予備試験が別途必要となる。また得られる塗膜量の管理は、予備試験に基づいた予測値であって実際の自動車ボディの実測値ではないことから、品質保証の観点からは信頼性に欠ける。
特開平5−9793号公報 特開2003−13288号公報
By the way, in the preliminary test using the test coating disclosed in the latter patent document 2, it is possible to solve such a problem by immersing one test coating in the electrodeposition tank in the preliminary test. Although it is possible, a complicated preliminary test is required separately. Moreover, since the management of the coating amount obtained is a predicted value based on a preliminary test and not an actual measured value of an actual automobile body, it is not reliable from the viewpoint of quality assurance.
JP-A-5-9793 JP 2003-13288 A

本発明は、被塗物が実際に塗装される際のクーロン量を簡易な方法で測定できる測定方法及び装置、被塗物が実際に塗装される際の塗膜量又は塗装膜厚を簡易な方法で測定できる測定方法及び装置、被塗物が実際に塗装される際の塗膜量又は塗装膜厚を簡易な方法で制御できる電着塗装方法、電着塗装の制御装置及び電着塗装装置を提供することを目的とする。
上記目的を達成するために、本発明の第1の観点によれば、電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、測定目的たる一つの被塗物に供給されたクーロン量を測定する方法であって、前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する第1ステップと、前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する第2ステップと、前記第2ステップで抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求める第3ステップと、を有することを特徴とする電着塗装におけるクーロン量の測定方法が提供される。
The present invention provides a measuring method and apparatus capable of measuring the amount of coulomb when a workpiece is actually painted by a simple method, and a simple method for coating amount or coating thickness when a workpiece is actually painted. Measuring method and apparatus that can be measured by the method, electrodeposition coating method, electrodeposition coating control apparatus, and electrodeposition coating apparatus that can control the amount of coating film or coating film thickness when an object is actually coated by a simple method The purpose is to provide.
In order to achieve the above object, according to the first aspect of the present invention, a plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and an object to be coated is continuously provided in the electrodeposition tank. Coulomb supplied to one object to be measured when carrying out electrodeposition coating by applying voltage between the electrode and the object to be coated, soaking at least a plurality of objects to be coated A method for measuring a quantity, wherein a first step of measuring a temporal change in a current value flowing through each of the electrodes or an electrode group composed of a plurality of adjacent electrodes, and each electrode measured in the first step or A second step of extracting a temporal change in the current value of each electrode group based on a temporal conveyance history of the object to be measured; and a current of each electrode or each electrode group extracted in the second step The time variation of the value is integrated over time, and Coulomb quantity measuring method in which electrodeposition coating comprising: the third step of obtaining a Ron amount, is provided.

上記目的を達成するために、本発明の第2の観点によれば、電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、測定目的たる一つの被塗物の塗膜量又は塗装膜厚を測定する方法であって、前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する第1ステップと、前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する第2ステップと、前記第2ステップで抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求める第3ステップと、前記第3ステップで求められたクーロン量、被塗物の表面積及び電着塗料のクーロン効率から塗膜量を求めるか、又は前記第3ステップで求められたクーロン量、被塗物の表面積、電着塗料のクーロン効率及び電着塗膜の比重から塗装膜厚を求める第4ステップと、を有することを特徴とする電着塗装の塗膜量又は塗装膜厚の測定方法が提供される。   In order to achieve the above object, according to a second aspect of the present invention, a plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and an object to be coated is continuously provided in the electrodeposition tank. When the electrodeposition coating is performed by applying a voltage between the electrode and the coating object to immerse at least a plurality of objects to be transported, or the coating amount of one coating object to be measured or A method for measuring a coating film thickness, the first step of measuring a temporal change of a current value flowing through an electrode group composed of each of the electrodes or a plurality of adjacent electrodes, and each measured in the first step A second step of extracting a temporal change in the current value of the electrode or each electrode group based on a temporal conveyance history of the object to be measured; and each electrode or each electrode group extracted in the second step The time variation of the current value of the sample is integrated over time, and the coolant that has flowed to the object to be measured is measured. A third step of determining the amount of coating, and a coating amount determined from the amount of coulomb determined in the third step, the surface area of the object to be coated, and the coulomb efficiency of the electrodeposition coating, or the coulomb determined in the third step And a fourth step of determining the coating film thickness from the amount, the surface area of the object to be coated, the Coulomb efficiency of the electrodeposition coating material, and the specific gravity of the electrodeposition coating film. A measurement method is provided.

上記目的を達成するために、本発明の第3の観点によれば、電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、一つの被塗物に形成された電着塗膜の塗膜量又は塗装膜厚を測定して制御する電着塗装方法であって、前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する第1ステップと、前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する第2ステップと、前記第2ステップで抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求める第3ステップと、前記第3ステップで求められたクーロン量に基づいて前記電極又は電極群への印加電圧を制御することを特徴とする電着塗装方法が提供される。   In order to achieve the above object, according to a third aspect of the present invention, a plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and an object to be coated is continuously provided in the electrodeposition tank. An electrodeposition coating film formed on one coating object when carrying out electrodeposition coating by applying a voltage between the electrode and the coating object, soaking at least a plurality of the coating objects The electrodeposition coating method of measuring and controlling the amount of coating film or the coating film thickness of the first step of measuring the temporal change of the current value flowing through the electrode group consisting of the respective electrodes or a plurality of adjacent electrodes A second step of extracting a temporal change in the current value of each electrode or each electrode group measured in the first step based on a temporal conveyance history of the object to be measured, the second step; By integrating the time change of the current value of each electrode or each electrode group extracted in the step with time, the measurement target A third step for determining the amount of coulomb that has flowed through the object to be coated, and an electrodeposition coating method for controlling an applied voltage to the electrode or electrode group based on the amount of coulomb determined in the third step Is provided.

上記目的を達成するために、本発明の第4の観点によれば、電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、測定目的たる一つの被塗物に供給されたクーロン量を測定する装置であって、前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する電流値測定手段と、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する抽出手段と、前記抽出手段で抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求めるクーロン量演算手段と、を有することを特徴とする電着塗装におけるクーロン量の測定装置が提供される。   In order to achieve the above object, according to a fourth aspect of the present invention, a plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and an object to be coated is continuously provided in the electrodeposition tank. Coulomb supplied to one object to be measured when carrying out electrodeposition coating by applying voltage between the electrode and the object to be coated, soaking at least a plurality of objects to be coated A device for measuring an amount of current, a current value measuring means for measuring a temporal change in a current value flowing through an electrode group composed of each of the electrodes or a plurality of adjacent electrodes, and each of the current values measured by the current value measuring means Extraction means for extracting the temporal change of the current value of the electrode or each electrode group based on the temporal conveyance history of the object to be measured, and the current of each electrode or each electrode group extracted by the extraction means Coulomb that flowed through the object to be measured by integrating the time change of the value with time Coulomb quantity measuring apparatus is provided in which electrodeposition coating comprising: the Coulomb quantity calculating means for determining the amount, the.

上記目的を達成するために、本発明の第5の観点によれば、電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、測定目的たる一つの被塗物の塗膜量又は塗装膜厚を測定する装置であって、前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する電流値測定手段と、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する抽出手段と、前記抽出手段で抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求めるクーロン量演算手段と、前記クーロン量演算手段で求められたクーロン量、被塗物の表面積及び電着塗料のクーロン効率から塗膜量を求めるか、又はクーロン量演算手段で求められたクーロン量、被塗物の表面積、電着塗料のクーロン効率及び電着塗膜の比重から塗装膜厚を求める塗膜量・塗装膜厚演算手段と、を有することを特徴とする電着塗装の塗膜量又は塗装膜厚の測定装置が提供される。   In order to achieve the above object, according to a fifth aspect of the present invention, a plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and an object to be coated is continuously provided in the electrodeposition tank. When the electrodeposition coating is performed by applying a voltage between the electrode and the coating object to immerse at least a plurality of objects to be transported, or the coating amount of one coating object to be measured or An apparatus for measuring a coating film thickness, the current value measuring means for measuring a temporal change of the current value flowing through the electrode group composed of the respective electrodes or a plurality of adjacent electrodes, and the current value measuring means. Extraction means for extracting the temporal change of the current value of each electrode or each electrode group based on the temporal conveyance history of the object to be measured, and each electrode or each electrode group extracted by the extraction means Coulomb that has flowed through the object to be measured by integrating the time variation of the current value of the current with time. The coulomb amount calculating means for obtaining the coulombic amount obtained from the coulomb amount calculated by the coulomb amount calculating means, the surface area of the object to be coated and the coulomb efficiency of the electrodeposition paint, or the coulomb obtained by the coulomb amount calculating means Coating film thickness / coating film thickness calculating means for obtaining the coating film thickness from the amount, surface area of the coating object, coulomb efficiency of the electrodeposition coating film and specific gravity of the electrodeposition coating film An apparatus for measuring a film amount or a coating film thickness is provided.

上記目的を達成するために、本発明の第6の観点によれば、電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、一つの被塗物に形成された電着塗膜の塗膜量又は塗装膜厚を測定して前記印加電圧を制御する電着塗装の制御装置であって、前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する電流値測定手段と、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する抽出手段と、前記抽出手段で抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求めるクーロン量演算手段と、前記クーロン量演算手段で求められたクーロン量に基づいて前記電極又は電極群への印加電圧を制御する電圧制御手段と、を有することを特徴とする電着塗装の制御装置が提供される。   In order to achieve the above object, according to a sixth aspect of the present invention, a plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and an object to be coated is continuously provided in the electrodeposition tank. An electrodeposition coating film formed on one coating object when carrying out electrodeposition coating by applying a voltage between the electrode and the coating object, soaking at least a plurality of the coating objects A control apparatus for electrodeposition coating that controls the applied voltage by measuring the amount of coating film or the coating film thickness of the electrode, and changes with time of the current value flowing through the electrode group consisting of the respective electrodes or a plurality of adjacent electrodes Current value measuring means for measuring the current value, and temporal changes in the current value of each electrode or each electrode group measured by the current value measuring means are extracted based on the temporal conveyance history of the object to be measured. The time variation of the current value of the extraction means and each electrode or each electrode group extracted by the extraction means is integrated over time. And a voltage control unit for controlling a voltage applied to the electrode or the electrode group based on the coulomb amount calculated by the coulomb amount calculator. And a control device for electrodeposition coating.

上記目的を達成するために、本発明の第7の観点によれば、電着塗料が収容される電着槽と、前記電着槽内に設けられた複数の電極と、前記電極と前記被塗物との間に電圧を印加する電圧印加手段とを有し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬して電着塗装を行う電着塗装装置であって、前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する電流値測定手段と、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する抽出手段と、前記抽出手段で抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求めるクーロン量演算手段と、前記クーロン量演算手段で求められたクーロン量に基づいて前記電極又は電極群への印加電圧を制御する電圧制御手段と、を有することを特徴とする電着塗装装置が提供される。   In order to achieve the above object, according to a seventh aspect of the present invention, an electrodeposition bath in which an electrodeposition paint is accommodated, a plurality of electrodes provided in the electrodeposition bath, the electrodes and the coating A voltage application means for applying a voltage between the electrodeposition and the electrodeposition bath, the electrodeposition coating is carried out by continuously conveying the object to be coated in the electrodeposition tank and immersing at least a plurality of the object to be coated. A coating apparatus, a current value measuring means for measuring a temporal change in a current value flowing through each electrode or an electrode group composed of a plurality of adjacent electrodes, and each electrode or each measured by the current value measuring means Extraction means for extracting the temporal change in the current value of the electrode group based on the temporal conveyance history of the object to be measured, and the time of the current value of each electrode or each electrode group extracted by the extraction means The amount of coulomb that has flowed through the workpiece, which is the measurement target, is determined by integrating the change over time. There is provided an electrodeposition coating apparatus comprising: a Ron amount calculating means; and a voltage control means for controlling a voltage applied to the electrode or the electrode group based on a Coulomb amount obtained by the Coulomb amount calculating means. Is done.

本発明では、第1ステップ又は電流値測定手段においてそれぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する。この第1ステップ又は電流値測定手段で得られる電流値の時間的変化のデータは、その測定時間内において電着槽に浸漬されていた全ての被塗物に流れた総電流値の時間的変化であり、一つの被塗物に流れた電流値ではない。   In the present invention, in the first step or the current value measuring means, the temporal change of the current value flowing through each electrode or an electrode group composed of a plurality of adjacent electrodes is measured. The data of the temporal change of the current value obtained by this first step or the current value measuring means is the temporal change of the total current value that has flowed to all the objects immersed in the electrodeposition tank within the measurement time. It is not the value of the current that flows through one object.

このため、第2ステップ又は抽出手段において、第1ステップ又は電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる一つの被塗物の時間的搬送履歴に基づいて抽出する。ここで、測定目的たる一つの被塗物の時間的搬送履歴とは、その被塗物が電着槽内を搬送されていく際の、各電極又は各電極群の物理的位置に対する時間毎の被塗物の位置履歴をいい、この被塗物の時間的搬送履歴を基準にして電流値の時間的変化を抽出する。これが、その一つの被塗物に流れた電流値の時間的変化となる。   For this reason, in the second step or extraction means, the temporal change of the current value of each electrode or each electrode group measured by the first step or current value measurement means is used as the time transfer of one object to be measured. Extract based on history. Here, the temporal conveyance history of one object to be measured is a measurement object with respect to the physical position of each electrode or each electrode group when the object is conveyed in the electrodeposition tank. This refers to the position history of the object to be coated, and the temporal change of the current value is extracted with reference to the temporal conveyance history of the object to be coated. This is a temporal change in the value of the current flowing through the one object.

そして、第3ステップ又はクーロン量演算手段において、第2ステップ又は抽出手段で抽出された各電極又は各電極群の電流値の時間的変化を時間で積分し、測定目的たる被塗物に流れたクーロン量を求める。これにより一つの被塗物に供給された実際のクーロン量を、電着塗装装置の電源回路側の電流値を測定することで求めることができる。   Then, in the third step or the coulomb amount calculation means, the temporal change of the current value of each electrode or each electrode group extracted by the second step or extraction means was integrated over time, and flowed to the object to be measured. Find the amount of coulomb. Thereby, the actual coulomb amount supplied to one object can be obtained by measuring the current value on the power supply circuit side of the electrodeposition coating apparatus.

また、被塗物に流れる電流のクーロン量をQ(c)、被塗物の塗装総表面積をS(m2 )、形成される電着塗膜の膜厚をM(μm)、電着塗膜の比重をρ、電着塗料のクーロン効率をC(mg/c)、kを定数とすると、Q/S=kMρ/Cの関係式が成立することから、第3ステップ又はクーロン量演算手段で求められたクーロン量と、その他の既知である塗装総表面積、電着塗料のクーロン効率及び電着塗膜の比重から、塗膜量や塗装膜厚を演算のみで求めることができ、塗膜量や塗装膜厚の測定や、電着塗装の制御に応用することができる。 In addition, the coulomb amount of the current flowing through the object to be coated is Q (c), the total surface area of the object to be coated is S (m 2 ), the film thickness of the formed electrodeposition coating is M (μm), and the electrodeposition coating If the specific gravity of the film is ρ, the coulomb efficiency of the electrodeposition paint is C (mg / c), and k is a constant, the relational expression Q / S = kMρ / C is established. The coating amount and coating film thickness can be obtained by calculation only from the coulomb amount determined in step 1 and other known coating total surface area, the coulomb efficiency of the electrodeposition coating, and the specific gravity of the electrodeposition coating. It can be applied to the measurement of quantity and coating film thickness, and control of electrodeposition coating.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態を図面に基づいて説明する。
図1は本発明に係る電着塗装装置の実施形態を示すブロック図であり、この電着塗装装置1は、電着塗料Lが満たされて被塗物である自動車ボディBが浸漬される電着槽11を有する。電着槽11の内部の左右側壁及び底壁には電着塗装に必要とされる電圧が印加される電極12が設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of an electrodeposition coating apparatus according to the present invention. This electrodeposition coating apparatus 1 is an electric electrode in which an automobile body B, which is an object to be coated, is filled with an electrodeposition paint L. It has a landing tank 11. Electrodes 12 to which a voltage required for electrodeposition coating is applied are provided on the left and right side walls and the bottom wall inside the electrodeposition tank 11.

本実施形態に係る電極12は、電着槽11の左右の側壁に対をなすように一定間隔で設けられ、また電着槽11の底壁にも一定間隔で設けられている。電極12は板状であっても棒状であってもよく、また隔膜電極であっても裸電極であってもよい。本例では、電着槽11の入口側から出口側の全域に合計12対の電極12が設けられており、1対の電極12は左右側壁に対向して設けられた2つの電極12Xと底壁に設けられた1つの電極12Yから構成される。以下においては、この3つの電極12X,12Yを総称して電極群12A〜12Lという。すなわち、本例の電着槽には12の電極群12A〜12Lが設けられている。   The electrodes 12 according to the present embodiment are provided at regular intervals so as to be paired with the left and right side walls of the electrodeposition tank 11, and are also provided at regular intervals on the bottom wall of the electrodeposition tank 11. The electrode 12 may be plate-shaped or rod-shaped, and may be a diaphragm electrode or a bare electrode. In this example, a total of 12 pairs of electrodes 12 are provided in the entire region from the inlet side to the outlet side of the electrodeposition tank 11, and the pair of electrodes 12 includes two electrodes 12X provided opposite to the left and right side walls and the bottom. It consists of one electrode 12Y provided on the wall. Hereinafter, the three electrodes 12X and 12Y are collectively referred to as electrode groups 12A to 12L. That is, the electrode group of this example is provided with 12 electrode groups 12A to 12L.

それぞれの電極群12A〜12Lには、電着塗装を行うための電圧を印加する電圧印加回路13が電気的に接続され、電極群に対する印加電圧が調節できるようになっている。また、一つの電極群、たとえば電極群12Aには一つの電流計14A(本発明の電流値測定手段に相当する。)が設けられ、この電極群12Aに流れる電流値を測定し、その測定結果に相当する電気信号を抽出回路15(本発明の抽出手段に相当する。)に送出する。他の電極群12B〜12Lについても、それぞれに電流計14B〜14Lが設けられ、同様にそれぞれの電極群12B〜12Lに流れた電流値に相当する電気信号を抽出回路15に送出する。   A voltage application circuit 13 for applying a voltage for performing electrodeposition coating is electrically connected to each of the electrode groups 12A to 12L so that an applied voltage to the electrode group can be adjusted. Further, one ammeter 14A (corresponding to the current value measuring means of the present invention) is provided in one electrode group, for example, the electrode group 12A, and the current value flowing through the electrode group 12A is measured, and the measurement result is measured. Is sent to the extraction circuit 15 (corresponding to the extraction means of the present invention). The other electrode groups 12B to 12L are also provided with ammeters 14B to 14L, respectively, and similarly, an electric signal corresponding to the current value flowing through each of the electrode groups 12B to 12L is sent to the extraction circuit 15.

抽出回路15は、それぞれの電流計14A〜14Lから送られてきた電流値に相当する電気信号を電流値に変換し、測定された時刻毎及び電極群毎に記録する。この記録例を図2に示すが、横軸が測定時刻、縦軸が各電極群に流れた電流値である。なお、同図に□印を付したプロットは12の電極群に流れた電流値を時刻毎に積算したものである。また、図3は図2のグラフを三次元(時刻−電流値−電極群)で表して俯瞰したグラフを示す。   The extraction circuit 15 converts an electric signal corresponding to the current value sent from each of the ammeters 14A to 14L into a current value, and records it for each measured time and each electrode group. This recorded example is shown in FIG. 2, where the horizontal axis represents the measurement time, and the vertical axis represents the current value flowing through each electrode group. In the figure, the plots marked with □ are obtained by integrating the current values flowing through the 12 electrode groups for each time. FIG. 3 shows a graph obtained by overlooking the graph of FIG. 2 in three dimensions (time-current value-electrode group).

図2及び図3によると、測定時刻である12時12分45秒から12時17分4秒の間において、各電極群12A〜12Lにはそれぞれ同図に示す電流が流れているのが理解され、さらに何れのグラフも時刻に対する電流値がほぼ周期的に変化している。このほぼ周期的な変化が被塗物である自動車ボディBの搬送履歴を表し、同図に示す例ではこの時間帯に2台半のボディBが電着槽11を搬送されたことが理解される。   2 and 3, it is understood that the current shown in FIG. 2 flows through each of the electrode groups 12A to 12L during the measurement time from 12:12:45 to 12: 17: 4. Furthermore, in each graph, the current value with respect to time changes almost periodically. This almost periodic change represents the conveyance history of the automobile body B which is the object to be coated. In the example shown in the figure, it is understood that two and a half bodies B were conveyed through the electrodeposition tank 11 during this time period. The

また、電極群12Aに流れた電流値の時間的変化の曲線を例に説明すると、この時間帯には3つの極大ピークが現れ、同じく3つの極小ピークが現れているが、極小ピーク→極大ピーク→極小ピークが1台分のボディBに相当する電流値の時間的変化である。すなわち、電極群12AにボディBの先端が差し掛かると当該ボディBの先端と電極群12Aとの間に電流が流れ始め(つまり電極群12Aに電流が流れ始め)電流値が増加し、ボディBの後端が電極群12Aを通過し終わると電流値が減少する。これにより、一つの電極群12Aを1台のボディBが通過すると、一つの極大ピークが現れることになる。   Further, taking a time-dependent curve of the current value flowing through the electrode group 12A as an example, three maximum peaks appear in this time zone, and three minimum peaks also appear, but the minimum peak → maximum peak. → The minimum peak is a temporal change in the current value corresponding to one body B. That is, when the tip of the body B approaches the electrode group 12A, current starts to flow between the tip of the body B and the electrode group 12A (that is, current starts to flow to the electrode group 12A), and the current value increases. The current value decreases when the rear end of the rear end passes through the electrode group 12A. As a result, when one body B passes through one electrode group 12A, one maximum peak appears.

ただし、□印でプロットした電流値の積算グラフに現れているように、どのボディBも同じ形状で周期的に変化するわけではない。これは、時刻12時12分45秒から12時14分44秒までの間に浸漬されていた2台半のボディBの塗装総表面積と、12時14分44秒から12時16分36秒までの間に浸漬されていた2台半のボディBの塗装総表面積が異なることを示している。   However, as shown in the integrated graph of current values plotted with □, not all bodies B periodically change in the same shape. This is the total surface area of two and a half bodies B that were immersed between 12:12:45 and 12:14:44, and 12:14:44 to 12:16:36. It shows that the total coating surface area of the two and a half bodies B that have been soaked until is different.

図1に戻り、抽出回路15は、図2や図3に示す電流値の時間的変化のデータを、測定目的たる自動車ボディBの搬送履歴に基づいて抽出する。たとえば、測定目的たるボディBが12時12分45秒に、電着槽11の入口に搬入され、12時17分4秒に電着槽11の出口から搬出されたとすると、この間の各時刻におけるこのボディBの搬送位置を電極群12A〜12Lの位置に対応させ、各電極群に流れた電流値の時間的変化の1周期(極小値から極小値まで)を抽出する。たとえば、図3に示す俯瞰図にて説明すると、電着槽11の入口側に設けられた電極群12A〜12Fは一つ目のピークがこのボディBに流れた電流値を示し、これに対して電着槽11の出口側に設けられた電極群12G〜12Lは二つ目のピークがこのボディBに流れた電流値を示す。電極群12A〜12Fの2つ目のピークは、このボディに後続するボディに流れた電流値であり、また電極群12G〜12Lの一つ目のピークはこのボディの前のボディに流れた電流値である。   Returning to FIG. 1, the extraction circuit 15 extracts the temporal change data of the current values shown in FIG. 2 and FIG. 3 based on the conveyance history of the automobile body B that is the measurement purpose. For example, suppose that the body B, which is the measurement object, was carried into the entrance of the electrodeposition tank 11 at 12:12:45, and carried out from the exit of the electrodeposition tank 11 at 12: 17: 4, at each time during this period. The conveyance position of the body B is made to correspond to the positions of the electrode groups 12A to 12L, and one period (from the minimum value to the minimum value) of the temporal change in the current value flowing through each electrode group is extracted. For example, referring to the overhead view shown in FIG. 3, the electrode groups 12 </ b> A to 12 </ b> F provided on the inlet side of the electrodeposition tank 11 indicate the current value at which the first peak flows in the body B, whereas The electrode groups 12G to 12L provided on the outlet side of the electrodeposition tank 11 indicate the current value at which the second peak flows through the body B. The second peak of the electrode groups 12A to 12F is the current value that flows to the body that follows this body, and the first peak of the electrode groups 12G to 12L is the current that flows to the body before this body. Value.

このようにして抽出された1台のボディに流れた電流値の時間的変化を図4に三次元の俯瞰図で示し、図5にこれを二次元で示す。同図に示すように、この抽出処理により1台のボディBに流れた電流値の時間的変化が求められるが、この抽出処理において、ボディの搬送履歴の時間的基準を、そのボディの塗装総表面積の中心線(ボディの進行方向)に設定してもよく、また図2及び図3に示す電流値の時間的変化の極小値を基準にしてもよい。   FIG. 4 shows a three-dimensional bird's-eye view of the temporal change in the current value flowing through one body extracted in this manner, and FIG. 5 shows this in two dimensions. As shown in the figure, the temporal change of the current value flowing through one body B is obtained by this extraction process. In this extraction process, the temporal reference of the body transport history is used as the total painting amount of the body. It may be set to the center line of the surface area (the direction of travel of the body), or may be based on the minimum value of the temporal change in the current value shown in FIGS.

全ての電極群12A〜12Lについて抽出を終了したら、図5に□印で示すように、各電流値の時間的変化を時刻毎に積算し、時刻毎の総電流値を求める。この曲線が測定目的とする1台のボディBに流れた電流値の時間的変化となる。   When extraction is completed for all the electrode groups 12A to 12L, as indicated by □ in FIG. 5, temporal changes of the current values are integrated for each time to obtain a total current value for each time. This curve is a temporal change in the value of the current flowing through one body B that is the object of measurement.

ここで、電着塗料の付き廻り性については、被塗物に流れる電流のクーロン量をQ(c)、被塗物の外板および内板の総表面積をS(m2 )、形成される電着塗膜の膜厚をM(μm)、電着塗膜の比重をρ、電着塗料のクーロン効率をC(mg/c)、kを定数とすると、Q/S=kMρ/Cの関係式が成立する。この式において、電着塗膜比重ρと電着塗料のクーロン効率Cは、電着塗料種によって一定であり、kも予め実験的に求めることができる値である。そして、被塗物表面に析出する電着塗膜の塗膜量V(mg)はV=MSρ=QC/kの演算で求めることができ、また塗装膜厚Mは、M=QC/kSρ=V/Sρの演算で求めることができる。 Here, regarding the throwing power of the electrodeposition paint, the coulomb amount of the current flowing through the article to be coated is Q (c), and the total surface area of the outer and inner plates of the article to be coated is S (m 2 ). When the film thickness of the electrodeposition coating is M (μm), the specific gravity of the electrodeposition coating is ρ, the coulomb efficiency of the electrodeposition coating is C (mg / c), and k is a constant, Q / S = kMρ / C. The relational expression is established. In this equation, the specific gravity ρ of the electrodeposition coating film and the Coulomb efficiency C of the electrodeposition paint are constant depending on the type of electrodeposition paint, and k is also a value that can be experimentally obtained in advance. And the coating amount V (mg) of the electrodeposition coating deposited on the surface of the object to be coated can be obtained by the calculation of V = MSρ = QC / k, and the coating film thickness M is M = QC / kSρ = It can be obtained by calculating V / Sρ.

ところで、電着塗装において最終的な品質管理項目は塗膜量又は塗装膜厚であるが、上述したように塗膜量V=QC/k、塗装膜厚M=QC/kSρであるから何れもクーロン量Qに比例することになる。つまり、自動車ボディの塗装総表面積Sやクーロン効率Cは一定であるため、塗膜量Vも塗装膜厚Mもボディに流れる電流のクーロン量Qに比例する。   By the way, the final quality control item in the electrodeposition coating is the coating amount or the coating film thickness. As described above, the coating amount V = QC / k and the coating film thickness M = QC / kSρ, respectively. It is proportional to the coulomb amount Q. That is, since the total surface area S and the Coulomb efficiency C of the automobile body are constant, both the coating amount V and the coating film thickness M are proportional to the Coulomb amount Q of the current flowing through the body.

そこで、本例のクーロン量演算回路16(本発明のクーロン量演算手段に相当する。)において、抽出回路15にて求められた、図5に示す電流値の時間的変化の総和を時間で積分し、クーロン量Qを求める。これは積分回路を用いて短時間かつ簡単に求めることができる。   Therefore, in the coulomb amount calculation circuit 16 (corresponding to the coulomb amount calculation means of the present invention) of this example, the sum of temporal changes in the current values shown in FIG. Then, the coulomb amount Q is obtained. This can be easily determined in a short time using an integration circuit.

クーロン量演算手段16にて測定目的たるボディBに供給されたクーロン量が求められると、電圧制御回路16(本発明の電圧制御手段に相当する。)において、これに対する基準クーロン量、あるいは上述した塗膜量V=QC/k、塗装膜厚M=QC/kSρ=V/Sρを用いて塗膜量又は塗装膜厚をさらに演算し、求められた塗膜量又は塗装膜厚と、これに対応する基準塗膜量又は基準塗装膜厚を用いて両者を比較し、測定された実際のクーロン量、塗膜量又は塗装膜厚が基準範囲に入っているかどうかを判断する。   When the coulomb amount supplied to the body B, which is the measurement object, is obtained by the coulomb amount calculating means 16, the voltage control circuit 16 (corresponding to the voltage control means of the present invention) uses the reference coulomb amount for this or the above-described coulomb amount. Using the coating amount V = QC / k and the coating thickness M = QC / kSρ = V / Sρ, the coating amount or coating thickness is further calculated, and the obtained coating amount or coating thickness is calculated. Both are compared using the corresponding standard coating film amount or standard coating film thickness, and it is determined whether the measured actual coulomb amount, coating film amount or coating film thickness is within the standard range.

ここで基準範囲に入っている場合はそのままの印加電圧を継続するが、基準範囲から外れている場合は、電圧印加回路13に印加電圧を変更する指令を送出する。この場合の変更電圧は、予め作成しておいたマップなどを参照して行う。   If the voltage falls within the reference range, the applied voltage is continued as it is. If the voltage falls outside the reference range, a command to change the applied voltage is sent to the voltage application circuit 13. The change voltage in this case is performed with reference to a map prepared in advance.

以上のように、本実施形態によると、電着槽11内に複数のボディBが浸漬されていても一つのボディBに供給された実際のクーロン量を、電着塗装装置の電源回路側の電流値を測定することで求めることができる。また、このクーロン量から塗膜量や塗装膜厚を演算のみで求めることができ、塗膜量や塗装膜厚の測定や、電着塗装の管理及び制御に応用することができる。   As described above, according to the present embodiment, even if a plurality of bodies B are immersed in the electrodeposition tank 11, the actual coulomb amount supplied to one body B is calculated on the power supply circuit side of the electrodeposition coating apparatus. It can be determined by measuring the current value. Further, the coating amount and the coating film thickness can be obtained from the coulomb amount only by calculation, and can be applied to the measurement of the coating amount and the coating film thickness, and the management and control of the electrodeposition coating.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

本発明に係る電着塗装装置の実施形態を示すブロック図である。It is a block diagram which shows embodiment of the electrodeposition coating apparatus which concerns on this invention. 本発明の実施形態に係る電着塗装装置の各電極(12電極群)に流れた電流値の時間的変化を測定した結果を示す二次元グラフ(時刻−電流値)である。It is a two-dimensional graph (time-current value) which shows the result of having measured the time change of the electric current value which flowed to each electrode (12 electrode group) of the electrodeposition coating device concerning the embodiment of the present invention. 図2のグラフを三次元(時刻−電流値−電極群)で表して俯瞰したグラフである。It is the graph which represented the graph of FIG. 2 in three dimensions (time-current value-electrode group) and looked down. 図2に示すデータから自動車ボディ1台に流れた電流値の時間的変化を抽出したものを三次元(時刻−電流値−電極群)で表して俯瞰したグラフである。3 is a three-dimensional (time-current value-electrode group) obtained by extracting a temporal change of a current value flowing through one automobile body from the data shown in FIG. 図4に示すデータを二次元(時刻−電流値)で表すとともに各電極群に流れた電流値を積算したグラフである。It is the graph which integrated the electric current value which flowed through each electrode group while expressing the data shown in FIG. 4 in two dimensions (time-current value).

符号の説明Explanation of symbols

1…電着塗装装置
11…電着槽
12…電極
13…電圧印加回路(電圧印加手段)
14…電流計(電流値測定手段)
15…抽出回路(抽出手段)
16…クーロン量演算回路(クーロン量演算手段)
17…電圧制御回路(電圧制御手段)
DESCRIPTION OF SYMBOLS 1 ... Electrodeposition coating apparatus 11 ... Electrodeposition tank 12 ... Electrode 13 ... Voltage application circuit (voltage application means)
14 ... Ammeter (Current value measuring means)
15 ... Extraction circuit (extraction means)
16 ... Coulomb amount calculation circuit (Coulomb amount calculation means)
17 ... Voltage control circuit (voltage control means)

Claims (30)

電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、測定目的たる一つの被塗物に供給されたクーロン量を測定する方法であって、
前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する第1ステップと、
前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する第2ステップと、
前記第2ステップで抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求める第3ステップと、を有することを特徴とする電着塗装におけるクーロン量の測定方法。
A plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and the object to be coated is continuously conveyed to the electrodeposition tank so as to immerse at least the plurality of objects to be coated. A method of measuring the amount of coulomb supplied to one object to be measured when applying a voltage between the object and performing electrodeposition coating,
A first step of measuring a temporal change in a current value flowing through an electrode group composed of each of the electrodes or a plurality of adjacent electrodes;
A second step of extracting the temporal change of the current value of each electrode or each electrode group measured in the first step based on the temporal conveyance history of the object to be measured;
And a third step of obtaining the amount of coulomb that has flowed to the object to be measured by integrating the temporal change of the current value of each electrode or each electrode group extracted in the second step with time. A characteristic method for measuring the amount of coulomb in electrodeposition coating.
前記第2ステップにおいて、前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における表面積の中心位置に基づいて抽出することを特徴とする請求項1記載の電着塗装におけるクーロン量の測定方法。 In the second step, the temporal change in the current value of each electrode or each electrode group measured in the first step is extracted based on the center position of the surface area in the temporal conveyance history of the object to be measured. The method for measuring the amount of coulomb in electrodeposition coating according to claim 1. 前記第2ステップにおいて、前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における電流値曲線の周期的極小値に基づいて抽出することを特徴とする請求項1記載の電着塗装におけるクーロン量の測定方法。 In the second step, the temporal change in the current value of each electrode or each electrode group measured in the first step is changed to the periodic minimum value of the current value curve in the temporal conveyance history of the object to be measured. 2. The method for measuring the amount of coulomb in electrodeposition coating according to claim 1, wherein extraction is performed based on the extraction. 電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、測定目的たる一つの被塗物の塗膜量又は塗装膜厚を測定する方法であって、
前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する第1ステップと、
前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する第2ステップと、
前記第2ステップで抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求める第3ステップと、
前記第3ステップで求められたクーロン量、被塗物の表面積及び電着塗料のクーロン効率から塗膜量を求めるか、又は前記第3ステップで求められたクーロン量、被塗物の表面積、電着塗料のクーロン効率及び電着塗膜の比重から塗装膜厚を求める第4ステップと、を有することを特徴とする電着塗装の塗膜量又は塗装膜厚の測定方法。
A plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and the object to be coated is continuously conveyed to the electrodeposition tank so as to immerse at least the plurality of objects to be coated. A method of measuring a coating amount or a coating film thickness of one object to be measured, when applying an electrodeposition by applying a voltage to an object,
A first step of measuring a temporal change in a current value flowing through an electrode group composed of each of the electrodes or a plurality of adjacent electrodes;
A second step of extracting the temporal change of the current value of each electrode or each electrode group measured in the first step based on the temporal conveyance history of the object to be measured;
A third step in which the temporal change in the current value of each electrode or each electrode group extracted in the second step is integrated over time to determine the amount of coulomb that has flowed through the object to be measured;
The coating amount is obtained from the coulomb amount determined in the third step, the surface area of the coating object, and the coulomb efficiency of the electrodeposition coating, or the coulomb amount, the surface area of the coating object, and the electric power determined in the third step. And a fourth step of obtaining a coating film thickness from the coulomb efficiency of the coating composition and the specific gravity of the electrodeposition coating film.
前記第2ステップにおいて、前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における表面積の中心位置に基づいて抽出することを特徴とする請求項4記載の電着塗装の塗膜量又は塗装膜厚の測定方法。 In the second step, the temporal change in the current value of each electrode or each electrode group measured in the first step is extracted based on the center position of the surface area in the temporal conveyance history of the object to be measured. The method for measuring the coating amount or coating film thickness of electrodeposition coating according to claim 4. 前記第2ステップにおいて、前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における電流値曲線の周期的極小値に基づいて抽出することを特徴とする請求項4記載の電着塗装の塗膜量又は塗装膜厚の測定方法。 In the second step, the temporal change in the current value of each electrode or each electrode group measured in the first step is changed to the periodic minimum value of the current value curve in the temporal conveyance history of the object to be measured. 5. The method for measuring a coating amount or a coating film thickness of electrodeposition coating according to claim 4, wherein extraction is performed based on the extraction. 電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、一つの被塗物に形成された電着塗膜の塗膜量又は塗装膜厚を測定して制御する電着塗装方法であって、
前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する第1ステップと、
前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する第2ステップと、
前記第2ステップで抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求める第3ステップと、
前記第3ステップで求められたクーロン量に基づいて前記電極又は電極群への印加電圧を制御することを特徴とする電着塗装方法。
A plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and the object to be coated is continuously conveyed to the electrodeposition tank so as to immerse at least the plurality of objects to be coated. An electrodeposition coating method that measures and controls the coating amount or coating thickness of an electrodeposition coating formed on a single object when applying a voltage to the object. There,
A first step of measuring a temporal change in a current value flowing through an electrode group composed of each of the electrodes or a plurality of adjacent electrodes;
A second step of extracting the temporal change of the current value of each electrode or each electrode group measured in the first step based on the temporal conveyance history of the object to be measured;
A third step in which the temporal change in the current value of each electrode or each electrode group extracted in the second step is integrated over time to determine the amount of coulomb that has flowed through the object to be measured;
An electrodeposition coating method characterized in that the voltage applied to the electrode or electrode group is controlled based on the amount of coulomb determined in the third step.
前記第2ステップにおいて、前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における表面積の中心位置に基づいて抽出することを特徴とする請求項7記載の電着塗装方法。 In the second step, the temporal change in the current value of each electrode or each electrode group measured in the first step is extracted based on the center position of the surface area in the temporal conveyance history of the object to be measured. The electrodeposition coating method according to claim 7. 前記第2ステップにおいて、前記第1ステップで測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における電流値曲線の周期的極小値に基づいて抽出することを特徴とする請求項7記載の電着塗装方法。 In the second step, the temporal change in the current value of each electrode or each electrode group measured in the first step is changed to the periodic minimum value of the current value curve in the temporal conveyance history of the object to be measured. 8. The electrodeposition coating method according to claim 7, wherein extraction is performed based on the extraction. 前記第3ステップで求められたクーロン量が予め設定された基準クーロン量の範囲に入るように、前記電極又は電極群への印加電圧を制御することを特徴とする請求項7〜9の何れかに記載の電着塗装方法。 The applied voltage to the electrode or electrode group is controlled so that the coulomb amount obtained in the third step falls within a preset reference coulomb amount range. The electrodeposition coating method described in 1. 前記第3ステップで求められたクーロン量、被塗物の表面積及び電着塗料のクーロン効率から塗膜量を求め、この塗膜量が予め設定された基準塗膜量の範囲に入るように、前記電極又は電極群への印加電圧を制御することを特徴とする請求項7〜9の何れかに記載の電着塗装方法。 Obtain the coating amount from the amount of coulomb determined in the third step, the surface area of the object to be coated and the coulomb efficiency of the electrodeposition coating, so that this coating amount falls within the preset reference coating amount range, The electrodeposition coating method according to claim 7, wherein a voltage applied to the electrode or the electrode group is controlled. 前記第3ステップで求められたクーロン量、被塗物の表面積、電着塗料のクーロン効率及び電着塗膜の比重から塗装膜厚を求め、この塗装膜厚が予め設定された基準塗装膜厚の範囲に入るように、前記電極又は電極群への印加電圧を制御することを特徴とする請求項7〜9の何れかに記載の電着塗装方法。 The coating film thickness is obtained from the coulomb amount determined in the third step, the surface area of the object to be coated, the coulomb efficiency of the electrodeposition paint, and the specific gravity of the electrodeposition coating film, and this coating film thickness is a preset reference coating film thickness. The electrodeposition coating method according to claim 7, wherein an applied voltage to the electrode or the electrode group is controlled so as to fall within the range of the above. 電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、測定目的たる一つの被塗物に供給されたクーロン量を測定する装置であって、
前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する電流値測定手段と、
前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する抽出手段と、
前記抽出手段で抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求めるクーロン量演算手段と、を有することを特徴とする電着塗装におけるクーロン量の測定装置。
A plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and the object to be coated is continuously conveyed to the electrodeposition tank so as to immerse at least the plurality of objects to be coated. A device for measuring the amount of coulomb supplied to one object to be measured when applying a voltage between the object and performing electrodeposition coating,
A current value measuring means for measuring a temporal change in a current value flowing in the electrode group composed of the respective electrodes or a plurality of adjacent electrodes; and
Extraction means for extracting the temporal change of the current value of each electrode or each electrode group measured by the current value measurement means based on the temporal conveyance history of the object to be measured,
Coulomb amount calculation means for determining the amount of coulomb that has flowed to the object to be measured by integrating the temporal change of the current value of each electrode or each electrode group extracted by the extraction means with time, and A measuring device for the amount of coulomb in electrodeposition coating.
前記抽出手段は、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における表面積の中心位置に基づいて抽出することを特徴とする請求項13記載の電着塗装におけるクーロン量の測定装置。 The extraction means extracts the temporal change of the current value of each electrode or each electrode group measured by the current value measuring means based on the center position of the surface area in the temporal conveyance history of the object to be measured. The apparatus for measuring the amount of coulomb in electrodeposition coating according to claim 13. 前記抽出手段は、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における電流値曲線の周期的極小値に基づいて抽出することを特徴とする請求項13記載の電着塗装におけるクーロン量の測定装置。 The extracting means converts the temporal change in the current value of each electrode or each electrode group measured by the current value measuring means into a periodic minimum value of a current value curve in the temporal conveyance history of the object to be measured. The apparatus for measuring the amount of coulomb in electrodeposition coating according to claim 13, wherein extraction is performed based on the extraction. 電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、測定目的たる一つの被塗物の塗膜量又は塗装膜厚を測定する装置であって、
前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する電流値測定手段と、
前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する抽出手段と、
前記抽出手段で抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求めるクーロン量演算手段と、
前記クーロン量演算手段で求められたクーロン量、被塗物の表面積及び電着塗料のクーロン効率から塗膜量を求めるか、又はクーロン量演算手段で求められたクーロン量、被塗物の表面積、電着塗料のクーロン効率及び電着塗膜の比重から塗装膜厚を求める塗膜量・塗装膜厚演算手段と、を有することを特徴とする電着塗装の塗膜量又は塗装膜厚の測定装置。
A plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and the object to be coated is continuously conveyed to the electrodeposition tank so as to immerse at least the plurality of objects to be coated. An apparatus for measuring the coating amount or coating film thickness of one object to be measured when applying electrodeposition and applying a voltage between the object,
A current value measuring means for measuring a temporal change in a current value flowing in the electrode group composed of the respective electrodes or a plurality of adjacent electrodes; and
Extraction means for extracting the temporal change of the current value of each electrode or each electrode group measured by the current value measurement means based on the temporal conveyance history of the object to be measured,
Coulomb amount calculating means for integrating the time change of the current value of each electrode or each electrode group extracted by the extracting means with time to obtain the amount of Coulomb that has flowed to the object to be measured;
Obtain the coating amount from the coulomb amount determined by the coulomb amount calculating means, the surface area of the coating and the coulomb efficiency of the electrodeposition paint, or the coulomb amount determined by the coulomb amount calculating means, the surface area of the coating, Measurement of coating amount or coating film thickness of electrodeposition coating, characterized in that it has a coating amount / coating thickness calculation means for obtaining coating thickness from the coulomb efficiency of electrodeposition coating and specific gravity of electrodeposition coating apparatus.
前記抽出手段は、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における表面積の中心位置に基づいて抽出することを特徴とする請求項16記載の電着塗装の塗膜量又は塗装膜厚の測定装置。 The extraction means extracts the temporal change of the current value of each electrode or each electrode group measured by the current value measuring means based on the center position of the surface area in the temporal conveyance history of the object to be measured. The apparatus for measuring the coating amount or coating film thickness of electrodeposition coating according to claim 16. 前記抽出手段は、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における電流値曲線の周期的極小値に基づいて抽出することを特徴とする請求項16記載の電着塗装の塗膜量又は塗装膜厚の測定装置。 The extracting means converts the temporal change in the current value of each electrode or each electrode group measured by the current value measuring means into a periodic minimum value of a current value curve in the temporal conveyance history of the object to be measured. The apparatus for measuring the coating amount or the coating film thickness of electrodeposition coating according to claim 16, wherein extraction is performed based on the extraction. 電着塗料が収容された電着槽内に複数の電極を配置し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬し、前記電極と前記被塗物との間に電圧を印加して電着塗装を行う際に、一つの被塗物に形成された電着塗膜の塗膜量又は塗装膜厚を測定して前記印加電圧を制御する電着塗装の制御装置であって、
前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する電流値測定手段と、
前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する抽出手段と、
前記抽出手段で抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求めるクーロン量演算手段と、
前記クーロン量演算手段で求められたクーロン量に基づいて前記電極又は電極群への印加電圧を制御する電圧制御手段と、を有することを特徴とする電着塗装の制御装置。
A plurality of electrodes are arranged in an electrodeposition tank in which an electrodeposition paint is accommodated, and the object to be coated is continuously conveyed to the electrodeposition tank so as to immerse at least the plurality of objects to be coated. When performing electrodeposition coating by applying a voltage to an object, the amount of the electrodeposition coating film or the coating film thickness formed on one object is measured to control the applied voltage. A control device for coating,
A current value measuring means for measuring a temporal change of a current value flowing in the electrode group composed of the respective electrodes or a plurality of adjacent electrodes; and
Extraction means for extracting the temporal change of the current value of each electrode or each electrode group measured by the current value measurement means based on the temporal conveyance history of the object to be measured,
Coulomb amount calculating means for integrating the time change of the current value of each electrode or each electrode group extracted by the extracting means with time to obtain the amount of Coulomb that has flowed to the object to be measured;
An electrodeposition coating control apparatus comprising: voltage control means for controlling a voltage applied to the electrode or electrode group based on the coulomb amount obtained by the coulomb amount calculation means.
前記抽出手段は、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における表面積の中心位置に基づいて抽出することを特徴とする請求項19記載の電着塗装の制御装置。 The extraction means extracts the temporal change of the current value of each electrode or each electrode group measured by the current value measuring means based on the center position of the surface area in the temporal conveyance history of the object to be measured. The control apparatus for electrodeposition coating according to claim 19. 前記抽出手段は、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における電流値曲線の周期的極小値に基づいて抽出することを特徴とする請求項19記載の電着塗装の制御装置。 The extracting means converts the temporal change in the current value of each electrode or each electrode group measured by the current value measuring means into a periodic minimum value of a current value curve in the temporal conveyance history of the object to be measured. 20. The control apparatus for electrodeposition coating according to claim 19, wherein the control is performed based on extraction. 前記電圧制御手段は、前記クーロン量演算手段で求められたクーロン量が予め設定された基準クーロン量の範囲に入るように、前記電極又は電極群への印加電圧を制御することを特徴とする請求項19〜21の何れかに記載の電着塗装の制御装置。 The voltage control unit controls the voltage applied to the electrode or the electrode group so that the coulomb amount obtained by the coulomb amount calculation unit falls within a preset reference coulomb amount range. Item 22. The control apparatus for electrodeposition coating according to any one of Items 19 to 21. 前記電圧制御手段は、前記クーロン量演算手段で求められたクーロン量、被塗物の表面積及び電着塗料のクーロン効率から塗膜量を求め、この塗膜量が予め設定された基準塗膜量の範囲に入るように、前記電極又は電極群への印加電圧を制御することを特徴とする請求項19〜21の何れかに記載の電着塗装の制御装置。 The voltage control means obtains the coating amount from the coulomb amount obtained by the coulomb amount calculating means, the surface area of the object to be coated, and the coulomb efficiency of the electrodeposition coating, and the coating amount is a preset reference coating amount. The control apparatus for electrodeposition coating according to any one of claims 19 to 21, wherein a voltage applied to the electrode or the electrode group is controlled so as to fall within the range. 前記電圧制御手段は、前記クーロン量演算手段で求められたクーロン量、被塗物の表面積、電着塗料のクーロン効率及び電着塗膜の比重から塗装膜厚を求め、この塗装膜厚が予め設定された基準塗装膜厚の範囲に入るように、前記電極又は電極群への印加電圧を制御することを特徴とする請求項19〜21の何れかに記載の電着塗装の制御装置。 The voltage control means obtains the coating film thickness from the coulomb amount obtained by the coulomb amount computing means, the surface area of the object to be coated, the coulomb efficiency of the electrodeposition paint, and the specific gravity of the electrodeposition paint film, The control apparatus for electrodeposition coating according to any one of claims 19 to 21, wherein a voltage applied to the electrode or the electrode group is controlled so as to fall within a set reference coating film thickness range. 電着塗料が収容される電着槽と、前記電着槽内に設けられた複数の電極と、前記電極と前記被塗物との間に電圧を印加する電圧印加手段とを有し、前記電着槽に連続して被塗物を搬送して少なくとも複数の被塗物を浸漬して電着塗装を行う電着塗装装置であって、
前記それぞれの電極又は近接する複数の電極からなる電極群に流れる電流値の時間的変化を測定する電流値測定手段と、
前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、前記測定目的たる被塗物の時間的搬送履歴に基づいて抽出する抽出手段と、
前記抽出手段で抽出された各電極又は各電極群の電流値の時間的変化を時間で積分して前記測定目的たる被塗物に流れたクーロン量を求めるクーロン量演算手段と、
前記クーロン量演算手段で求められたクーロン量に基づいて前記電極又は電極群への印加電圧を制御する電圧制御手段と、を有することを特徴とする電着塗装装置。
An electrodeposition tank in which an electrodeposition paint is accommodated, a plurality of electrodes provided in the electrodeposition tank, and a voltage applying means for applying a voltage between the electrode and the object to be coated, An electrodeposition coating apparatus for carrying out electrodeposition coating by immersing at least a plurality of objects to be coated by transporting the object to be continuously coated in an electrodeposition tank,
A current value measuring means for measuring a temporal change in a current value flowing in the electrode group composed of the respective electrodes or a plurality of adjacent electrodes; and
Extraction means for extracting the temporal change of the current value of each electrode or each electrode group measured by the current value measurement means based on the temporal conveyance history of the object to be measured,
Coulomb amount calculating means for integrating the time change of the current value of each electrode or each electrode group extracted by the extracting means with time to obtain the amount of Coulomb that has flowed to the object to be measured;
An electrodeposition coating apparatus comprising: voltage control means for controlling a voltage applied to the electrode or electrode group based on the coulomb amount obtained by the coulomb amount calculation means.
前記抽出手段は、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における表面積の中心位置に基づいて抽出することを特徴とする請求項25記載の電着塗装装置。 The extraction means extracts the temporal change of the current value of each electrode or each electrode group measured by the current value measuring means based on the center position of the surface area in the temporal conveyance history of the object to be measured. The electrodeposition coating apparatus according to claim 25. 前記抽出手段は、前記電流値測定手段で測定された各電極又は各電極群の電流値の時間的変化を、測定目的たる被塗物の時間的搬送履歴における電流値曲線の周期的極小値に基づいて抽出することを特徴とする請求項25記載の電着塗装装置。 The extracting means converts the temporal change in the current value of each electrode or each electrode group measured by the current value measuring means into a periodic minimum value of a current value curve in the temporal conveyance history of the object to be measured. 26. The electrodeposition coating apparatus according to claim 25, wherein extraction is performed based on the extraction. 前記電圧制御手段は、前記クーロン量演算手段で求められたクーロン量が予め設定された基準クーロン量の範囲に入るように、前記電極又は電極群への印加電圧を制御することを特徴とする請求項25〜27の何れかに記載の電着塗装装置。 The voltage control unit controls the voltage applied to the electrode or the electrode group so that the coulomb amount obtained by the coulomb amount calculation unit falls within a preset reference coulomb amount range. The electrodeposition coating apparatus according to any one of Items 25 to 27. 前記電圧制御手段は、前記クーロン量演算手段で求められたクーロン量、被塗物の表面積及び電着塗料のクーロン効率から塗膜量を求め、この塗膜量が予め設定された基準塗膜量の範囲に入るように、前記電極又は電極群への印加電圧を制御することを特徴とする請求項25〜27の何れかに記載の電着塗装装置。 The voltage control means obtains the coating amount from the coulomb amount obtained by the coulomb amount calculating means, the surface area of the object to be coated, and the coulomb efficiency of the electrodeposition coating, and the coating amount is a preset reference coating amount. The electrodeposition coating apparatus according to any one of claims 25 to 27, wherein an applied voltage to the electrode or the electrode group is controlled so as to fall within the range of the above. 前記電圧制御手段は、前記クーロン量演算手段で求められたクーロン量、被塗物の表面積、電着塗料のクーロン効率及び電着塗膜の比重から塗装膜厚を求め、この塗装膜厚が予め設定された基準塗装膜厚の範囲に入るように、前記電極又は電極群への印加電圧を制御することを特徴とする請求項25〜27の何れかに記載の電着塗装装置。
The voltage control means obtains the coating film thickness from the coulomb amount obtained by the coulomb amount computing means, the surface area of the object to be coated, the coulomb efficiency of the electrodeposition paint, and the specific gravity of the electrodeposition paint film, The electrodeposition coating apparatus according to any one of claims 25 to 27, wherein an applied voltage to the electrode or the electrode group is controlled so as to fall within a set reference coating film thickness range.
JP2004288169A 2004-09-30 2004-09-30 Measurement method of electrodeposition film thickness Expired - Fee Related JP4876383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004288169A JP4876383B2 (en) 2004-09-30 2004-09-30 Measurement method of electrodeposition film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004288169A JP4876383B2 (en) 2004-09-30 2004-09-30 Measurement method of electrodeposition film thickness

Publications (2)

Publication Number Publication Date
JP2006097119A true JP2006097119A (en) 2006-04-13
JP4876383B2 JP4876383B2 (en) 2012-02-15

Family

ID=36237204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004288169A Expired - Fee Related JP4876383B2 (en) 2004-09-30 2004-09-30 Measurement method of electrodeposition film thickness

Country Status (1)

Country Link
JP (1) JP4876383B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431003B2 (en) 2008-09-08 2013-04-30 Toyota Jidosha Kabushiki Kaisha Electrodeposition-coating monitoring system and method, and method of manufacturing electrodeposition-coated article
JP2015089953A (en) * 2013-11-06 2015-05-11 トヨタ自動車東日本株式会社 Method of predicting film thickness in electrodeposition coating
KR20230092355A (en) * 2021-12-17 2023-06-26 (주)유림정보시스템 AI system of electrodeposition coating apparatus and method of electrodeposition coating using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310996A (en) * 1987-06-10 1988-12-19 Honda Motor Co Ltd Coating method by electrodeposition
JPH04371596A (en) * 1991-06-17 1992-12-24 Taikisha Ltd Electrodeposition device
JPH059793A (en) * 1991-07-04 1993-01-19 Nissan Motor Co Ltd Method and device for electrodeposition coating
JP2003201599A (en) * 2002-01-08 2003-07-18 Kansai Paint Co Ltd Method of calculating amount of paint used and paint film forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310996A (en) * 1987-06-10 1988-12-19 Honda Motor Co Ltd Coating method by electrodeposition
JPH04371596A (en) * 1991-06-17 1992-12-24 Taikisha Ltd Electrodeposition device
JPH059793A (en) * 1991-07-04 1993-01-19 Nissan Motor Co Ltd Method and device for electrodeposition coating
JP2003201599A (en) * 2002-01-08 2003-07-18 Kansai Paint Co Ltd Method of calculating amount of paint used and paint film forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431003B2 (en) 2008-09-08 2013-04-30 Toyota Jidosha Kabushiki Kaisha Electrodeposition-coating monitoring system and method, and method of manufacturing electrodeposition-coated article
JP2015089953A (en) * 2013-11-06 2015-05-11 トヨタ自動車東日本株式会社 Method of predicting film thickness in electrodeposition coating
KR20230092355A (en) * 2021-12-17 2023-06-26 (주)유림정보시스템 AI system of electrodeposition coating apparatus and method of electrodeposition coating using the same
KR102640766B1 (en) * 2021-12-17 2024-02-27 (주)유림정보시스템 AI system of electrodeposition coating apparatus and method of electrodeposition coating using the same

Also Published As

Publication number Publication date
JP4876383B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US4806849A (en) Method and apparatus for diagnosing degradation of coating film on metal material
Thébault et al. Reliability of numerical models for simulating galvanic corrosion processes
JP4384825B2 (en) Method for calculating film thickness of electrodeposition coating
ZA200606571B (en) Method and system for determing the thickness of a layer of lacquer
JP4876383B2 (en) Measurement method of electrodeposition film thickness
US20070224363A1 (en) Process and device for predicting coating thickness
JP5001492B2 (en) Coating film thickness prediction apparatus and coating film thickness prediction method in electrodeposition coating
JP2002180295A (en) Method and apparatus for analyzing electrodeposition coating
JP2008026284A (en) Sample for evaluating corrosion resistance in end face of plated steel sheet, and end face corrosion resistance evaluation device and method
JP4167581B2 (en) Coating film thickness prediction apparatus and coating film thickness prediction method in electrodeposition coating
Brown et al. Real-time corrosion monitoring of aircraft structures with prognostic applications
CN210221925U (en) Wind power tower cylinder coating detection test block
CN111801445B (en) Coating device and coating system
JP5217959B2 (en) Electrodeposition coating equipment
Anseth et al. Monitoring of fouling within pipes using Electrical Impedance Spectroscopy
JPH1161493A (en) Electrodepositon coating
KR101209821B1 (en) Measurement Method of Corrosion Rate of Metal in Water Solution
JP6086538B2 (en) Method for predicting film thickness of electrodeposition coating
JP2022145256A (en) Method for estimating film thickness of electrodeposition coating
Verma et al. A Study of a Fast and Precise Thickness Simulation of an Industrial e-Coating Process
JP2024030843A (en) Electrodeposition coating equipment, electrodeposition coating method, trained model, method for calculating optimal electrodeposition operating conditions using trained model
US10527583B2 (en) Method for the fabrication of corrosion resistant electrodes
JPH059793A (en) Method and device for electrodeposition coating
JPH059794A (en) Method and device for electrodeposition coating
JPH08209398A (en) Method for adjusting thickness of coating electrodeposited on metal component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees