JP2006097076A - Aluminum-alloy sheet for bottle can, and its manufacturing method - Google Patents

Aluminum-alloy sheet for bottle can, and its manufacturing method Download PDF

Info

Publication number
JP2006097076A
JP2006097076A JP2004283840A JP2004283840A JP2006097076A JP 2006097076 A JP2006097076 A JP 2006097076A JP 2004283840 A JP2004283840 A JP 2004283840A JP 2004283840 A JP2004283840 A JP 2004283840A JP 2006097076 A JP2006097076 A JP 2006097076A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
bottle
alloy plate
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004283840A
Other languages
Japanese (ja)
Inventor
Atsuto Tsuruta
淳人 鶴田
Kenji Kuroda
健司 黒田
Takashi Inaba
隆 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004283840A priority Critical patent/JP2006097076A/en
Publication of JP2006097076A publication Critical patent/JP2006097076A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum-alloy sheet for bottle cans by which, even in the case of reduced sheet thickness, excellent necking formability can be produced at the manufacture of bottle cans and the resultant bottle cans can be provided with satisfactory buckling strength and also to provide its manufacturing method. <P>SOLUTION: The aluminum-alloy sheet for bottle cans has a composition which consists of, by mass, 0.1 to 0.4% Cu, 0.8 to 1.7% Mg, 0.5 to 1.0% Mn, 0.4 to 0.8% Fe, 0.1 to 0.4% Si and the balance Al with inevitable impurities and in which the contents of the above Mn, Mg and Fe satisfy the relationship of 5.45<ä5.66×Mn(mass%)+0.667×Mg(mass%)+2.17×Fe(mass%)}<7.55. Moreover, 0.2% proof stress after heat treatment at 210°C for 10 min is 240 to 270 N/m<SP>2</SP>and average grain size of the sheet surface in a direction perpendicular to a rolling direction is ≤40 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種の飲料缶として使用されるボトル缶用素材としてのアルミニウム合金板およびその製造方法に関する。   The present invention relates to an aluminum alloy plate as a material for bottle cans used as various beverage cans and a method for producing the same.

従来、ボトル缶としては、図1に示すように、胴体部2と底部6とが連続して構成されている2ピースボトル缶1がある。この2ピースボトル缶1は、その胴体部2の所定部分にネック部3が形成され、このネック部3のエンド部には口部4が形成されている。さらに、この2ピースボトル缶1は、口部4の近傍の外周に、キャップ取り付け用のネジ部5、カール部7が形成されている。   Conventionally, as a bottle can, as shown in FIG. 1, there is a two-piece bottle can 1 in which a body portion 2 and a bottom portion 6 are continuously formed. In the two-piece bottle can 1, a neck portion 3 is formed at a predetermined portion of the body portion 2, and a mouth portion 4 is formed at an end portion of the neck portion 3. Further, the two-piece bottle can 1 has a cap attaching screw part 5 and a curled part 7 on the outer periphery in the vicinity of the mouth part 4.

そして、このような2ピースボトル缶に使用される2ピースボトル缶用アルミニウム合金板として、Fe、Si、Mn、Mgの各含有量を調整したJISH4000に規定される3004合金(Al−Mg系アルミニウム合金)などが用いられ、これを、鋳造処理、均質化熱処理、熱間圧延処理、冷間圧延処理、必要に応じて焼鈍処理を行った後に、最終冷間圧延を行うことによって、所定のアルミニウム合金板を製造することが提案されている(例えば、特許文献1参照)。   And, as an aluminum alloy plate for a two-piece bottle can used in such a two-piece bottle can, a 3004 alloy (Al-Mg based aluminum) defined in JISH4000 with adjusted contents of Fe, Si, Mn, and Mg. Alloy) or the like, and this is subjected to casting treatment, homogenization heat treatment, hot rolling treatment, cold rolling treatment, and annealing treatment as necessary, followed by final cold rolling to obtain predetermined aluminum. It has been proposed to produce an alloy plate (see, for example, Patent Document 1).

また、アルミニウム合金板の内表面には、アルミニウム合金板からボトル缶内部の充填物中へのアルミニウム等の溶出を防止するため、例えば、エポキシ・フェノール、エポキシ・尿素、ビニルオルガノゾル等の溶剤系或いはアクリル変性エポキシ樹脂を含む塗膜用水性塗料を用いてスプレー塗装が施され、その後オーブンで塗装焼け付きを行うことにより、3ないし5μm厚さ程度の塗膜が形成される。さらに、塗装による塗膜に代わって、PET(ポリエチレンテレフタレート)等の樹脂フィルムをラミネートし、その後樹脂フィルムの融点以上の温度で熱処理することにより、アルミニウム合金板に樹脂フィルムを被覆(密着)したものも使われはじめている。
特開2002−256366号公報(段落番号0013、0030、図1)
Also, on the inner surface of the aluminum alloy plate, in order to prevent elution of aluminum and the like from the aluminum alloy plate into the filling inside the bottle can, for example, a solvent system such as epoxy / phenol, epoxy / urea, vinyl organosol, etc. Alternatively, spray coating is performed using a water-based paint for paint film containing an acrylic-modified epoxy resin, and then paint baking is performed in an oven to form a paint film having a thickness of about 3 to 5 μm. Furthermore, instead of a paint film, a resin film such as PET (polyethylene terephthalate) is laminated, and then heat-treated at a temperature equal to or higher than the melting point of the resin film to cover (adhere) the resin film to the aluminum alloy plate Are also starting to be used.
JP 2002-256366 A (paragraph numbers 0013 and 0030, FIG. 1)

しかしながら、ボトル缶においては、1缶あたりのメタル使用量を減らすべく薄肉・軽量化への要望が強い。ところが、従来のアルミニウム合金板で製造されたボトル缶の場合、薄肉化を進めると、例えば、板厚を0.40mmから0.35mm以下に薄肉化すると、座屈強度の低下を招き、スクリューキャップのキャッピング時にネジ部または缶胴部が座屈するという不具合を発生しやすくなる。また、この座屈強度を高めようとして材料強度を高強度化すると、ボトル缶の製造の際に、ネック部にシワが発生しやすくなる(ネック成形性の低下)。その結果、ネック部およびネジ部の表面に被覆された塗膜または樹脂フィルムがアルミニウム合金側の変形に追随しきれず、塗膜または樹脂フィルムに微細な剥離が生じる場合がある。また、このシワがネジ・カール成形後の天面部に残存して充填物のスローリーク、あるいはカール割れといった不具合に繋がる場合もある。したがって、従来、座屈強度、ネック成形性において十分な効果を有するボトル缶用アルミニウム合金板は提案されていなかった。   However, there is a strong demand for reducing the thickness and weight of bottle cans in order to reduce the amount of metal used per can. However, in the case of a bottle can made of a conventional aluminum alloy plate, if the thickness is reduced, for example, if the plate thickness is reduced from 0.40 mm to 0.35 mm or less, the buckling strength is reduced, and the screw cap It becomes easy to generate the malfunction that a screw part or a can body part buckles at the time of capping. Further, if the material strength is increased in order to increase the buckling strength, wrinkles are likely to be generated in the neck portion when the bottle can is manufactured (decrease in neck formability). As a result, the coating film or resin film coated on the surfaces of the neck portion and the screw portion cannot follow the deformation on the aluminum alloy side, and fine peeling may occur in the coating film or resin film. In addition, the wrinkles may remain on the top surface after screw / curl molding, leading to problems such as slow leakage of the filler or curl cracking. Therefore, conventionally, an aluminum alloy plate for a bottle can having a sufficient effect in buckling strength and neck formability has not been proposed.

そこで、本発明はこのような問題を解決すべく創案されたもので、その目的は、板厚が薄肉化されても、ボトル缶を製造する際のネック成形性が優れると共に、製造されたボトル缶が十分な座屈強度を有するボトル缶用アルミニウム合金板およびその製造方法を提供することにある。   Therefore, the present invention was devised to solve such a problem, and the purpose of the present invention is to improve the neck formability when manufacturing a bottle can and reduce the thickness of the bottle even when the thickness of the plate is reduced. An object of the present invention is to provide an aluminum alloy plate for a bottle can having a sufficient buckling strength and a method for producing the same.

前記課題を解決するために、請求項1の発明は、Cuを0.1〜0.4質量%、Mgを0.8〜1.7質量%、Mnを0.5〜1.0質量%、Feを0.4〜0.8質量%、Siを0.1〜0.4質量%含有し、残部がAlおよび不可避的不純物から構成されるアルミニウム合金板であって、前記Mn、MgおよびFeの含有量が、5.45<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.55の関係を満足し、かつ、210℃で10分の熱処理を施した後の0.2%耐力が240〜270N/mm2であり、板表面の圧延直角方向の平均結晶粒径が40μm以下であるボトル缶用アルミニウム合金板として構成したものである。 In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that Cu is 0.1 to 0.4 mass%, Mg is 0.8 to 1.7 mass%, and Mn is 0.5 to 1.0 mass%. An aluminum alloy plate containing 0.4 to 0.8% by mass of Fe and 0.1 to 0.4% by mass of Si, with the balance being composed of Al and inevitable impurities, the Mn, Mg and Fe content satisfies the relationship of 5.45 <{5.66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} <7.55, and An aluminum alloy plate for bottle cans having a 0.2% yield strength after heat treatment at 210 ° C. for 10 minutes of 240 to 270 N / mm 2 and an average crystal grain size in the direction perpendicular to the rolling direction of the plate surface of 40 μm or less. It is constituted as follows.

前記構成によれば、Cu、Mg、Mn、Fe、Siの各含有量を所定範囲に規制し、かつ、Mn、MgおよびFeの含有量が所定の関係を満足することにより、アルミニウム合金板に所定のサイズおよび個数密度の金属間化合物が形成される。また、Si、Feの含有量を所定範囲に規制することにより、アルミニウム合金板の結晶粒径が40μm以下に微細化される。さらに、0.2%耐力を所定範囲に規制することにより、アルミニウム合金板が十分な材料強度を有する。   According to the above-described configuration, the contents of Cu, Mg, Mn, Fe, and Si are regulated to a predetermined range, and the contents of Mn, Mg, and Fe satisfy a predetermined relationship. An intermetallic compound having a predetermined size and number density is formed. Moreover, the crystal grain size of an aluminum alloy plate is refined | miniaturized to 40 micrometers or less by restricting content of Si and Fe to a predetermined range. Furthermore, the aluminum alloy plate has sufficient material strength by restricting the 0.2% proof stress to a predetermined range.

また、請求項2の発明は、Cuを0.1〜0.4質量%、Mgを0.8〜1.7質量%、Mnを0.5〜1.0質量%、Feを0.4〜0.8質量%、Siを0.1〜0.4質量%含有し、残部がAlおよび不可避的不純物から構成され、前記Mn、MgおよびFeの含有量が、5.45<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.55の関係を満足するアルミニウム合金を溶解、鋳造して鋳塊を作製する第1工程と、前記鋳塊を均質化熱処理する第2工程と、前記均質化熱処理された鋳塊を熱間圧延して圧延板を作製する第3工程と、前記圧延板を冷間圧延してアルミニウム合金板を作製する第4工程とを含み、前記第2工程の均質化熱処理を570〜620℃の温度条件下で行い、かつ、前記第3工程の熱間圧延を巻き取り温度300℃以上で行うボトル缶用アルミニウム合金板の製造方法として構成したものである。   In the invention of claim 2, Cu is 0.1 to 0.4 mass%, Mg is 0.8 to 1.7 mass%, Mn is 0.5 to 1.0 mass%, and Fe is 0.4 mass%. -0.8 mass%, Si is contained in 0.1-0.4 mass%, the remainder is composed of Al and inevitable impurities, and the contents of Mn, Mg and Fe are 5.45 <{5. 66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} <7.55 is melted and casted to produce an ingot. A second step of homogenizing heat treatment of the ingot, a third step of hot rolling the ingot subjected to the homogenization heat treatment to produce a rolled plate, and cold rolling the rolled plate to obtain aluminum. Including a fourth step of producing an alloy plate, and performing the homogenization heat treatment of the second step under a temperature condition of 570 to 620 ° C. , Which is constituted as a method for producing an aluminum alloy sheet for bottle cans carried by the third winding the hot-rolling step a temperature 300 ° C. or higher.

前記構成によれば、アルミニウム合金成分の各含有量、鋳塊の均質化熱処理の温度条件および熱間圧延の巻き取り温度を規制することにより、アルミニウム合金板に所定のサイズおよび個数密度のAl−Mn−Fe−Si系金属間化合物が形成される。また、アルミニウム合金板の結晶粒径が40μm以下に微細化される。さらに、0.2%耐力を所定範囲に規制することにより、アルミニウム合金板が十分な材料強度を有する。   According to the above-described configuration, by regulating the contents of the aluminum alloy components, the temperature conditions of the homogenization heat treatment of the ingot, and the coiling temperature of the hot rolling, the aluminum alloy sheet has a predetermined size and number density of Al- A Mn—Fe—Si intermetallic compound is formed. Further, the crystal grain size of the aluminum alloy plate is refined to 40 μm or less. Furthermore, the aluminum alloy plate has sufficient material strength by restricting the 0.2% proof stress to a predetermined range.

本発明によれば、板厚が薄肉化されても、ボトル缶を製造する際にネック部のシワの発生が抑制される(ネック成形性に優れる)、かつ、十分な座屈強度を有するボトル缶用アルミニウム合金板を提供することができる。その結果、製造されたボトル缶には、充填物のスローリーク、カール割れ、および塗膜または樹脂フィルムの剥離が生じない。   According to the present invention, even when the plate thickness is reduced, generation of wrinkles in the neck portion is suppressed when producing a bottle can (excellent neck formability), and the bottle has sufficient buckling strength. An aluminum alloy plate for cans can be provided. As a result, the manufactured bottle can does not have a slow leak, curl cracking, and peeling of the coating film or resin film.

また、本発明によれば、板厚が薄肉化されても、優れたネック成形性と、十分な座屈強度を有するボトル缶用アルミニウム合金板を製造できる。   In addition, according to the present invention, an aluminum alloy plate for a bottle can having excellent neck formability and sufficient buckling strength can be manufactured even if the plate thickness is reduced.

以下、本発明の実施の形態について詳細に説明する。本発明者らは、アルミニウム合金板の特性や成分について種々の検討を行った。その結果、Cu、Mg、Mn、FeおよびSiの含有量、板表面の圧延直角方向の平均結晶粒径、0.2%耐力を調整し、また、均質化熱処理、熱間圧延の条件をコントロールすることで、ネック成形性および座屈強度に優れたボトル缶用アルミニウム合金板を製造できることを見出した。   Hereinafter, embodiments of the present invention will be described in detail. The present inventors have conducted various studies on the characteristics and components of the aluminum alloy plate. As a result, the content of Cu, Mg, Mn, Fe and Si, the average crystal grain size in the direction perpendicular to the rolling direction on the plate surface, and 0.2% proof stress are adjusted, and the conditions for homogenization heat treatment and hot rolling are controlled. As a result, it has been found that an aluminum alloy plate for a bottle can excellent in neck formability and buckling strength can be produced.

[1.ボトル缶用アルミニウム合金板]
本発明に係るボトル缶用アルミニム合金板は、Cuを0.1〜0.4質量%、Mgを0.8〜1.7質量%、Mnを0.5〜1.0質量%、Feを0.4〜0.8質量%、Siを0.1〜0.4質量%含有し、残部がAlおよび不可避的不純物とする。そして、それと共に、前記Mn、MgおよびFeの含有量が、5.45<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.55の関係を満足し、かつ、0.2%耐力が240〜270N/mm2であり、板表面の圧延直角方向の平均結晶粒径が40μm以下であるものとする。以下に、アルミニウム合金板に含まれる各成分、0.2%耐力、平均結晶粒径を数値限定した理由について説明する。
[1. Aluminum alloy plate for bottle cans]
The aluminum alloy plate for bottle cans according to the present invention includes 0.1 to 0.4% by mass of Cu, 0.8 to 1.7% by mass of Mg, 0.5 to 1.0% by mass of Mn, and Fe. 0.4 to 0.8 mass%, Si is contained in an amount of 0.1 to 0.4 mass%, and the balance is Al and inevitable impurities. At the same time, the contents of Mn, Mg and Fe are 5.45 <{5.66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} < The relationship of 7.55 is satisfied, the 0.2% proof stress is 240 to 270 N / mm 2 , and the average crystal grain size in the direction perpendicular to the rolling direction on the plate surface is 40 μm or less. The reason why the respective components contained in the aluminum alloy plate, 0.2% proof stress, and average crystal grain size are limited numerically will be described below.

(Cuの含有量:0.1〜0.4質量%)
Cuは、材料強度に寄与する元素である。すなわち、このCuの含有量が0.1質量%未満であると、充分な材料強度が得られず、ボトル缶の座屈強度が不足する。このCuの含有量が0.4質量%を超えると、材料強度が高くなり過ぎて、ネック成形性が低下し、ネック部にシワが発生する。このシワは、ネジ・カール成形後の天面部8(図1参照)に残存して、充填物のスローリーク、カール割れ、または、ネック部の塗膜または樹脂フィルムの剥離といった不具合に繋がる。また、しごき加工性が低下し、DI加工時にティアオフ(缶胴部の破断)の発生を招く。従って、本発明ではCuの含有量を0.1〜0.4質量%とする。
(Cu content: 0.1 to 0.4 mass%)
Cu is an element that contributes to material strength. That is, when the Cu content is less than 0.1% by mass, sufficient material strength cannot be obtained, and the buckling strength of the bottle can is insufficient. If the Cu content exceeds 0.4% by mass, the material strength becomes too high, neck formability is lowered, and wrinkles are generated in the neck portion. This wrinkle remains on the top surface portion 8 (see FIG. 1) after the screw / curl molding, leading to problems such as slow leak of the filler, curl cracking, or peeling of the coating film or resin film of the neck portion. Further, ironing processability is lowered, and tear-off (breaking of the can body) is caused during DI processing. Therefore, in this invention, content of Cu shall be 0.1-0.4 mass%.

(Mgの含有量:0.8〜1.7質量%)
Mgは、前記したCuの場合と同じく材料強度に寄与する元素である。すなわち、このMgの含有量が0.8質量%未満であると、充分な材料強度が得られず、ボトル缶の座屈強度が不足する。このMgの含有量が1.7質量%を超えると、加工硬化が大きくなって材料強度が高くなり過ぎて、前記のようにネック成形性が低下し、ネック部にシワが発生する。このシワは、ネジ・カール成形後の天面部8(図1参照)に残存して、充填物のスローリーク、カール割れ、または、ネック部の塗膜または樹脂フィルムの剥離といった不具合に繋がる。また、しごき加工性が低下し、DI成形時にティアオフの発生を招く。従って、本発明ではMgの含有量を0.8〜1.7質量%とする。
(Mg content: 0.8 to 1.7% by mass)
Mg is an element that contributes to the material strength as in the case of Cu described above. That is, when the content of Mg is less than 0.8% by mass, sufficient material strength cannot be obtained, and the buckling strength of the bottle can is insufficient. If the Mg content exceeds 1.7% by mass, the work hardening increases and the material strength becomes too high, and the neck formability is lowered as described above, and wrinkles are generated in the neck portion. This wrinkle remains on the top surface portion 8 (see FIG. 1) after the screw / curl molding, leading to problems such as slow leak of the filler, curl cracking, or peeling of the coating film or resin film of the neck portion. In addition, ironing processability is reduced, and tear-off occurs during DI molding. Therefore, in this invention, content of Mg shall be 0.8-1.7 mass%.

(Mnの含有量:0.5〜1.0質量%)
Mnは、材料強度に寄与すると共に、Al−Mn−Fe−Si系金属間化合物を形成し、この金属間化合物がDI成形の際に潤滑剤として作用し、アルミニウム合金板がダイスへ凝着するのを防止する元素である。すなわち、このMnの含有量が0.5質量%未満であると、金属間化合物の形成が充分ではなく、しごき加工時に潤滑不足となり、DI成形時においてティアオフの発生を招く。それと共に、材料強度も不足し、座屈強度が不足する。このMnの含有量が1.0質量%を超えると、金属間化合物が粗大化するため、ネック成形性が低下し、ネッキングの際にボトル缶のネック部または天面部8(図1参照)に深いスジ状の欠陥が生じ易い。このスジ状の欠陥は、充填物のスローリーク、ネック部の塗膜または樹脂フィルムの剥離に繋がる。従って、本発明ではMnの含有量を0.5〜1.0質量%とする。
(Mn content: 0.5 to 1.0 mass%)
Mn contributes to material strength and forms an Al—Mn—Fe—Si intermetallic compound. This intermetallic compound acts as a lubricant during DI molding, and the aluminum alloy plate adheres to the die. It is an element that prevents this. That is, if the Mn content is less than 0.5% by mass, the formation of an intermetallic compound is not sufficient, the lubrication is insufficient during ironing, and tear-off occurs during DI molding. At the same time, the material strength is insufficient and the buckling strength is insufficient. If the Mn content exceeds 1.0% by mass, the intermetallic compound becomes coarse, so that the neck formability is lowered, and the neck portion or the top surface portion 8 (see FIG. 1) of the bottle can when necking. Deep streak-like defects are likely to occur. This streak-like defect leads to the slow leak of the filler, the peeling of the coating film on the neck portion or the resin film. Therefore, in the present invention, the Mn content is set to 0.5 to 1.0 mass%.

(Feの含有量:0.4〜0.8質量%)
Feは、アルミニウム合金板の結晶粒径およびAl−Mn−Fe−Si系金属間化合物の形成に寄与する元素である。このFeが0.4質量%未満であると、結晶粒を微細化させる効果が十分でなくなり、ネック成形性が低下し、ネック部にシワが発生する。このシワは、ネジ・カール成形後の天面部8(図1参照)に残存して、充填物のスローリーク、カール割れ、または、ネック部の塗膜または樹脂フィルムの剥離といった不具合に繋がる。また、しごき加工性が低下し、DI成形時にティアオフの発生を招く。このFeが0.8質量%を超えると、金属間化合物が粗大化するため、前記のようにネック成形性が低下し、ネック部に深いスジ状の欠陥が発生する。その結果、ネック部の塗膜または樹脂フィルムに剥離が生じる。従って、本発明ではFeの含有量を0.4〜0.8質量%とする。
(Fe content: 0.4 to 0.8 mass%)
Fe is an element that contributes to the crystal grain size of the aluminum alloy plate and the formation of the Al—Mn—Fe—Si intermetallic compound. If the Fe content is less than 0.4% by mass, the effect of refining crystal grains is insufficient, neck formability is reduced, and wrinkles are generated in the neck portion. This wrinkle remains on the top surface portion 8 (see FIG. 1) after the screw / curl molding, leading to problems such as slow leak of the filler, curl cracking, or peeling of the coating film or resin film of the neck portion. In addition, ironing processability is reduced, and tear-off occurs during DI molding. If this Fe exceeds 0.8 mass%, the intermetallic compound becomes coarse, so that the neck formability is lowered as described above, and deep streak-like defects are generated in the neck portion. As a result, peeling occurs in the coating film or resin film of the neck portion. Therefore, in the present invention, the Fe content is set to 0.4 to 0.8 mass%.

(Siの含有量:0.1〜0.4質量%)
Siは、均質化熱処理においてAl−Mn−Fe系の金属間化合物と結び付いて、高硬度なAl−Mn−Fe−Si系金属間化合物を形成する元素である。またアルミニウム合金板の結晶粒径に影響する元素である。このSiの含有量が0.1質量%未満であると、Al−Mn−Fe−Si系金属間化合物の形成が充分ではなく、前記のようにしごき加工性が低下し、DI成形時においてティアオフの発生を招く。このSiの含有量が0.4質量%を超えると、再結晶挙動が阻害され、結晶粒が粗大化するため、前記のようにネック部にシワが発生する。このシワは、ネジ・カール成形後の天面部8(図1参照)に残存して、充填物のスローリーク、カール割れ、または、ネック部の塗膜または樹脂フィルムの剥離といった不具合に繋がる。また、しごき加工性も低下し、DI成形時においてティアオフの発生を招く。従って、本発明ではSiの含有量を0.1〜0.4質量%とする。
(Si content: 0.1 to 0.4 mass%)
Si is an element that forms a high hardness Al-Mn-Fe-Si intermetallic compound in combination with an Al-Mn-Fe intermetallic compound in a homogenization heat treatment. It is also an element that affects the crystal grain size of the aluminum alloy plate. If the Si content is less than 0.1% by mass, the formation of the Al—Mn—Fe—Si intermetallic compound is not sufficient, and the ironing processability is reduced as described above, and the tear-off occurs during DI molding. Cause the occurrence of If the Si content exceeds 0.4% by mass, the recrystallization behavior is hindered and the crystal grains become coarse, so that wrinkles are generated in the neck portion as described above. This wrinkle remains on the top surface portion 8 (see FIG. 1) after the screw / curl molding, leading to problems such as slow leak of the filler, curl cracking, or peeling of the coating film or resin film of the neck portion. Also, ironing processability is reduced, and tear-off occurs during DI molding. Therefore, in the present invention, the Si content is 0.1 to 0.4 mass%.

(不可避的不純物)
本発明にあっては、不可避的不純物として、Crが0.1質量%以下、Znが0.5質量%以下、Tiが0.1質量%以下、Zrが0.1質量%以下、Bが0.1質量%以下含有されても、本発明の効果が妨げられるものではなく、このような不可避的不純物の含有は許容される。
(Inevitable impurities)
In the present invention, as unavoidable impurities, Cr is 0.1 mass% or less, Zn is 0.5 mass% or less, Ti is 0.1 mass% or less, Zr is 0.1 mass% or less, B is Even if contained in an amount of 0.1% by mass or less, the effect of the present invention is not hindered, and the inclusion of such inevitable impurities is allowed.

(5.45<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.55)
しごき加工性、及び、ネック部のシワまたはスジ状の欠陥の発生に影響するAl−Mn−Fe−Si系金属間化合物のサイズおよび個数密度は、Mn、Mg、Feの含有量に左右され、その影響度はMn、Fe、Mgの順に高く、前記の関係を満足するときに、金属間化合物のサイズおよび個数密度が好適な範囲となり、良好なしごき加工性が得られるとともに、ネック部のシワまたはスジ状の欠陥の発生が抑制され、塗膜または樹脂フィルムの剥離も防止される。すなわち、{5.66×Mn+0.667×Mg+2.17×Fe}が5.45以下であると、金属間化合物の形成が十分でなく、前記のようにしごき加工性が低下し、DI成形時においてティアオフの発生を招く。{5.66×Mn+0.667×Mg+2.17×Fe}が7.55以上であると、金属間化合物が粗大化し、ネック部にスジ状の欠陥が生じる。このシワおよびスジ状の欠陥により、ネック部の塗膜または樹脂フィルムに剥離が生じる。従って、本発明では{5.66×Mn+0.667×Mg+2.17×Fe}を、5.45を超え7.55未満とする。なお、金属間化合物のサイズおよび個数密度の好適な範囲は、最大長10μm以上の金属間化合物が4〜70個/mm2である。
(5.45 <{5.66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} <7.55)
The size and number density of Al-Mn-Fe-Si intermetallic compounds that affect the ironing workability and the occurrence of wrinkles or streak-like defects in the neck depend on the contents of Mn, Mg, Fe, The degree of influence is high in the order of Mn, Fe, and Mg. When the above relationship is satisfied, the size and number density of the intermetallic compound are in a suitable range, and good ironing workability is obtained and the wrinkle of the neck portion is obtained. Or generation | occurrence | production of a stripe-like defect is suppressed and peeling of a coating film or a resin film is also prevented. That is, when {5.66 × Mn + 0.667 × Mg + 2.17 × Fe} is 5.45 or less, formation of an intermetallic compound is not sufficient, and ironing workability is reduced as described above, and at the time of DI molding In this case, tear-off occurs. When {5.66 × Mn + 0.667 × Mg + 2.17 × Fe} is 7.55 or more, the intermetallic compound is coarsened, and a streak-like defect is generated in the neck portion. Due to the wrinkle and streak-like defects, the coating film or the resin film at the neck portion is peeled off. Therefore, in the present invention, {5.66 × Mn + 0.667 × Mg + 2.17 × Fe} is set to more than 5.45 and less than 7.55. In addition, the suitable range of the size and number density of the intermetallic compound is 4 to 70 / mm 2 of intermetallic compounds having a maximum length of 10 μm or more.

(210℃で10分の熱処理を施した後の0.2%耐力が240〜270N/mm2
缶体座屈強度はアルミニウム合金板の強度に依存し、前記アルミニウム合金板に対して内面スプレー塗装・焼付処理を施す際の熱処理に相当する210℃で、10分間の条件の熱処理を施した後の0.2%耐力が重要な指標となる。すなわち、前記アルミニウム合金板に210℃で、10分間の熱処理を施した後の0.2%耐力が240N/mm2未満では、充分な材料強度が得られず、成形したアルミ缶の座屈強度が不足する。また、前記0.2%耐力が270N/mm2を超えると、アルミ缶の成形性、特にしごき成形性が低下し、破断の発生により生産性が阻害される。またネック成形性が低下してネック部にシワが発生する。このシワは、ネジ・カール成形後の天面部8(図1参照)に残存して、充填物のスローリーク、カール割れ、または、ネック部の塗膜または樹脂フィルムの剥離といった不具合に繋がる。従って、本発明では、210℃で、10分間の熱処理を施した後の0.2%耐力を240〜270N/mm2とすることが好ましい。
(0.2% yield strength after heat treatment at 210 ° C. for 10 minutes is 240 to 270 N / mm 2 )
The can body buckling strength depends on the strength of the aluminum alloy plate, and after the heat treatment for 10 minutes at 210 ° C. corresponding to the heat treatment when the inner surface spray coating / baking treatment is performed on the aluminum alloy plate. The 0.2% proof stress is an important index. That is, when the 0.2% proof stress after heat treatment for 10 minutes at 210 ° C. is less than 240 N / mm 2 , sufficient material strength cannot be obtained, and the buckling strength of the formed aluminum can Is lacking. On the other hand, if the 0.2% proof stress exceeds 270 N / mm 2 , the moldability of the aluminum can, particularly the iron moldability, is lowered, and the productivity is hindered by the occurrence of breakage. In addition, neck formability deteriorates and wrinkles occur at the neck. The wrinkles remain on the top surface portion 8 (see FIG. 1) after the screw / curl molding, leading to problems such as slow leak of the filler, curl cracking, or peeling of the coating film or resin film of the neck portion. Accordingly, in the present invention, at 210 ° C., it is preferable that the 0.2% proof stress after the heat treatment of 10 minutes with 240~270N / mm 2.

(平均結晶粒径:40μm以下)
ネック部のシワは、アルミニウム合金板の結晶粒に依存し、細かいほどネック成形性に優れる。アルミニウム合金板表面の圧延直角方向の平均結晶粒径を40μm以下にコントロールすることにより、結晶粒が微細化し、ネック部のシワが抑制される。その結果、キャッピング後における充填物のスローリークを防止すると共に、ネック部およびネジ部の塗膜または樹脂フィルムの剥離を防止できる。従って、本発明では平均結晶粒径が40μm以下である。
(Average crystal grain size: 40 μm or less)
The wrinkles at the neck depend on the crystal grains of the aluminum alloy plate, and the finer the neck, the better the neck formability. By controlling the average crystal grain size in the direction perpendicular to the rolling direction of the aluminum alloy plate to 40 μm or less, the crystal grains are refined and wrinkles at the neck portion are suppressed. As a result, it is possible to prevent slow leakage of the filler after capping and to prevent peeling of the coating film or resin film of the neck portion and the screw portion. Therefore, in the present invention, the average crystal grain size is 40 μm or less.

[2.ボトル缶用アルミニウム合金板の製造方法]
また、本発明に係るボトル缶用アルミニウム合金板の製造方法は、以下の第1工程ないし第4工程を含むものである。第1工程は、Cuを0.1〜0.4質量%、Mgを0.8〜1.7質量%、Mnを0.5〜1.0質量%、Feを0.4〜0.8質量%、Siを0.1〜0.4質量%含有し、残部がAlおよび不可避的不純物から構成され、前記Mn、MgおよびFeの含有量が、5.45<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.55の関係を満足するアルミニウム合金を溶解、鋳造して鋳塊を作製する。第2工程は、前記鋳塊を均質化熱処理し、前記均質化熱処理を570〜620℃の温度条件下で行う。第3工程は、前記均質化熱処理された鋳塊を熱間圧延して圧延板を作製し、前記熱間圧延の巻き取り温度を300℃以上で行う。第4工程は、前記圧延板を冷間圧延してアルミニウム合金板を作製する。
[2. Manufacturing method of aluminum alloy plate for bottle cans]
Moreover, the manufacturing method of the aluminum alloy plate for bottle cans which concerns on this invention includes the following 1st processes thru | or 4th processes. In the first step, Cu is 0.1 to 0.4 mass%, Mg is 0.8 to 1.7 mass%, Mn is 0.5 to 1.0 mass%, and Fe is 0.4 to 0.8 mass%. Mass%, Si is contained in an amount of 0.1 to 0.4 mass%, the balance is composed of Al and inevitable impurities, and the content of Mn, Mg and Fe is 5.45 <{5.66 × Mn ( (Mass%) + 0.667 × Mg (Mass%) + 2.17 × Fe (Mass%)} <7.55 An aluminum alloy that satisfies the relationship is melted and cast to produce an ingot. In the second step, the ingot is subjected to a homogenization heat treatment, and the homogenization heat treatment is performed under a temperature condition of 570 to 620 ° C. In the third step, the ingot that has been subjected to the homogenization heat treatment is hot-rolled to produce a rolled plate, and the coiling temperature of the hot-rolling is performed at 300 ° C. or higher. In the fourth step, the rolled plate is cold-rolled to produce an aluminum alloy plate.

以下に、前記製造方法において規定した各条件について説明する。なお、アルミニウム合金の成分の数値限定理由については、前記したボトル缶用アルミニウム合金板と同一であるので省略する。   Below, each condition prescribed | regulated in the said manufacturing method is demonstrated. In addition, about the numerical limitation reason of the component of an aluminum alloy, since it is the same as the above-mentioned aluminum alloy plate for bottle cans, it abbreviate | omits.

(均質化熱処理の温度条件:570〜620℃)
均質化熱処理の温度条件は、前記したアルミニウム合金板の圧延方向の平均結晶粒径をコントロールするために必要なものである。均質化熱処理温度が570℃より低い温度であると、熱間圧延時におけるホットコイルの再結晶が充分に行われず、粗大な結晶粒が混在し、前記アルミニウム合金板の平均結晶粒径が40μmを超えてしまう。また、均質化熱処理温度が620℃を超えると鋳塊がバーニングを起こし、アルミニウム合金板の製造自体が困難となる。従って、本発明では均質化熱処理の温度条件を570〜620℃とする。
(Temperature condition for homogenization heat treatment: 570 to 620 ° C.)
The temperature condition of the homogenization heat treatment is necessary for controlling the average crystal grain size in the rolling direction of the aluminum alloy plate described above. When the homogenization heat treatment temperature is lower than 570 ° C., the hot coil is not sufficiently recrystallized during hot rolling, coarse crystal grains are mixed, and the average crystal grain size of the aluminum alloy plate is 40 μm. It will exceed. In addition, when the homogenization heat treatment temperature exceeds 620 ° C., the ingot is burned, making it difficult to manufacture the aluminum alloy plate itself. Therefore, in the present invention, the temperature condition of the homogenization heat treatment is set to 570 to 620 ° C.

(熱間圧延の巻き取り温度:300℃以上)
熱間圧延の巻き取り温度は、ホットコイルの再結晶状態を左右し、前記したアルミニウム合金板の圧延直角方向の平均結晶粒径をコントロールするために必要なものである。熱間圧延の巻き取り温度が300℃より低いと、ホットコイルの再結晶が充分に行われず、粗大な結晶粒が混在し、前記アルミニウム合金板の平均結晶粒径が40μmを超えてしまう。従って、本発明では熱間圧延の巻き取り温度を300℃以上とする。
(Hot rolling coiling temperature: 300 ° C or higher)
The coiling temperature in hot rolling affects the recrystallization state of the hot coil and is necessary for controlling the average crystal grain size in the direction perpendicular to the rolling of the aluminum alloy plate. When the coiling temperature in hot rolling is lower than 300 ° C., the hot coil is not sufficiently recrystallized, coarse crystal grains are mixed, and the average crystal grain size of the aluminum alloy plate exceeds 40 μm. Therefore, in this invention, the coiling temperature of hot rolling shall be 300 degreeC or more.

ここで、第1工程の鋳造は、DC鋳造処理(Direct−chill Casting:直接チル鋳造処理)が好ましく、また、第3工程の熱間圧延と第4工程の冷間圧延との間に、必要に応じて連続焼鈍を施す連続焼鈍工程を加えてもよい。さらに、第4工程の冷間圧延は、しごき加工時におけるネック部の加工硬化を抑制し製造されるボトル缶のネック成形性を向上させるために、圧延率:80〜90%で行うことが好ましい。   Here, the casting in the first step is preferably a DC casting process (Direct-chill Casting), and is necessary between the hot rolling in the third step and the cold rolling in the fourth step. Depending on, you may add the continuous annealing process which performs continuous annealing. Further, the cold rolling in the fourth step is preferably performed at a rolling rate of 80 to 90% in order to improve the neck formability of the bottle can manufactured by suppressing the work hardening of the neck portion during ironing. .

以上説明した本発明に係るボトル缶用アルミニウム合金板は、図1に示すような胴体部2と底部6とが一体に形成された従来の2ピースボトル缶1や、図示しないが、胴体部と底部とが各々異なる部材で形成された従来の3ピースボトル缶に好適に使用される素材である。   The aluminum alloy plate for a bottle can according to the present invention described above includes a conventional two-piece bottle can 1 in which a body portion 2 and a bottom portion 6 are integrally formed as shown in FIG. It is a material that is preferably used for a conventional three-piece bottle can having a bottom portion formed of a different member.

また、本発明に係るボトル缶用アルミニウム合金板を、図1に示すような従来の2ピースボトル缶1に適用する場合には、図2に示すように、本発明に係るボトル缶用アルミニウム合金板からなるアルミニウム合金板Aに対してカッピングとDI成形とを施して胴体部2と底部6とを形成する。次に、胴体部2の胴体部端部2aをトリミングにより整え、図示しない洗浄、印刷・内面スプレー塗装およびベーキング(例えば、210℃で10分間保持)を施した後に、胴体部2にダイネック加工等によりネッキングを施してネック部3を形成し、その開口部を口部4とする。その後、この口部4の近傍の外周にネジ・カール成形を施してスクリューキャップ取り付け用のネジ部5およびカール部7を形成することで、2ピースボトル缶1を製造することができる。   Moreover, when the aluminum alloy plate for bottle cans according to the present invention is applied to a conventional two-piece bottle can 1 as shown in FIG. 1, as shown in FIG. 2, the aluminum alloy for bottle cans according to the present invention is used. The body portion 2 and the bottom portion 6 are formed by performing cupping and DI molding on the aluminum alloy plate A made of a plate. Next, the body part end 2a of the body part 2 is trimmed, and after cleaning, printing / inner surface spray coating and baking (for example, holding at 210 ° C. for 10 minutes) (not shown), the body part 2 is subjected to die neck processing, etc. Necking is performed to form the neck portion 3, and the opening portion is used as the mouth portion 4. Thereafter, the two-piece bottle can 1 can be manufactured by performing screw / curl molding on the outer periphery in the vicinity of the mouth part 4 to form the screw part 5 and the curl part 7 for attaching the screw cap.

また、アルミニウム合金板Aは、製造される2ピースボトル缶1の内表面からのアルミニウム等の溶出を防止するために、本発明に係るボトル缶用アルミニウム合金板の表面にPET等の樹脂フイルムをラミネートしたものを使用してもよい。   In addition, the aluminum alloy plate A is provided with a resin film such as PET on the surface of the aluminum alloy plate for bottle can according to the present invention in order to prevent elution of aluminum and the like from the inner surface of the two-piece bottle can 1 to be manufactured. A laminate may be used.

以下、本発明に係る実施例について具体的に説明する。
まず、表1に示すような合金組成を備えたアルミニウム合金を溶解・鋳造し、この鋳塊に、表1に示す均質化熱処理温度で4時間の均質化熱処理を施した。続いて、熱間粗圧延、熱間仕上げ圧延を順次行って熱間圧延板を作製した後、表1に示すような巻き取り温度でこの熱間圧延板を巻き取って、ホットコイルとした。そして、このホットコイルに圧延率85%の冷間圧延を施して、板厚0.34mmのボトル缶用アルミニウム合金板を製造した。なお、板厚0.34mmは、従来の板厚が0.40mmであるので、薄肉化された肉厚といえる。
Examples according to the present invention will be specifically described below.
First, an aluminum alloy having an alloy composition as shown in Table 1 was melted and cast, and this ingot was subjected to a homogenization heat treatment at a homogenization heat treatment temperature shown in Table 1 for 4 hours. Subsequently, hot rough rolling and hot finish rolling were sequentially performed to produce a hot rolled plate, and then the hot rolled plate was wound at a winding temperature as shown in Table 1 to obtain a hot coil. The hot coil was cold rolled at a rolling rate of 85% to produce an aluminum alloy plate for a bottle can having a plate thickness of 0.34 mm. The plate thickness of 0.34 mm can be said to be a thinned thickness because the conventional plate thickness is 0.40 mm.

そして、前記のボトル缶用アルミニウム合金板について、板表面の圧延方向の平均結晶粒径を以下の測定方法により求めた。また、Al−Mn−Fe−Si系金属間化合物の個数密度、ベーキング後0.2%耐力についても以下の測定方法により求めた。   And about the said aluminum alloy plate for bottle cans, the average crystal grain size of the rolling direction of the plate surface was calculated | required with the following measuring methods. Further, the number density of Al—Mn—Fe—Si intermetallic compounds and the 0.2% proof stress after baking were also determined by the following measuring method.

(平均結晶粒径)
前記のボトル缶用アルミニウム合金板の表層を機械研磨により5μm除去して鏡面とした。その後、表面をエッチングし、倍率100倍の金属顕微鏡により金属組織を観察および写真撮影した。次に、この顕微鏡写真の任意の位置に、圧延方向に直角な方向に既知の長さの線分(例えば、1mm)を引き、この線分の長さを、線分により切断された結晶粒の数で除算して得られる値を結晶粒1個あたりの結晶粒径とした。場所を変えて同様の測定を繰り返し行い(5箇所)、その平均値を平均結晶粒径とした。
(Average crystal grain size)
The surface layer of the aluminum alloy plate for bottle cans was removed by mechanical polishing to form a mirror surface. Thereafter, the surface was etched, and the metal structure was observed and photographed with a metal microscope having a magnification of 100 times. Next, a line segment of a known length (for example, 1 mm) is drawn at an arbitrary position in the micrograph in a direction perpendicular to the rolling direction, and the length of the line segment is changed to a crystal grain cut by the line segment. The value obtained by dividing by the number of was taken as the crystal grain size per crystal grain. The same measurement was repeated at different locations (5 locations), and the average value was taken as the average crystal grain size.

(Al−Mn−Fe−Si系金属間化合物の個数密度)
以下の手順により求めた。
(1)前記の鏡面化されたボトル缶用アルミニウム合金板の表面を走査型電子顕微鏡(日本電子製、JSM−T330)の成分画像にて、倍率500倍で観察し、Al−Mn−Fe−Si系金属間化合物を抽出し、Al−Mn−Fe−Si系金属間化合物の分布を表すイメージマップを作成した。
(2)次に、画像解析処理(高速画像処理装置、東芝製、TOSPIX−II)を施した組織写真を用いて、前記画像を20視野測定し、Al−Mn−Fe−Si系金属間化合物の最大部の長さ(最大長)および単位面積当たりの個数を統計的にカウントし、最大長10μm以上のAl−Mn−Fe−Si系金属間化合物の個数密度を求めた。
(Number density of Al-Mn-Fe-Si intermetallic compounds)
It calculated | required with the following procedures.
(1) The surface of the mirror-finished aluminum alloy plate for bottle cans was observed with a scanning electron microscope (manufactured by JEOL, JSM-T330) at a magnification of 500 times, and Al-Mn-Fe- An Si-based intermetallic compound was extracted, and an image map representing the distribution of the Al—Mn—Fe—Si-based intermetallic compound was created.
(2) Next, using a tissue photograph subjected to image analysis processing (high-speed image processing device, manufactured by Toshiba, TOSPIX-II), 20 images of the image were measured, and an Al—Mn—Fe—Si intermetallic compound was obtained. The maximum part length (maximum length) and the number per unit area were statistically counted, and the number density of Al—Mn—Fe—Si intermetallic compounds having a maximum length of 10 μm or more was determined.

(ベーキング後0.2%耐力)
前記のボトル缶用アルミニウム合金板にベーキング(210℃×10分)を施し、JIS規定の引張試験を行い、ベーキング後0.2%耐力を求めた。
このようにして求めた各特性値の結果を表1に示す。なお、表1中の下線は本発明の必要条件を満たしていないことを示す。
(0.2% yield strength after baking)
The aluminum alloy plate for bottle cans was baked (210 ° C. × 10 minutes), subjected to a tensile test specified in JIS, and 0.2% proof stress was obtained after baking.
Table 1 shows the results of the characteristic values obtained in this way. The underline in Table 1 indicates that the necessary conditions of the present invention are not satisfied.

Figure 2006097076
Figure 2006097076

表1から分かるように、実施例1〜6は、本発明の必要条件を満足するものであり、比較例1〜14は本発明の必要条件を満たさないものである。
すなわち、比較例1および比較例2は、Cu含有量に関して、それぞれ本発明で規定する数値範囲の下限値または上限値から外れているものである。またベーキング(210℃×10分)後0.2%耐力についても本発明で規定する数値範囲の下限値または上限値から外れているものである。
As can be seen from Table 1, Examples 1 to 6 satisfy the necessary conditions of the present invention, and Comparative Examples 1 to 14 do not satisfy the necessary conditions of the present invention.
That is, Comparative Example 1 and Comparative Example 2 are different from the lower limit value or the upper limit value of the numerical ranges defined in the present invention with respect to the Cu content. Further, the 0.2% proof stress after baking (210 ° C. × 10 minutes) is also outside the lower limit or upper limit of the numerical range defined in the present invention.

また、比較例3および比較例4は、Mg含有量に関して、それぞれ本発明で規定する数値範囲の下限値または上限値から外れているものである。またベーキング(210℃×10分)後0.2%耐力についても本発明で規定する数値範囲の下限値または上限値から外れているものである。比較例5および比較例6は、Mn含有量に関して、それぞれ本発明で規定する数値範囲の下限値または上限値から外れているものである。そして、比較例5および比較例6はそれぞれ、{5.66×Mn+0.667×Mg+2.17×Fe}に関して本発明で規定する数値範囲の下限値または上限値を外れ、またAl−Mn−Fe−Si系金属間化合物の個数密度についても本発明の好適範囲から外れている。更にはベーキング(210℃×10分)後0.2%耐力についても本発明で規定する数値範囲の下限値または上限値から外れているものである。   Moreover, the comparative example 3 and the comparative example 4 are different from the lower limit value or the upper limit value of the numerical value range prescribed | regulated by this invention regarding Mg content, respectively. Further, the 0.2% proof stress after baking (210 ° C. × 10 minutes) is also outside the lower limit or upper limit of the numerical range defined in the present invention. In Comparative Example 5 and Comparative Example 6, the Mn content is different from the lower limit value or the upper limit value of the numerical range defined in the present invention. In Comparative Example 5 and Comparative Example 6, the lower limit value or the upper limit value of the numerical range defined in the present invention with respect to {5.66 × Mn + 0.667 × Mg + 2.17 × Fe} is exceeded, respectively, and Al—Mn—Fe The number density of the Si-based intermetallic compound is also outside the preferred range of the present invention. Furthermore, 0.2% proof stress after baking (210 ° C. × 10 minutes) is also outside the lower limit or upper limit of the numerical range defined in the present invention.

また、比較例7および比較例8は、Fe含有量に関して、それぞれ本発明で規定する数値範囲の下限値または上限値から外れているものである。特に、比較例7は平均結晶粒径においても本発明で規定する範囲から外れているものである。そして、比較例8は、{5.66×Mn+0.667×Mg+2.17×Fe}に関して本発明で規定する数値範囲の上限値を外れ、またAl−Mn−Fe−Si系金属間化合物の個数密度についても本発明の好適範囲から外れているものである。   Moreover, the comparative example 7 and the comparative example 8 are different from the lower limit value or the upper limit value of the numerical value range prescribed | regulated by this invention regarding Fe content, respectively. In particular, Comparative Example 7 is also out of the range defined by the present invention in the average crystal grain size. And the comparative example 8 remove | deviates from the upper limit of the numerical range prescribed | regulated by this invention regarding {5.66 * Mn + 0.667 * Mg + 2.17 * Fe}, and the number of Al-Mn-Fe-Si type intermetallic compounds. The density is also outside the preferred range of the present invention.

また、比較例9および比較例10は、Si含有量に関して、それぞれ本発明で規定する数値範囲の下限値または上限値から外れているものである。そして比較例9では、Al−Mn−Fe−Si系金属間化合物の個数密度についても本発明の好適範囲から外れており、比較例10は平均結晶粒径においても本発明で規定する範囲から外れているものである。比較例11および比較例12は、{5.66×Mn+0.667×Mg+2.17×Fe}に関して、それぞれ本発明で規定する数値範囲の下限値または上限値から外れ、またAl−Mn−Fe−Si系金属間化合物の個数密度についても本発明の好適範囲から外れているものである。   Moreover, the comparative example 9 and the comparative example 10 are different from the lower limit value or the upper limit value of the numerical range defined in the present invention, respectively, with respect to the Si content. In Comparative Example 9, the number density of the Al—Mn—Fe—Si intermetallic compound also deviates from the preferred range of the present invention, and Comparative Example 10 deviates from the range specified in the present invention in terms of the average crystal grain size. It is what. In Comparative Example 11 and Comparative Example 12, {5.66 × Mn + 0.667 × Mg + 2.17 × Fe} respectively deviates from the lower limit value or the upper limit value of the numerical range defined in the present invention, and Al—Mn—Fe— The number density of Si-based intermetallic compounds is also outside the preferred range of the present invention.

また、比較例13は、均質化熱処理温度が本発明で規定する数値範囲の下限値から外れているため、平均結晶粒径が本発明で規定する数値範囲から外れているものである。比較例14は、熱間圧延の巻き取り温度が本発明で規定する数値範囲から外れているため、平均結晶粒径が本発明で規定する数値範囲から外れているものである。   In Comparative Example 13, the homogenization heat treatment temperature is out of the lower limit of the numerical range defined in the present invention, and therefore the average crystal grain size is out of the numerical range defined in the present invention. In Comparative Example 14, since the coiling temperature of hot rolling is out of the numerical range defined in the present invention, the average crystal grain size is out of the numerical range defined in the present invention.

次に、前記の実施例1〜6、比較例1〜14のボトル缶用アルミニウム合金板を使用して、図2に示すように、以下の手順で2ピースボトル缶1を作製した。まず、ボトル缶用アルミニウム合金板にカッピングを施してカップ径90mmのカップを作製し、このカップに胴体部2の内径が66mmになるようにDI成形を施した。   Next, using the aluminum alloy plates for bottle cans of Examples 1 to 6 and Comparative Examples 1 to 14, a two-piece bottle can 1 was produced according to the following procedure as shown in FIG. First, cups with a cup diameter of 90 mm were prepared by cupping the aluminum alloy plate for bottle cans, and DI molding was performed so that the inner diameter of the body part 2 was 66 mm.

(しごき加工性)
そして、このDI成形工程で、10000缶成形した時点で、破断した缶の数によって、しごき加工性を評価した。即ち、破断が発生した缶が10000缶中3缶以下であったものを「○(良好)」、4缶以上発生したものを「×(不良)」とした。
(Irregular workability)
And at the time of forming 10,000 cans in this DI forming step, the ironing workability was evaluated by the number of broken cans. That is, “◯ (good)” means that 3 or less cans out of 10,000 cans were broken, and “x (bad)” means that 4 or more cans occurred.

その後、胴体部端部2aをトリミングし、図示しない洗浄、ジルコン処理、内表面にアクリル変性エポキシ塗料によるスプレー塗装、ベーキング(210℃、10分間)を行い、続いて口部4の内径が40mmになるまでダイネック方式によりネッキングを施してネッキング品を作製した。このネッキング品のネック部3にネジ・カール成形によりネジ部5、カール部7を形成して2ピースボトル缶1とした。   Thereafter, the body end 2a is trimmed, cleaning (not shown), zircon treatment, spray coating with an acrylic-modified epoxy paint on the inner surface, baking (210 ° C., 10 minutes), and subsequently the inner diameter of the mouth 4 is 40 mm. Until this time, necking was performed by die necking to produce a necking product. A screw part 5 and a curl part 7 are formed on the neck part 3 of this necking product by screw / curl molding to obtain a two-piece bottle can 1.

前記のネッキング品、2ピースボトル缶を使用して、ネック成形性、および座屈強度の評価を以下の方法で行った。また、ネック部での樹脂フィルムの微細な剥離を確認するために、以下の方法でERV(Enamel Rate Value)についても測定した
(ネック成形性)
前記ネッキング品(サンプル数=20缶)において、シワまたはスジ状の欠陥の発生状況を確認することによって、ネック成形性を評価した。なお、シワまたはスジ状の欠陥の発生が全く見られなかったものを「○(良好)」、シワまたはスジ状の欠陥の発生が若干見られたものを「△(概ね良好)」、顕著なシワまたはスジ状の欠陥の発生が見られたものを「×(不良)」とした。
Using the necking product and the two-piece bottle can, the neck formability and the buckling strength were evaluated by the following methods. In addition, in order to confirm the fine peeling of the resin film at the neck portion, ERV (Enamel Rate Value) was also measured by the following method (neck formability).
The neck formability was evaluated by confirming the occurrence of wrinkle or streak-like defects in the necking product (number of samples = 20 cans). In addition, “◯ (good)” indicates that no wrinkle or streak-like defects were observed, and “△ (generally good)” indicates that wrinkles or streak-like defects were slightly observed. The case where the occurrence of wrinkle or streak-like defects was observed was designated as “x (defect)”.

(座屈強度)
前記の2ピースボトル缶に軸方向の圧縮荷重を負荷し、ネジ部または缶胴部が座屈したときの荷重を5缶について測定して、平均値を座屈強度とした。なお、この座屈強度は、1500N以上であるものを「○(良好)」、1500N未満であるものを「×(不良)」とした。
(Buckling strength)
A compressive load in the axial direction was applied to the two-piece bottle can, the load when the screw part or the can body part buckled was measured for five cans, and the average value was defined as the buckling strength. In addition, this buckling strength was set to “◯ (good)” if it was 1500 N or more, and “x (defect)” if it was less than 1500 N.

(ERV)
前記の2ピースボトル缶内に1%食塩水と0.02%界面活性剤からなる溶液を満たした後、溶液と缶の外表面との間に6.2Voltの直流電圧を4秒間印加したときの電流値を電流計により測定し、20缶の平均値を求めERVとした。なお、ERVが10mA未満であれば、内面塗膜に微細な剥離がないものと考えられることから、10mA未満を「○(良好)」、10mA以上を「×(不良)」とした。
これらの評価結果を表2に示す。なお、表2中の下線は、本発明のボトル缶用アルミニウム合金板として好ましくない結果であることを示す。
(ERV)
When a 2-volt bottle can is filled with a solution consisting of 1% saline and 0.02% surfactant and then a 6.2 Volt DC voltage is applied between the solution and the outer surface of the can for 4 seconds. Was measured with an ammeter, and an average value of 20 cans was obtained as ERV. In addition, if ERV is less than 10 mA, it is thought that there is no fine peeling in the inner surface coating film, and therefore, less than 10 mA was designated as “◯ (good)”, and 10 mA or more was designated as “x (defective)”.
These evaluation results are shown in Table 2. In addition, the underline in Table 2 shows that it is an unpreferable result as an aluminum alloy plate for bottle cans of the present invention.

Figure 2006097076
Figure 2006097076

表2に示すように、本発明の必要条件を満たす実施例1〜6においては、板厚が薄肉化されても、しごき加工性、ネック成形性、および座屈強度のいずれの評価項目も良好なものであった。また、内面塗膜の剥離の指標となるERVにおいても良好な結果であった。   As shown in Table 2, in Examples 1 to 6 that satisfy the requirements of the present invention, all evaluation items of ironing workability, neck formability, and buckling strength are good even if the plate thickness is reduced. It was something. Moreover, it was a favorable result also in ERV used as the parameter | index of peeling of an inner surface coating film.

しかし、本発明の必要条件を満たさない比較例1〜14においては、板厚が薄肉化されると、しごき加工性、ネック成形性、座屈強度およびERVのうち少なくとも1項目以上が実施例と比較して劣る結果となった。   However, in Comparative Examples 1 to 14 that do not satisfy the necessary conditions of the present invention, when the plate thickness is reduced, at least one item among the ironing workability, neck formability, buckling strength, and ERV is the example. The result was inferior compared.

すなわち、しごき加工性については、比較例2、4〜7、9〜11において破断発生数が4缶以上となり「×(不良)」という結果となった。ネック成形性については、比較例2、4、6、7、8、10、12〜14においてネック部に顕著なシワまたはスジ状の欠陥の発生が見られるため、「×(不良)」という結果となった。座屈強度については、比較例1、3、5において1500N未満となるため、「×(不良)」という結果となった。また、ERVについては、比較例2、4、6〜8、10、12〜14において10mA以上となるため、「×(不良)」という結果となった。   That is, with respect to ironing workability, the number of occurrences of breakage was 4 cans or more in Comparative Examples 2, 4 to 7, and 9 to 11, resulting in “x (defect)”. Regarding the neck formability, in Comparative Examples 2, 4, 6, 7, 8, 10, 12 to 14, remarkable wrinkle or streak-like defects are observed in the neck portion. It became. Since the buckling strength was less than 1500 N in Comparative Examples 1, 3, and 5, the result was “x (defect)”. Moreover, about ERV, since it became 10 mA or more in the comparative examples 2, 4, 6-8, 10, 12-14, it resulted in "x (defect)".

従来の2ピースボトル缶を模式的に示す斜視図である。It is a perspective view which shows the conventional 2 piece bottle can typically. 図1の2ピースボトル缶の製造方法を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing method of the 2 piece bottle can of FIG.

符号の説明Explanation of symbols

1 2ピースボトル缶
2 胴体部
3 ネック部
4 口部
5 ネジ部
6 底部
7 カール部
8 天面部
1 2 piece bottle can 2 body part 3 neck part 4 mouth part 5 screw part 6 bottom part 7 curl part 8 top surface part

Claims (2)

Cuを0.1〜0.4質量%、Mgを0.8〜1.7質量%、Mnを0.5〜1.0質量%、Feを0.4〜0.8質量%、Siを0.1〜0.4質量%含有し、残部がAlおよび不可避的不純物から構成されるアルミニウム合金板であって、
前記Mn、MgおよびFeの含有量が、5.45<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.55の関係を満足し、かつ、
210℃で10分の熱処理を施した後の0.2%耐力が240〜270N/mm2であり、
板表面の圧延直角方向の平均結晶粒径が40μm以下であることを特徴とするボトル缶用アルミニウム合金板。
Cu 0.1-0.4% by mass, Mg 0.8-1.7% by mass, Mn 0.5-1.0% by mass, Fe 0.4-0.8% by mass, Si An aluminum alloy plate containing 0.1 to 0.4% by mass, the balance being composed of Al and inevitable impurities,
The content of Mn, Mg and Fe is 5.45 <{5.66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} <7.55 Satisfied, and
0.2% yield strength after heat treatment at 210 ° C. for 10 minutes is 240 to 270 N / mm 2 ,
An aluminum alloy plate for a bottle can, wherein the average crystal grain size in the direction perpendicular to the rolling direction of the plate surface is 40 µm or less.
Cuを0.1〜0.4質量%、Mgを0.8〜1.7質量%、Mnを0.5〜1.0質量%、Feを0.4〜0.8質量%、Siを0.1〜0.4質量%含有し、残部がAlおよび不可避的不純物から構成され、前記Mn、MgおよびFeの含有量が、5.45<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.55の関係を満足するアルミニウム合金を溶解、鋳造して鋳塊を作製する第1工程と、
前記鋳塊を均質化熱処理する第2工程と、
前記均質化熱処理された鋳塊を熱間圧延して圧延板を作製する第3工程と、
前記圧延板を冷間圧延してアルミニウム合金板を作製する第4工程とを含み、
前記第2工程の均質化熱処理を570〜620℃の温度条件下で行い、かつ、
前記第3工程の熱間圧延を巻き取り温度300℃以上で行うことを特徴とするボトル缶用アルミニウム合金板の製造方法。
Cu 0.1-0.4% by mass, Mg 0.8-1.7% by mass, Mn 0.5-1.0% by mass, Fe 0.4-0.8% by mass, Si 0.1 to 0.4% by mass, the balance is composed of Al and inevitable impurities, and the content of Mn, Mg and Fe is 5.45 <{5.66 × Mn (% by mass) +0. 667 × Mg (mass%) + 2.17 × Fe (mass%)} <7.55 The first step of melting and casting an aluminum alloy that satisfies the relationship:
A second step of homogenizing heat treatment of the ingot;
A third step of hot rolling the homogenized heat-treated ingot to produce a rolled plate;
A fourth step of cold rolling the rolled plate to produce an aluminum alloy plate,
Performing the homogenization heat treatment of the second step under a temperature condition of 570 to 620 ° C., and
The method for producing an aluminum alloy plate for a bottle can, wherein the hot rolling in the third step is performed at a coiling temperature of 300 ° C or higher.
JP2004283840A 2004-09-29 2004-09-29 Aluminum-alloy sheet for bottle can, and its manufacturing method Pending JP2006097076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283840A JP2006097076A (en) 2004-09-29 2004-09-29 Aluminum-alloy sheet for bottle can, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283840A JP2006097076A (en) 2004-09-29 2004-09-29 Aluminum-alloy sheet for bottle can, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006097076A true JP2006097076A (en) 2006-04-13

Family

ID=36237165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283840A Pending JP2006097076A (en) 2004-09-29 2004-09-29 Aluminum-alloy sheet for bottle can, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006097076A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001858A (en) * 2007-06-21 2009-01-08 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent circulation pinhole resistance
JP2009242831A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
JP2009242830A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
JP2011214107A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Al ALLOY SHEET FOR CAN BARREL AND METHOD FOR PRODUCING THE SAME
JP2011214109A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Aluminum alloy sheet for packaging container top, and method for producing the same
JP2018510967A (en) * 2015-03-13 2018-04-19 ノベリス・インコーポレイテッドNovelis Inc. Highly formed aluminum alloy for packaging products and method for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256366A (en) * 2001-02-27 2002-09-11 Kobe Steel Ltd Aluminum sheet for bottle
JP2003082429A (en) * 2001-09-11 2003-03-19 Kobe Steel Ltd Aluminum alloy sheet for bottle can
JP2004010941A (en) * 2002-06-05 2004-01-15 Mitsubishi Alum Co Ltd Aluminum alloy sheet for bottle-type beverage can
JP2004250790A (en) * 2003-01-31 2004-09-09 Kobe Steel Ltd Aluminum alloy sheet for bottle can
JP2006077296A (en) * 2004-09-10 2006-03-23 Furukawa Sky Kk Aluminum alloy sheet for bottle can having excellent piercing strength
JP2006077278A (en) * 2004-09-08 2006-03-23 Furukawa Sky Kk Aluminum alloy sheet for bottle type can
JP2006089828A (en) * 2004-09-27 2006-04-06 Furukawa Sky Kk Aluminum alloy sheet for bottle type can, and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256366A (en) * 2001-02-27 2002-09-11 Kobe Steel Ltd Aluminum sheet for bottle
JP2003082429A (en) * 2001-09-11 2003-03-19 Kobe Steel Ltd Aluminum alloy sheet for bottle can
JP2004010941A (en) * 2002-06-05 2004-01-15 Mitsubishi Alum Co Ltd Aluminum alloy sheet for bottle-type beverage can
JP2004250790A (en) * 2003-01-31 2004-09-09 Kobe Steel Ltd Aluminum alloy sheet for bottle can
JP2006077278A (en) * 2004-09-08 2006-03-23 Furukawa Sky Kk Aluminum alloy sheet for bottle type can
JP2006077296A (en) * 2004-09-10 2006-03-23 Furukawa Sky Kk Aluminum alloy sheet for bottle can having excellent piercing strength
JP2006089828A (en) * 2004-09-27 2006-04-06 Furukawa Sky Kk Aluminum alloy sheet for bottle type can, and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001858A (en) * 2007-06-21 2009-01-08 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent circulation pinhole resistance
JP2009242831A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
JP2009242830A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
JP2011214107A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Al ALLOY SHEET FOR CAN BARREL AND METHOD FOR PRODUCING THE SAME
JP2011214109A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Aluminum alloy sheet for packaging container top, and method for producing the same
JP2018510967A (en) * 2015-03-13 2018-04-19 ノベリス・インコーポレイテッドNovelis Inc. Highly formed aluminum alloy for packaging products and method for producing the same

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP6210896B2 (en) Aluminum alloy plate for can lid and manufacturing method thereof
WO2007052416A1 (en) Cold-rolled aluminum alloy sheet for bottle can with excellent neck part formability and process for producing the cold-rolled aluminum alloy sheet
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
WO2013118611A1 (en) Aluminum alloy sheet for di can body
JP5416433B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2006265701A (en) Cold-rolled aluminum alloy sheet superior in high-temperature property for bottle-shaped can
JP5961839B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP2006097076A (en) Aluminum-alloy sheet for bottle can, and its manufacturing method
JP2016041852A (en) Aluminum alloy sheet for can barrel
JP3719673B2 (en) Aluminum alloy plate for resin-coated packaging container and method for producing the same
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP2001262261A (en) Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP5976023B2 (en) Aluminum alloy plate for resin-coated can body
JP5491933B2 (en) Method for producing aluminum alloy sheet for resin-coated can body
JP2006265715A (en) Aluminum alloy sheet for resin coated packaging container and method for manufacturing the same
JP5480647B2 (en) Aluminum alloy composite plate for packaging container lid and manufacturing method thereof
JP7426243B2 (en) Aluminum alloy plate for bottle body
JP2006070344A (en) Aluminum alloy sheet for resin-coated packing container and its production method
JP5091415B2 (en) Manufacturing method of aluminum alloy plate for bottle can
JP2017166052A (en) Aluminum alloy sheet for packaging container tab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080808

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080919