JP2006096618A - Apparatus for removing object to be removed in quartz glass crucible - Google Patents

Apparatus for removing object to be removed in quartz glass crucible Download PDF

Info

Publication number
JP2006096618A
JP2006096618A JP2004285279A JP2004285279A JP2006096618A JP 2006096618 A JP2006096618 A JP 2006096618A JP 2004285279 A JP2004285279 A JP 2004285279A JP 2004285279 A JP2004285279 A JP 2004285279A JP 2006096618 A JP2006096618 A JP 2006096618A
Authority
JP
Japan
Prior art keywords
removal
quartz glass
glass crucible
imaging
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004285279A
Other languages
Japanese (ja)
Other versions
JP4361452B2 (en
Inventor
Isao Maeda
功 前田
Naoyuki Obata
直之 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2004285279A priority Critical patent/JP4361452B2/en
Publication of JP2006096618A publication Critical patent/JP2006096618A/en
Application granted granted Critical
Publication of JP4361452B2 publication Critical patent/JP4361452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus capable of automatically removing an object to be removed in a quartz glass crucible. <P>SOLUTION: This removal apparatus for the object to be removed in the quartz glass crucible is provided with: an imaging means comprising a plurality of imaging units to focus the points at the same positions but different in depth, respectively; an illuminating means for beaming respectively at different luminescence wavelengths; a position detecting means for detecting the three-dimensional position of the object; an object size determination means; a means for identifying the type of the object; an irradiation position control means for controlling the irradiation position of laser beams; and a laser beam oscillation means for changing output in response to the object size and type. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は石英ガラスルツボの除去対象物の除去装置に係わり、特に自動的除去対象物の3次元位置、サイズおよび種類を判定してレーザにより除去する石英ガラスルツボの除去対象物の除去装置に関する。   The present invention relates to an apparatus for removing an object to be removed from a quartz glass crucible, and more particularly to an apparatus for removing an object to be removed from a silica glass crucible that automatically determines the three-dimensional position, size and type of the object to be removed and removes the object by a laser.

一般に石英ガラスルツボは、内層に透明層、外層に気泡を含有する不透明層を有しており、半導体製造工程における単結晶シリコン引き上げに用いられるが、気泡や異物のような除去対象物が透明層内部に近い表面から約5mmの深さまでに含まれていたり、内表面に付着、存在していると、これらがシリコン融液と反応し、シリコン単結晶引き上げ歩留を低下させる要因の一つとなる。   In general, a quartz glass crucible has a transparent layer in the inner layer and an opaque layer containing bubbles in the outer layer, and is used for pulling single crystal silicon in the semiconductor manufacturing process. If they are contained within a depth of about 5mm from the surface close to the inside, or if they are attached to or exist on the inner surface, these will react with the silicon melt and become one of the factors that lower the silicon single crystal pulling yield. .

従来、これらの気泡や異物の検出、除去は、石英ガラスルツボを赤熱温度以上軟化点未満に加熱することで、異物や気泡が輝点となることからその部位を酸水素火炎、プラズマ炎またはアーク炎によって局部的に加熱し、気泡や異物を除去していた。また、気泡や異物の検出は、CCDカメラを使用し、確認して行っていた。   Conventionally, these bubbles and foreign substances are detected and removed by heating the quartz glass crucible to a temperature not lower than the red heat temperature and lower than the softening point. It was heated locally by a flame to remove bubbles and foreign matter. In addition, detection of bubbles and foreign matters has been performed using a CCD camera.

しかしながら、石英ガラスルツボを赤熱温度以上軟化点未満に加熱することによる異物、気泡の検出、除去方法は、異物、気泡の大きさおよび深さや、酸水素火炎、プラズマ炎またはアーク炎の加熱範囲を精密に制御することが難しい。そのため、異物、気泡の位置測定は大まかに行い、その後、位置特定範囲について本来必要な除去部分以上の範囲を広く局部加熱することによって異物や気泡を除去していた。   However, the method for detecting and removing foreign substances and bubbles by heating the quartz glass crucible to a temperature above the red heat temperature and below the softening point is limited to the size and depth of the foreign substances and bubbles, and the heating range of the oxyhydrogen flame, plasma flame or arc flame. It is difficult to control precisely. For this reason, the positions of the foreign substances and bubbles are roughly measured, and then the foreign substances and bubbles are removed by locally heating a range of the position specifying range that is larger than the originally necessary removal portion.

この従来の方法は、局部加熱処理による石英の溶融を必要以上に広い範囲に行う必要があり、長時間で大量の熱エネルギーを必要とする。また、CCDカメラによる検査方法では、CCDカメラで撮影した画像を処理することにより、気泡は深さや大きさを正確に特定することができるが、異物は、色によって認識することができない場合がある。また、気泡の深さ位置を特定するためにはカメラ位置を固定後、深さ方向に焦点を移動させる必要があり、ルツボ内面を全面検査するためには長時間を要するため実用的ではない。   In this conventional method, it is necessary to melt the quartz by the local heat treatment in a wider range than necessary, and a large amount of heat energy is required for a long time. In addition, in the inspection method using a CCD camera, the depth and size of bubbles can be accurately specified by processing an image captured by the CCD camera, but foreign matter may not be recognized by color. . Further, in order to specify the depth position of the bubble, it is necessary to move the focus in the depth direction after fixing the camera position, and it is not practical because it takes a long time to inspect the entire surface of the crucible.

なお、石英ガラスルツボの透明層に包含された異物を機械的研削または化学的エッチングした後、この研削跡または食刻跡の周縁部を熱処理して滑らかにする石英ガラスルツボの再生方法が提案されている(特許文献1)。
特開平2−188489号公報
A method for regenerating a silica glass crucible has been proposed in which foreign matter contained in the transparent layer of the quartz glass crucible is mechanically ground or chemically etched, and then the periphery of this grinding mark or etching mark is heat treated to make it smooth. (Patent Document 1).
Japanese Patent Laid-Open No. 2-188489

本発明は上述した事情を考慮してなされたもので、石英ガラスルツボの除去対象物を自動的に除去できる石英ガラスルツボの除去対象物の除去装置を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a quartz glass crucible removal target removal device that can automatically remove a quartz glass crucible removal target.

上述した目的を達成するため、本発明に係る石英ガラスルツボの除去対象物の除去装置は、複数種類の除去対象物が存在する石英ガラスルツボの内表面側を順次撮像可能に配置され、同一位置の深さが異なる点に各々焦点が合わされる複数の撮像単位からなる撮像手段と、前記内表面側を照射し、各々発光波長の異なる光を発する複数の照明単位からなる照明手段と、前記撮像手段により撮像された除去対象物の3次元位置を検出する位置検出手段と、前記撮像手段により撮像された除去対象物の大きさを判定するサイズ判定手段と、前記照明手段からの照明の発光波長の違いにより、ルツボ内表面画像での色の濃淡の変化を認識して前記複数種類の除去対象物の種類を識別する種類識別手段と、前記位置検出手段からの位置情報に基づき、レーザ光の照射位置を制御する照射位置制御手段と、前記除去対象物のサイズおよび種類に応じて、出力が変化するレーザ光発振手段と、前記各構成手段を制御する制御手段を有することを特徴とする。   In order to achieve the above-described object, the quartz glass crucible removal object removal device according to the present invention is arranged so that the inner surface side of the quartz glass crucible where a plurality of types of removal objects exist can be sequentially imaged, and the same position. Imaging means comprising a plurality of imaging units each focused on a point having a different depth, illumination means comprising a plurality of illumination units that irradiate the inner surface side and each emit light having a different emission wavelength, and the imaging Position detection means for detecting the three-dimensional position of the removal object imaged by the means, size determination means for determining the size of the removal object imaged by the imaging means, and the emission wavelength of illumination from the illumination means Based on the difference between the type identification means for recognizing the change in color shading in the inner surface image of the crucible and identifying the type of the plurality of types of removal object, and the position information from the position detection means An irradiation position control means for controlling the irradiation position of the laser beam, a laser light oscillation means whose output changes according to the size and type of the object to be removed, and a control means for controlling the constituent means. Features.

好適には、前記撮像手段は複数のCCDカメラであり、照明手段はLEDである。   Preferably, the imaging means is a plurality of CCD cameras, and the illumination means is an LED.

また、好適には、前記位置検出手段は、制御手段の制御機能部とCCDカメラおよびLEDを回動させる回動機構とその回動制御器、前記制御機能部と石英ガラスルツボを回転させるルツボ回転機構とそのルツボ回転制御器、前記制御機能部とCCDカメラおよびLEDの送り機構とその進退制御器、および画像処理装置の画像処理機能部である。   Preferably, the position detection means includes a control function section of the control means, a rotation mechanism for rotating the CCD camera and the LED, a rotation controller for the rotation mechanism, and a crucible rotation for rotating the control function section and the quartz glass crucible. The mechanism and its crucible rotation controller, the control function section, the CCD camera and LED feed mechanism and its advance / retreat controller, and the image processing function section of the image processing apparatus.

また、好適には、前記サイズ判定手段は、画像処理装置である。   Preferably, the size determination means is an image processing device.

また、好適には、前記種類識別手段は、照明手段と画像処理装置である。   Preferably, the type identification means is an illumination means and an image processing device.

また、好適には、前記照射位置制御手段は、レーザ光発振手段を進退させるレーザ光発振手段送り機構とこれを制御するレーザ進退制御器、および、回動機構とこれを制御する回動制御器である。   Preferably, the irradiation position control means includes a laser light oscillation means feed mechanism for moving the laser light oscillation means forward and backward, a laser advance / retreat controller for controlling the laser light oscillation means, a rotation mechanism, and a rotation controller for controlling the rotation mechanism. It is.

本発明に係る石英ガラスルツボの除去対象物の除去装置によれば、石英ガラスルツボの除去対象物を自動的に除去できる石英ガラスルツボの除去対象物の除去装置を提供することができる。   According to the apparatus for removing a quartz glass crucible removal object according to the present invention, it is possible to provide a quartz glass crucible removal object removal apparatus that can automatically remove a quartz glass crucible removal object.

以下、本発明に係る石英ガラスルツボの除去対象物の除去装置の一実施形態について添付図面を参照して説明する。   Hereinafter, an embodiment of a quartz glass crucible removal target removal apparatus according to the present invention will be described with reference to the accompanying drawings.

図1は本発明に係る石英ガラスルツボの除去対象物の除去装置の概念図、図2はその制御回路図である。   FIG. 1 is a conceptual diagram of an apparatus for removing an object to be removed of a silica glass crucible according to the present invention, and FIG. 2 is a control circuit diagram thereof.

図1および図2に示すように、石英ガラスルツボの除去対象物の除去装置1は、複数種類の除去対象物が存在する石英ガラスルツボRの内表面側を順次撮像可能に配置され、同一位置の深さが異なる点に各々焦点が合わされる複数の撮像単位からなる撮像手段2と、上記内表面側を照射し、各々発光波長の異なる光を発する複数の照明単位からなる照明手段3と、撮像手段2により撮像された除去対象物の3次元位置を検出する位置検出手段4と、撮像手段2により撮像された除去対象物の大きさを決定するサイズ判定手段5と、照明手段3からの照明の発光波長の違いにより、ルツボ内表面画像での色の濃淡の変化を認識して複数種類の除去対象物の種類を識別する除去対象物種類識別手段6と、位置検出手段からの位置情報に基づき、レーザ光の照射位置を制御する照射位置制御手段7と、除去対象物のサイズおよび種類に応じて、出力が変化するレーザ光発振手段8と、上記各構成手段を制御し装置全体を制御する制御手段9を有している。   As shown in FIG. 1 and FIG. 2, the quartz glass crucible removal target object removal device 1 is arranged so that the inner surface side of the quartz glass crucible R where a plurality of types of removal target objects are present can be sequentially imaged. Imaging means 2 comprising a plurality of imaging units each focused on a point having a different depth, illumination means 3 comprising a plurality of illumination units that irradiate the inner surface side and each emit light having a different emission wavelength, The position detection means 4 for detecting the three-dimensional position of the removal object imaged by the imaging means 2, the size determination means 5 for determining the size of the removal object imaged by the imaging means 2, and the illumination means 3 The removal object type identifying means 6 for recognizing a change in color shading in the inner surface image of the crucible according to the difference in the emission wavelength of the illumination and identifying the types of the plurality of kinds of removal object, and position information from the position detection means Based on The irradiation position control means 7 for controlling the irradiation position of the light, the laser light oscillation means 8 whose output changes according to the size and type of the object to be removed, and the control for controlling the entire apparatus by controlling each of the constituent means. Means 9 are provided.

この制御手段9としての制御装置はCPU9aがROM9bおよびRAM9cとデータのやりとりを行いながらROM9bに記憶されている制御プログラムを実行することにより、上記各構成手段を制御するようになっている。   The control device as the control means 9 is configured such that the CPU 9a executes the control program stored in the ROM 9b while exchanging data with the ROM 9b and the RAM 9c, thereby controlling each of the above constituent means.

図3および図4に示すように、撮像手段2は、例えば、4個の撮像単位であるCCDカメラ2a、2b、2c、2dからなり、四角形の各頂点に位置して四角形状に配置され、その各々は焦点深度がいずれも1.25mmで同一である。   As shown in FIG. 3 and FIG. 4, the imaging means 2 is composed of, for example, CCD cameras 2a, 2b, 2c, and 2d, which are four imaging units, and is arranged in a square shape at each vertex of the square. Each of them has the same focal depth of 1.25 mm.

図5に示すように、第1のCCDカメラ2aはその焦点fが石英ガラスルツボRの表面に合わされた場合、深度0〜1.25mmの範囲が撮像可能であり、第2のCCDカメラ2bはその焦点fが、表面fを通る垂直線上でかつ表面から1.25mmの位置に合わされた場合、深度1.25〜2.50mmの範囲が撮像可能であり、第3のCCDカメラ2cはその焦点fが同様に2.5mmの位置に合わされた場合、深度2.5〜3.75mmの範囲が撮像可能であり、第4のCCDカメラ2dはその焦点fが同様に3.75mmの位置に合わされた場合、深度3.75〜5.0mmが撮像可能である。従って、第1のCCDカメラ2aの焦点fを表面に合わせ、第1のCCDカメラ2a乃至第4のCCDカメラ2dで同時に石英ガラスルツボRの内表面側を撮像することにより、焦点fにおける撮像層P即ち表面から深さ5mmまでが撮像される。焦点fは本発明の同一位置に対応するが、第2のCCDカメラ2a乃至第4のCCDカメラ2dの焦点は厳密に表面fを通る垂直線上に合わされる必要はなく、画像処理装置の同一計測ウィンドを形成できれば、多少幅を持ったエリアであってもよい。 As shown in FIG. 5, the first CCD camera 2a if that focus f 1 is adapted to the surface of the quartz glass crucible R, the range of depth 0~1.25mm are possible imaging, the second CCD camera 2b its focus f 2 If the from a on the vertical line and the surface through the surface f 1 was adapted to the position of 1.25 mm, the range of depth 1.25~2.50mm are possible imaging, the third CCD camera 2c If the focal point f 3 is adapted to the position of likewise 2.5 mm, the range of depth 2.5~3.75mm are imageable, fourth CCD camera 2d, like its focal f 4 3. When the 75 mm position is adjusted, a depth of 3.75 to 5.0 mm can be imaged. Accordingly, the focus f 1 of the first CCD camera 2a fit to the surface, by imaging the inner surface side of the quartz glass crucible R simultaneously with the first CCD camera 2a to fourth CCD camera 2d, at the focus f 1 The imaging layer P, that is, the depth of 5 mm from the surface is imaged. The focal point f 1 corresponds to the same position of the present invention, but the focal points of the second CCD camera 2a to the fourth CCD camera 2d do not have to be strictly focused on the vertical line passing through the surface f 1, and As long as the same measurement window can be formed, an area having a certain width may be used.

図1および図6に示すように、撮像手段2は撮像系送り機構10に取り付けられ、この撮像系送り機構10は送り用スクリューシャフト10aと、このスクリューシャフト10aに螺合し、撮像手段2および照明手段3が直接取り付けられる取付台10bと、スクリューシャフト10aを回転させ、撮像系進退制御器10cにより制御されるサーボモータ10cからなり、このサーボモータ10cを回転させることにより、撮像手段2および照明手段3を直線的に進退させることができるようになっている。 As shown in FIGS. 1 and 6, the image pickup means 2 is attached to an image pickup system feed mechanism 10, and this image pickup system feed mechanism 10 is screwed into a feed screw shaft 10a and the screw shaft 10a. A mounting base 10b to which the illuminating means 3 is directly attached and a servo motor 10c controlled by an imaging system advance / retreat controller 10c 1 by rotating the screw shaft 10a, and rotating the servo motor 10c, the imaging means 2 and The illumination means 3 can be moved back and forth linearly.

また、撮像系送り機構10は回動機構12に取り付けられており、回動機構12は撮像系送り機構10およびレーザ光発振手段送り機構11が直接取り付けられた回動部材12aと、この回動部材12aを回動させ、回動制御器12bを介して制御されるサーボモータ12bからなっている。従って、撮像手段2および照明手段3は直線的な進退と垂直平面上での回動ができるようになっている。 The imaging system feed mechanism 10 is attached to a turning mechanism 12, and the turning mechanism 12 includes a turning member 12a to which the imaging system feeding mechanism 10 and the laser beam oscillation means feeding mechanism 11 are directly attached, and this turning. the member 12a is rotated, which is a servomotor 12b is controlled through the rotation controller 12b 1. Therefore, the image pickup means 2 and the illumination means 3 can be linearly advanced and retracted and rotated on a vertical plane.

例えば、以下、第1のCCDカメラ2aを例にとり説明すれば、撮像手段2の垂直面上の回動は、図7(a)に示すように、ルツボ表面のY軸方向の位置Yを決定するものである。 For example, the following, will be described taking the first CCD camera 2a as an example, turning on the vertical surface of the image pickup unit 2, as shown in FIG. 7 (a), the position Y 1 of the Y-axis direction of the crucible surface To decide.

さらに、撮像手段2が撮像層Pを撮像した撮像情報は、AD回路13、画像処理装置14を介して制御手段9に送られる。画像処理装置14は画像処理機能部14aとカメラ制御機能部を有し、CPUが所定のプログラムを処理することにより、画像処理機能とカメラ制御機能を実現する。この画像処理機能により計測ウィンド内に除去対象物を撮像した場合には、画像処理して、除去対象物の位置をpとした場合、例えば第1のCCDカメラ2aの焦点fから距離(x、y)として決定され、記憶される。 Furthermore, imaging information obtained by the imaging unit 2 imaging the imaging layer P is sent to the control unit 9 via the AD circuit 13 and the image processing device 14. The image processing apparatus 14 includes an image processing function unit 14a and a camera control function unit, and an image processing function and a camera control function are realized by the CPU processing a predetermined program. When capturing a removal target in the measurement window by the image processing function, and the image processing, if the position of the removal target and the p 1, for example, the distance from the focal point f 1 of the first CCD camera 2a ( x 1 , y 1 ) and stored.

本除去装置1の稼動中の焦点合わせ、すなわち図7(a)のZ方向の位置決めは、予め石英ガラスルツボの種類(大きさ、形状)別に内表面の形状を測定しこれをルツボ内表面の形状情報として、制御手段9のRAM9cに記憶されているデータを呼び出し、撮像系進退制御器10cを介してサーボモータ10cを作動させて、撮像系送り機構10を進退移動させることで、撮像手段2の垂直平面での移動が行われ、この撮像手段2の位置情報は制御手段9のCPU9aを介してRAM9cに記憶されるようになっている。従って、第1のCCDカメラ2aの焦点fのZ方向の位置はZとして決定される。 The focusing during the operation of the removal apparatus 1, that is, the positioning in the Z direction in FIG. 7A, is performed by measuring the shape of the inner surface in advance for each type (size, shape) of the quartz glass crucible. the shape information, call the data stored in RAM9c control means 9 activates the servo motor 10c through the imaging system reciprocating controller 10c 1, by advancing and retracting the imaging system feeding mechanism 10, the imaging means The position information of the image pickup means 2 is stored in the RAM 9c via the CPU 9a of the control means 9. Accordingly, the position of the focal point f 1 of the first CCD camera 2a in the Z direction is determined as Z 1 .

一方、石英ガラスルツボRは垂直状態でルツボ回転機構15のルツボチャック15aが設けられたルツボ回転台15bに載置、固定されるようになっており、このルツボ回転台15bは、ルツボ回転制御器15cを介してサーボモータ15cにより間歇的あるいは連続的に回転されるようになっている。従って、ルツボ回転機構15は、石英ガラスルツボRを回転させ、図7(a)に示すように、ルツボ表面のX軸方向の位置Xを決定するものである。 On the other hand, the silica glass crucible R is placed and fixed in a vertical state on a crucible turntable 15b provided with a crucible chuck 15a of a crucible rotation mechanism 15. This crucible turntable 15b is a crucible rotation controller. It is adapted to be rotated intermittently or continuously by a servomotor 15c through 15c 1. Accordingly, the crucible rotation mechanism 15 rotates the quartz glass crucible R, as shown in FIG. 7 (a), is to determine the position X 1 of the X-axis direction of the crucible surface.

図8に示すように、制御手段9の制御機能部9aと回動機構12およびその回動制御器12b、制御機能部9aとルツボ回転機構15とそのルツボ回転制御器15b、制御機能部9aと撮像系送り機構10とその撮像系進退制御器10c、および画像処理装置14の画像処理機能部14aが本発明の位置検出手段4に対応する。 As shown in FIG. 8, the control function unit 9 a of the control means 9, the rotation mechanism 12 and its rotation controller 12 b 1 , the control function unit 9 a, the crucible rotation mechanism 15, its crucible rotation controller 15 b 1 , and the control function unit 9a, the imaging system feed mechanism 10, its imaging system advance / retreat controller 10c 1 , and the image processing function unit 14a of the image processing device 14 correspond to the position detection means 4 of the present invention.

また、正方形状に配置された4個のCCDカメラ2a、2b、2c、2dの中心位置には、複数の照明単位をなすLED3a、3b、3cからなる照明手段3が配設されている。これらLED3a、3b、3cは各々異なる波長の光を発し、その光軸は焦点fを通る垂直線とほぼ重なるように配置されている。従って、制御手段9および照明手段制御器3dを介して、LED3a乃至LED3cを順次発光することにより、撮像層Pは異なる波長の光により照射され、撮像手段2が気泡や異物(石英系等の白色異物、金属等の黒色異物)のような除去対象物を撮像した場合には、その位置情報がRAM9cに記憶されるようになっている。 In addition, an illuminating means 3 including LEDs 3a, 3b, and 3c forming a plurality of illumination units is disposed at the center position of the four CCD cameras 2a, 2b, 2c, and 2d arranged in a square shape. These LEDs 3a, 3b, 3c emits light of each different wavelengths, the optical axis is arranged so as substantially overlap with the vertical line passing through the focus f 1. Therefore, by sequentially emitting light from the LEDs 3a to 3c via the control means 9 and the illumination means controller 3d, the imaging layer P is irradiated with light of different wavelengths, and the imaging means 2 is exposed to bubbles and foreign matter (quartz-based white or the like). When a removal object such as a foreign object or a black foreign object such as a metal is imaged, the position information is stored in the RAM 9c.

除去対象物の検出は、次のように行われる。最初のLED3aを発光させて撮像層Pを照明し、CCDカメラ2a、2b、2c、2dで同時に撮像層Pを撮像する。この撮像情報は画像処理装置14で処理され、計測ウィンド内での位置データおよびサイズデータとしてRAM9cに記憶されるようになっている。   Detection of the removal object is performed as follows. The first LED 3a is caused to emit light to illuminate the imaging layer P, and the imaging layer P is simultaneously imaged by the CCD cameras 2a, 2b, 2c, and 2d. This imaging information is processed by the image processing device 14 and stored in the RAM 9c as position data and size data in the measurement window.

また、図9に示すように、LED3aから発せられる光の波長は気泡に当たると、気泡は、石英系等の白色異物、金属等の黒色異物に当たった場合に比べて著しく明るく輝くので、気泡として識別され、種類データとしてRAM9cに記憶される。   Also, as shown in FIG. 9, when the wavelength of light emitted from the LED 3a hits a bubble, the bubble shines brighter than when it hits a white foreign material such as quartz or a black foreign material such as a metal. It is identified and stored in the RAM 9c as type data.

次にLED3bを発光させて撮像層Pを照明し、CCDカメラ2a、2b、2c、2dで同時に撮像層Pを撮像する。この撮像情報は画像処理装置14で処理され、計測ウィンド内での位置データおよびサイズデータとしてRAM9cに記憶されるようになっている。また、LED3bから発せられる光の波長は石英系等の白色異物に気泡に当たると、気泡、金属等の黒色異物に当たった場合に比べて著しく明るく輝くので、石英系等の白色異物として識別され、種類データとしてRAM9cに記憶される。さらに、LED3cを発光させて撮像層Pを照明し、CCDカメラ2a、2b、2c、2dで同時に撮像層Pを撮像する。この撮像情報は画像処理装置14で処理され、計測ウィンド内での位置データおよびサイズデータとしてRAM9cに記憶されるようになっている。また、LED3cから発せられる光の波長は金属等の黒色異物に当たると、気泡、石英系等の白色異物に当たった場合に比べて著しく明るく輝くので、金属等の黒色異物として識別され、種類データとしてRAM9cに記憶される。   Next, the LED 3b is caused to emit light to illuminate the imaging layer P, and the imaging layer P is simultaneously imaged by the CCD cameras 2a, 2b, 2c, and 2d. This imaging information is processed by the image processing device 14 and stored in the RAM 9c as position data and size data in the measurement window. Also, the wavelength of light emitted from the LED 3b shines brightly when it hits a white foreign material such as quartz, compared to when it hits a black foreign material such as a bubble or metal, so it is identified as a white foreign material such as quartz. It is stored in the RAM 9c as type data. Further, the imaging layer P is illuminated by causing the LED 3c to emit light, and the imaging layer P is imaged simultaneously by the CCD cameras 2a, 2b, 2c, and 2d. This imaging information is processed by the image processing device 14 and stored in the RAM 9c as position data and size data in the measurement window. In addition, the wavelength of light emitted from the LED 3c shines significantly brighter when it hits a black foreign object such as a metal than when it hits a white foreign object such as a bubble or quartz. It is stored in the RAM 9c.

図2に示すように、画像処理装置14の画像処理機能部14aが、本発明のサイズ判定手段5に対応し、画像処理機能部14aおよび照明手段3とその照明手段制御器3dが種類識別手段6に対応する。   As shown in FIG. 2, the image processing function unit 14a of the image processing apparatus 14 corresponds to the size determination unit 5 of the present invention, and the image processing function unit 14a and the illumination unit 3 and its illumination unit controller 3d are type identification units. Corresponds to 6.

図2および図6に示すように、レーザ光発振手段8は、例えばCOレーザで、レーザ光制御器8aにより出力が制御され、レーザ光発振手段送り機構11に取り付けられ、このレーザ光発振手段送り機構11は送り用スクリューシャフト11aと、送り用スクリューシャフト11aに螺合し、レーザ光発振手段8が直接取付けられた取付台11bと、スクリューシャフト11aを回動させ、レーザ進退制御器11cを介して制御されるサーボモータ11cからなり、このサーボモータ11cを回転させることにより、レーザ光発振手段8を直線的に進退させることができるようになっている。 As shown in FIGS. 2 and 6, the laser light oscillation means 8 is, for example, a CO 2 laser, the output of which is controlled by the laser light controller 8a 1 and attached to the laser light oscillation means feed mechanism 11, and this laser light oscillation The means feed mechanism 11 is screwed into the feed screw shaft 11a, the mounting base 11b to which the laser beam oscillation means 8 is directly attached, and the screw shaft 11a, and the laser advance / retreat controller 11c. The servo motor 11c is controlled via 1 and the laser light oscillation means 8 can be linearly advanced and retracted by rotating the servo motor 11c.

また、レーザ光発振手段8の焦点合わせも、撮像手段2の焦点合わせと同様に、RAM9cに記憶されている除去対象物の位置を呼び出し、レーザ進退制御器11cを介してサーボモータ11cを作動させて行われる。 The operation, focusing of the laser beam oscillation means 8, like the focusing of the image pickup means 2, calling the location of the removal target stored in the RAM 9c, the servo motor 11c through the laser reciprocating controller 11c 1 To be done.

レーザ光発振手段送り機構11と、回動機構12およびこれらのレーザ進退制御器11c、回動制御器12bが本発明の照射位置制御手段7に対応する。 The laser beam oscillation means feed mechanism 11, the rotation mechanism 12, and these laser advance / retreat controllers 11c 1 and rotation controller 12b 1 correspond to the irradiation position control means 7 of the present invention.

レーザ光発振手段8は制御手段9により制御されるレーザ光制御器8aを介して、付加電圧を変えることにより、その出力が変えられるようになっている。   The output of the laser light oscillation means 8 can be changed by changing the additional voltage via the laser light controller 8a controlled by the control means 9.

次に本発明に係る石英ガラスルツボの除去対象物の除去装置を用いた除去対象物の除去方法について説明する。   Next, the removal target object removal method using the quartz glass crucible removal target object removal device according to the present invention will be described.

はじめに除去対象物の検出工程が行われる。   First, a removal object detection step is performed.

図1に示すように、予めルツボ内表面の形状が制御手段9のRAM9cに記憶された石英ガラスルツボRをルツボ回転機構15のルツボ回転台15bに載置し、ルツボチャック15aにより固定する。一方、石英ガラスルツボRのルツボ内表面の形状データをRAM9cから呼び出し、撮像系進退制御器10cを介してサーボモータ10cを作動させて、撮像系送り機構10を進退移動させ、図5に示すように、第1のCCDカメラ2aの焦点fが石英ガラスルツボRの表面の中心点に合わされる。このとき、他のCCDカメラ2b、2c、2dは各々その焦点f、f、fに合わされる。これにより、その各々の焦点位置が異なるので撮像層P即ち表面から深さ5mmまでが撮像可能となる。 As shown in FIG. 1, the quartz glass crucible R whose shape of the inner surface of the crucible is stored in the RAM 9c of the control means 9 in advance is placed on the crucible rotating table 15b of the crucible rotating mechanism 15 and fixed by the crucible chuck 15a. On the other hand, it calls the shape data of the crucible inner surface of the quartz glass crucible R from RAM 9c, actuates the servo motor 10c through the imaging system reciprocating controller 10c 1, by forward and backward moving the imaging system feeding mechanism 10, shown in FIG. 5 As described above, the focus f 1 of the first CCD camera 2 a is adjusted to the center point of the surface of the quartz glass crucible R. At this time, the other CCD camera 2b, 2c, 2d are fitted respectively to the focal point f 2, f 3, f 4 . Thereby, since each of the focal positions is different, it is possible to image the imaging layer P, that is, from the surface to a depth of 5 mm.

このような状態で、最初にLED3aを発光させて撮像層Pを照明し、CCDカメラ2a〜2dで同時に撮像層Pを撮像する。   In this state, first, the LED 3a is caused to emit light to illuminate the imaging layer P, and the imaging layer P is simultaneously imaged by the CCD cameras 2a to 2d.

このとき、図7(a)に示すように、撮像層Pの表面から0〜1.25mmの層内に例えば、気泡(p)が存在した場合には、図9に示すように、LED3aから発せられる光が気泡に当たり、石英系等の白色異物、金属等の黒色異物に当たった場合に比べて著しく明るく輝き、気泡として識別され、種類データとしてRAM9cに記憶される。また、サイズ判定手段5によりサイズが判定されて、RAM9cに記憶される。このとき、位置検出手段4により、気泡(p)の位置情報(X+x、Y+y、Z)として、RAM9cに記憶される。 At this time, as shown in FIG. 7A, when, for example, a bubble (p 1 ) exists in the layer of 0 to 1.25 mm from the surface of the imaging layer P, as shown in FIG. 9, the LED 3a The light emitted from the light hits the bubble and shines brighter than when it hits a white foreign material such as quartz or a black foreign material such as metal, is identified as a bubble, and is stored in the RAM 9c as type data. Further, the size is determined by the size determining means 5 and stored in the RAM 9c. At this time, the position detection means 4 stores the position information (X 1 + x 1 , Y 1 + y 1 , Z 1 ) of the bubble (p 1 ) in the RAM 9c.

さらに、LED3bを発光させて撮像層Pを照明し、CCDカメラ2a〜2dで同時に撮像層Pを撮像し、LED3bから発光される光でより輝く石英系等の白色異物が存在するか否かを判定し、存在すれば、気泡の場合と同様にRAM9cに記憶され、存在しない場合には直ちにLED3cを発光させて撮像層Pを照明し、CCDカメラ2a〜2dで同時に撮像層Pを撮像する。LED3cから発光される光でより明るく輝く金属等の黒色異物が存在するか否かを判定し、存在すれば、気泡の場合と同様にRAM9cに記憶される。これに対して、存在しない場合は、検出ミスがないように、計測ウィンド内の画像が一部重複するような移動範囲で、回動機構12を回動させて、撮像手段2と照明手段3を同時に図7(a)に示すY方向に移動し、ルツボ回転機構15を回転させて石英ガラスルツボRをX方向に移動させる。さらに、RAM2cからルツボ内表面の形状情報を呼び出し。内表面の形状が円弧状であれば、焦点距離は変わらないので、CCDカメラ2a〜2dの進退移動は行わず、円弧状でない場合には、撮像系送り機構10により、撮像手段2および照明手段3をZ方向に進退させて、撮像手段2および照明手段3の焦点合わせを行う。   Furthermore, the imaging layer P is illuminated by causing the LED 3b to emit light, and the imaging layer P is simultaneously imaged by the CCD cameras 2a to 2d, and it is determined whether or not there is a white foreign substance such as quartz that shines more with the light emitted from the LED 3b. If it exists and is present, it is stored in the RAM 9c as in the case of bubbles, and if it does not exist, the LED 3c is immediately illuminated to illuminate the imaging layer P, and the imaging layers P are simultaneously imaged by the CCD cameras 2a to 2d. It is determined whether or not there is a black foreign object such as metal that shines brighter with the light emitted from the LED 3c, and if it exists, it is stored in the RAM 9c as in the case of bubbles. On the other hand, when there is no image, the image pickup unit 2 and the illumination unit 3 are rotated by rotating the rotation mechanism 12 in a moving range in which the images in the measurement window partially overlap so that there is no detection error. Are simultaneously moved in the Y direction shown in FIG. 7A, the crucible rotating mechanism 15 is rotated, and the quartz glass crucible R is moved in the X direction. Furthermore, the shape information of the inner surface of the crucible is called from the RAM 2c. If the shape of the inner surface is an arc, the focal length does not change. Therefore, the CCD cameras 2a to 2d are not moved back and forth. If the shape is not an arc, the imaging system feed mechanism 10 causes the imaging means 2 and the illumination means. 3 is advanced and retracted in the Z direction, and the imaging means 2 and the illumination means 3 are focused.

しかる後、同様にLED3a〜3dを順次発光させて撮像層Pを照明し、CCDカメラ2a〜2dで同時に撮像層Pを撮像する。図7(b)に示すように、LED3bから発せられる光により輝く石英系等の白色異物(p)が、内表面から1.25〜2.5mmの層内に存在する場合には、CCDカメラ2bにより撮像され、石英系等の白色異物(p)の位置情報(X+x、Y+y、Z)として、そのサイズと位置がRAM2cに記憶される。 Thereafter, similarly, the LEDs 3a to 3d are sequentially made to emit light to illuminate the imaging layer P, and the imaging layers P are simultaneously imaged by the CCD cameras 2a to 2d. As shown in FIG. 7B, when white foreign matter (p 2 ) such as quartz that shines by the light emitted from the LED 3b exists in a layer of 1.25 to 2.5 mm from the inner surface, the CCD The image is picked up by the camera 2b, and the size and position are stored in the RAM 2c as position information (X 2 + x 2 , Y 2 + y 2 , Z 2 ) of white foreign matter (p 2 ) such as quartz.

さらに、同様に撮像手段2と照明手段3を回動させ、ルツボ回転機構15を回転させて撮像位置を移動させ、CCDカメラ2a〜2dの進退移動を行い、焦点合わせを行う。図7(c)に示すように、LED3cから発せられる光により輝く金属等の黒色異物が内表面から3.75〜5.0mmの層内に存在する場合には、CCDカメラ2dにより撮像され、金属等の黒色異物(p)の位置情報(X+x、Y+y、Z)として、そのサイズと位置がRAM2cに記憶される。 Further, similarly, the imaging unit 2 and the illumination unit 3 are rotated, the crucible rotating mechanism 15 is rotated to move the imaging position, the CCD cameras 2a to 2d are moved back and forth, and focusing is performed. As shown in FIG. 7 (c), when a black foreign object such as a metal shining with the light emitted from the LED 3c is present in a layer 3.75 to 5.0 mm from the inner surface, the image is picked up by the CCD camera 2d, As the position information (X n + x n , Y n + y n , Z n ) of the black foreign matter (p n ) such as metal, the size and position are stored in the RAM 2c.

このような撮像が順次繰り返えされて、内表面の全域に対して帯状リング形状に撮像され、除去対象物の位置検出、サイズ判定および種類識別が石英ガラスルツボRの全域に渡って行われる。   Such imaging is sequentially repeated so that the entire inner surface is imaged in a belt-like ring shape, and the position detection, size determination, and type identification of the removal target are performed over the entire area of the quartz glass crucible R. .

次に除去対象物の除去工程が行われる。   Next, the removal process of a removal target object is performed.

上記除去対象物の検出工程で検出された図7(a)に示すような除去対象物(p)の位置情報、種類情報、サイズ情報をRAM9cから呼び出し、制御手段9、回動制御器12bを介して回動機構12を回動させ、レーザ進退制御器11cを介してレーザ光発振手段送り機構11を進退させて、レーザ光発振手段8の焦点を除去対象物(p)に合わせる。さらに、除去対象物(p)が気泡であることが予め識別されているので、レーザ出力制御器8aにより、この気泡を消滅させるのに必要なレーザ出力、例えば小出力にレーザ光発信手段8を制御し、COレーザ光を発し、気泡を消滅させる。 The position information, type information, and size information of the removal object (p 1 ) detected in the removal object detection step as shown in FIG. 7A is called from the RAM 9c, and the control means 9 and the rotation controller 12b. 1 , the rotation mechanism 12 is rotated, and the laser beam oscillation means feed mechanism 11 is moved back and forth via the laser advance / retreat controller 11c 1 to focus the laser beam oscillation means 8 on the removal object (p 1 ). Match. Further, since the removal target (p 1 ) is previously identified as a bubble, the laser output controller 8a reduces the laser output necessary for extinguishing the bubble, for example, a small output to the laser beam transmitting means 8. Is controlled to emit CO 2 laser light to eliminate bubbles.

また、図7(b)に示すような除去対象物(p)の位置情報、種類情報、サイズ情報をRAM9cから呼び出し、同様にして、レーザ進退制御器11cを介してレーザ光発振手段送り機構11を進退させて、レーザ光発振手段8の焦点を除去対象物(p)に合わせる。除去対象物(p)が石英系等の白色異物であることが予め識別されているので、レーザ出力制御器8aにより、この石英系等の白色異物を消滅させるのに必要なレーザ出力、例えば中出力にレーザ光発信手段8を制御し、COレーザ光を発し、石英系等の白色異物を消滅させる。 Further, the position information, type information, and size information of the removal target (p 1 ) as shown in FIG. 7B is called from the RAM 9c, and similarly, the laser beam oscillation means is sent via the laser advance / retreat controller 11c 1. The mechanism 11 is moved back and forth to focus the laser beam oscillation means 8 on the removal target (p 2 ). Since it is previously identified that the removal target (p 2 ) is a white foreign substance such as quartz, the laser output controller 8a uses a laser output necessary for eliminating the white foreign substance such as quartz, for example, The laser beam transmitting means 8 is controlled to a medium output to emit a CO 2 laser beam, and white foreign matters such as quartz are eliminated.

さらに、図7(c)に示すような除去対象物(p)の位置情報、種類情報、サイズ情報をRAM9cから呼び出し、同様にして、レーザ進退制御器11cを介してレーザ光発振手段送り機構11を進退させて、レーザ光発振手段8の焦点を除去対象物(p)に合わせる。除去対象物(p)が金属等の黒色異物であることが予め識別されているので、レーザ出力制御器8aにより、この金属等の黒色異物を消滅させるのに必要なレーザ出力、例えば大出力にレーザ光発信手段8を制御し、COレーザ光を発し、金属等の黒色異物を消滅させる。 Furthermore, the location information, type information to be removed, such as shown in FIG. 7 (c) (p n) , calls the size information from the RAM 9c, similarly, it feeds the laser beam oscillation means via laser reciprocating controller 11c 1 The mechanism 11 is advanced and retracted so that the laser beam oscillation means 8 is focused on the object to be removed (p n ). Since it is identified in advance that the object to be removed (p n ) is a black foreign substance such as metal, the laser output controller 8a requires a laser output, for example, a large output, to eliminate the black foreign substance such as metal. Then, the laser beam transmitting means 8 is controlled to emit a CO 2 laser beam to eliminate black foreign matters such as metal.

このような除去工程が繰り返えされて、石英ガラスルツボRの撮像層Pすなわち表面から深さ5.0mmの層内に存在する除去対象物は自動的に確実に除去される。また、除去対象物に直接CO2レーザを照射し、蒸発させることで除去するので、2次的な汚染がなく、また、大量のエネルギーを必要とせず、さらに、広範囲に石英ガラスルツボを加熱することがなく、後工程としてアニール等の付随的な処理も不要である。 Such a removal process is repeated, and the removal target existing in the imaging layer P of the quartz glass crucible R, that is, the layer having a depth of 5.0 mm from the surface is automatically and reliably removed. Further, since the object to be removed is removed by direct irradiation with CO 2 laser and evaporation, there is no secondary contamination, no large amount of energy is required, and the quartz glass crucible is heated over a wide range. There is no need for additional processing such as annealing as a post process.

上記のように本実施形態の石英ガラスルツボの除去対象物の除去装置によれば、除去対象物の位置、種類、サイズを自動的に検知し、これに基づき、自動的に決定された照射位置とレーザ出力が制御されたレーザ光を除去対象物に照射して、除去対象物を自動的に除去できる。   As described above, according to the quartz glass crucible removal target object removal apparatus of the present embodiment, the position, type, and size of the removal target object are automatically detected, and the irradiation position automatically determined based on this is detected. The removal target can be automatically removed by irradiating the removal target with laser light whose laser output is controlled.

本発明に係る石英ガラスルツボの除去対象物の除去装置を用いて、ルツボ製造の溶融時に除去対象物であるカスおよび黒点が付着した22インチ石英ガラスルツボ3個についてCOレーザによる除去処理を行い、除去後の内表面粗さを調べた。また、除去対象物除去後のルツボを用いてシリコン単結晶の引き上げを行い、単結晶化率を調べた。 Using the apparatus for removing an object to be removed of the silica glass crucible according to the present invention, three 22 inch quartz glass crucibles to which debris and black spots, which are the objects to be removed, are melted during crucible manufacture are removed by a CO 2 laser. The inner surface roughness after removal was examined. Moreover, the silicon single crystal was pulled up using the crucible after removal of the object to be removed, and the single crystallization rate was examined.

結果:表1に示す。

Figure 2006096618
Results: shown in Table 1.
Figure 2006096618

表1からもわかるように、ルツボ1〜3とも、除去対象物の大きさ、種類に関係なく、完全に除去され、内表面の算術平均粗さはいずれもRa0.02〜0.04と滑らかであった。   As can be seen from Table 1, both the crucibles 1 to 3 are completely removed regardless of the size and type of the object to be removed, and the arithmetic average roughness of the inner surface is smooth as Ra 0.02 to 0.04. Met.

本発明に係る石英ガラスルツボの除去対象物の除去装置の概念図。The conceptual diagram of the removal object removal object of the quartz glass crucible which concerns on this invention. 本発明に係る石英ガラスルツボの除去対象物の除去装置の制御回路図。The control circuit diagram of the removal object removal apparatus of the quartz glass crucible which concerns on this invention. 本発明に係る石英ガラスルツボの除去対象物の除去装置に用いられる撮像系の平面図。The top view of the imaging system used for the removal apparatus of the removal target object of the quartz glass crucible which concerns on this invention. 本発明に係る石英ガラスルツボの除去対象物の除去装置に用いられる撮像手段の概念図。The conceptual diagram of the imaging means used for the removal apparatus of the removal target object of the quartz glass crucible which concerns on this invention. 本発明に係る石英ガラスルツボの除去対象物の除去装置に用いられる撮像手段の概念図。The conceptual diagram of the imaging means used for the removal apparatus of the removal target object of the quartz glass crucible which concerns on this invention. 本発明に係る石英ガラスルツボの除去対象物の除去装置に用いられる回動機構の概念図。The conceptual diagram of the rotation mechanism used for the removal object removal object of the quartz glass crucible which concerns on this invention. (a)〜(c)は本発明に係る石英ガラスルツボの除去対象物の除去装置に用いられる画像装置の計測ウィンドの概念図。(A)-(c) is a conceptual diagram of the measurement window of the imaging device used for the removal apparatus of the removal target object of the quartz glass crucible which concerns on this invention. 本発明に係る石英ガラスルツボの除去対象物の除去装置に用いられる位置検出手段および照射位置制御手段の説明図。Explanatory drawing of the position detection means and irradiation position control means used for the removal apparatus of the removal target object of the silica glass crucible which concerns on this invention. 本発明に係る石英ガラスルツボの除去対象物の除去装置に用いられる照明手段と除去対象物との関係を示す説明図。Explanatory drawing which shows the relationship between the illumination means used for the removal apparatus of the removal target object of the quartz glass crucible which concerns on this invention, and a removal target object.

符号の説明Explanation of symbols

1 石英ガラスルツボの除去対象物の除去装置
2 撮像手段
3 照明手段
4 位置検出手段
5 サイズ判定手段
6 種類識別手段
7 照射位置制御手段
8 レーザ光発振手段
9 制御手段
10c 撮像系進退制御器
11 レーザ光発振手段送り機構
12 回動機構
13 AD回路
14 画像処理装置
15 ルツボ回転機構
DESCRIPTION OF SYMBOLS 1 Removal apparatus of the removal object of quartz glass crucible 2 Imaging means 3 Illumination means 4 Position detection means 5 Size determination means 6 Type identification means 7 Irradiation position control means 8 Laser light oscillation means 9 Control means 10c 1 Imaging system advance / retreat controller 11 Laser beam oscillation means feed mechanism 12 Rotation mechanism 13 AD circuit 14 Image processing device 15 Crucible rotation mechanism

Claims (6)

複数種類の除去対象物が存在する石英ガラスルツボの内表面側を順次撮像可能に配置され、同一位置の深さが異なる点に各々焦点が合わされる複数の撮像単位からなる撮像手段と、
前記内表面側を照射し、各々発光波長の異なる光を発する複数の照明単位からなる照明手段と、
前記撮像手段により撮像された除去対象物の3次元位置を検出する位置検出手段と、
前記撮像手段により撮像された除去対象物の大きさを判定するサイズ判定手段と、
前記照明手段からの照明の発光波長の違いにより、ルツボ内表面画像での色の濃淡の変化を認識して前記複数種類の除去対象物の種類を識別する種類識別手段と、
前記位置検出手段からの位置情報に基づき、レーザ光の照射位置を制御する照射位置制御手段と、
前記除去対象物のサイズおよび種類に応じて、出力が変化するレーザ光発振手段と、
前記各構成手段を制御する制御手段
を有することを特徴とする石英ガラスルツボの除去対象物の除去装置。
An imaging means comprising a plurality of imaging units that are arranged so as to be capable of sequentially imaging the inner surface side of the quartz glass crucible where a plurality of types of removal objects are present, and are respectively focused at different depths at the same position;
Illuminating means comprising a plurality of illumination units that illuminate the inner surface side and emit light having different emission wavelengths,
Position detecting means for detecting a three-dimensional position of the removal object imaged by the imaging means;
Size determination means for determining the size of the removal object imaged by the imaging means;
A type identifying means for recognizing a change in color shading in the inner surface image of the crucible according to a difference in emission wavelength of illumination from the illuminating means, and identifying the types of the plurality of types of removal objects;
An irradiation position control means for controlling the irradiation position of the laser beam based on position information from the position detection means;
Laser light oscillation means whose output changes according to the size and type of the object to be removed,
An apparatus for removing an object to be removed from a quartz glass crucible, characterized by comprising control means for controlling each of the constituent means.
前記撮像手段は複数のCCDカメラであり、照明手段はLEDであることを特徴とする請求項1に記載の石英ガラスルツボの除去対象物の除去装置。 2. The quartz glass crucible removal object removal apparatus according to claim 1, wherein the imaging means is a plurality of CCD cameras, and the illumination means is an LED. 前記位置検出手段は、制御手段の制御機能部とCCDカメラおよびLEDを回動させる回動機構とその回動制御器、前記制御機能部と石英ガラスルツボを回転させるルツボ回転機構とそのルツボ回転制御器、前記制御機能部とCCDカメラおよびLEDの送り機構とその進退制御器、および画像処理装置の画像処理機能部であることを特徴とする請求項1または2に記載の石英ガラスルツボの除去対象物の除去装置。 The position detecting means includes a control function part of the control means, a turning mechanism for turning the CCD camera and the LED and a turning controller thereof, a crucible turning mechanism for turning the control function part and the quartz glass crucible, and a crucible turning control thereof. 3. The quartz glass crucible removal object according to claim 1, wherein the control function unit is a CCD camera and LED feed mechanism, its advance / retreat controller, and an image processing function unit of an image processing apparatus. Object removal device. 前記サイズ判定手段は、画像処理装置であることを特徴とする請求項1ないし3のいずれか1項に記載の石英ガラスルツボの除去対象物の除去装置。 4. The quartz glass crucible removal target removal device according to claim 1, wherein the size determination means is an image processing device. 前記種類識別手段は、照明手段と画像処理装置であることを特徴とする請求項1ないし4のいずれか1項に記載の石英ガラスルツボの除去対象物の除去装置。 5. The quartz glass crucible removal object removal device according to claim 1, wherein the type identification means is an illumination means and an image processing device. 前記照射位置制御手段は、レーザ光発振手段を進退させるレーザ光発振手段送り機構とこれを制御するレーザ進退制御器、および、回動機構とこれを制御する回動制御器であることを特徴とする請求項1ないし5のいずれか1項に記載の石英ガラスルツボの除去対象物の除去装置。 The irradiation position control means is a laser light oscillation means feed mechanism for moving the laser light oscillation means forward and backward, a laser advance / retreat controller for controlling the laser light oscillation means, and a rotation mechanism and a rotation controller for controlling the rotation mechanism. The removal apparatus of the removal target object of the quartz glass crucible of any one of Claim 1 thru | or 5.
JP2004285279A 2004-09-29 2004-09-29 Quartz glass crucible removal object removal device Active JP4361452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285279A JP4361452B2 (en) 2004-09-29 2004-09-29 Quartz glass crucible removal object removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285279A JP4361452B2 (en) 2004-09-29 2004-09-29 Quartz glass crucible removal object removal device

Publications (2)

Publication Number Publication Date
JP2006096618A true JP2006096618A (en) 2006-04-13
JP4361452B2 JP4361452B2 (en) 2009-11-11

Family

ID=36236780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285279A Active JP4361452B2 (en) 2004-09-29 2004-09-29 Quartz glass crucible removal object removal device

Country Status (1)

Country Link
JP (1) JP4361452B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150720A (en) * 2007-12-19 2009-07-09 Casio Comput Co Ltd Weldline inspection device, weldline inspection method and manufacturing method of resin-molded product
CN103091333A (en) * 2013-01-21 2013-05-08 王后忠 Polysilicon ingot-casting quartz crucible detection device
WO2013094318A1 (en) * 2011-12-22 2013-06-27 ジャパンスーパークォーツ株式会社 Method for evaluating silica glass crucible, method for producing silicon single crystals
WO2013099434A1 (en) * 2011-12-27 2013-07-04 ジャパンスーパークォーツ株式会社 Method for measuring three-dimensional shape of silica glass crucible, and method for producing monocrystalline silicon
JP2013133226A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible and method for producing silicon single crystal
JP2013134056A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, and method for manufacturing silicon monocrystal
JP2013134177A (en) * 2011-12-27 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible
JP2013133228A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of surface roughness in silica glass crucible and method for producing silicon single crystal
JP2013133230A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for producing silicon single crystal
JP2013133229A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for producing silicon single crystal
JP2013134057A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of bubble distribution of silica glass crucible, and method for manufacturing silicon monocrystal
JP2013133227A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of raman spectrum in silica glass crucible and method for producing silicon single crystal
JP2013134179A (en) * 2011-12-27 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible and method for manufacturing silicon monocrystal
JP2013140073A (en) * 2012-01-04 2013-07-18 Sumitomo Chemical Co Ltd Inspection device and inspection method for end-sealing portion of honeycomb structure
CN103592315A (en) * 2013-11-28 2014-02-19 徐州协鑫太阳能材料有限公司 Quartz crucible detection apparatus
JP2014091640A (en) * 2012-10-31 2014-05-19 Sumco Corp Evaluation method of silica glass crucible
JP2015131765A (en) * 2015-04-24 2015-07-23 株式会社Sumco Method of manufacturing silicon single crystal
JP2015163588A (en) * 2015-05-13 2015-09-10 株式会社Sumco Determination method of three-dimensional distribution of surface roughness of silica glass crucible, manufacturing method of silicon single crystal
JP2015171999A (en) * 2015-05-13 2015-10-01 株式会社Sumco Method of determining three-dimensional distribution of raman spectrum of silica crucible, and method of manufacturing silicon mono-crystal
JP2015180881A (en) * 2015-05-13 2015-10-15 株式会社Sumco Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, and method for producing silicon single crystal
JP2016153372A (en) * 2016-05-31 2016-08-25 株式会社Sumco Evaluation method of silica glass crucible, and manufacturing method of silicon single crystal
JP2016155754A (en) * 2016-04-19 2016-09-01 株式会社Sumco Method of manufacturing silicon single crystal
JP2016179940A (en) * 2016-05-31 2016-10-13 株式会社Sumco Evaluation method of silica glass crucible and manufacturing method of silicon single crystal
JP2017024980A (en) * 2016-07-25 2017-02-02 株式会社Sumco Method for manufacturing silicon single crystal
KR20190122495A (en) * 2018-04-20 2019-10-30 한국생산기술연구원 Method for take out the ceramic single crystal ingot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437515B (en) * 2018-11-28 2021-06-25 乔治洛德方法研究和开发液化空气有限公司 Method for regulating foam position on surface of glass melt

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150720A (en) * 2007-12-19 2009-07-09 Casio Comput Co Ltd Weldline inspection device, weldline inspection method and manufacturing method of resin-molded product
JP2013134057A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of bubble distribution of silica glass crucible, and method for manufacturing silicon monocrystal
CN104145051A (en) * 2011-12-22 2014-11-12 株式会社Sumco Method for evaluating silica glass crucible, method for producing silicon single crystals
JP2013133229A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for producing silicon single crystal
JP2013133226A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible and method for producing silicon single crystal
JP2013134056A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, and method for manufacturing silicon monocrystal
WO2013094318A1 (en) * 2011-12-22 2013-06-27 ジャパンスーパークォーツ株式会社 Method for evaluating silica glass crucible, method for producing silicon single crystals
JP2013133228A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of surface roughness in silica glass crucible and method for producing silicon single crystal
JP2013133230A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for producing silicon single crystal
US9809902B2 (en) 2011-12-22 2017-11-07 Sumco Corporation Method for evaluating silica glass crucible, method for producing silicon single crystals
EP2796595A4 (en) * 2011-12-22 2015-07-29 Sumco Corp Method for evaluating silica glass crucible, method for producing silicon single crystals
TWI480505B (en) * 2011-12-22 2015-04-11 Japan Super Quartz Corp Evaluation method of silica glass crucible and manufacture method of silicon single crystal
JP2013133227A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of raman spectrum in silica glass crucible and method for producing silicon single crystal
JP2013134177A (en) * 2011-12-27 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible
JP2013134179A (en) * 2011-12-27 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible and method for manufacturing silicon monocrystal
US9810526B2 (en) 2011-12-27 2017-11-07 Sumco Corporation Method for measuring three-dimensional shape of silica glass crucible, and method for producing monocrystalline silicon
WO2013099434A1 (en) * 2011-12-27 2013-07-04 ジャパンスーパークォーツ株式会社 Method for measuring three-dimensional shape of silica glass crucible, and method for producing monocrystalline silicon
JP2013140073A (en) * 2012-01-04 2013-07-18 Sumitomo Chemical Co Ltd Inspection device and inspection method for end-sealing portion of honeycomb structure
JP2014091640A (en) * 2012-10-31 2014-05-19 Sumco Corp Evaluation method of silica glass crucible
CN103091333A (en) * 2013-01-21 2013-05-08 王后忠 Polysilicon ingot-casting quartz crucible detection device
CN103592315A (en) * 2013-11-28 2014-02-19 徐州协鑫太阳能材料有限公司 Quartz crucible detection apparatus
JP2015131765A (en) * 2015-04-24 2015-07-23 株式会社Sumco Method of manufacturing silicon single crystal
JP2015171999A (en) * 2015-05-13 2015-10-01 株式会社Sumco Method of determining three-dimensional distribution of raman spectrum of silica crucible, and method of manufacturing silicon mono-crystal
JP2015180881A (en) * 2015-05-13 2015-10-15 株式会社Sumco Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, and method for producing silicon single crystal
JP2015163588A (en) * 2015-05-13 2015-09-10 株式会社Sumco Determination method of three-dimensional distribution of surface roughness of silica glass crucible, manufacturing method of silicon single crystal
JP2016155754A (en) * 2016-04-19 2016-09-01 株式会社Sumco Method of manufacturing silicon single crystal
JP2016153372A (en) * 2016-05-31 2016-08-25 株式会社Sumco Evaluation method of silica glass crucible, and manufacturing method of silicon single crystal
JP2016179940A (en) * 2016-05-31 2016-10-13 株式会社Sumco Evaluation method of silica glass crucible and manufacturing method of silicon single crystal
JP2017024980A (en) * 2016-07-25 2017-02-02 株式会社Sumco Method for manufacturing silicon single crystal
KR20190122495A (en) * 2018-04-20 2019-10-30 한국생산기술연구원 Method for take out the ceramic single crystal ingot
KR102039055B1 (en) 2018-04-20 2019-10-31 한국생산기술연구원 Method for take out the ceramic single crystal ingot

Also Published As

Publication number Publication date
JP4361452B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP4361452B2 (en) Quartz glass crucible removal object removal device
US9358637B2 (en) Laser beam spot shape detecting method
TWI501301B (en) Processing device (2)
CN112955270B (en) Lamination shaping device
JP6465722B2 (en) Processing equipment
TWI637143B (en) Bump detection device
KR101565717B1 (en) Methods for fabricating and orienting semiconductor wafers
TW201641204A (en) Laser processing apparatus
CN1473360A (en) Semiconductor wafer inspection apparatus
JP5224343B2 (en) Laser processing equipment
TW201603928A (en) Laser processing device
JP2012049164A (en) Method for manufacturing light-emitting device
KR101886357B1 (en) Method for detecting laser beam spot shape and apparatus for detecting laser beam spot shape
TWI610350B (en) Modified layer formation method
JP2010145230A (en) Height position measuring device of workpiece held on chuck table
JP2007245235A (en) Laser machining apparatus and laser machining method
JP5042503B2 (en) Defect detection method
KR20170107900A (en) Workpiece internal detection apparatus and workpiece internal detection method
JP2017135132A (en) Laser processing device
JP4801634B2 (en) Laser processing apparatus and laser processing method
JP2013043196A (en) Laser beam machining device and laser beam machining method
JP3813692B2 (en) Method for detecting special pattern inside semiconductor wafer in dicing machine
KR20210033888A (en) Laser machining method and laser machining apparatus
JP2004264063A (en) Imaging apparatus
JP2011233743A (en) Method for detecting edges of cut groove

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R150 Certificate of patent or registration of utility model

Ref document number: 4361452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250