JP2006093581A - Radiation imaging panel and photoconduction layer constituting the same - Google Patents

Radiation imaging panel and photoconduction layer constituting the same Download PDF

Info

Publication number
JP2006093581A
JP2006093581A JP2004279708A JP2004279708A JP2006093581A JP 2006093581 A JP2006093581 A JP 2006093581A JP 2004279708 A JP2004279708 A JP 2004279708A JP 2004279708 A JP2004279708 A JP 2004279708A JP 2006093581 A JP2006093581 A JP 2006093581A
Authority
JP
Japan
Prior art keywords
radiation
photoconductive layer
charge
imaging panel
radiation imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004279708A
Other languages
Japanese (ja)
Other versions
JP2006093581A5 (en
JP4545538B2 (en
Inventor
Kiyoteru Miyake
清照 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004279708A priority Critical patent/JP4545538B2/en
Publication of JP2006093581A publication Critical patent/JP2006093581A/en
Publication of JP2006093581A5 publication Critical patent/JP2006093581A5/ja
Application granted granted Critical
Publication of JP4545538B2 publication Critical patent/JP4545538B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a photoconduction layer constituting a radiation imaging panel which records radiation image information as an electrostatic latent image from a photoconductive material which has high sensitivity and is eco-friendly. <P>SOLUTION: The photoconduction layer 4 constitutes the radiation imaging panel 10 which records the radiation image information as an electrostatic latent image. The photoconduction layer is formed of BiMO<SB>4</SB>, where M is at least one kind selected from among V, Nb, and Ta. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、X線などの放射線撮像装置に適用して好適な放射線撮像パネルに関し、詳しくは、放射線撮像パネルを構成する光導電層に関するものである。   The present invention relates to a radiation imaging panel suitable for application to a radiation imaging apparatus such as an X-ray, and more particularly to a photoconductive layer constituting the radiation imaging panel.

従来より、医療用X線撮影において、被験者の受ける被爆線量の減少、診断性能の向上等のために、X線に感応する光導電層を感光体として用い、この光導電層にX線により形成された静電潜像を、光或いは多数の電極で読み取って記録するX線撮像パネルが知られている。これらは、周知の撮影法であるTV撮像管による間接撮影法と比較して高解像度である点で優れている。   Conventionally, in medical X-ray photography, a photoconductive layer sensitive to X-rays has been used as a photoconductor to reduce the exposure dose received by subjects and improve diagnostic performance. An X-ray imaging panel that reads and records a recorded electrostatic latent image with light or multiple electrodes is known. These are superior in that the resolution is higher than the indirect photographing method using a TV image pickup tube which is a well-known photographing method.

上述したX線撮像パネルは、この撮像パネル内に設けられた電荷生成層にX線を照射することによって、X線エネルギーに相当する電荷を生成し、生成した電荷を電気信号として読み出すようにしたものであって、上記光導電層は電荷生成層として機能する。従来より、この光導電層としてはアモルファスセレン(a−Se)、PbI2、HgI2、Cd(Zn)Teなどの材料が使用されている(特許文献1、特許文献2)。 The X-ray imaging panel described above generates charges corresponding to X-ray energy by irradiating the charge generation layer provided in the imaging panel with X-rays, and reads the generated charges as an electrical signal. The photoconductive layer functions as a charge generation layer. Conventionally, materials such as amorphous selenium (a-Se), PbI 2 , HgI 2 , and Cd (Zn) Te have been used for this photoconductive layer (Patent Documents 1 and 2).

しかし、上記特許文献1および2に記載されている放射線導電性材料のうち、アモルファスセレンは放射線吸収効率が劣るために厚膜化が必要で、高電場印可が必要となるため信頼性低下の問題がある。また、PbI2、HgI2、Cd(Zn)Teは暗電流が高くS/N比が悪いという問題がある。 However, among the radiation conductive materials described in Patent Documents 1 and 2, amorphous selenium is inferior in radiation absorption efficiency, so it is necessary to increase the thickness of the film and to apply a high electric field. There is. PbI 2 , HgI 2 , and Cd (Zn) Te have a problem that the dark current is high and the S / N ratio is poor.

このような観点からこれらにかわる放射線導電性材料として、例えば特許文献3にはB
iI3が記載されている。BiI3は、環境負荷が小さいという利点を有しているが、塗布法で形成した場合、発生電荷の捕集効果が低く、電気ノイズが大きくなるため、画像の粒状性が悪くなるという問題がある。また、特許文献2に記載されているZnOもまた環境負荷は小さいという利点を有しているが、放射線吸収効率が劣るため感度が低いという問題がある。
特開2000−105297号 特開平11−211832号 特開2001−221894号
From such a viewpoint, as a radiation conductive material that replaces these, for example, Patent Document 3 discloses B
iI 3 is described. BiI 3 has an advantage that the environmental load is small. However, when formed by a coating method, the effect of collecting generated charges is low and the electric noise is increased, so that the graininess of the image is deteriorated. is there. Further, ZnO described in Patent Document 2 also has an advantage that the environmental load is small, but there is a problem that sensitivity is low because radiation absorption efficiency is inferior.
JP 2000-105297 A JP-A-11-211832 JP 2001-221894 A

上記いずれの光導電性材料も放射線吸収効率、発生電荷の捕集効果、暗電流、環境負荷の点において充分に満足できるものとは言えない。   None of the above photoconductive materials can be said to be sufficiently satisfactory in terms of radiation absorption efficiency, trapping effect of generated charges, dark current, and environmental load.

本発明は上記事情に鑑みなされたものであり、感度が高く、環境負荷の小さい、新規な導電性材料からなる光導電層、およびこの光導電層を備えた放射線撮像パネルを提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a photoconductive layer made of a novel conductive material with high sensitivity and low environmental load, and a radiation imaging panel including the photoconductive layer. It is what.

本発明の光導電層は、放射線画像情報を静電潜像として記録する放射線撮像パネルを構成する光導電層であって、該光導電層がBiMO4(ただし、MはV,Nb,Ta中の少なくとも1種である。以下、この記載は省略する。)からなることを特徴とするものである。 The photoconductive layer of the present invention is a photoconductive layer constituting a radiation imaging panel that records radiation image information as an electrostatic latent image, and the photoconductive layer is BiMO 4 (where M is in V, Nb, Ta). (This description will be omitted hereinafter.).

前記光導電層は塗布により設けられたバインダーを含む層であっても、また焼結膜のようなバインダーを含まない層であってもよい。ここで、焼結膜とは、BiMO4の粉体を融点以下又は少量の液相の存在する温度で加熱して、構成粒子間に接合又は合体が起こり形成された膜を意味する。 The photoconductive layer may be a layer containing a binder provided by coating, or may be a layer containing no binder such as a sintered film. Here, the sintered film means a film formed by bonding or coalescence between constituent particles by heating BiMO 4 powder at a temperature below the melting point or at a temperature at which a small amount of liquid phase exists.

本発明の放射線撮像パネルは、放射線画像情報を静電潜像として記録するBiMO4からなる光導電層を備えたことを特徴とするものである。 The radiation imaging panel of the present invention includes a photoconductive layer made of BiMO 4 that records radiation image information as an electrostatic latent image.

本発明の光導電層は、放射線画像情報を静電潜像として記録する放射線撮像パネルを構成する光導電層であって、この光導電層がBiMO4からなるので、発生電荷の捕集効果を大きくすることが可能となり感度を向上させることができる。また、電気ノイズを小さくすることができるため、粒状性のよい画像を得ることが可能である。また、BiMO4からなる光導電層は耐久性に優れるとともに、毒性がなく、環境負荷も小さいという利点がある。 The photoconductive layer of the present invention is a photoconductive layer that constitutes a radiation imaging panel that records radiation image information as an electrostatic latent image. Since this photoconductive layer is made of BiMO 4 , the effect of collecting generated charges is obtained. It is possible to increase the sensitivity and improve the sensitivity. In addition, since electric noise can be reduced, an image with good graininess can be obtained. In addition, the photoconductive layer made of BiMO 4 has the advantages of excellent durability, non-toxicity, and low environmental impact.

特に、従来より光導電性材料として知られるBiI3等は、塗布法で形成した場合、バインダーの不純物の炭化などに起因して発生電荷の捕集効果が低く、画像の粒状性が悪いといった問題があったが、本発明のBiMO4からなる光導電層では、塗布法で形成しても感度を高くすることが可能である。加えて、塗布法による光導電層は低コストで製造することが可能であるため、放射線撮像パネルの製造コストを下げることができる。 In particular, BiI 3 and the like, which are conventionally known as photoconductive materials, have a problem that when formed by a coating method, the effect of collecting generated charges is low due to carbonization of the impurities of the binder, and the graininess of the image is poor. However, in the photoconductive layer made of BiMO 4 of the present invention, the sensitivity can be increased even if it is formed by a coating method. In addition, since the photoconductive layer by the coating method can be manufactured at low cost, the manufacturing cost of the radiation imaging panel can be reduced.

一方、BiMO4からなる光導電層を焼結膜とした場合には、BiMO4の充填率を高くすることが可能となり、従って、光導電層は緻密な層となり、X線吸収率を向上させることが可能になるとともに、発生電荷の捕集効果が高まり感度を大幅に向上させることができる。 On the other hand, when the photoconductive layer made of BiMO 4 was sintered membrane, it is possible to increase the filling rate of BiMO 4, therefore, the photoconductive layer is a dense layer, to improve the X-ray absorption rate As a result, the effect of collecting generated charges is increased and the sensitivity can be greatly improved.

本発明のBiMO4からなる光導電層は第1に塗布法により形成することができる。具体的には、例えば、市販のBiMO4粉末を粉砕、分散した後、バインダーと混ぜ合わせて支持体に塗布し、塗布後に乾燥させてBiMO4からなる光導電層を形成することができる。 First, the photoconductive layer made of BiMO 4 of the present invention can be formed by a coating method. Specifically, for example, a commercially available BiMO 4 powder can be pulverized and dispersed, mixed with a binder, applied to a support, and dried after application to form a photoconductive layer made of BiMO 4 .

また、Biの硝酸塩、酢酸塩またはアルコキシドを反応させた後、焼結させてBiMO4粉末を得、このBiMO4粉末をバインダーと混ぜ合わせて支持体に塗布し、塗布後に乾燥させてBiMO4からなる光導電層を形成することができる。 Further, after reacting Bi nitrate, acetate or alkoxide, BiMO 4 powder is obtained by sintering, and this BiMO 4 powder is mixed with a binder, applied to a support, dried after application, and BiMO 4 A photoconductive layer can be formed.

バインダーとしては、公知のバインダーを用いることができ、例えば、ニトロセルロース、エチルセルロース、酢酸セルロース、塩化ビニリデン・塩化ビニルコポリマー、ポリアルキルメタアクリレート、ポリウレタン、ポリビニルブチラール、ポリエステル、ポリスリレン、ポリアミド、ポリエチレン、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル・酢酸ビニルコポリマー、セルロースアセテート、ポリビニルアルコール、線状ポリエステル、ナイロン、カルボキシメチルセルロース等を好ましく用いることができる。   As the binder, known binders can be used. For example, nitrocellulose, ethyl cellulose, cellulose acetate, vinylidene chloride / vinyl chloride copolymer, polyalkyl methacrylate, polyurethane, polyvinyl butyral, polyester, polythylene, polyamide, polyethylene, polychlorinated Vinyl, polyvinyl acetate, vinyl chloride / vinyl acetate copolymer, cellulose acetate, polyvinyl alcohol, linear polyester, nylon, carboxymethyl cellulose and the like can be preferably used.

本発明のBiMO4からなる光導電層は第2に焼結膜として形成することができる。具体的には、上記のようにして得たBiMO4粉末を真空中、キャリアガスで巻き上げて、そのBiMO4粉末粉体の混じったキャリアガスを真空中で支持体に吹き付けてBiMO4粉末を堆積させるエアロゾルデポジション法(AD法)、上記BiMO4粉末をプレス機を用いて高圧力でプレスすることで膜化し、得られた膜を焼結させるプレス焼結法、上記BiMO4粉末をバインダーを用いて塗布してグリーンシート(バインダーを含んだ膜)を作製し、このグリーンシートを焼成して脱バインダー化及び粉末の焼結化を行う方法(以下、グリーンシート法)などの公知の方法を用いることができる。 Secondly, the photoconductive layer made of BiMO 4 of the present invention can be formed as a sintered film. Specifically, in vacuum BiMO 4 powder obtained as described above, rolled up in a carrier gas, depositing BiMO 4 powder by blowing the BiMO 4 powder powder of mixed carrier gas to a support in a vacuum An aerosol deposition method (AD method), forming a film by pressing the BiMO 4 powder at a high pressure using a press, and sintering the resulting film; and binding the BiMO 4 powder to a binder A green sheet (a film containing a binder) is produced by coating using a known method such as a method of baking this green sheet to remove the binder and sinter the powder (hereinafter referred to as green sheet method). Can be used.

なお、グリーンシート法ではバインダーを用いるが、このバインダーとしては、セルロースアセテート、ポリアルキルメタアクリレート、ポリビニルアルコール、ポリビニルブチラール等を好ましくあげることができる。   In addition, although a binder is used in the green sheet method, preferred examples of the binder include cellulose acetate, polyalkyl methacrylate, polyvinyl alcohol, and polyvinyl butyral.

放射線撮像パネルには、放射線を直接電荷に変換し電荷を蓄積する直接変換方式と、放射線を一度CsIなどのシンチレータで光に変換し、その光をa−Siフォトダイオードで電荷に変換し蓄積する間接変換方式があるが、本発明の光導電層は前者の直接変換方式に用いるものである。なお、放射線としてはX線の他、γ線、α線などについて使用することが可能である。   In the radiation imaging panel, a direct conversion method in which radiation is directly converted into charges and stored, and radiation is converted into light once by a scintillator such as CsI, and the light is converted into charges by an a-Si photodiode and stored. Although there is an indirect conversion method, the photoconductive layer of the present invention is used for the former direct conversion method. In addition to X-rays, γ rays, α rays, etc. can be used as radiation.

また、本発明の光導電層は、光の照射により電荷を発生する半導体材料を利用した放射線画像検出器により読み取る、いわゆる光読取方式にも、放射線の照射により発生した電荷を蓄積し、その蓄積した電荷を薄膜トランジスタ(thin film transistor:TFT)などの電気的スイッチを1画素ずつON・OFFすることにより読み取る方式(以下、TFT方式という)にも用いることができる。   In addition, the photoconductive layer of the present invention accumulates charges generated by radiation irradiation in a so-called optical reading system that reads by a radiation image detector using a semiconductor material that generates charges by light irradiation. It can also be used for a method (hereinafter referred to as “TFT method”) in which the charges are read by turning on and off an electrical switch such as a thin film transistor (TFT) one pixel at a time.

まず、前者の光読取方式に用いられる放射線撮像パネルを例にとって説明する。図1は本発明の光導電層を有する放射線撮像パネルの一実施の形態を示す断面図を示すものである。   First, a radiation imaging panel used for the former optical reading method will be described as an example. FIG. 1 is a sectional view showing an embodiment of a radiation imaging panel having a photoconductive layer according to the present invention.

この放射線撮像パネル10は、後述する記録用の放射線L1に対して透過性を有する第1の導電層1、この導電層1を透過した放射線L1の照射を受けることにより導電性を呈する記録用放射線導電層2、導電層1に帯電される電荷(潜像極性電荷;例えば負電荷)に対しては略絶縁体として作用し、かつ、電荷と逆極性の電荷(輸送極性電荷;上述の例においては正電荷)に対しては略導電体として作用する電荷輸送層3、後述する読取用の読取光L2の照射を受けることにより導電性を呈する読取用光導電層4、電磁波L2に対して透過性を有する第2の導電層5を、この順に積層してなるものである。   The radiation imaging panel 10 includes a first conductive layer 1 that is transparent to a recording radiation L1, which will be described later, and a recording radiation that exhibits conductivity when irradiated with the radiation L1 transmitted through the conductive layer 1. The conductive layer 2 and the charge charged on the conductive layer 1 (latent image polar charge; for example, negative charge) act as an insulator and have a charge opposite to the charge (transport polar charge; in the above example) Is a positive charge), a charge transport layer 3 acting as a substantially conductive material, a read photoconductive layer 4 that exhibits conductivity when irradiated with a read light L2 for reading, which will be described later, and a light-transmitting electromagnetic wave L2. The second conductive layer 5 having the property is laminated in this order.

ここで、導電層1および5としては、例えば、透明ガラス板上に導電性物質を一様に塗布したもの(ネサ皮膜等)が適当である。電荷輸送層3としては、導電層1に帯電される負電荷の移動度と、その逆極性となる正電荷の移動度の差が大きい程良く、ポリN−ビニルカルバゾール(PVK)、N,N'−ジフェニル−N,N'−ビス(3−メチルフェニル)−〔1,1'−ビフェニル〕−4,4'−ジアミン(TPD)やディスコティック液晶等の有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PVK)分散物,Clを10〜200ppmドープしたa−Se等の半導体物質が適当である。特に、有機系化合物(PVK,TPD、ディスコティック液晶等)は光不感性を有するため好ましく、また、誘電率が一般に小さいため電荷輸送層3と読取用光導電層4の容量が小さくなり読み取り時の信号取り出し効率を大きくすることができる。   Here, as the conductive layers 1 and 5, for example, a transparent glass plate in which a conductive substance is uniformly applied (nesa film or the like) is suitable. As the charge transport layer 3, the larger the difference between the mobility of the negative charge charged in the conductive layer 1 and the mobility of the positive charge having the opposite polarity, the better, poly N-vinylcarbazole (PVK), N, N Organic compounds such as' -diphenyl-N, N'-bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD) and discotic liquid crystals, or TPD polymers ( Polycarbonate, polystyrene, PVK) dispersion, semiconductor materials such as a-Se doped with 10 to 200 ppm of Cl are suitable. In particular, organic compounds (PVK, TPD, discotic liquid crystal, etc.) are preferable because they have light insensitivity, and since the dielectric constant is generally small, the capacitance of the charge transport layer 3 and the photoconductive layer 4 for reading is reduced, and thus reading is performed. The signal extraction efficiency can be increased.

読取用光導電層4には、a−Se,Se−Te,Se−As−Te,無金属フタロシアニン,金属フタロシアニン,MgPc( Magnesium phtalocyanine),VoPc(phaseII of Vanadyl phthalocyanine),CuPc(Cupper phtalocyanine)等のうち少なくとも1つを主成分とする光導電性物質が好適である。   The reading photoconductive layer 4 includes a-Se, Se-Te, Se-As-Te, metal-free phthalocyanine, metal phthalocyanine, MgPc (magnesium phtalocyanine), VoPc (phase II of vanadyl phthalocyanine), CuPc (Cupper phtalocyanine), and the like. Among them, a photoconductive material mainly containing at least one of them is preferable.

記録用放射線導電層2には、本発明のBiMO4からなる光導電層を使用する。すなわち、本発明の光導電層は記録用放射線導電層である。 As the recording radiation conductive layer 2, a photoconductive layer made of BiMO 4 of the present invention is used. That is, the photoconductive layer of the present invention is a recording radiation conductive layer.

続いて、静電潜像を読み取るために光を用いる方式について簡単に説明する。図2は放射線撮像パネル10を用いた記録読取システム(静電潜像記録装置と静電潜像読取装置を一体にしたもの)の概略構成図を示すものである。この記録読取システムは、放射線撮像パネル10、記録用照射手段90、電源50、電流検出手段70、読取用露光手段92並びに接続手段S1、S2とからなり、静電潜像記録装置部分は放射線撮像パネル10、電源50、記録用照射手段90、接続手段S1とからなり、静電潜像読取装置部分は放射線撮像パネル10、電流検出手段70、接続手段S2とからなる。   Next, a system that uses light to read an electrostatic latent image will be briefly described. FIG. 2 is a schematic configuration diagram of a recording / reading system using the radiation imaging panel 10 (integrated electrostatic latent image recording device and electrostatic latent image reading device). This recording / reading system comprises a radiation imaging panel 10, a recording irradiation means 90, a power source 50, a current detection means 70, a reading exposure means 92, and connection means S1, S2. The panel 10, the power supply 50, the recording irradiation means 90, and the connection means S 1, and the electrostatic latent image reading device portion includes the radiation imaging panel 10, current detection means 70, and connection means S 2.

放射線撮像パネル10の導電層1は接続手段S1を介して電源50の負極に接続されるとともに、接続手段S2の一端にも接続されている。接続手段S2の他端の一方は電流検出手段70に接続され、放射線撮像パネル10の導電層5、電源50の正極並びに接続手段S2の他端の他方は接地されている。電流検出手段70はオペアンプからなる検出アンプ70aと帰還抵抗70b とからなり、いわゆる電流電圧変換回路を構成している。   The conductive layer 1 of the radiation imaging panel 10 is connected to the negative electrode of the power source 50 through the connection means S1, and is also connected to one end of the connection means S2. One end of the connection means S2 is connected to the current detection means 70, and the conductive layer 5 of the radiation imaging panel 10, the positive electrode of the power supply 50, and the other end of the connection means S2 are grounded. The current detection means 70 includes a detection amplifier 70a made of an operational amplifier and a feedback resistor 70b, and constitutes a so-called current-voltage conversion circuit.

導電層1の上面には被写体9が配設されており、被写体9は放射線L1に対して透過性を有する部分9aと透過性を有しない遮断部(遮光部)9bが存在する。記録用照射手段90は放射線L1を被写体9に一様に曝射するものであり、読取用露光手段92は赤外線レーザ光やLED、EL等の読取光L2を図3中の矢印方向へ走査露光するものであり、読取光L2は細径に収束されたビーム形状をしていることが望ましい。   A subject 9 is disposed on the upper surface of the conductive layer 1, and the subject 9 has a portion 9a that is transparent to the radiation L1 and a blocking portion (light-shielding portion) 9b that is not transparent. The recording irradiation means 90 uniformly exposes the radiation L1 to the subject 9, and the reading exposure means 92 scans and exposes the reading light L2 such as infrared laser light, LED or EL in the direction of the arrow in FIG. Therefore, it is desirable that the reading light L2 has a beam shape converged to a small diameter.

以下、上記構成の記録読取システムにおける静電潜像記録過程について電荷モデル(図3)を参照しながら説明する。図2において接続手段S2を開放状態(接地、電流検出手段70の何れにも接続させない)にして、接続手段S1をオンし導電層1と導電層5との間に電源50による直流電圧Edを印加し、電源50から負の電荷を導電層1に、正の電荷を導電層5に帯電させる(図3(A)参照)。これにより、放射線撮像パネル10には導電層1と5との間に平行な電場が形成される。   Hereinafter, an electrostatic latent image recording process in the recording / reading system having the above configuration will be described with reference to a charge model (FIG. 3). In FIG. 2, the connection means S2 is opened (not connected to either the ground or current detection means 70), the connection means S1 is turned on, and the DC voltage Ed from the power source 50 is applied between the conductive layer 1 and the conductive layer 5. Then, a negative charge is applied to the conductive layer 1 and a positive charge is applied to the conductive layer 5 from the power source 50 (see FIG. 3A). Thereby, a parallel electric field is formed between the conductive layers 1 and 5 in the radiation imaging panel 10.

次に記録用照射手段90から放射線L1を被写体9に向けて一様に曝射する。放射線L1は被写体9の透過部9aを透過し、さらに導電層1をも透過する。放射線導電層2はこの透過した放射線L1を受け導電性を呈するようになる。これは放射線L1の線量に応じて可変の抵抗値を示す可変抵抗器として作用することで理解され、抵抗値は放射線L1によって電子(負電荷)とホール(正電荷)の電荷対が生じることに依存し、被写体9を透過した放射線L1の線量が少なければ大きな抵抗値を示すものである(図3(B)参照)。なお、放射線L1によって生成される負電荷(−)および正電荷(+)を、図面上では−または+を○で囲んで表している。   Next, the radiation L1 is uniformly irradiated toward the subject 9 from the recording irradiation means 90. The radiation L1 passes through the transmission part 9a of the subject 9, and further passes through the conductive layer 1. The radiation conductive layer 2 receives the transmitted radiation L1 and exhibits conductivity. This is understood by acting as a variable resistor that shows a variable resistance value according to the dose of radiation L1, and the resistance value is caused by the generation of a charge pair of electrons (negative charge) and holes (positive charge) by radiation L1. The resistance value is large if the dose of the radiation L1 transmitted through the subject 9 is small (see FIG. 3B). The negative charge (−) and the positive charge (+) generated by the radiation L1 are represented by enclosing − or + in circles in the drawing.

放射線導電層2中に生じた正電荷は放射線導電層2中を導電層1に向かって高速に移動し、導電層1と放射線導電層2との界面で導電層1に帯電している負電荷と電荷再結合して消滅する(図3(C),(D)を参照)。一方、放射線導電層2中に生じた負電荷は放射線導電層2中を電荷転送層3に向かって移動する。電荷転送層3は導電層1に帯電した電荷と同じ極性の電荷(本例では負電荷)に対して絶縁体として作用するものであるから、放射線導電層2中を移動してきた負電荷は放射線導電層2と電荷転送層3との界面で停止し、この界面に蓄積されることになる(図3(C),(D)を参照)。蓄積される電荷量は放射線導電層2中に生じる負電荷の量、即ち、放射線L1の被写体9を透過した線量によって定まるものである。   The positive charge generated in the radiation conductive layer 2 moves at high speed in the radiation conductive layer 2 toward the conductive layer 1, and the negative charge is charged in the conductive layer 1 at the interface between the conductive layer 1 and the radiation conductive layer 2. And disappear due to charge recombination (see FIGS. 3C and 3D). On the other hand, the negative charges generated in the radiation conductive layer 2 move in the radiation conductive layer 2 toward the charge transfer layer 3. Since the charge transfer layer 3 acts as an insulator for charges having the same polarity as the charges charged in the conductive layer 1 (in this example, negative charges), the negative charges that have moved through the radiation conductive layer 2 are radiation. It stops at the interface between the conductive layer 2 and the charge transfer layer 3 and accumulates at this interface (see FIGS. 3C and 3D). The amount of charge accumulated is determined by the amount of negative charge generated in the radiation conductive layer 2, that is, the dose of radiation L1 transmitted through the subject 9.

一方、放射線L1は被写体9の遮光部9bを透過しないから、放射線撮像パネル10の遮光部9bの下部にあたる部分は何ら変化を生じない( 図3(B)〜(D)を参照)。このようにして、被写体9に放射線L1を曝射することにより、被写体像に応じた電荷を放射線導電層2と電荷転送層3との界面に蓄積することができるようになる。なお、この蓄積せしめられた電荷による被写体像を静電潜像という。   On the other hand, since the radiation L1 does not pass through the light shielding portion 9b of the subject 9, no change occurs in the portion corresponding to the lower portion of the light shielding portion 9b of the radiation imaging panel 10 (see FIGS. 3B to 3D). In this way, by exposing the subject 9 to the radiation L1, charges corresponding to the subject image can be accumulated at the interface between the radiation conductive layer 2 and the charge transfer layer 3. The subject image based on the accumulated charges is called an electrostatic latent image.

次に静電潜像読取過程について電荷モデル(図4)を参照しつつ説明する。接続手段S1を開放し電源供給を停止すると共に、S2を一旦接地側に接続し、静電潜像が記録された放射線撮像パネル10の導電層1および5を同電位に帯電させて電荷の再配列を行った後に(図4(A)参照)、接続手段S2を電流検出手段70側に接続する。   Next, an electrostatic latent image reading process will be described with reference to a charge model (FIG. 4). The connection means S1 is opened to stop the power supply, and S2 is temporarily connected to the ground side, and the conductive layers 1 and 5 of the radiation imaging panel 10 on which the electrostatic latent image is recorded are charged to the same potential to recharge the charge. After the arrangement (see FIG. 4A), the connection means S2 is connected to the current detection means 70 side.

読取用露光手段92により読取光L2を放射線撮像パネル10の導電層5側に走査露光すると、読取光L2は導電層5を透過し、この透過した読取光L2が照射された光導電層4は走査露光に応じて導電性を呈するようになる。これは上記放射線導電層2が放射線L1の照射を受けて正負の電荷対が生じることにより導電性を呈するのと同様に、読取光L2の照射を受けて正負の電荷対が生じることに依存するものである(図4(B)参照)。なお、記録過程と同様に、読取光L2によって生成される負電荷(−)および正電荷(+)を、図面上では−または+を○で囲んで表している。   When the reading light L2 is scanned and exposed to the conductive layer 5 side of the radiation imaging panel 10 by the reading exposure means 92, the reading light L2 passes through the conductive layer 5, and the photoconductive layer 4 irradiated with the transmitted reading light L2 is Conductivity is exhibited according to scanning exposure. This is dependent on the fact that the radiation conductive layer 2 is exposed to the radiation L1 to generate positive and negative charge pairs, and has a positive and negative charge pair upon receiving the reading light L2. (See FIG. 4B). As in the recording process, negative charges (−) and positive charges (+) generated by the reading light L2 are represented by enclosing − or + in circles in the drawing.

電荷輸送層3は正電荷に対しては導電体として作用するものであるから、光導電層4に生じた正電荷は蓄積電荷に引きつけられるように電荷輸送層3の中を急速に移動し、放射線導電層2と電荷輸送層3との界面で蓄積電荷と電荷再結合をし消滅する(図4(C)参照)。一方、光導電層4に生じた負電荷は導電層5の正電荷と電荷再結合をし消滅する(図4(C)参照)。光導電層4は読取光L2により十分な光量でもって走査露光されており、放射線導電層2と電荷輸送層3との界面に蓄積されている蓄積電荷、即ち静電潜像が全て電荷再結合により消滅せしめられる。このように、放射線撮像パネル10に蓄積されていた電荷が消滅するということは、放射線撮像パネル10に電荷の移動による電流Iが流れたことを意味するものであり、この状態は放射線撮像パネル10を電流量が蓄積電荷量に依存する電流源で表した図4(D)のような等価回路でもって示すことができる。   Since the charge transport layer 3 acts as a conductor for positive charges, the positive charge generated in the photoconductive layer 4 rapidly moves in the charge transport layer 3 so as to be attracted to the accumulated charges, The accumulated charge and charge recombination disappear at the interface between the radiation conductive layer 2 and the charge transport layer 3 (see FIG. 4C). On the other hand, the negative charge generated in the photoconductive layer 4 disappears due to charge recombination with the positive charge of the conductive layer 5 (see FIG. 4C). The photoconductive layer 4 is scanned and exposed with a sufficient amount of light by the reading light L2, and the accumulated charges accumulated at the interface between the radiation conductive layer 2 and the charge transport layer 3, that is, the electrostatic latent image are all recombined. Will be extinguished. Thus, the disappearance of the charges accumulated in the radiation imaging panel 10 means that the current I has flowed through the radiation imaging panel 10 due to the movement of charges, and this state is the radiation imaging panel 10. Can be expressed by an equivalent circuit as shown in FIG. 4D, in which the current amount is expressed by a current source whose amount depends on the accumulated charge amount.

このように、読取光L2を走査露光しながら、放射線撮像パネル10から流れ出す電流を検出することにより、走査露光された各部(画素に対応する)の蓄積電荷量を順次読み取ることができ、これにより静電潜像を読み取ることができる。なお、本放射線検出部動作については特開2000-105297号等に記載されている。   In this way, by detecting the current flowing out from the radiation imaging panel 10 while scanning and exposing the reading light L2, it is possible to sequentially read the accumulated charge amount of each scanning-exposed part (corresponding to the pixel). The electrostatic latent image can be read. The operation of the radiation detection unit is described in Japanese Patent Application Laid-Open No. 2000-105297.

次に、後者のTFT方式の放射線撮像パネルについて説明する。この放射線撮像パネルは、図5に示すように放射線検出部100とアクティブマトリックスアレイ基板(以下AMA基板)200が接合された構造となっている。図6に示すように放射線検出部100は大きく分けて放射線入射側から順に、バイアス電圧印加用の共通電極103と、検出対象の放射線に感応して電子−正孔対であるキャリアを生成する光導電層104と、キャリア収集用の検出電極107とが積層形成された構成となっている。共通電極の上層には放射線検出部支持体を有していてもよい。   Next, the latter TFT type radiation imaging panel will be described. This radiation imaging panel has a structure in which a radiation detection unit 100 and an active matrix array substrate (hereinafter referred to as an AMA substrate) 200 are joined as shown in FIG. As shown in FIG. 6, the radiation detection unit 100 is roughly divided into a common electrode 103 for applying a bias voltage and light that generates carriers that are electron-hole pairs in response to the radiation to be detected in order from the radiation incident side. The conductive layer 104 and the detection electrode 107 for collecting carriers are stacked. The upper layer of the common electrode may have a radiation detection unit support.

光導電層104は本発明のBiMO4からなる光導電層である。共通電極103や検出電極107は、例えばITO(インジウム錫酸化物)や、AuあるいはPtなどの導電材料からなる。バイアス電圧の極性に応じて、正孔注入阻止層、電子注入阻止層が共通電極103や検出電極107に付設されていてもよい。 The photoconductive layer 104 is a photoconductive layer made of BiMO 4 of the present invention. The common electrode 103 and the detection electrode 107 are made of a conductive material such as ITO (indium tin oxide), Au, or Pt, for example. Depending on the polarity of the bias voltage, a hole injection blocking layer and an electron injection blocking layer may be attached to the common electrode 103 and the detection electrode 107.

AMA基板200の各部の構成について簡単に説明する。AMA基板200は図7に示すように、画素相当分の放射線検出部105の各々に対して電荷蓄積容量であるコンデンサ210とスイッチング素子としてTFT220とが各1個ずつ設けられている。支持体102においては、必要画素に応じて縦1000〜3000×横1000〜3000程度のマトリックス構成で画素相当分の放射線検出部105が2次元配列されており、また、AMA基板200においても、画素数と同じ数のコンデンサ210およびTFT220が、同様のマトリックス構成で2次元配列されている。光導電層で発生した電荷はコンデンサ210に蓄積され、光読取方式に対応して静電潜像となる。本発明のTFT方式においては、放射線で発生した静電潜像は電荷蓄積容量に保持される。   The configuration of each part of the AMA substrate 200 will be briefly described. As shown in FIG. 7, the AMA substrate 200 is provided with a capacitor 210 as a charge storage capacitor and a TFT 220 as a switching element for each of the radiation detection portions 105 corresponding to pixels. In the support 102, the radiation detection units 105 corresponding to the pixels are two-dimensionally arranged in a matrix configuration of about 1000 to 3000 × 1000 to 3000 in accordance with the required pixels, and the AMA substrate 200 also has pixels. The same number of capacitors 210 and TFTs 220 are two-dimensionally arranged in the same matrix configuration. The electric charge generated in the photoconductive layer is accumulated in the capacitor 210 and becomes an electrostatic latent image corresponding to the optical reading method. In the TFT method of the present invention, an electrostatic latent image generated by radiation is held in a charge storage capacitor.

AMA基板200におけるコンデンサ210およびTFT220の具体的構成は、図6に示す通りである。すなわち、AMA基板支持体230は絶縁体であり、その表面に形成されたコンデンサ210の接地側電極210aとTFT220のゲート電極220aの上に絶縁膜240を介してコンデンサ210の接続側電極210bとTFT220のソース電極220bおよびドレイン電極220cが積層形成されているのに加え、最表面側が保護用の絶縁膜250で覆われた状態となっている。また接続側電極210bとソース電極220bはひとつに繋がっており同時形成されている。コンデンサ210の容量絶縁膜およびTFT220のゲート絶縁膜の両方を構成している絶縁膜240としては、例えば、プラズマSiN膜が用いられる。このAMA基板200は、液晶表示用基板の作製に用いられるような薄膜形成技術や微細加工技術を用いて製造される。   Specific configurations of the capacitor 210 and the TFT 220 in the AMA substrate 200 are as shown in FIG. That is, the AMA substrate support 230 is an insulator, and the connection-side electrode 210b of the capacitor 210 and the TFT 220 are disposed on the ground electrode 210a of the capacitor 210 and the gate electrode 220a of the TFT 220 formed on the surface thereof via the insulating film 240. In addition to the source electrode 220b and the drain electrode 220c being stacked, the outermost surface side is covered with a protective insulating film 250. Further, the connection side electrode 210b and the source electrode 220b are connected to each other and are formed simultaneously. As the insulating film 240 constituting both the capacitor insulating film of the capacitor 210 and the gate insulating film of the TFT 220, for example, a plasma SiN film is used. The AMA substrate 200 is manufactured by using a thin film forming technique or a fine processing technique used for manufacturing a liquid crystal display substrate.

続いて放射線検出部100とAMA基板200の接合について説明する。検出電極107とコンデンサ210の接続側電極210bを位置合わせした状態で、両基板100、200を銀粒子などの導電性粒子を含み厚み方向のみに導電性を有する異方導電性フィルム(ACF)を間にして加熱・加圧接着して貼り合わせることで、両基板100、200が機械的に合体されると同時に、検出電極107と接続側電極210bが介在導体部140によって電気的に接続される。   Subsequently, the joining of the radiation detection unit 100 and the AMA substrate 200 will be described. With the detection electrode 107 and the connection side electrode 210b of the capacitor 210 aligned, both substrates 100 and 200 are made of anisotropic conductive film (ACF) containing conductive particles such as silver particles and having conductivity only in the thickness direction. The substrates 100 and 200 are mechanically combined by heating and pressurizing and bonding together, and at the same time, the detection electrode 107 and the connection side electrode 210b are electrically connected by the interposition conductor 140. .

さらに、AMA基板200には、読み出し駆動回路260とゲート駆動回路270とが設けられている。読み出し駆動回路260は、図7に示すように、列が同一のTFT220のドレイン電極を結ぶ縦(Y)方向の読み出し配線(読み出しアドレス線)280に接続されており、ゲート駆動回路270は行が同一のTFT220のゲート電極を結ぶ横(X)方向の読み出し線(ゲートアドレス線)290に接続されている。なお、図示しないが、読み出し駆動回路260内では、1本の読み出し配線280に対してプリアンプ(電荷−電圧変換器)が1個それぞれ接続されている。このように、AMA基板200には、読み出し駆動回路260とゲート駆動回路270とが接続されている。ただし、AMA基板200内に読み出し駆動回路260とゲート駆動回路270とを一体成型し、集積化を図ったものも用いられる。   Further, the AMA substrate 200 is provided with a read drive circuit 260 and a gate drive circuit 270. As shown in FIG. 7, the read drive circuit 260 is connected to a read wiring (read address line) 280 in the vertical (Y) direction that connects the drain electrodes of the TFTs 220 having the same column, and the gate drive circuit 270 has a row. A horizontal (X) direction read line (gate address line) 290 connecting the gate electrodes of the same TFT 220 is connected. Although not shown, one preamplifier (charge-voltage converter) is connected to one readout wiring 280 in the readout drive circuit 260. As described above, the read driving circuit 260 and the gate driving circuit 270 are connected to the AMA substrate 200. However, an integrated circuit in which the read drive circuit 260 and the gate drive circuit 270 are integrally formed in the AMA substrate 200 is also used.

なお、上述の放射線検出器100とAMA基板200とを接合合体させた放射線撮像装置による放射線検出動作については例えば特開平11-287862号などに記載されている。
以下に本発明の放射線撮像パネルを構成する光導電層の実施例を示す。
The radiation detection operation by the radiation imaging apparatus in which the radiation detector 100 and the AMA substrate 200 are joined and combined is described in, for example, Japanese Patent Application Laid-Open No. 11-287862.
Examples of the photoconductive layer constituting the radiation imaging panel of the present invention are shown below.

(実施例1)
オルトバナジン酸ナトリウム(Na3V04:高純度化学研究所製)を10%硝酸溶液に溶かして0.1Mのオルトパナジン酸ナトリウム溶液(以下、V-1溶液という)を調製した。一方、Bi(N0)3・5H20(高純度化学研究所製)を10%硝酸溶液で溶解し、0.1Mのビスマス硝酸溶液(以下、B-1溶夜という)を調整し、このB-1溶液0.12dm3に、0.1MのV-1溶液0.1dm3を添加し、28%アンモニア水溶液でpH3.5に調整後、一時間攪拌した。その後、遠心分離をして、上澄みを捨てる操作を三回繰り返し、平均粒子径約6μmの正方晶のBiV04粒子を得た。得られたBiV04粒子をX線解析装置(RINT-ULTIMA+:理学電気製)で確認したところ、正方晶BiV04粒子の単相になっていた。得られたBiV04粒子とポリエステルバインダ(バイロン300:東洋紡)を重量比9:1の割合でメチルエチルケトン溶媒で混合分散させ、これをドクターブレード法でAl基板に塗布し、乾燥して約200μm厚の塗布膜(光導電層)を得た。
Example 1
Sodium orthovanadate (Na 3 V0 4: Kojundo Chemical Laboratory, Ltd.) was dissolved in 10% nitric acid solution of sodium Orutopanajin acid 0.1M solution (hereinafter, referred to as V-1 solution) was prepared. On the other hand, Bi (N0) 3 · 5H 2 0 (manufactured by Kojundo Chemical Laboratory) was dissolved in 10% nitric acid solution, 0.1 M of bismuth nitrate solution (hereinafter, referred to as B-1溶夜) was adjusted to the B -1 solution 0.12Dm 3, the addition of V-1 solution 0.1Dm 3 of 0.1 M, adjusted to pH3.5 with 28% aqueous ammonia solution and stirred for one hour. Then centrifuged, repeated three times an operation of discarding the supernatant, to obtain a BiV0 4 particles tetragonal an average particle diameter of about 6 [mu] m. The resulting BiV0 4 particles X-ray analysis apparatus: The product was identified as (RINT-ULTIMA + manufactured by Rigaku Denki), had become a single phase of tetragonal BiV0 4 particles. The resulting BiV0 4 particles and polyester binder (Byron 300: Toyobo) the weight ratio of 9: was mixed and dispersed in methyl ethyl ketone solvent in a ratio of 1, which was coated on Al substrate by a doctor blade method, about 200μm thick and dried A coating film (photoconductive layer) was obtained.

(実施例2)
0.1MのB-1溶液0.1dm3に、O.1MのV-1溶液0.1dm3を添加し、28%アンモニア水溶液でpH1に調整後、8時間攪拌した。その後、遠心分離をして、上澄みを捨てる操作を三回繰り返し、平均粒子径2μmの斜方晶のBiV04粒子を得た。得られたBiV04粒子をXRD装置で確認したところ、斜方晶BiV04粒子の単相になっていた。得られたBiV04粒子とポリエステルバインダ(バイロン300:東洋紡)を重量比9:1の割合でメチルエチルケトン溶媒で混合分散させ、これをドクターブレード法でAl基板に塗布し、乾燥して約200μm厚の塗布膜(光導電層)を得た。
(Example 2)
To 0.1M of B-1 solution 0.1Dm 3, the addition of V-1 solution 0.1Dm 3 of O.1M, adjusted to pH1 with 28% aqueous ammonia solution and stirred for 8 hours. Then centrifuged, repeated three times an operation of discarding the supernatant, to obtain a BiV0 4 particles orthorhombic an average particle diameter of 2 [mu] m. The resulting BiV0 4 particles was confirmed by XRD apparatus was supposed to single-phase orthorhombic BiV0 4 particles. The resulting BiV0 4 particles and polyester binder (Byron 300: Toyobo) the weight ratio of 9: was mixed and dispersed in methyl ethyl ketone solvent in a ratio of 1, which was coated on Al substrate by a doctor blade method, about 200μm thick and dried A coating film (photoconductive layer) was obtained.

(実施例3)
酸化ビスマス粉体(高純度化学研究所製)と五酸化バナジウム粉未(高純度化学研究所製)とをモル比1:1になるように配合し、酸化ジルコニウムボールを用いて、エタノール中でボールミル混合を行った。その後、回収、乾燥し、マッフル炉にて750℃で8時間焼成して、三酸化ビスマスと五酸化バナジウムの固相反応により、平均粒子径5μmの斜方晶のBiV04粒子を得た。得られたBiV04粒子をXRD装置で確認したところ、斜方晶BiV04粒子の単相になっていた。BiV04粒子を乳鉢で解砕後、150μm以下のメッシュを通し、酸化ジルコニウムボールを用いて、エタノール中でボールミル粉砕、分散を行い、回収乾燥しBiV04粒子を得た。得られたBiV04粒子とポリエステルバインダ(バイロン300:東洋紡)を重量比9:1の割合でメチルエチルケトン溶媒で混合分散させ、これをドクターブレード法でAl基板に塗布し、乾燥して約200μm厚の塗布膜(光導電層)を得た。
(Example 3)
Bismuth oxide powder (manufactured by High Purity Chemical Research Laboratory) and vanadium pentoxide powder (manufactured by High Purity Chemical Research Laboratory) are blended so as to have a molar ratio of 1: 1. Ball mill mixing was performed. Thereafter, recovered, dried and calcined for 8 hours at 750 ° C. in a muffle furnace, the solid phase reaction of bismuth trioxide and vanadium pentoxide to give BiV0 4 particles orthorhombic an average particle size of 5 [mu] m. The resulting BiV0 4 particles was confirmed by XRD apparatus was supposed to single-phase orthorhombic BiV0 4 particles. BiV0 4 solution particles in a mortar after grinding, through the following mesh 150 [mu] m, using zirconium oxide balls, carried ball milling, the dispersion in ethanol, to obtain a recovered dried BiV0 4 particles. The resulting BiV0 4 particles and polyester binder (Byron 300: Toyobo) the weight ratio of 9: was mixed and dispersed in methyl ethyl ketone solvent in a ratio of 1, which was coated on Al substrate by a doctor blade method, about 200μm thick and dried A coating film (photoconductive layer) was obtained.

(実施例4)
五酸化バナジウムを五酸化タンタル(高純度化学研究所製)とし、マッフル炉の焼成条件を1200℃で24時間とした以外は実施例3と同様にして平均粒子径6μmの三斜晶のBiTa04粒子を得た。得られたBiTa04粒子をXRD装置で確認したところ、三斜晶のBiTa04粒子の単相になっていた。BiTa04粒子を乳鉢で解砕後、150μm以下のメッシュを通し、酸化ジルコニウムボールを用いて、エタノール中でボールミル粉砕、分散を行い、回収乾燥し、固相法によりBiTa04粒子を得、実施例3と同様にして、BiTa04粒子からなる塗布膜(光導電層)を得た。
Example 4
Triclinic BiTaO 4 with an average particle size of 6 μm was used in the same manner as in Example 3 except that vanadium pentoxide was tantalum pentoxide (manufactured by High-Purity Chemical Laboratory) and the firing conditions of the muffle furnace were 1200 ° C. for 24 hours. Particles were obtained. The resulting BiTa0 4 particles was confirmed by XRD apparatus was supposed to single phase BiTa0 4 particles triclinic. BiTa0 4 solution particles in a mortar after grinding, through the following mesh 150 [mu] m, using zirconium oxide balls, ball milled in ethanol, was dispersed, collected and dried to give the BiTa0 4 particles by solid phase method, Example In the same manner as in No. 3 , a coating film (photoconductive layer) made of BiTa04 particles was obtained.

(実施例5)
五酸化バナジウムを五酸化二オブ(高純度化学研究所製)とした以外は、実施例3と同様にして平均粒子径5μmの三斜晶のBiNb04粒子を得た。得られたBiNb04粒子をXRD装置で確認したところ、三斜晶のBiNb04粒子の単相になっていた。BiNb04粒子を乳鉢で解砕後、150μm以下のメッシュを通し、酸化ジルコニウムボールを用いて、エタノール中でボールミル粉砕、分散を行い、回収乾燥し、固相法によりBiNb04粒子を得、実施例3と同様にして、BiNb04粒子からなる塗布膜(光導電層)を得た。
(Example 5)
Except that the vanadium pentoxide and pentoxide of (manufactured by Kojundo Chemical Laboratory), to obtain a BiNb0 4 particles triclinic an average particle diameter of 5μm in the same manner as in Example 3. The resulting BiNb0 4 particles was confirmed by XRD apparatus was supposed to single phase BiNb0 4 particles triclinic. BiNb0 4 solution particles in a mortar after grinding, through the following mesh 150 [mu] m, using zirconium oxide balls, ball milled in ethanol, was dispersed, collected and dried to give the BiNb0 4 particles by solid phase method, Example In the same manner as in No. 3 , a coating film (photoconductive layer) made of BiNb04 particles was obtained.

(実施例6)
実施例3で得られたBiV04粒子のエタノール分散液に0.4重量%のポリビニルブチラール(PVB)を分散剤として添加した。その後、バインダーとして0.7重量%のPVBを追加し、可塑剤として0.8重量%のフタル酸ジオクチルを加えて、更にボールミルを継続し、シート成形用のスラリーを調製した。回収したスラリー分散液は、真空脱泡処理と濃縮処理により、脱泡と粘度調整を行った。処理を行ったスラリー液は、コーターを用いて、離型剤付きのフィルムベース上に焼成後の膜厚が約200μmとなるように塗布してシート状に成形した。室温にて24時間放置して乾燥し、フィルムベースより剥離し、グリーンシート膜を作製した。酸化アルミニウム焼結セッター上に作製したグリーンシート膜を載置し、焼結温度800℃で焼結を行った。この焼結したBiV04を導電性ペーストドータイト(藤倉化成製)を用いてAl基板に接合して光導電層を得た。
(Example 6)
Polyvinyl butyral 0.4 wt% ethanol dispersion of BiV0 4 particles obtained in Example 3 (PVB) was added as a dispersing agent. Thereafter, 0.7% by weight of PVB was added as a binder, 0.8% by weight of dioctyl phthalate was added as a plasticizer, and the ball mill was further continued to prepare a slurry for sheet molding. The recovered slurry dispersion was subjected to defoaming and viscosity adjustment by vacuum defoaming treatment and concentration treatment. The treated slurry was applied on a film base with a release agent using a coater so that the film thickness after firing was about 200 μm and formed into a sheet. It was allowed to stand at room temperature for 24 hours and dried, and then peeled off from the film base to produce a green sheet film. The prepared green sheet film was placed on an aluminum oxide sintered setter and sintered at a sintering temperature of 800 ° C. To obtain a photoconductive layer by joining the sintered BiV0 4 in Al substrate using a conductive paste Dotite (manufactured by Fujikura Kasei).

(実施例7)
実施例6において、実施例3で得られたBiV04粒子のエタノール分散液を実施例4で得られたBiTa04粒子のエタノール分散液に変えた以外は実施例6と同様にして、BiTa04粒子の焼結を行い、焼結したBiTa04を導電性ペーストドータイト(藤倉化成製)を用いてAl基板に接合して光導電層を得た。
(Example 7)
In Example 6, except for changing the ethanol dispersion of BiTa0 4 particles obtained ethanol dispersion of BiV0 4 particles obtained in Example 3 in Example 4 in the same manner as in Example 6, BiTa0 4 particles of was sintered to obtain a photoconductive layer bonded to Al substrate using sintered BiTa0 4 conductive paste Dotite (manufactured by Fujikura Kasei).

(実施例8)
実施例6において、実施例3で得られたBiV04粒子のエタノール分散液を実施例5で得られたBiNb04粒子のエタノール分散液に変えた以外は実施例6と同様にして、BiNb04粒子の焼結を行い、焼結したBiNb04を導電性ペーストドータイト(藤倉化成製)を用いてAl基板に接合して光導電層を得た。
(Example 8)
In Example 6, except for changing the ethanol dispersion of BiNb0 4 particles obtained ethanol dispersion of BiV0 4 particles obtained in Example 3 in Example 5 in the same manner as in Example 6, BiNb0 4 particles of was sintered to obtain a photoconductive layer bonded to Al substrate using sintered BiNb0 4 conductive paste Dotite (manufactured by Fujikura Kasei).

(比較例)
0.1MのB-1溶液0.1dm3とKI(和光純薬製)を水に溶かした0.3MのK-1水溶液0.1dm3とを同時に、よく攪拌されたKIの0.001M水溶液0.1dm3に5分間で添加して、黒色沈澱を得た。還心分離し、上澄みを捨てる洗浄操作を3回繰り返し、回収乾燥して、平均粒子径約0.7μmのBiI3粒子を得た。得られたBiI3粒子をXRD装置で確認したところ、BiI3粒子の単相になっていた。得られたBiI3粒子とポリエステルバインダ(バイロン300:東洋紡)を重量比9:1の割合でメチルエチルケトン溶媒で混合分散させ、これをドクターブレード法でAl基板に塗布し、乾燥して約200μm厚の塗布膜(光導電層)を得た。
(Comparative example)
0.1M of B-1 solution 0.1Dm 3 and KI (Wako Junyaku Co.) to a K-1 aqueous solution 0.1Dm 3 of 0.3M dissolved in water at the same time, the well-stirred KI in 0.001M aqueous 0.1Dm 3 Added over 5 minutes to give a black precipitate. The washing operation of separating the return core and discarding the supernatant was repeated three times, and recovered and dried to obtain BiI 3 particles having an average particle size of about 0.7 μm. When the obtained BiI 3 particles were confirmed with an XRD apparatus, they were in a single phase of BiI 3 particles. The obtained BiI 3 particles and a polyester binder (Byron 300: Toyobo) were mixed and dispersed in a methyl ethyl ketone solvent at a weight ratio of 9: 1, and this was applied to an Al substrate by a doctor blade method and dried to a thickness of about 200 μm. A coating film (photoconductive layer) was obtained.

実施例1〜8および比較例で得られた光導電層に上部電極として金を60nmの厚みでスパッタした。これに、X線光電流信号を電圧80kVの条件で、10mRのX線を0.1秒間照射し、電圧を印加した条件(印可電圧は電場2.5V/μmに相当するように印可)で生じたパルス上の光電流を電流増幅器で電圧に変換し、デジタルオシロスコープで測定した。得られた電流・時間カーブより、X線照射時間の範囲において積分し、発生荷電量として測定した。また、暗電流は、X線未照射の暗所中において、光電流測定と同じ方法で電流値として測定した。   Gold was sputtered to a thickness of 60 nm as an upper electrode on the photoconductive layers obtained in Examples 1 to 8 and Comparative Example. This is a pulse generated under the condition that X-ray photocurrent signal is irradiated at a voltage of 80kV, 10mR of X-ray is irradiated for 0.1 seconds, and voltage is applied (applied voltage is equivalent to an electric field of 2.5V / μm). The above photocurrent was converted to voltage with a current amplifier and measured with a digital oscilloscope. From the obtained current / time curve, integration was performed in the range of the X-ray irradiation time, and the amount of generated charge was measured. Further, the dark current was measured as a current value by the same method as the photocurrent measurement in a dark place not irradiated with X-rays.

結果を表1に示す。なお、発生電荷量は上記方法により測定された比較例の発生電荷量を100とした相対値により、暗電流は上記方法により測定された比較例の暗電流を1とした相対値により示した。

Figure 2006093581
The results are shown in Table 1. The amount of generated charge was represented by a relative value with the amount of generated charge of the comparative example measured by the above method as 100, and the dark current was represented by a relative value with the dark current of the comparative example measured by the above method as 1.
Figure 2006093581

BiMO4のBiVO4は顔料として(例えば特開平11-349332号)、あるいは光触媒や可視光応答性化合物として(例えば特開2000-24936号)知られており、その結晶は正方晶や斜方晶が公知であるが、上記顔料、光触媒、可視光応答性化合物等には専ら斜方晶が好ましく使用されている。また、BiTaO4、BiNbO4も光触媒として検討されている(可視光応答型。光触媒の最前線NTS8講4−1−2)。表1から明らかなように、本発明のBiMO4からなる光導電層は、BiI3からなる光導電層に比較して、総じて約1.2〜1.5倍発生電荷の捕集効果が高かった。また、焼結膜の光導電層(実施例6〜8)にあっては28倍、発生電荷の捕集効果が高かった。 BiVO 4 of BiMO 4 is known as a pigment (for example, JP-A-11-349332), or as a photocatalyst or a visible light responsive compound (for example, JP-A-2000-24936), and the crystal thereof is tetragonal or orthorhombic. Is known, but orthorhombic crystals are preferably used exclusively for the pigments, photocatalysts, visible light responsive compounds and the like. BiTaO 4 and BiNbO 4 have also been studied as photocatalysts (visible light responsive type, forefront of photocatalyst NTS8 lecture 4-1-2). As can be seen from Table 1, the photoconductive layer made of BiMO 4 of the present invention was generally about 1.2 to 1.5 times more effective in collecting the generated charge than the photoconductive layer made of BiI 3 . Further, in the photoconductive layer (Examples 6 to 8) of the sintered film, the generated charge collecting effect was 28 times higher.

また、塗布法によって設けた光導電層では、BiI3からなる光導電層に比較して暗電流が40〜80%減少し、電気ノイズが小さいため粒状性のよい画像を得ることが可能である。なお、焼結膜の光導電層では暗電流は大きくなったものの、感度に比べてその大きさは小さく、従って、著しいSN比改善と感度向上が達成された。 Further, in the photoconductive layer provided by the coating method, the dark current is reduced by 40 to 80% as compared with the photoconductive layer made of BiI 3, and it is possible to obtain an image with good graininess because the electric noise is small. . In the sintered photoconductive layer, although the dark current was large, the magnitude thereof was small compared to the sensitivity, and therefore, a remarkable SN ratio improvement and sensitivity improvement were achieved.

以上のように、本発明のBiMO4からなる光導電層は、発生電荷の捕集効果が大きいために感度が高く、電気ノイズが小さいため粒状性のよい画像を得ることが可能である。また、耐久性に優れるとともに、毒性がなく、環境負荷も小さいという利点がある。 As described above, the photoconductive layer made of BiMO 4 of the present invention has a high sensitivity due to a large effect of collecting generated charges, and can obtain an image with good graininess because of a small electric noise. In addition, it has advantages of excellent durability, non-toxicity, and low environmental load.

本発明の製造方法により製造される光導電層を有する放射線撮像パネルの一実施の形態を示す断面図Sectional drawing which shows one Embodiment of the radiation imaging panel which has a photoconductive layer manufactured with the manufacturing method of this invention 放射線撮像パネルを用いた記録読取システムの概略構成図Schematic configuration diagram of a recording and reading system using a radiation imaging panel 記録読取システムにおける静電潜像記録過程を電荷モデルにより示した図Diagram showing the electrostatic latent image recording process in a recording and reading system using a charge model 記録読取システムにおける静電潜像読取過程を電荷モデルにより示した図Diagram showing the electrostatic latent image reading process in the recording and reading system using a charge model 放射線検出器とAMA基板の合体状態を示す概略模式図Schematic diagram showing the combined state of the radiation detector and the AMA substrate AMA基板の等価回路を示す電気回路図Electrical circuit diagram showing equivalent circuit of AMA substrate 放射線検出部の画素分を示す概略断面図Schematic sectional view showing the pixels of the radiation detector

符号の説明Explanation of symbols

1 導電層
2 記録用放射線導電層
3 電荷輸送層
4 記録用光導電層
5 導電層
10 放射線撮像パネル
70 電流検出手段
DESCRIPTION OF SYMBOLS 1 Conductive layer 2 Recording radiation conductive layer 3 Charge transport layer 4 Recording photoconductive layer 5 Conductive layer 10 Radiation imaging panel 70 Current detection means

Claims (4)

放射線画像情報を静電潜像として記録する放射線撮像パネルを構成する光導電層であって、該光導電層がBiMO4(ただし、MはV,Nb,Ta中の少なくとも1種である。)からなることを特徴とする光導電層。 A photoconductive layer constituting a radiation imaging panel that records radiation image information as an electrostatic latent image, and the photoconductive layer is BiMO 4 (where M is at least one of V, Nb, and Ta). A photoconductive layer comprising: 前記光導電層が塗布により設けられたものであることを特徴とする請求項1記載の光導電層。   The photoconductive layer according to claim 1, wherein the photoconductive layer is provided by coating. 前記光導電層が焼結膜であることを特徴とする請求項1記載の光導電層。   The photoconductive layer according to claim 1, wherein the photoconductive layer is a sintered film. 放射線画像情報を静電潜像として記録する、請求項1、2または3記載のBiMO4からなる光導電層を備えたことを特徴とする放射線撮像パネル。 A radiation imaging panel comprising a photoconductive layer made of BiMO 4 according to claim 1, 2 or 3, which records radiation image information as an electrostatic latent image.
JP2004279708A 2004-09-27 2004-09-27 Photoconductive layer and radiation imaging panel constituting radiation imaging panel Expired - Fee Related JP4545538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279708A JP4545538B2 (en) 2004-09-27 2004-09-27 Photoconductive layer and radiation imaging panel constituting radiation imaging panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279708A JP4545538B2 (en) 2004-09-27 2004-09-27 Photoconductive layer and radiation imaging panel constituting radiation imaging panel

Publications (3)

Publication Number Publication Date
JP2006093581A true JP2006093581A (en) 2006-04-06
JP2006093581A5 JP2006093581A5 (en) 2007-05-17
JP4545538B2 JP4545538B2 (en) 2010-09-15

Family

ID=36234234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279708A Expired - Fee Related JP4545538B2 (en) 2004-09-27 2004-09-27 Photoconductive layer and radiation imaging panel constituting radiation imaging panel

Country Status (1)

Country Link
JP (1) JP4545538B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142954A (en) * 2012-02-08 2012-07-26 Fujifilm Corp Radiation image recording/reading device
CN116854470A (en) * 2023-05-31 2023-10-10 四川省新材料研究中心 Doped modified bismuth vanadate material used as direct X-ray array imaging device and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105297A (en) * 1997-08-19 2000-04-11 Fuji Photo Film Co Ltd Electrostatic recording body, electrostatic latent image recording apparatus and electrostatic latent image reader
JP2004105957A (en) * 2002-08-30 2004-04-08 Sk Kaken Co Ltd Photocatalyst composite powder and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105297A (en) * 1997-08-19 2000-04-11 Fuji Photo Film Co Ltd Electrostatic recording body, electrostatic latent image recording apparatus and electrostatic latent image reader
JP2004105957A (en) * 2002-08-30 2004-04-08 Sk Kaken Co Ltd Photocatalyst composite powder and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142954A (en) * 2012-02-08 2012-07-26 Fujifilm Corp Radiation image recording/reading device
CN116854470A (en) * 2023-05-31 2023-10-10 四川省新材料研究中心 Doped modified bismuth vanadate material used as direct X-ray array imaging device and preparation method thereof

Also Published As

Publication number Publication date
JP4545538B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
US7632539B2 (en) Method for manufacturing photoconductive layers that constitute radiation imaging panels
EP1584950A2 (en) Radiation imaging panel with a photoconductive layer
US7476341B2 (en) Process for producing photo-conductor layers for constituting radiation imaging panels
US20060051287A1 (en) Processes for producing Bi12MO20 precursors, Bi12MO20 particles, and photo-conductor layers
JP4545538B2 (en) Photoconductive layer and radiation imaging panel constituting radiation imaging panel
JP4602205B2 (en) Bi12MO20 precursor, manufacturing method of Bi12MO20 powder, and manufacturing method of photoconductive layer constituting radiation imaging panel
JP2007005623A (en) Photoconduction layer which constitutes radiation image pick-up panel and radiation image pick-up panel
JP2006261204A (en) Photoconductive layer constituting radiation imaging panel and radiation imaging panel
JP2007005624A (en) Photoconduction layer which constitutes radiation image pick-up panel and radiation image pick-up panel
US7382006B2 (en) Photo-conductive layer for constituting a radiation imaging panel
JP2006261202A (en) Photoconduction layer constituting radiographic imaging panel, and radiographic imaging panel
US7429296B2 (en) Method for manufacturing photoconductive layer constituting radiation imaging panel
US7419697B2 (en) Method for manufacturing photoconductive layer constituting radiation imaging panel
JP2005294680A (en) Optical conductive layer for constituting radiant-ray photographing panel, and same panel
JP2005292023A (en) Photoconducting layer constituting radiation imaging panel, and radiation imaging panel
JP5077921B2 (en) Radiation solid state sensor and manufacturing method thereof
JP4787227B2 (en) Radiation detector and method for producing photoconductive layer for recording radiation detector
JP2005274259A (en) Manufacturing method for photoconductive layer constituting radiation imaging panel
JP2006245463A (en) Bi12TiO20 SINTERED COMPACT AND PHOTOCONDUCTIVE LAYER
JP2006093582A (en) Radiation imaging panel and photoconduction layer constituting the same
JP2007012843A (en) Optical conductive layer and radiation imaging panel
JP2007003907A (en) Electrostatic recording material
JP2005274258A (en) Manufacturing method for photoconductive layer constituting radiation imaging panel
JP2006240953A (en) Bi12TiO20 SINTERED COMPACT AND PHOTOCONDUCTIVE LAYER
JP2007005625A (en) Photoconduction layer which constitutes radiation image pick-up panel and radiation image pickup panel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees